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ABSTRACT
It is widely accepted that an ideal community in networks is the one

whose structure is closest to a (maximal) clique. However, in most

real-world graphs the clique model is too restrictive, as it requires

complete pairwise interactions. More relaxed cohesive subgraph

models were then studied. A 𝑘-plex is one of the arguably most

studied pseudo-clique model. A 𝑘-plex of size 𝑛 is a subgraph where

any vertex is adjacent to at least (𝑛 − 𝑘) vertices. Unfortunately,
some maximal 𝑘-plexes, by involving irrelevant subgraphs, are far

from designing meaningful communities in real-world networks. In

this paper, we first introduce a novel variant of 𝑘-plex model, called

cohesive 𝑘-plex, which is more appropriate for modeling closely-

interacting communities. Then, we reduce the problem of enumerat-

ing maximal (cohesive) 𝑘-plexes in a graph to those of enumerating

the models of a formula in propositional logic. Afterwards, to make

our approach more efficient, we provide a decomposition technique

that is particularly suitable for deriving smaller and independent

sub-problems easy to resolve. Lastly, our extensive experiments

on various real-world graphs demonstrate the efficiency of the

proposed approach w.r.t state-of-the-art algorithms.
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1 INTRODUCTION
In social network analysis, detecting a large cohesive sub-graph is

a fundamental and extensively studied topic with various applica-

tions in, e.g., sociology, bibliography, and biology [11, 30]. Clique is

one of the ideal structures, widely used in the field of community

discovery. A clique is a graph with an edge between any pair of

vertices, which can be considered as the most cohesive class of

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Auckland, New Zealand.© 2022 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

graph. The computation of maximal cliques in graphs has been

extensively studied, with a plethora of applications in various areas

such as data mining, genomics and biochemistry [31], ad hoc wire-

less networks [15], and overlapping community discovery [23, 28],

etc. Unfortunately, in most real-world graphs the clique structure

is not widespread, as it requires complete pairwise interactions.

Several kinds of pseudo-cliques have been introduced as a relax-

ation of the clique and have been used to find overlapping sub-

groups in real networks. 𝑘-plex, one of the important relaxation

of a clique, has gained ever-increasing popularity in recent years

[2, 3, 38]. However, the number of 𝑘-plexes can be exponential in

the size of a the input graph, and some of these 𝑘-plexes cannot be

considered as meaningful communities since they are highly sparse

or disconnected.

Declarative approaches, using propositional satisfiability (SAT)

and constraint programming (CP), have been successfully applied

to model and solve several pattern and graph mining problems

[14, 16, 18, 20–22, 25]. Following this emergent research trend, in

this paper, we first introduce a novel variant of the 𝑘-plex structure,

named cohesive 𝑘-plex, to ensure the cohesiveness between all the

vertices in the 𝑘-plex subgraph. Our intuition is that the counter

part of the clique relaxation constraint is to maintain the shortest

distance among vertices in the 𝑘-plex. This allows us to signifi-

cantly reduce the number of irrelevant 𝑘-plexes in a given graph.

Next, we propose a declarative approach to enumerate all maximal

(cohesive) 𝑘-plexes in graphs. At the core of this novel approach

is a SAT-based encoding which takes an undirected graph G and

a positive value 𝑘 as input and returns a propositional formula

whose models correspond to the maximal (cohesive) 𝑘-plexes in

G. In this paper, we focus on cohesive 𝑘-plexes with low 𝑘 values

(𝑘 = 1, 2, 3)1, since they produce clique relaxations found in real-

life networks [10, 26]. Afterwards, even if our SAT-based encoding

is polynomially bounded, it could become intractable in practice

when dealing with very large graphs. To overcome the scalability

issue, we harness a graph decomposition technique to generate

many independent and smaller enumeration sub-problems. This al-

lows an easy parallelization of the enumeration process of maximal

(cohesive) 𝑘-plexes when dealing with big graphs.

Our contributions can be summarized as follows:

(1) To avoid the main drawbacks of the 𝑘-plex structure, a novel

extension, called cohesive 𝑘-plex, is proposed. It is obtained

1
Our approach works for general cases, i.e., 𝑘 ≥ 4.



thanks to additional constraints, that ensure connectivity

and maintain the distance between vertices.

(2) We propose a SAT-based encoding of the problem of enumer-

ating both maximal 𝑘-plexes and maximal cohesive 𝑘-plexes.

(3) We enhance the efficiency of our SAT-based encoding by

providing a decomposition technique suitable for deriving

smaller and independent enumeration sub-problems easy to

resolve.

(4) The efficiency of our approach is extensively evaluated on

commonly used real-world graphs.

2 TECHNICAL BACKGROUND
2.1 Propositional Logic and SAT Problem
A propositional language L is defined inductively using a finite

set of boolean variables, the constants ⊤ (true or 1) and ⊥ (false
or 0) and the classical connectives {¬,∧,∨,→,↔} as usual. Let-
ters 𝑥,𝑦, 𝑧, etc. denote the propositional variables. Propositional

formulas of L are denoted by Φ,Ψ, etc. A literal is defined as a

propositional variable (𝑥 ) or its negation (¬𝑥 ). A propositional for-

mula in conjunctive normal from (CNF, for short) is defined as a

conjunction of clauses s.t. a clause is a disjunction of literals, i.e.,

𝑥1 ∨ . . . ∨ 𝑥𝑛 . For every propositional formula Φ from L, P(Φ)
denotes the boolean symbols occurring in Φ. Given a propositional

formula Φ, a Boolean interpretation I of Φ is a truth assignment of

the set of variables in Φ, i.e., a total function from P(Φ) to {0, 1}.
A model of a formula Φ is a Boolean interpretation I that satisfies

Φ. A formula Φ is satisfiable if there exists a model of Φ. We write

M(Φ) for the models of Φ. Propositional satisfiability (SAT, for

short) is the NP-complete problem that verifies the (non) existence

of a model for a CNF formula. On the one hand, the SAT model

enumeration problem considered in this paper generalizes the clas-

sical SAT problem to deal with the computation of all the models

of the formula. On the other hand, SAT has been applied in various

fields such as community detection, and data mining [18, 20].

