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Abstract

Stein thinning is a promising algorithm proposed by Riabiz et al. [2022] for post-
processing outputs of Markov chain Monte Carlo (MCMC). The main principle is to
greedily minimize the kernelized Stein discrepancy (KSD), which only requires the
gradient of the log-target distribution, and is thus well-suited for Bayesian inference.
The main advantages of Stein thinning are the automatic remove of the burn-in
period, the correction of the bias introduced by recent MCMC algorithms, and the
asymptotic properties of convergence towards the target distribution. Nevertheless,
Stein thinning suffers from several empirical pathologies, which may result in
poor approximations, as observed in the literature. In this article, we conduct a
theoretical analysis of these pathologies, to clearly identify the mechanisms at stake,
and suggest improved strategies. Then, we introduce the regularized Stein thinning
algorithm to alleviate the identified pathologies. Finally, theoretical guarantees
and extensive experiments show the high efficiency of the proposed algorithm. An
implementation of regularized Stein thinning as the kernax library in python and
JAX is available at https://gitlab.com/drti/kernax.

1 Introduction

Bayesian inference is a powerful approach to solve statistical tasks, and is especially efficient to
incorporate prior expert knowledge of the studied system, or to provide uncertainties of the estimated
quantities. Bayesian methods have thus demonstrated a high empirical performance for a wide
range of applications, in particular in the fields of physics and computational biology, to just name a
few. However, the Bayesian framework often leads to the evaluation of expectations with respect
to a posterior distribution, which is not tractable [Green et al., 2015], except in the specific case of
conjugate prior distribution and likelihood, which hardly occurs in practice. To overcome this issue,
Markov chain Monte Carlo (MCMC) is one of the most commonly used computational methods to
estimate these integrals. Indeed, MCMC algorithms iteratively generate a sample, which follows
the targeted posterior distribution, as the Markov chain converges to its stationary state [Robert and
Casella, 1999, Brooks et al., 2011]. Consequently, the quality of the resulting estimates strongly
depends on the convergence of the MCMC and how its output is post-processed. Standard post-
processing procedures of MCMC outputs consist in removing the first iterations, called the burn-in
period, and thinning the Markov chain with a constant frequency. Burn-in removal aims at reducing
the bias introduced by the random initialization of the Markov chain. The R̂ convergence diagnosis
of Gelman et al. [1995] is, for instance, a well known method for determining the burn-in period. On
the other hand, thinning the Markov chain allows for compressing the MCMC output and may also
reduce the correlation between the iteratively selected points. More recently, promising kernel-based
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procedures were proposed to automatically remove the burn-in period, compress the output, and
reduce the asymptotic bias [South et al., 2022]. These approaches consist in minimizing a kernel-
based discrepancy measure D(P,Qm) between the empirical distribution Qm of a subsample of the
MCMC output of size m, and the target distribution P. In this respect, minimization of the maximum
mean discrepancy (MMD) was investigated by several authors, but these strategies require the full
knowledge of the target distribution P, whose density is not tractable in non-conjugate Bayesian
inference.

Based on the previous works of Chen et al. [2018] and Chen et al. [2019], Riabiz et al. [2022]
propose to minimize the kernelized Stein discrepancy (KSD), to design an efficient kernel-based
algorithm to thin MCMC outputs in a non-tractable Bayesian setting. The KSD [Liu et al., 2016] is a
score-based discrepancy measure, i.e., it only requires the knowledge of the score function of the
target P, which is readily available in our Bayesian framework. Importantly, Gorham and Mackey
[2017] showed that under suitable mild conditions, the KSD enjoys good convergence properties.
More precisely, the KSD is a valid distance to detect samples drawn form the target distribution,
provided that the sample size is large enough. Therefore, KSD thinning is a highly promising tool
for post-processing and measuring the quality of MCMC outputs. This article thus focuses on the
Stein thinning algorithm proposed by Riabiz et al. [2022], which consists in selecting m points
amongst the n iterations of the MCMC output, by greedily minimizing the KSD distance. Thanks
to the convergence properties of the KSD, the empirical measure of the selected points weakly
converges towards the posterior law P. However, on the practical side, several articles [Wenliang
and Kanagawa, 2020, Korba et al., 2021] have noticed empirical limitations of KSD-based sampling
algorithms, especially for multimodal target distributions. In fact, these limitations happen to be quite
problematic, even in simple experiments, and have been slightly overlooked in the literature so far,
in our opinion. Therefore, this article first focuses on the analysis of KSD pathologies in Section
2, taking both an empirical and theoretical point of view. Then, we propose strategies to mitigate
the identified problems, and introduce the regularized Stein thinning in Section 3. We show the
efficiency of our algorithm through both a theoretical analysis and extensive experiments in Section 4.
Notice that proofs and additional experiments are gathered in Appendices 1-7 in the Supplementary
Material. In the remaining of this initial section, we mathematically formalize the KSD distance and
the associated Stein thinning algorithm.