2.2 Cliques and 𝑘-plexes
An undirected graph is formally defined as a pair G = (𝑉 , 𝐸) where
𝑉 is a set of vertices and 𝐸 ⊆ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 } is a set of edges. The
density ofG is defined as

2 |𝐸 |
|𝑉 | ( |𝑉 |−1) . Given a vertex𝑢 ∈ 𝑉 , the set of

adjacent (neighbor) vertices of 𝑢 is denoted by Γ(𝑢) = {𝑣 | (𝑢, 𝑣) ∈
𝐸}. The degree of 𝑢 in G is 𝑑𝑒𝑔G (𝑢) = |Γ(𝑢) |. The length of the

shortest path between two vertices 𝑢, 𝑣 ∈ 𝑉 in G is called the

distance between 𝑢 and 𝑣 , denoted by 𝑑G (𝑢, 𝑣). Given an undirected

graph G = (𝑉 , 𝐸), we define the subgraph induced by 𝑆 ⊆ 𝑉 as

G[𝑆] = (𝑆, 𝐸 ′) s.t. 𝐸 ′ ⊆ 𝐸. Given a graph G = (𝑉 , 𝐸), a clique in G
is a complete subgraph G[𝐶], i.e., ∀𝑢 ∈ 𝐶,𝑑𝑒𝑔G[𝐶 ] (𝑢) = |𝐶 | − 1. A
clique G[𝐶] is called a maximal clique in G if there exists no clique

G[𝐶 ′] such that 𝐶 ⊂ 𝐶 ′. The enumeration of maximal cliques

is very important as it appears at the core of many real-world

networks analyses. In this work, we focus on the enumeration of

𝑘-plexes, a widely studied structure of pseudo-cliques [9], defined

as follows:

Definition 2.1 (𝑘-plex). Let G = (𝑉 , 𝐸) be an undirected graph.

Then, a 𝑘-plex in G, where 𝑘 is a positive integer, is a subgraph

G[𝑃] such that ∀𝑢 ∈ 𝑃,𝑑𝑒𝑔G[𝑃 ] (𝑢) ≥ |𝑃 | − 𝑘 .

Clearly, a 1-plex is a clique, and each vertex of a 2-plex can miss

one edge. Obviously, any subgraph of a 𝑘-plex is a 𝑘-plex, and a

𝑘-plex is also a 𝑘 + 1-plex.

Definition 2.2 (Maximal 𝑘-plex). Let G = (𝑉 , 𝐸) be an undirected

graph. A 𝑘-plex G[𝑃] is maximal if there is no 𝑉 ⊇ 𝑃 ′ ⊃ 𝑃 such

that G[𝑃 ′] is a 𝑘-plex.

In [33], Seidman states that a 𝑘-plex is a type of cohesive sub-

graph where any vertex may miss 𝑘 neighbors. However, the 𝑘-

plex subgraph may be disconnected, and it might have multiple

connected components. For instance, in Example 2.4, the 3-plex

G = ({1, 5, 6, 7}, {(1, 6), (5, 7)}) forms a graph with two connected

components (see Figure 1). Hence, such a disconnected 3-plex is

irrelevant and far from being a real community.

Now, on top of the notion of 𝑘-plex, we add an edge connectivity
constraint, that is, any two vertices in the 𝑘-plex are reachable from

each other through a path. This gives rise to the notion of maximal

connected 𝑘-plex defined as follows.

Definition 2.3 (Maximal Connected 𝑘-plex). A graph G = (𝑉 , 𝐸)
is a maximal connected 𝑘-plex if G is a maximal 𝑘-plex and G is

connected.

In the following, when there is no ambiguity, we call a max-

imal connected 𝑘-plex simply a maximal 𝑘-plex. Next, we show

that despite the edge connectivity requirement, maximal 𝑘-plexes

might involve irrelevant subgraphs, making them inappropriate for

expressing real-world communities.

Example 2.4. Consider the graph depicted in Figure 1. Suppose

we are searching for maximal 4-plexes. Then, we have:

{1, 2, 3, 4, 5} {1, 2, 3, 4, 6, 7} {1, 2, 3, 5, 7} {1, 3, 4, 5, 6}
{1, 2, 4, 5, 6, 7} {1, 3, 5, 6, 7} {2, 3, 4, 5, 6, 7}

1 2 3 4 5

6

7

Figure 1: An illustrative example

As we can observe, the maximal 4-plexes {1, 2, 3, 4, 5}, {1, 3, 5, 6, 7},
and {1, 2, 4, 5, 6, 7} represent simple paths of 5 and 6 vertices, respec-

tively, which are far from expressing real communities. In addition,

these three maximal 4-plexes correspond to those with the smallest

density (
8

20
= 0.4). All the remaining maximal 4-plexes admit higher

densities, i.e., greater than 0.5.

The graph depicted in Figure 1 shows clearly that some maximal

𝑘-plexes are not appropriate to model real-world community struc-

tures. In fact, while a 𝑘-plex, a relaxed version of a clique, captures



a larger set of communities, there is a negative counter part as such

relaxation does not preserve the shortest paths between vertices.

In what follows, we extend the notion of 𝑘-plex by adding a

new constraint on the distance between vertices. Intuitively, we

require that the distance among any pair of vertices in the 𝑘-plex

subgraph is equal to the shortest path between these two vertices

in the original graph. Given two vertices 𝑢 and 𝑣 , our main idea is

that 𝑢 and 𝑣 belong to the same cluster, if 𝑢 and 𝑣 are close together

w.r.t. their distance. More formally,

Definition 2.5 (Maximal Cohesive 𝑘-plex). Let G = (𝑉 , 𝐸) be an
undirected graph and G[𝑃] a maximal 𝑘-plex in G. Then, G[𝑃] is a
maximal cohesive 𝑘-plex iff for all 𝑢, 𝑣 ∈ 𝑃 , 𝑑G[𝑃 ] (𝑢, 𝑣) = 𝑑G (𝑢, 𝑣).

Unlike 𝑘-plexes, a maximal cohesive 𝑘-plex aims to maintain the

pairwise distance between vertices as in the original graph G, and
consequently it captures real-world communities.

Example 2.6. Let us consider again the undirected graph depicted
in Figure 1. Then, the set of maximal cohesive 4-plexes are:

{1, 2, 3, 4, 6, 7} {1, 2, 3, 5, 7} {1, 3, 4, 5, 6} {2, 3, 4, 5, 6, 7}

Clearly, among the 7 maximal 4-plexes (Example 2.4), the above 4

maximal cohesive 4-plexes correspond to those with higher density.

Definition 2.5 imposes that if two vertices are in a 𝑘-plex then

they are reachable from each other through a shortest path accord-

ing to G. This allows circumventing the computation of irrelevant

𝑘-plex subgraphs. Moreover, maximal cohesive 𝑘-plexes are appro-

priate to capture the cohesiveness and high-density in real-world

communities.

In this work, we investigate the problem of enumerating max-

imal (cohesive) 𝑘-plexes of specified size at least 𝛼 > 2, which is

formulated as follows.

ProblemDefinition.MaximalCohesive𝑘-PlexEnumeration prob-

lem (MCkPE, for short):

Input: G an undirected graph and 𝑘 a positive integer.

Output: The set of maximal (cohesive) 𝑘-plexes in G.
As illustrated in the previous example, the number of maxi-

mal cohesive 𝑘-plexes is smaller than those of maximal 𝑘-plexes.

Obviously, such reduction of the output induces practical perfor-

mance improvements. Unfortunately, in the worst case the MCkPE

problem is intractable. In this paper, we address this limitation by

providing a practical SAT-based approach to solve efficiently the

MCkPE problem.

3 SAT-BASED FRAMEWORK FOR MCKPE
This section outlines our declarative approach to solve the MCkPE

problem. Given an undirected graph G, MCkPE is modeled as a

logical formula whose models are the maximal cohesive 𝑘-plexes

in G. Specifically, MCkPE is reduced to the computation of the set

of models in propositional logic.

Note that the separation of the modeling step from the solving

step has two important benefits. It first offers an easy way to inte-

grate a possible evolution in the problem specification, by simply

incorporating new logical constraints. Secondly, the solving step

can be continuously enhanced by considering the last advances in

SAT solvers and model enumeration algorithms.

A recent breakthrough in the efficiency of state-of-the-art SAT

solving technology opens an avenue for encoding various real-

world problems to propositional logic. However, it is important to

note that the problem modeling might have a substantial impact

on the efficiency of the solving process. Hence, the challenge is

to provide the most succinct and efficient SAT encoding, while

ensuring correctness and completeness. This requires a sagacious

selection strategy of boolean variables and constraints as well as

their formulation in CNF.

Prior to the presentation of our SAT-based encoding of MCkPE,

we first introduce an important property of the 𝑘-plex structure. An

important observation that can be made is that a clique ensures the

smallest distance between any pair of vertices. The following prop-

erty expresses an upper bound distance between any two vertices

in a 𝑘-plex:

Property 1. Let G = (𝑉 , 𝐸) be a 𝑘-plex and 𝑘 ≥ 1 a positive
integer. If G is connected, then ∀𝑢, 𝑣 ∈ 𝑉 ,𝑑G (𝑢, 𝑣) ≤ 𝑘 .

Proof. Assume that there exist two vertices 𝑢, 𝑣 ∈ 𝑉 such that

𝑑G (𝑢, 𝑣) ≥ 𝑘 + 1. Then, 𝑢 cannot be connected to 𝑘 vertices. As

every vertex of a 𝑘-plex is not connected to at most 𝑘 − 1, G is not

a 𝑘-plex. □

3.1 A SAT-based Encoding of MCkPE
Now, let us introduce our practical SAT-based encoding of MCkPE

on a given graph G = (𝑉 , 𝐸), which allows for using off-the-shelf

SAT solvers to enumerate maximal (cohesive) 𝑘-plexes induced

from G. For this, we present the following propositional variables
and logical constraints:

Variables. We use propositional variables to indicate the inclu-

sion of a vertex 𝑢 in the 𝑘-plex. For each vertex 𝑢 ∈ 𝑉 , we associate

a propositional variable 𝑥𝑢 such that 𝑥𝑢 = 1 encodes that 𝑢 belongs

to the candidate 𝑘-plex subgraph.

Constraints. In the sequel, we present the different Boolean con-

straints allowing us to derive the CNF formula that encodesMCkPE.

𝑘-plex relaxation constraint. The 𝑘-plex constraint is derived

from the 𝑘-plex definition (Definition 2.1) expressing that each

vertex is not connected to at most 𝑘 − 1 vertices.∧
𝑢∈𝑉
(𝑥𝑢 →

∑
𝑣∈𝑉 | 1<𝑑G (𝑢,𝑣)≤𝑘

𝑥𝑣< 𝑘) (1)

Intuitively, a vertex 𝑢 is involved in a 𝑘-plex iff the number of

vertices that are not neighbor of 𝑢 does not exceed (𝑘 − 1). Con-
straint (1) is a conjunction of the so-called conditional cardinality
constraints of the from 𝑦 → ∑𝑛

𝑖=1 𝑥𝑖 ≤ 𝑘 . It generalizes the car-

dinality constraints that naturally arise in many SAT encodings

of real-world problems, including pattern mining, product config-

uration and community discovery. Several encodings have been

designed, translating cardinality constraints into CNF (e.g. Total-

izer encoding [1], Sequential counter [34], Adder [12], pigeon-hole

based encoding [19]). More recently, in [4], the authors have shown

how to extend such encodings to conditional cardinality constraints

in an efficient way.



𝑘-plex filtering constraint. The second constraint, called 𝑘-plex
filtering constraint, follows from Property 1. It allows to circum-

scribe the potential vertices of the𝑘-plex by eliminating thosewhich

cannot be part of the candidate 𝑘-plex. Such filtering is achieved

by expressing that for any vertex 𝑢 in the 𝑘-plex G, every vertex 𝑣
at distance greater or equal to (𝑘 + 1) is not included in G.∧

𝑢,𝑣∈𝑉 | 𝑑G (𝑢,𝑣)>𝑘
(¬𝑥𝑢 ∨ ¬𝑥𝑣 ) (2)

Minimal size constraint. Now, the lower bound of the size of a

𝑘-plex can be modeled as the next cardinality constraint:∑
𝑢∈𝑉

𝑥𝑢 ≥ 𝛼 (3)

In this paper, we consider graphs without isolated vertices and

edges (i.e., 𝛼 > 2). Indeed, these particular subgraphs are straight-

forward to be found and eliminated during the preprocessing step.

Maximality constraint. The following constraint provides the

condition under which a 𝑘-plex is maximal.∧
𝑢∈𝑉
[¬𝑥𝑢 → (

∑
𝑣∈𝑉 | 1<𝑑G (𝑢,𝑣)≤𝑘

𝑥𝑣 ≥ 𝑘) ∨ [𝑎]

(
∨

𝑣∈𝑉 |𝑑G (𝑢,𝑣)>𝑘
𝑥𝑣 ) ∨ [𝑏 ]

(
∨

𝑣∈𝑉 | 1<𝑑G (𝑢,𝑣)≤𝑘
(𝑥𝑣 ∧

∑
𝑤∈𝑉 | 1<𝑑G (𝑣,𝑤)≤𝑘

𝑥𝑤 = 𝑘 − 1)) ] [𝑐 ]

(4)

Intuitively, Constraint (4) expresses the fact that a vertex 𝑢 is

not involved in the maximal 𝑘-plex G if G contains:

(1) 𝑘 vertices not connected to 𝑢 (i.e., sub-formula [a]). Then, 𝑢

cannot be included as it violates the 𝑘-plex definition,

(2) there exists a vertex 𝑣 at distance (𝑘 + 1) from 𝑢 (i.e., sub-

formula [b]). Adding 𝑢 to the 𝑘-plex would result in the

violation of Property 1.

(3) a vertex 𝑣 not connected to 𝑢 such that there exists (𝑘 − 1)
vertices not connected to 𝑣 (i.e., sub-formula [c]). Adding

𝑢 to the 𝑘-plex would increase the number of vertices not

connected to 𝑣 up to 𝑘 .

Next, we illustrate the maximality constraint using Example 3.1.