Kernelized Stein discrepancy. Kernelized Stein discrepancy was independently introduced by
Chwialkowski et al. [2016], Liu et al. [2016], Gorham and Mackey [2017] as a promising tool for
measuring dissimilarities between two distributions P and Q on Rd with d ≥ 1, whenever P admits
a continuously differentiable density p, and the normalization constant of p is not tractable. Let
k : Rd × Rd → R be a positive semi-definite kernel and let H(k) be the associated reproducing
kernel Hilbert space (RKHS) with inner product 〈·, ·〉H(k) and norm ‖ · ‖H(k). Kernelized Stein
discrepancy belongs to the family of maximum mean discrepancies (MMD) [Gretton et al., 2006]
defined as

MMDk(P,Q) = sup
‖f‖H(k)≤1

|E[f(X)]− E[f(Z)]| , (1)

where X ∼ P, Z ∼ Q. If the kernel k is characteristic, then the MMD is a distance between
probability distributions. In practice, the MMD may not be computable as it involves mathematical
expectations with respect to P, whose density is not tractable. To circumvent this issue, Gorham
and Mackey [2015] proposed the Stein discrepancy which relies on Stein’s method [Stein, 1972].
It consists in defining an operator Tp that maps functions g : Rd → Rd to real-valued functions
such that E[Tpg(X)] = 0, with X ∼ P, for all g in G(k) = {g : Rd → Rd :

∑d
i=1 ‖gi‖2H(k) ≤ 1}.

The probability measure P on Rd is assumed to admit a continuously differentiable Lebesgue
density p ∈ C1(Rd), such that E[‖∇ log p(X)‖22] < ∞. The Stein discrepancy is then defined
as SD(P,Q) = supg∈G(k) |E[(Tpg)(Z)]|, where Z ∼ Q. If the Stein operator Tp is chosen as
the Langevin operator (Tpg)(x) = 〈g(x),∇ log p(x)〉+ 〈∇, g(x)〉, then Stein’s discrepancy has a
closed-form expression known as kernelized Stein discrepancy [Chwialkowski et al., 2016, Liu et al.,
2016], KSD2(P,Q) = E[kp(Z,Z

′)], where Z ∼ Q,Z′ ∼ Q, and kp denotes the Langevin Stein
kernel defined from the score function sp(x) = ∇ log p(x) for x,x′ ∈ Rd, as

kp(x,x
′) =〈∇x,∇x′k(x,x′)〉+ 〈sp(x),∇x′k(x,x′)〉

+ 〈sp(x′),∇xk(x,x′)〉+ 〈sp(x), sp(x
′)〉k(x,x′) . (2)

The main advantage of the KSD is that it only requires the knowledge of the score function, and
does not involve any integration with respect to P. Gorham and Mackey [2017] also established
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convergence guaranties when the kernel k is chosen as the inverse multi-quadratic (IMQ) kernel
function k(x,x′) = (c+ ‖x− x′‖2Γ)−β with c > 0, β ∈ (0, 1), the positive definite matrix Γ is the
identity matrix, and the density p is distantly dissipative as defined below. Log-concave distributions
outside of a compact set are a typical example of such probability densities.
Definition 1.1 (Distant dissipativity Gorham and Mackey [2017]). The density p ∈ C1(Rd) is
distantly dissipative if lim inf

r→∞
κ(r) > 0, where κ(r) = inf

{
− 2
〈sp(x)−sp(y),x−y〉

‖x−y‖22
: ‖x−y‖2 = r

}
.

Stein thinning algorithm. Let P be a target probability measure that admits density p, and let
{xi}ni=1 ⊂ Rd be a MCMC output. The Stein thinning algorithm [Riabiz et al., 2022] selects m ≤ n
particles xπ1

, . . . ,xπm by greedily minimizing the kernelized Stein discrepancy. Given t− 1 < m
particles xπ1

, . . . ,xπt−1
, the t-th particle is defined as

πt ∈ argmin
i∈{1,...,n}

kp(xi,xi) + 2

t−1∑
j=1

kp(xπj ,xi) ,

where the KSD of an empirical distribution has been used to simplify the objective function. The
kernel function k is usually chosen as the IMQ kernel function, defined above, for both its good
theoretical properties and empirical efficiency. Indeed, several articles [Chen et al., 2018, Riabiz et al.,
2022] have led extensive experiments to show the better practical performance of the IMQ kernel
over other choices. Also notice that the bandwidth parameter ` is quite influential on the algorithm
performance, but happens to be very difficult to tune, as highlighted by Chopin and Ducrocq [2021].
Indeed, since the normalization constant of the target distribution is unknown, no additional metric is
available to assess the precise performance of the thinning procedure when ` varies. Furthermore,
the sample quality output by Stein thinning varies in an erratic fashion with respect to `, making
the design of heuristic procedures for the choice of ` notoriously difficult. Following the literature
recommendations [Riabiz et al., 2022], we use the median heuristic to set ` in our experiments, and
refer to Garreau et al. [2017] for an extensive analysis of this approach for kernel methods.