Example 3.1. Let us again consider the graph depicted in Figure

1, and 𝑘 = 2. If we consider the vertex 1, the maximality constraint

gives the following formula:

¬𝑥1 →[(𝑥3 + 𝑥4 + 𝑥7 ≥ 2) ∨ [𝑎]
(𝑥5) ∨ [𝑏]
(𝑥3 ∧ (𝑥1 + 𝑥5 = 1)) ∨ (𝑥4 ∧ (𝑥1 + 𝑥2 + 𝑥7 = 1)∨
(𝑥7 ∧ (𝑥1 + 𝑥4 + 𝑥6 = 1))] [𝑐]

Next, we can improve our approach by rewriting Constraint (4)

of the SAT-based encoding of MCkPE as follows:∧
𝑢∈𝑉
(¬𝑥𝑢 → 𝑧𝑢 ∨

∨
𝑣∈𝑉 | 𝑑G (𝑢,𝑣)>𝑘

𝑥𝑣 ∨
∨

𝑣∈𝑉 | 1<𝑑G (𝑢,𝑣)≤𝑘
(𝑥𝑣 ∧ 𝑦𝑣 )) ∧∧

𝑢∈𝑉
(𝑧𝑢 →

∑
𝑣∈𝑉 | 1<𝑑G (𝑢,𝑣)≤𝑘

𝑥𝑣 ≥ 𝑘) ∧∧
𝑣∈𝑉
(𝑦𝑣 →

∑
𝑤∈𝑉 | 1<𝑑G (𝑣,𝑤)≤𝑘

𝑥𝑤 ≥ 𝑘 − 1)

(5)

Notice that Constraint (5) is obtained from the formula (4) by re-

spectively substituting the sub-formulas

∑
𝑣∈𝑉 | 1<𝑑G (𝑢,𝑣) ≤𝑘 𝑥𝑣 ≥ 𝑘

and

∑
𝑤∈𝑉 | 1<𝑑G (𝑣,𝑤) ≤𝑘 𝑥𝑤 ≥ 𝑘 − 1 with fresh propositional vari-

ables 𝑧𝑢 and 𝑦𝑣 . As the two sub-formulas appear with positive

polarities [29], they can simply be defined using logical implica-

tions. Moreover, the second sub-formula can be represented by the

conjunction of two linear inequalities. One of them is subsumed

by the 𝑘-plex constraint. This new formulation can be efficiently

translated into a CNF using the encodings of conditional cardinality

constraints proposed in [4].

Proposition 3.2. Let G = (𝑉 , 𝐸) be a graph and Φ = (1) ∧ (2) ∧
(3) ∧ (5). Then, there exists a one-to-one mapping between the models
of Φ and the maximal 𝑘-plexes of size at least 𝛼 induced from G.

The above proposition shows the formula modeling the maximal

𝑘-plex enumeration problem whose models correspond to the max-

imal 𝑘-plexes of size at least 𝛼 . The correctness and completeness

of our SAT-based encoding follows from the logical constraints

introduced previously. In the particular case of a clique (or 1-plex),

our practical SAT-based encoding of MCkPE can be simplified to

the following CNF: ∧
𝑢∈𝑉
(𝑥𝑢 ↔

∧
𝑣∈𝑉 , (𝑢,𝑣)∉𝐸

¬𝑥𝑣 ) (6)

In fact, by setting 𝑘 to 1, Constraint (1) is trivially true, i.e., the

right hand side of the implication is reduced to the true statement.

The (→) implication of Constraint (6) models the distance con-

straint. Finally, as the sub-formulas [𝑎] and [𝑐] are trivially false,

the maximality constraint corresponds to the (←) implication of

Constraint (6).

Distance constraint.What remains is the encoding of the distance

constraint allowing us to complete our SAT-based encoding of

MCkPE. Let us recall that a 𝑘-plex is cohesive if it preserves the

distance between vertices. This requirement is expressed via the

next distance constraint defined as follows:∧
𝑢,𝑣∈𝑉

(𝑥𝑢 ∧ 𝑥𝑣 →
∨

𝑤∈𝑉 , 𝑑G (𝑤,𝑣)=1, 𝑑G (𝑢,𝑣)=𝑑G (𝑢,𝑤)+1
𝑥𝑤 ) (7)

Intuitively, Constraint (7) requires that if two vertices𝑢 and 𝑣 are

in the 𝑘-plex (i.e., 𝑥𝑢 and 𝑥𝑣 assigned true) such that 𝑑G (𝑢, 𝑣) = 𝑖 ,

then there exists a vertex𝑤 at distance 1 and (𝑖 − 1) from 𝑣 and 𝑢,

respectively. That is, 𝑢 and 𝑣 have to be reachable from each other

through a shortest path in G. Iteratively, Constraint (7) expresses
the existence of a short path between𝑢 and 𝑣 . Note that the number

of clauses obtained from this constraint is bounded by 𝑛2 with 𝑛 is

the number of vertices in the graph G.
The following proposition shows the SAT-based encoding of the

maximal cohesive 𝑘-plexes enumeration problem.

Proposition 3.3. Let G = (𝑉 , 𝐸) be a graph and Φ = (1) ∧ (2) ∧
(3) ∧ (5) ∧ (7). Then, there exists a one-to-one mapping between
the models of Φ and the maximal cohesive 𝑘-plexes of size at least 𝛼
induced from G.

The distance constraint allows to avoid the irrelevant subgraphs

mentioned previously (see Example 2.4). The following proposition

highlights its importance for defining more cohesive and particu-

larly connected 𝑘-plexes.



Proposition 3.4. For a given graph G, the 𝑘-plex relaxation con-
straint together with the distance constraint implies the connectivity
constraint.

Proof. Let G′ be a maximal cohesive 𝑘-plex in G. Consider two
vertices 𝑢 and 𝑣 in G′. Now, assume that 𝑢 and 𝑣 are not connected

in G′, i.e., 𝑑G′ (𝑢, 𝑣) = ∞. Then, due to the distance constraint 𝑢

and 𝑣 are also not connected in G, i.e., 𝑑G (𝑢, 𝑣) = 𝑑G′ (𝑢, 𝑣) = ∞.
Now, the relaxation constraint implies that all vertices at distance

at least 𝑘 + 1 from 𝑢 cannot be connected to 𝑢, which contradicts

the initial hypothesis that 𝑢 and 𝑣 are in G′. □

As mentioned previously, the distance constraint ensures that

the 𝑘-plex is connected. Now, if one needs the maximal connected

𝑘-plexes without preserving the distance (i.e. without Constraint 7),

we should incorporate the following constraint in our SAT-based

encoding.

Connectivity constraint. Let us recall that if 𝛼 ≥ 2𝑘 − 1, then

any maximal 𝑘-plex is connected [10]. However, this result does

not hold for 𝛼 < 2𝑘 − 1. In what follows, we show how to ensure

the existence of a path between every pair of vertices for 𝑘 ≤ 3.

Obviously, for 𝑘 = 1 such constraint is useless; and, for 𝑘 = 2, the

𝑘-plex is connected as 𝛼 ≥ 3.

We now present two constraints allowing to ensure the connectivity

requirement when 𝑘 = 3. This is especially important in the case

where 3 ≤ 𝛼 ≤ 4, since many communities in real graphs tend to be

small in size [37]. Given a 3-plex G = (𝑉 , 𝐸), Constraint (8) ensures
that for any vertex 𝑢 ∈ 𝑉 , there exists at least a vertex 𝑣 ∈ Γ(𝑢) s.t.
𝑣 ∈ 𝑉 . Also, Constraint (9) enforces that for each edge (𝑢, 𝑣) ∈ 𝐸,
there exists at least a vertex𝑤 ∈ 𝑉 such that𝑤 ∈ Γ(𝑢) or𝑤 ∈ Γ(𝑣).
Obviously, for any vertex 𝑡 ∉ {𝑢, 𝑣,𝑤} ⊆ 𝑉 , Constraints (8) and
(9) ensure that 𝑡 is connected to at least one vertex from {𝑢, 𝑣,𝑤}.
Hence, G is a connected 𝑘-plex.∧

𝑢∈𝑉
(𝑥𝑢 →

∨
𝑣∈Γ (𝑢)

𝑥𝑣 ) (8)∧
(𝑢,𝑣)∈𝐸

𝑥𝑢 ∧ 𝑥𝑣 →
∨

𝑤∈Γ (𝑢)\{𝑣}
𝑥𝑤 ∨

∨
𝑤∈Γ (𝑣)\{𝑢}

𝑥𝑤 (9)

Other pruning constraints. Additionally, in order to prune the

search tree new constraints can be added to our SAT-based encoding.

More specifically, the first constraint we consider relies on the fact

that for a 𝑘-plex G of size 𝛼 , it is easy to see that (𝛼 − 𝑘) vertices
adjacent to vertex 𝑢 are in G.∧

𝑢∈𝑉
(𝑥𝑢 →

∑
𝑣∈𝑉 , (𝑢,𝑣)∈𝐸

𝑥𝑣 ≥ 𝛼 − 𝑘) (10)

That is, the input graph can be simplified by removing all vertices

with degrees less than 𝛼 − 𝑘 . Another less obvious, yet essential
cut pointed out in [10], is that for each two vertices 𝑢 and 𝑣 in a

𝑘-plex G, 𝑢 and 𝑣 have to share 𝛼 − 2𝑘 + 2 common neighbors in G.
Formally, this can be written as:∧

𝑢,𝑣∈𝑉
(𝑥𝑢 ∧ 𝑥𝑣 →

∑
𝑤∈𝑉 , (𝑢,𝑤),(𝑣,𝑤)∈𝐸

𝑥𝑤 ≥ 𝛼 − 2𝑘 + 2) (11)

3.2 Decomposition-based SAT Encoding for
MCkPE

Let us remark that our practical SAT-based encoding of MCkPE

is polynomial in the size of the graph. Whatever the well-known

encoding of the conditional cardinality constraints (e.g., [4, 12, 34]),

the number of propositional variables and clauses is bounded by

𝑂 (𝑛3) where 𝑛 is the number of vertices in the original graph. Un-

fortunately, on very large graphs, such complexity, even if it is

polynomially bounded, tends to be intractable in practice. To over-

come the scalability issue, we propose a decomposition technique
improving the performances by avoiding the generation of large

CNF formulas. More specifically, let us recall the Shannon’s de-

composition theorem of a propositional formula stating that for a

formula Φ and a variable 𝑥𝑢 , the models of Φ can be decomposed

into those containing 𝑥𝑢 (i.e., Φ∧𝑥𝑢 ) and those containing ¬𝑥𝑢 (i.e.,

Φ ∧ ¬𝑥𝑢 ). By generalizing this principle over the set of variables

{𝑥𝑢1
, . . . , 𝑥𝑢𝑛 } in Φ, the set of models of Φ is then the union of the

models of Φ𝑢𝑖 (1 ≤ 𝑖 ≤ 𝑛) where Φ𝑢𝑖 = Φ∧Ψ𝑢𝑖 s.t. Φ is the formula

encoding MCkPE and Ψ𝑢𝑖 = (∧
1≤ 𝑗<𝑖 ¬𝑥𝑢 𝑗

) ∧ 𝑥𝑢𝑖 is the guiding

path of the decomposition.

Algorithm 1, coined SAPE (SAT based mAximal (cohesive) 𝑘-

Plexes Enumeration), describes the pseudo-code of our practical

SAT modeling and solving approach of MCkPE. What is impor-

tant to note is that we can avoid the generation of the formula

Φ encoding the whole graph G = (𝑉 , 𝐸). Indeed, the formula Φ𝑢𝑖
can be obtained differently by adding conjunctively Ψ𝑢𝑖 to the

formula encoding MCkPE on the subgraph G′𝑢𝑖 = (𝑉
′, 𝐸 ′) where

𝑉 ′ = {𝑣 | 𝑑G′𝑢𝑖 (𝑢𝑖 , 𝑣) ≤ 𝑘} and 𝐸 ′ = {(𝑣,𝑤) ∈ 𝐸 | 𝑣,𝑤 ∈ 𝑉 ′} (lines
3 and 4 of Algorithm 1). The set of models are collected in line 7

via the function enumerateModels [17]. Each model is a maximal

cohesive 𝑘-plex of size at least 𝛼 in the original graph G (line 9 of

Algorithm 1).

Algorithm 1: SAT based mAximal cohesive 𝑘-Plexes
Enumeration (SAPE)

Data: G = (𝑉 = {𝑢1, . . . ,𝑢𝑛 }, 𝐸) : a graph, 𝑘 ≥ 1 and 𝛼 ≥ 3: two

positive integers

Result: 𝑆 : the set of all maximal cohesive 𝑘-plexes of size at least 𝛼

1 𝑆 ← ∅;
2 for 𝑖 = 1 to 𝑛 do
3 𝑉 ′ ← {𝑣 | 𝑑G′𝑢𝑖 (𝑢𝑖 , 𝑣) ≤ 𝑘 };
4 𝐸′ ← {(𝑣, 𝑤) ∈ 𝐸 | 𝑣, 𝑤 ∈ 𝑉 ′ };
5 G′𝑢𝑖 ← G(𝑉

′, 𝐸′) ;
6 Φ𝑢𝑖 ←𝑚𝑎𝑥_𝑘𝑃𝑙𝑒𝑥 (G′𝑢𝑖 , 𝑘) ∧ Ψ𝑢𝑖 ;

7 𝑆 ← 𝑆 ∪ enumerateModels(Φ𝑢𝑖 ) ;
8 end
9 return 𝑆 ;