2 Analysis of KSD Pathologies

Although kernelized Stein discrepancy is a highly promising approach to thin MCMC outputs, several
empirical studies have highlighted that KSD-based algorithms may suffer from strong pathologies in
simple experiments [Wenliang and Kanagawa, 2020, Korba et al., 2021, Riabiz et al., 2022, Liu et al.,
2023]. The most established KSD pathology is that Stein thinning ignores the weights of distant
modes of the target distribution, leading to the selection of samples of poor quality by Stein thinning.
This problem, called Pathology I throughout the article, is analyzed in Subsection 2.1. Additionally,
Korba et al. [2021] also notice that KSD thinning may result in samples concentrated in regions of
low probability of p. As opposed to Pathology I, the mechanism leading to this problematic behavior
is not well understood in the literature, to our best knowledge. Subsection 2.2 is thus dedicated to
the theoretical characterization and illustration of Pathology II. Throughout the article, we illustrate
KSD thinning using the running example of a Gaussian mixture, defined in Example 1 below, where
initial particles are directly sampled from p to better highlight pathologies. We will come back to the
thinning of MCMC outputs in detail in Section 4.
Example 1. Let the density p be a Gaussian mixture model of two components, respectively centered
in (−µ,0d−1) and (µ,0d−1), of weights w and 1 − w, and of variance σ2Id. The initial particles
{xi}ni=1 are drawn from p. The KSD thinning algorithm selects m < n points to approximate p.

2.1 Pathology I: mode proportion blindness

We first focus on Pathology I, which states that Stein thinning is blind to the relative weights of multi-
ple distant modes of a target distribution. Indeed, Wenliang and Kanagawa [2020] show that the score
sp is insensitive to distant mode weights. Consequently, the KSD distance is unable to properly iden-
tify samples with different weights than those of the target, in finite sample settings, as long as samples
are accurately distributed within each mode. To be more specific, we illustrate this pathology with our
Example 1 of a Gaussian mixture in dimension 2. We set µ = 3 and σ = 1 to enforce the two modes to
be well separated, and take an unbalanced proportion w = 0.2 for the left mode, and 1−w = 0.8 for
the right mode. We generate n = 3000 observations and select m = 300 particles with Stein thinning.
Clearly, the red selected sample displayed in Figure 1 has wrong proportions, with about half of the
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particles in each mode, instead of the expected 20− 80%, reflected by the initial black particles sam-
pled from p. More precisely, over 100 repetitions of the Stein thinning algorithm, we obtain an average
proportion of 0.53 particles in the left mode, with a standard deviation of 0.08 across the 100 runs.

Figure 1: Illustration of Pathology
I with the Gaussian mixture of Ex-
ample 1 (d = 2, µ = 3, σ = 1,
w = 0.2, n = 3000, m = 300).
Initial particles are in black, and the
Stein thinning output is red.

Although Wenliang and Kanagawa [2020] clearly show that
the KSD distance is insensitive to the mode weights in the
specific case of Gaussian mixtures, the mechanism leading to
the selection of about half of the particles in each mode by Stein
thinning, as in Example 1, remains unexplained in the literature,
to our best knowledge. Therefore, we conduct a theoretical
analysis in the general case of any mixture distribution with
two distant modes, stated in Assumption 2.1 below. For the
sake of clarity, we only study the case of a number of modes
of two, without loss of generality. Importantly, notice that a
finite sample drawn from a distribution with distant modes,
takes the form of clusters of particles around each mode, as
illustrated in Figure 1. Then, Stein thinning selects particles
among these clusters to approximate p, and these particles
define an empirical law of a density q with a compact support
around each mode. Wenliang and Kanagawa [2020] explain
that the score sp is especially insensitive to the mode weights in
these compact areas around modes, which is the root cause of
the generation of samples with wrong proportions, as in Figure
1. Therefore, Assumption 2.1 below defines this observed
setting, required to have Pathology I to occur, where density q
has compact supports around each distant mode. Additionally,
we also need to formalize Assumption 2.2, which tells that the distributions of the two modes of the
mixture q have a close KSD distance with respect to the target p. In particular, this assumption can
be easily verified when both p and q have symmetric mode distributions, since the KSD distance is
insensitive to the weights of p.
Assumption 2.1 (Distant bimodal mixture distributions). Let p and q be two mixture distributions
in Rd, made of two modes centered in (−µ,0d−1) and (µ,0d−1), with µ > 0. The distribution of
each mode of p ∈ C1(Rd) has Rd as support, whereas each mode distribution of q have a compact
support, included in a ball of radius r > 0, with r < µ. The left mode of p has weight wp 6= 1/2,
and the right mode has weight 1− wp. Similarly, w and 1− w are the mode weights of q. Let QL
and QR be the probability measures that respectively admit the density of the left and right modes of
q, and P and Qw be also the probability laws for p and q.
Assumption 2.2. For distant bimodal mixture distributions q and p satisfying Assumption 2.1, and
for η ∈ (0, 1), we have

∣∣KSD2(P,QL)/KSD2(P,QR)− 1
∣∣ < η.