4 EXPERIMENTAL EVALUATION
In this section, we performed intensive experiments to evaluate

our proposed approach. Algorithm 1 is implemented in C++ and

used a modified MiniSAT as backend SAT solver for model enumer-

ation
2
. For our decomposition technique, we consider the vertices

of the input graph in ascending order w.r.t. the function 𝑓 that

associates for each vertex 𝑢 the number of vertices at distance at

most 𝑘 from 𝑢. In fact, our goal is to start with easier regions of

the input graph. Note that considering 𝑓 in descending order is

not efficient in practice. All experiments have been conducted on

2
MiniSAT is a standard backtrack search algorithm for solving SAT problems: http:

//minisat.se/



Intel Xeon 3.30GHz processor with 64Gb memory on Linux CentOS

machine. The cut off time was set to 2 hours for each run of an

algorithm on a dataset; memory-out was set to 20 Gb for each such

run. We also use the symbol (-) to mention that the method is not

able to scale on the graph under the time limit. The implementa-

tion is available from https://github.com/anonyme971/k-plex. We

conduct experiments over several real-world graphs to assess the

performance of our declarative framework for computing all maxi-

mal 𝑘-plexes, maximal exact 𝑘-plexes3, maximal cohesive 𝑘-plexes,

and maximal cliques. The datasets, which are downloaded from the

SNAP [24] and the network data repositories [32], represent differ-

ent real-world applications (web networks, collaboration networks,

social networks). The different characteristics of these datasets are

given in Table 1. We also note that the reported runtime in all the

experiments is in seconds.

Graph |V| |E|
Bio-CE 2 617 2 985

Bio-CE-Gt 924 3 239

Ca-Gr 5 242 14 496

Bio-Dmela 7 393 25 569

Ca-Hep 9 877 25 998

Gnutella 10 876 39 994

As-Caida 26 475 53 381

Road-Luxemb 114 599 119 666

Road-US-48 126 146 161 905

Road-US 129 164 165 435

Soc-Gemsec 47 500 222 887

Amazon 334 863 925 872

DBLP 317 080 1 049 866

Road-Pa 1 088 092 1 541 898

Road-Belgium 1 441 295 1 549 970

Road-Tx 1 379 917 1 921 660

Amazon0505 410 236 2 439 436

Road-Asia 11 950 757 12 711 603

Table 1: Summary of real-world datasets

We perform two kinds of experiments. The first one aims to

compare the performances of our SAT-based approach for com-

puting maximal 𝑘-plexes, against the state-of-the-art algorithms.

In the second, we evaluate our declarative method to assess its

performances on several variant of 𝑘-plex, including maximal ex-

act 𝑘-plexes, maximal cohesive 𝑘-plexes and the particular case of

maximal cliques. In this work, we only compared the performance

since all algorithms produce the same output.

4.1 Maximal 𝑘-plexes Enumeration
This subsection shows the empirical evaluation of our SAPEmethod

against the best known algorithms, namely D2K
4
[10] and GP [35],

for enumerating the set of all maximal 𝑘-plexes in graphs. Since

3
A maximal exact 𝑘-plex is defined as a maximal (w.r.t. set inclusion) set of vertices

where each one is connected to all others except exactly (𝑘 − 1) vertices, i.e., ∀𝑢 ∈ 𝑉 ,

|Γ (𝑢) | = |𝑉 | − 𝑘 .
4
In [10], the authors have shown that their D2K algorithm is more efficient than the

one proposed in [9], which in turn is shown more efficient than EnumIncExc [3].

the requirement for D2K algorithm is that the size threshold 𝛼 is

at least 2𝑘 − 1, all experiments are done by setting the value of

𝛼 = 5, 10, 20, following the work of [10]. For our algorithm, we also

report in Table 2 the total number of enumerated maximal 𝑘-plexes

(in parenthesis) for each benchmark instance.

Clearly, for all algorithms the running time is strongly related to

the number of maximal 𝑘-plexes. Table 2 shows that our algorithm

is the second-fastest method overall, next to D2K. It is also worthy

pointing out that for several network datasets, our SAPE algorithm

achieves competitive running time against D2K. For instance, with

the different values of 𝛼 , SAPE spends less than 0.5 second and

its performance to enumerate the maximal 2-plexes is competitive

with D2K on Ca-Hep, Ca-Gr, and Gnutella datasets. Interestingly

enough, for the maximal 2-plex detection, SAPE is faster than D2K

on Road-US, Road-US-48, Road-Luxemb and Road-Belgium graphs
with the different values of 𝛼 . In addition, when 𝑘 = 3 and 𝛼 ≥ 10,

SAPE is faster than D2K on Bio-CE, Amazon and Ca-Hep graphs.

It can also be observed that on runtime, SAPE is comparable to

D2K on all cases except the three networks Amazon0505, DBLP and

As-Caida. Nevertheless, we stress that D2K computes maximal 𝑘-

plexes of bounded diameters. Indeed, the requirement for the D2K

algorithm is that the diameter of any returned maximal 𝑘-plex is

at most 2. Instead, SAPE and GP algorithms compute the set of all

maximal 𝑘-plexes of any diameter.

As is apparent, SAPEworks better thanGP in almost cases for𝛼 =

5 (e.g., 16/18 graphs formaximal 2-plexes). Interestingly enough, our

approach outperformsGP for all datasets with 𝛼 = 10, 20 for𝑘 = 2, 3.

For instance, on Ca-Hep, Gnutella, Ca-Gr, Bio-Ce-Gt, Road-US,
Road-Pa, Road-Tx, Soc-Gemsec, and Road-Belgium graphs, SAPE

computes all the maximal 2-plexes under 9.19 seconds, while GP

algorithm takes more than 49 seconds to solve these datasets. More-

over, SAPE is at least 41 times faster than GP for enumerating all

maximal 2-plexes on the Road-Asia dataset with more than 11

millions of vertices and edges. In addition, SAPE is at least 3 times

faster than GP to compute all maximal 2-plexes on DBLP dataset.

For 3-plex computation with 𝛼 ≥ 10, SAPE performs best on all

graphs.

Overall, the proposed SAT-based method is more efficient than

the dedicated approach GP. Moreover, despite the efficiency of D2K,

our declarative method is highly flexible. In other words, SAPE is

very suitable for adding new user-specified constraints. In fact, in

some applications, users may only be interested in some specific 𝑘-

plexes, i.e., 𝑘-plexes of bounded size, 𝑘-plexes that (do not) contain

vertices related to a user query, etc. Next, we illustrate the behavior

of our algorithm for computing maximal 𝑘-plexes of size 𝑛 where

the degree of each vertex is exactly 𝑛 − 𝑘 .

4.2 Maximal Exact 𝑘-plexes Enumeration
In order to show the high flexibility of our SAT-based approach,

this experiment is devoted to the enumeration of a particular kind

of 𝑘-plex subgraph, which we calledmaximal exact 𝑘-plex. Without

modifying the original code, this subgraph structure can be com-

puted easily by replacing Constraint (1) in the previous SAT-based

encoding with the following formula:∧
𝑢∈𝑉
(𝑥𝑢 →

∑
𝑣∈𝑉 | 1<𝑑G (𝑢,𝑣)≤𝑘

𝑥𝑣= 𝑘 − 1)



Graph 2-plexes 3-plexes
𝛼 = 5 𝛼 = 10 𝛼 = 20 𝛼 = 5 𝛼 = 10 𝛼 = 20

SAPE GP D2K SPAE GP D2K SAPE GP D2K SAPE GP D2K SAPE GP D2K SAPE GP D2K

Bio-CE 0.01
(1)

1.58 0.01 0.01
(0)

0.23 0.03 0.01
(0)

0.17 0.01 0.01
(161)

3.03 0.01 0.01
(0)

2.22 0.01 0.01
(0)

1.61 0.01

Bio-CE-Gt 1.49
(14322)

6.78 0.03 0.01
(0)

9.99 0.01 0.01
(0)

3.48 0.01 1893.90
(718483)

55.92 6.71 0.19
(473)

50.24 0.02 0.01
(0)

56.78 0.01

Ca-Gr 0.20
(4057)

7.60 0.01 0.05
(377)

6.59 0.01 0.01
(118)

14.67 0.01 131.13
(667335)

52.55 2.09 0.56
(13352)

45.61 0.05 0.01
(1568)

45.33 0.01

Bio-Dmela 1.79
(5897)

15.89 0.08 0.01
(0)

21.13 0.05 0.01
(0)

20.91 0.04 4411.59
(1286244)

724.66 22.69 0.01
(0)

726.88 0.01 0.01
(0)

599.62 0.01

Ca-Hep 0.47
(5894)

15.93 0.04 0.01
(5)

10.65 0.01 0.01
(3)

71.28 0.01 148.46
(502685)

91.68 3.36 0.01
(5)

83.58 0.01 0.01
(3)

71.28 0.01

Gnutella 0.09
(122)

23.89 0.02 0.01
(0)

10.18 0.02 0.01
(0)

14.01 0.02 73.59
(105763)

217.58 6.96 0.01
(0)

229.61 0.09 0.01
(0)

190.05 0.02

As-Caida 1038.92
(364674)

300.81 4.12 52.09
(23314)

239.34 0.67 0.48
(0)

207.40 0.03 − − − − − 42.01 0.19
(0)

− 0.01

Road-

Luxemb

0.01
(0)

3.62 0.22 0.01
(0)

1.62 0.11 0.01
(0)

1.50 0.11 0.80
(287)

5.02 0.00 0.10
(0)

1.73 0.10 0.01
(0)

1.50 0.11

Road-US-48 0.19
(2)

7.45 0.37 0.09
(0)

3.08 0.32 0.09
(0)

1.88 0.13 1.49
(4992)

13.57 0.29 0.09
(0)

3.95 0.13 0.09
(0)

2.00 0.14

Road-US 0.09
(4)

11.11 0.12 0.09
(0)

3.21 0.11 0.09
(0)

1.97 0.15 2.09
(5089)

13.51 0.41 0.09
(0)

4.18 0.32 0.09
(0)

1.97 0.37

Soc-Gemsec 9.19
(50812)

46.20 5.07 0.70
(119)

43.10 0.09 0.09
(0)

35.49 0.01 2626.01
(2998194)

1878.14 7.03 4.68
(1230)

1624.28 2.01 0.09
(0)

1504.45 0.01

Amazon 18.08
(355033)

59.61 1.93 0.65
(0)

56.02 0.69 0.36
(0)

48.19 0.72 − 1471.43 343.14 0.78
(0)

85.71 1.37 0.39
(0)

32.74 0.72

DBLP 119.39
(458915)

228.84 3.45 10.96
(20093)

173.71 0.86 3.66
(5049)

157.15 0.78 − − 1397.10 1819.17
(3533545)

− 20.13 546.08
(2141776)

− 14.73

Road-Pa 3.74
(57)

40.91 0.85 0.90
(0)

27.97 0.09 0.85
(0)

21.24 0.05 17.64
(125649)

61.14 13.12 0.88
(0)

32.80 0.12 0.81
(0)

19.17 0.01

Road-

Belgium

1.09
(1)

42.99 2.07 1.09
(0)

38.95 2.14 1.09
(0)

31.82 2.35 12.99
(7574)

59.75 2.64 1.09
(0)

34.85 2.05 1.09
(0)

29.18 2.10

Road-Tx 4.28
(100)

49.65 3.29 1.00
(0)

26.12 1.12 1.00
(0)

10.79 0.82 21.35
(141389)

83.42 14.54 1.03
(0)

32.61 0.74 1.03
(0)

6.11 0.05

Amazon0505 1080.62
(3425012)

818.36 21.35 39.89
(22483)

676.50 1.86 3.29
(0)

574.99 1.62 − − − 170.49
(249768)

− 4.88 4.19
(0)

− 0.72

Road-Asia 12.29
(2)

359.80 7.89 8.79
(0)

369.62 6.12 8.69
(0)

470.77 7.04 81.79
(98706)

406.40 43.95 8.69
(0)

401.60 7.12 8.79
(0)

415.44 6.54

Table 2: The running time of computing maximal 𝑘-plexes in real-world datasets

For each 𝑘 ∈ {2, 3}, Table 3 indicates runtimes in seconds and

the number of maximal exact 𝑘-plexes (in parenthesis) enumerated

on each graph. Depending on the input graph and the value of

the parameter 𝛼 , it is not surprising that the set of maximal exact

𝑘-plexes is smaller than the whole set of maximal 𝑘-plexes. For

𝛼 = 5, it can be seen that the number of maximal exact 2-plexes

is about 0.75% of the maximal 2-plexes for Amazon0505, while this
number reached 67.43% for Road-Pa with 𝑘 = 3.

4.3 Maximal Cohesive 𝑘-plexes Enumeration
In this subsection, we evaluate our approach for enumerating maxi-

mal cohesive𝑘-plexes. Our comparative evaluation is madew.r.t. the

number of (non)-cohesive 𝑘-plexes that are computed. Let us recall

that maximal cohesive 𝑘-plexes are obtained by adding Constraint

(7) to the SAT-based encoding of traditional maximal 𝑘-plexes. The

comparison is done by setting 𝑘 to 3 and 𝛼 to 4. In fact, for 𝑘 <= 2,

all maximal 𝑘-plexes are clearly cohesive; and for 𝑘 = 3 and for

5 ≤ 𝛼 , all maximal 𝑘-plexes are also cohesive. For a representative

sample of datasets, Figure 2 provides comparative results w.r.t. the

generated number of maximal (cohesive) 𝑘-plexes. It presents for

each dataset the percentage of cohesive and non-cohesive among

the set of all maximal 𝑘-plexes. As expected, all datasets contain

non-cohesive maximal 𝑘-plexes. Especially for Ca-Gr, more than

65% are non-cohesive while this percentage is close to 20% for

Road-Pa and Road-Tx datasets.
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Figure 2: Cohesive vs non-cohesive maximal 𝑘-plexes