Theorem 2.3. Let kp be the Stein kernel associated with the radial kernel k(x,x′) = φ(‖x−x′‖2/`),
where x,x′ ∈ Rd, ` > 0, and φ ∈ C2(R), such that φ(z) → 0, φ′(z) → 0, and φ′′(z) → 0 for
z →∞. Let p and q be two bimodal mixture distributions satisfying Assumptions 2.1 and 2.2, for
any η ∈ (0, 1). We define w? as the optimal mixture weight of q with respect to the KSD distance, i.e.,
w? = argmin

w∈[0,1]

KSD(P,Qw). Then, for µ large enough, we have
∣∣w? − 1

2

∣∣ < η
2(1−η) .

Theorem 2.3, proved in Appendix B, states that the weight w? of the optimal mixture q, which
minimizes the KSD distance to the target p, is close to 1/2 regardless of the true target weight wp,
whenever the distributions of the two modes of the mixture q have a close KSD distance to p, and
provided that the two modes are distant. In particular, this is the case in the experiment of Example 1
and Figure 1, where the two modes are symmetric and well separated. Additionally, a more specific
empirical illustration of Theorem 2.3 can be found in Appendix A.1. In Section 3, we will propose
strategies improving Stein thinning to recover samples with accurate mode proportions.

2.2 Pathology II: spurious minimum

The core of this section is dedicated to the theoretical characterization of Pathology II. We first
need to introduce additional notations to formalize our analysis. We thus defineMs0 , the region
of the input space where the score norm is lower than the threshold s0 ≥ 0, formallyMs0 = {x ∈
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Figure 2: Illustration of Pathology II for the Gaussian mixture of Example 1 (d = 2, µ = 2, σ = 1,
w = 0.5, n = 3000, m = 300): many particles are selected around the line x(1) = 0 (left panel),
because of the squared first component of the score sp(x) along x(1) (for x(2) = 0 in the right panel).

Rd : ‖sp(x)‖2 ≤ s0}. We also introduce an independent and identically distributed (iid) sample
X1, . . . ,Xm of P, with Pm the associated empirical measure for a positive integer m, and X(j) the
j-th component of X. Then, Theorem 2.4 below shows that samples concentrated in regions of the
input space where the norm of the score is low, have smaller KSD than samples drawn from the true
target distribution p, for small sample sizes. Additionally, the score norm is low around stationary
points of p, including local minimum and saddle points, as shown in Corollary 2.5 below. However,
samples concentrated at local minimum of p are bad approximations of the target distribution by
definition. Therefore, pathological samples may be generated by Stein thinning, which minimizes the
empirical KSD, and thus explains Pathology II observed by Korba et al. [2021], and shown in Figure
2. For the sake of clarity, we formalize our result for the IMQ kernel used in practice, and set c = 1
without loss of generality, since it is equivalent to tune c or ` in the Stein thinning algorithm.

Theorem 2.4 (KSD spurious minimum). Let kp be the Stein kernel associated with the IMQ kernel
with ` > 0, β ∈ (0, 1), and c = 1. Let {xi}mi=1 ⊂Ms0 = {x ∈ Rd : ‖sp(x)‖2 ≤ s0} be a fixed
set of points of empirical measure Qm = 1

m

∑m
i=1 δ(xi), with s0 ≥ 0 and m ≥ 2. We have

KSD2
(
P,Qm

)
< E[KSD2

(
P,Pm

)
], if the score threshold s0 and the sample size m are small

enough to satisfy m < 1 + (E[‖sp(X)‖22]− s2
0)/(2βd/`2 + 2βs0/`+ s2

0).

Corollary 2.5 (Low KSD samples at density minimum). Let kp be the Stein kernel associated with
the IMQ kernel with ` > 0, β ∈ (0, 1), and c = 1. Let p be a density with at least one local minimum
or saddle point. For m ≥ 2, if {xi}mi=1 ⊂ Rd is a set of points, all located at local minimum or
saddle points of p, then we have KSD2

(
P,Qm

)
< E[KSD2

(
P,Pm

)
], if m < 1 + `2

2βdE[‖sp(X)‖22].

The proofs of Theorem 2.4 and Corollary 2.5, reported in Appendix C, are built on the idea that the
KSD of the empirical law of {xi}ni=1, has a bias of the form

∑m
i=1 ‖sp(xi)‖22/m2. Consequently,

when m is small, the bias has a strong influence on KSD estimates, which favor samples concentrated
in regions of low score norm, as stationary points of p. This mechanism is illustrated in Figure 2 and
Corollary 2.6 for Gaussian mixtures. In this case, Stein thinning aligns a large number of particles
around the line of saddle points defined by x(1) = 0, an area of low probability of the targeted mixture
distribution, because of the variations of the score function, if the sample size m is small enough.
From another perspective, for any sample size m, it exists a Gaussian mixture with µ/σ large enough,
such that Pathology II occurs. Therefore, Pathology II can appear for arbitrarily large samples m,
depending on the target distribution properties.

Corollary 2.6 (KSD spurious minimum for Gaussian mixtures). Let kp be the Stein kernel associated
with the IMQ kernel with ` > 0, β ∈ (0, 1), and c = 1. Let the density p be a Gaussian mixture
model of two components with equal weights, respectively centered in (−µ,0d−1) and (µ,0d−1), of
variance σ2Id, and let ν = µ/σ. If ν > 1 and 0 ≤ s0 <

[
ν
√
ν2 − 1− ln(ν +

√
ν2 − 1)

]
/µ, then

for any {xi}mi=1 ⊂Ms0 of empirical measure Qm, we have
(i) KSD2

(
P,Qm

)
< E[KSD2

(
P,Pm

)
] if m and s0 satisfy m < 1 +

E[‖sp(X)‖22]−s20
2βd/`2+2βs0/`+s20

,
(ii) there exists three disjoint intervals I−µ, I0, Iµ ⊂ R, respectively centered around −µ, 0, and µ,
such that x(1)

1 , . . . , x
(1)
m ∈ I−µ ∪ I0 ∪ Iµ.
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3 Regularized Stein Thinning

Stein thinning suffers from two main pathologies, analyzed in Section 2. In a word, Pathology I
comes from the insensitivity of the score to the relative weights of distant modes, whereas Pathology
II originates from the variations of the score norm, which do not differentiate local minimum from
local maximum of the target distribution. We propose to regularize the KSD distance to fix these two
problems, using terms that are highly sensitive to the type of stationary point and the relative weights
of modes. The proposed algorithm is first introduced in Subsection 3.1, then theoretical properties are
discussed in Subsection 3.2, and finally the good empirical performance will be shown in Section 4.

3.1 Algorithm

Entropic regularization. In order to compensate the blindness of the KSD to mode proportions in
multimodal distributions, we introduce the following entropic regularized KSD, denoted by KSDλ,
and defined as KSD2

λ(P,Q) = E[kp(Z,Z
′)]−λE[log(p(Z))], where Z and Z′ have probability law Q,

and P admits the density p. In our Bayesian setting, E[log(p(Z))] is known up to an additive constant
since the normalization factor of p is not tractable. However, it is possible to use KSD2

λ(P,Q) as the
objective function of the Stein thinning algorithm, as the greedy selection of particles to optimize this
quantity does not rely on the unknown additive constant. The main idea of this entropic regularization
is that − log(p(x)) takes higher values in modes of smaller probability, and therefore provides the
relative mode weight information, which is missing in the KSD distance. More precisely, modes
with smaller weights take smaller density values, and are therefore more penalized than modes of
higher weights. Therefore, with such entropic penalization, regularized Stein thinning tends to select
particles in modes of higher weights more frequently than in modes of smaller weights, and we
recover appropriate proportions.

Laplacian correction. Chen et al. [2018] and Riabiz et al. [2022] have noticed that the term
kp(xi,xi), which naturally appears in the empirical kernelized Stein discrepancy with the Langevin
operator, can be interpreted as a regularization term. For example, Stein thinning does not select
particles in the burn-in period of an MCMC output thanks to this regularization. However, this term
kp(xi,xi) is also responsible for Pathology II, of samples concentrated in stationary points of p, as
shown in Theorem 2.4. Therefore, we add a second regularization term to compensate the weaknesses
of kp(xi,xi), by penalizing particles located at local minimum and saddle points of the density p.
Such points are located in areas of convexity of the target distribution, which can thus be detected
with the positive values of the Laplacian of the density. Therefore, using the truncated Laplacian
operator ∆+f(x) =

∑d
j=1

(
∂2f(x)/∂x(j)2

)+
for a function f ∈ C2(Rd), we propose the L-KSD

estimate with a Laplacian correction for densities p ∈ C2(Rd), defined by

L-KSD2(P,Qm) =
1

m2

m∑
i6=j

kp(xi,xj) +
1

m2

m∑
i=1

[
kp(xi,xi) + ∆+ log(p(xi))

]
.