4.4 Maximal Cliques Enumeration
In this subsection, we present the empirical results to enumerate all

maximal cliques on the different datasets fixing 𝑘 = 1. We compare

our SAT-based approach against the most recent algorithms for this

task: D2K [10], EmMCE [7], NAUDE [27], and GP-B [35]. Table 4



Graph 2-plexes 3-plexes
𝛼 = 5 𝛼 = 10 𝛼 = 5 𝛼 = 10

Bio-CE-Gt 0.18
(65)

0.01
(0)

173.45
(11646)

0.01
(0)

Ca-Gr 0.08
(7)

0.00
(0)

18.38
(2697)

0.00
(0)

Bio-Dmela 0.89
(105)

0.01
(0)

1395.52
(544084)

0.01
(0)

Ca-Hep 0.00
(50)

0.01
(0)

73.66
(34635)

3.49
(0)

Gnutella 0.14
(0)

0.03
(0)

44.11
(71102)

0.01
(0)

As-Caida 209.88
(13603)

10.19
(279)

− −

Road-Luxemb 0.06
(0)

0.03
(0)

0.29
(283)

0.00
(0)

Road-US-48 0.15
(0)

0.08
(0)

0.97
(3037)

0.01
(0)

Road-US 0.10
(0)

0.00
0

0.99
(3090)

0.01
(0)

Soc-Gemsec 4.43
(0)

0.62
0

954.69
(618521)

1.66
(0)

Amazon 6.88
(2320)

0.60
(0)

1592.90
(363866)

1.09
(0)

DBLP 53.74
(1254)

3.49
(0)

− 23.71
(0)

Road-Pa 2.88
(0)

0.00
(0)

12.18
(84737)

0.01
(0)

Road-Belgium 1.27
(0)

1.07
(0)

5.49
(7302)

0.01
(0)

Road-Tx 3.38
(0)

1.09
(0)

14.76
(95024)

1.09
(0)

Amazon0505 311.64
(25747)

21.03
(2)

− 30.36
(3)

Road-Asia 11.29
(0)

8.78
(0)

45.78
(96772)

8.88
(0)

Table 3: Results on maximal Exact 𝑘-plexes computation

contains the comparative results. Clearly, it is interesting to observe

that our method outperforms the three baseline algorithms EmMCE,

NAUDE and GP-B by comfortable margins on all real graphs. The

exception is on Road-US and Road-US-48 where GP-B is much

faster than the other algorithms. In terms of average performance,

our approach outperforms GP-B by 348.65%, EmMCE by 1092.95%,

and NAUDE by 3582.55%. Moreover, our SAPE algorithm achieves

competitive running time against D2K on various graphs (i.e., D2K

slightly better than SAPE on average). For instance, SAPE spends

less than 0.1 second to solve Ca-Hep, Gnutella, Ca-Gr, Bio-CE-Gt
and Bio-CE datasets, and the obtained runtimes are very close

to the ones by D2K algorithm. Overall, our SAPE approach is the

second-fastest method next toD2K, at least 4 times faster on average

than the third fastest method, GP-B, and about 11 times faster on

average than the fourth fastest method, EmMCE, and 36 times faster

on average than NAUDE.

5 RELATEDWORK
Maximal𝑘-plex enumeration.Many proposals for finding out all

maximal 𝑘-plexes in graphs have been developed in the literature. A

first method, introduced by [36], is based on the well-known Bron-

Kerbosch algorithm [5]. Further, [8] proposed a framework for

computing maximal subgraphs w.r.t. (connected) hereditary graph

properties. Moreover, the authors of [3] proposed an algorithm,

based on the method of [8], to compute the maximal (connected)

𝑘-plexes. In [35], Wang et al. proposed a parallel algorithm, based

on a recursive decomposition of the original graph, to computing

maximal cliques and 𝑘-plexes. Furthermore, in [9], the authors

Graph SAPE EmMCE NAUDE GP-B D2K
Bio-CE 0.01 0.15 2.60 0.01 0.01
Bio-CE-Gt 0.01 0.12 0.06 0.04 0.01
Ca-Gr 0.04 2.72 10.32 0.09 0.01
Bio-Dmela 2.49 7.19 42.39 3.25 0.03
Ca-Hep 0.01 44.35 0.32 0.02 0.01
Gnutella 0.09 0.76 0.89 0.04 0.03
As-Caida 1.48 2.11 23.81 8.88 0.08
Road-Luxemb 0.28 14.81 138.71 0.85 0.12
Road-US48 0.38 2.05 76.07 0.14 0.17

Road-US 0.47 2.07 21.86 0.15 0.24

Soc-Gemsec 3.13 22.12 98.65 0.37 0.09
Amazon 2.93 44.44 102.78 18.27 1.26
DBLP 3.36 32.75 64.41 21.97 1.31
Road-Pa 3.60 95.92 154.81 47.29 3.80

Road-Belgium 4.59 37.10 204.69 12.21 1.72
Road-Tx 4.59 100.78 71.09 43.06 3.28
Amazon5050 10.58 254.87 491.02 12.58 10.42
Road-Asia 15.66 46.84 690.36 98.33 24.38
Avg Time 2.98 35.55 109.74 13.37 2.34

Table 4: Experimental results on maximal cliques computa-
tion

introduced a new algorithm for enumerating 𝑘-plex subgraphs

larger than a fixed size. More recently, Zhou et al. [38] studied

a novel algorithm for finding maximal 𝑘-plexes with predefined

size. Note that the scalability issue is the main bottleneck of most

of these state-of-the-art enumeration algorithms. In addition, all

these proposals ignore the enumeration of cohesive 𝑘-plexes which

frequently appear in real-world communities.

Maximal clique enumeration. The maximal clique enumeration

problem has been the area of research of an extensive study in

graph mining community. Several approaches are introduced to

solve this problem. Fakhfakh et al. [13] gave a survey of the differ-

ent work on this problem. Traditional algorithms for computing

maximal cliques in graphs are based on various pruning techniques

to decrease the search space and reduce the execution time [6]. In

[35], Wang et al. proposed a novel algorithm based on iterative

graph partitioning techniques to compute the set of cliques in real

graphs. Unfortunately, most of these designed algorithms suffer

from a degradation in scalability for large scale graphs.

6 CONCLUSION AND FUTUREWORK
This paper presented the first declarative SAT-based approach for

enumerating all maximal 𝑘-plexes in large graphs as well as the

novel proposed structure called cohesive 𝑘-plexes. The problem is

modeled as a propositional formula, whose models are the maximal

(cohesive) 𝑘-plexes of interest. Then, to exhibit the nice declarative

features of our framework, we showed how the particular cases

of maximal cliques and maximal exact 𝑘-plexes can be found with

a slight modification of the initial SAT-based encoding. Last, to

enhance our polynomial SAT-based encoding, we harnessed a de-

composition technique, leading to a highly competitive approach

w.r.t. the state-of-the-art algorithms.

We identified several directions for future work. We plan to

propose a parallelization approach to improve the efficiency of our

proposed SAT-based framework. We also would like to extend our

proposal to enumerate maximum 𝑘-plexes in large scale graphs.
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