Regularized Stein thinning. Overall, we obtain the following estimate for the entropic regularized
KSD with Laplacian correction L-KSD2

λ(P,Qm) = L-KSD2(P,Qm)− λ
m

∑m
i=1 log(p(xi)). Then,

at each iteration t ∈ {1, . . . ,m}, the regularized Stein thinning selects the particle index πt ∈
{1, . . . , n} to greedily minimize

kp(xπt ,xπt) + ∆+ log(p(xπt))− λt log(p(xπt)) + 2

t−1∑
j=1

kp(xπj ,xπt).

Finally, Figure 3 illustrates the performance of regularized Stein thinning to fix the two pathologies
analyzed in Section 2, in the case of Example 1 with Gaussian mixtures. Indeed, the top panel of
Figure 3 shows that the majority of particles are selected in the right mode, as expected from the
target distribution with w = 0.2. More precisely, an average proportion of 0.11 of the particles are
located in the left mode over 100 repetitions of the procedure (0.89 in the right mode), with a standard
deviation of 0.03. For the value choice of λ, we refer to the next subsection and the experimental
Section 4. On the bottom panel of Figure 3, we observe that no particle is now selected on the line
x(1) = 0, as expected from the target Gaussian mixture distribution.
Remark 3.1. The truncated Laplacian operator is simply given by the trace of the Hessian matrix,
where negative components are set to 0. It follows that the computational cost the regularized
algorithm is similar to the original Stein thinning.
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Remark 3.2. The Laplacian correction of kp introduces second-order derivatives of p in the Stein
discrepancy, and therefore enables to differentiate local minimum and saddle points of the density
p from its local maximum. A natural approach to introduce second-order derivatives of p in KSD
estimates, is to define the Stein discrepancy using second-order operators. A Laplacian Stein operator
[Oates et al., 2017] is derived in Appendix G, but experiments show that this strategy is not efficient
to fix Pathologies I & II.

Figure 3: Pathologies fixed by the regularized Stein thinning.

3.2 Theoretical properties

This subsection is dedicated to the theoretical analysis of regularized Stein thinning. First, we show
that the proposed algorithm now enjoys good properties regarding Pathologies I and II, and thus
mitigates the identified problems of the original Stein thinning. Secondly, we extend the convergence
analysis of Riabiz et al. [2022] for the post-treatment of MCMC output, to show the convergence of
the empirical law output by regularized Stein thinning towards the target probability measure.

Entropic regularization. In the previous section, Theorem 2.3 highlights how Pathology I of mode
proportion blindness originates from the score insensitivity to mode weights. On the other hand, the
entropic regularization is directly built on the target density, and therefore strongly depends on the
mode weights. In the same setting of Assumption 2.1, required for Pathology I to occur with the
original algorithm, the following Theorem 3.3 shows that the entropic regularized KSD is minimized
for the appropriate target weight, with the suitable regularization strength λ. Notice that Theorem 3.3,
proved in Appendix D, is valid if E[log(p(ZL))] 6= E[log(p(ZR))] with ZL ∼ QL and ZR ∼ QR,
otherwise the impact of the entropic regularization on w?λ vanishes. However, as wp 6= 1/2 is required
in Assumption 2.1 for Pathology I to occur, p is asymmetric, and E[log(p(ZL))] = E[log(p(ZR))] is
only possible in very specific cases. Theorem 3.3 clearly shows that the regularized entropic KSD is
sensitive to the weights of distant modes. Efficient strategies to choose the regularization strength will
be first discussed in the asymptotic analysis below, and then in the experiments of the next section.
Theorem 3.3. Let kp be the Stein kernel associated with the radial kernel k(x,x′) = φ(‖x−x′‖2/`),
where x,x′ ∈ Rd, ` > 0, and φ ∈ C2(R). Let p and q be two bimodal mixture distributions satisfying
Assumption 2.1. We define w?λ as the optimal mixture weight of q with respect to the entropic
regularized KSD distance, i.e., w?λ = argmin

w∈[0,1]

KSDλ(P,Qw). If E[log(p(ZL))] 6= E[log(p(ZR))]

where ZL ∼ QL and ZR ∼ QR, it exists λ ∈ R such that w?λ = wp.

Laplacian correction. First, we stress that the L-KSD is a strongly consistent estimate of the KSD
distance, where the proof follows from the law of large numbers. Therefore, the Laplacian correction
introduced in the L-KSD estimate does not undermine the good asymptotic properties of the KSD
distance. Secondly, the following theorem shows that samples concentrated in local minimum or
saddle points of the target distribution and of low density values, are well identified by the L-KSD
as samples of worse quality than those truly sampled from the target. Consequently, the Laplacian
correction fixes Pathology II, previously formalized in Theorem 2.4.
Theorem 3.4. Let kp be the Stein kernel associated with the IMQ kernel with ` > 0, β ∈ (0, 1), and
c = 1. For m ≥ 2, let {xi}mi=1 ⊂ Rd be a set of points located at x0, a local minimum or saddle
point of p, and of empirical measure Qm. Then, we have L-KSD2

(
P,Qm

)
> E[L-KSD2

(
P,Pm

)
], if

the density at x0 satisfies p(x0) < ∆+p(x0)/
(
E[‖sp(X)‖22] + E[∆+ log p(X)]

)
.
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Convergence of regularized Stein thinning. While regularized Stein thinning fixes finite sample
size pathologies, the asymptotic properties of Stein thinning are also preserved. Indeed, if the initial
set of particles is drawn from a different distribution than the target using a Markov chain Monte
Carlo, Theorem 3.6 states that the empirical measure of the sample obtained with regularized Stein
Thinning, converges towards the target measure P, and thus extends the results of Riabiz et al. [2022].
Notice that the weak convergence of a sequence of probability measure is denoted by⇒, and that
distantly dissipative distributions are defined in Definition 1.1. The required assumption below,
essentially states mild integrability conditions, and enforces that the MCMC output is not too far
from a sample drawn from p—see Appendix F for additional details.
Assumption 3.5. Let Q be a probability distribution on Rd, such that P is absolutely continuous
with respect to Q. Let {Zi}i∈N ⊂ Rd be a Q-invariant, time-homogeneous Markov chain, generated
using a V -uniformly ergodic transition kernel, such that V (x) ≥ dP

dQ
√

2βd/`2 + ‖sp(x)‖22. Suppose
that, for some γ > 0, sup

i∈N
E[eγ| log(p(Zi))|] <∞, sup

i∈N
E[eγ∆+ log p(Zi)] <∞,

sup
i∈N

E
[
eγmax(1, dPdQ (Zi)

2)( 2βd

`2
+‖sp(Zi)‖22)

]
<∞, sup

i∈N
E
[ dP
dQ

(Zi)

√
2βd

`2
+ ‖sp(Zi)‖22V (Zi)

]
<∞.

Theorem 3.6. Let P be a distantly dissipative probability measure, that admits the density p ∈ C2(Rd),
kp be the Stein kernel associated with the IMQ kernel where `, c > 0, β ∈ (0, 1). Let {Zi}i∈N ⊂ Rd
be a Markov chain satisfying Assumption 3.5, π be the index sequence of length mn generated by
regularized Stein thinning, and Qmn be the empirical measure of {Zπi}

mn
i=1. If log(n)α < mn < n,

with any α > 1, and λmn = o(log(mn)/mn), then we have almost surely Qmn =⇒
n→∞

P.

Theorem 3.6, proved in Appendix F, provides us with interesting insights about the entropic reg-
ularization strength λ. We already know that λ should be chosen with a rate at least as fast as
O(1/m), to avoid the introduction of a higher a bias in the L-KSD than the original KSD. Indeed,
for a sample drawn from the true target distribution p, this bias E[L-KSD2(P,Pm)] takes the form
E[kp(X,X)]/m + E[∆+ log(p(X))]/m − λE[log(p(X))]. Therefore, for slower rates of λ than
O(1/m), trivial samples concentrated at a local maximum of the target p, can have smaller L-KSD
than samples drawn from p. Then, Theorem 3.6 states that, for our ultimate application of MCMC
post-processing, the Stein thinning sample distribution converges towards the target for such λ rates
of O(1/m) or faster. In practice, in our Bayesian setting, it is not possible to fine tune this parameter
λ because no metric is available to assess the Stein thinning quality for various values of λ, as already
mentioned in the case of the bandwidth parameter `. In addition, we cannot theoretically determine
which exact range of values of λ leads to good thinned samples in a finite sample regime. However,
we will see in the experiments of the following section that both slower and faster λ rates than
O(1/m) lead to samples of degraded quality. Therefore, we set λ = 1/m in the regularized Stein
thinning, to ensure good empirical performance and the algorithm convergence.

4 Empirical Assessment

This section shows how regularized Stein thinning outperforms the original algorithm through three
batches of experiments: mixtures of standard distributions using exact or MCMC sampling, and
Bayesian logistic regression on real datasets. For the experiments considered in Sections 4.2 and 4.3,
two Metropolis-Hastings samplers are considered with the Metropolis-Adjusted Langevin Algorithm
(MALA) and the No-U-Turn sampler (NUTS). We use the IMQ kernel with ` set with the median
heuristic, β = 1/2, and c = 1, as recommended in Chen et al. [2018], Riabiz et al. [2022]. We also set
the regularization parameter with the default value of λ = 1/m. Notice that additional experiments
are provided in Appendix A, and that the code is available at https://gitlab.com/drti/kernax.

When the target distribution is known, the efficiency of the Stein thinning algorithms are assessed
by computing the MMD distance (see Equation (1)) between a large sample drawn from the target
distribution and the thinned samples. More specifically, we use the following closed-form expression
of the MMD [Gretton et al., 2006] with X,X′ ∼ P and Z,Z′ ∼ Q,

MMD2
k(P,Q) = E[k(X,X′)] + E[k(Z,Z′)]− 2E[k(X,Z)] , (3)

where the kernel function k is chosen as the distance-induced kernel studied by Sejdinovic et al.
[2013] and given by k(x,x′) = ‖x‖2 + ‖x′‖2−‖x−x′‖2, for x,x′ ∈ Rd. In this setting, the MMD
reduces to the well known energy distance, as shown by Sejdinovic et al. [2013].
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4.1 Gaussian mixtures with exact sampling

As a first batch of experiments, we build on Example 1 and consider more complicated two-
dimensional Gaussian mixtures to further illustrate the correction of Pathologies I & II. The first
Gaussian mixture is made of four modes located at µ1 = (−3, 3), µ2 = (−3, 3), µ3 = (3, 3), and
µ4 = (3,−3), and with weights w1 = w2 = 0.1, and w3 = w4 = 0.4, respectively. The second
mixture is taken from [Qiu and Wang, 2023]. It is made of 6 equally weighted Gaussian distributions
centered at µi = (3 cos(2π(i− 1)/6), 3 sin(2π(i− 1)/6)), for i = 1, . . . , 6. For both experiments,
we rely on exact Monte Carlo sampling to generate n = 3000 observations, and apply Stein thinning
and its regularized variant to select m = 300 particles. The observed samples and the selected
particles are shown in Figure 4. The first example shows that vanilla Stein thinning does not capture
the right proportions, while the regularized variant appropriately penalizes modes with lower weights.
The second example illustrates Pathology II, which is corrected by the regularized Stein thinning.

Figure 4: Gaussian mixtures with exact Monte Carlo sampling. Solutions (red dots) obtained by Stein
thinning and its regularized variant.

4.2 Banana-shaped and Gaussian mixtures with MCMC sampling

We consider a mixture of two distant modes of d-dimensional banana-shaped distributions with t-tails
and unbalanced weights [Haario et al., 1999, Pompe et al., 2020], illustrated in Figure 5, and precisely
defined in Appendix A.2. We sample this target banana mixture with both MALA and NUTS using
three different step sizes ε and 105 iterations. The generated samples are post-processed with the
Stein thinning and regularized Stein thinning algorithms, and their performances are compared with
the MMD between the post-processed samples and large samples drawn from the known target
banana mixture. This experiment is run for various thinning sizes m and dimensions d, with 20
repetitions to quantify uncertainties. The results obtained with the MALA sampler are shown in
Figure 6: the regularized Stein thinning clearly generates samples of higher quality than the vanilla
Stein thinning. Additionally, an example of post-processed MALA output is depicted in Figure
5, together with a heatmap of the Laplacian correction. On the left panel of Figure 5, we see that
pathologies are especially strong in this experiment, with a large number of particles lying between
the two modes in a region of low probability. On the right panels, we observe that regularized Stein
thinning fix pathologies. Similar results were obtained with NUTS and are reported in Appendix
A.2 for brevity. Next, we conduct the same experiments for a d-dimensional Gaussian mixture of
four modes with different variances, as detailed in Appendix A.2. Again, Figure 6 shows the better

Figure 5: t-banana-shaped mixture (d = 10). From left to right: solutions obtained with standard and
regularized Stein thinning with contour lines of p, and heatmap of the Laplacian correction.
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Figure 6: (MALA) Graphs of the MMD with respect to the thinning size m (for d = 2) and with
respect to d (for m = 300). Left two panels: banana mixture. Right two panels: Gaussian mixture.

performance of regularized Stein thinning. Besides, we take advantage of this last experiment to
explore other regularization rates than our default λ = 1/m. Figure 12 in Appendix A.2 shows that
a slower rate of λ = 1/ log(m), which violates the convergence assumptions of Theorem 3.6, has
significantly worse performance than the original Stein thinning. On the other hand, with a faster rate
than 1/m such as 1/m2, the effect of the entropic regularization disappears, and we recover similar
results than the original Stein thinning. This supports that the default value of λ = 1/m is an efficient
heuristic, since slower and faster rates of λ strongly degrade the algorithm performance.

4.3 Bayesian logistic regression

We now compare the two Stein thinning algorithms in the Bayesian logistic regression setting for
binary classification, since such problem usually involves multimodal posterior—see, e.g., Gersh-
man et al. [2012], Liu and Wang [2016], Fong et al. [2019], Korba et al. [2021]. Given a dataset
DN = {(Xi, Yi)}Ni=1 made of N pairs of features Xi ∈ Rd and labels Yi ∈ {0, 1}, the probabil-
ity that Yi is of class 1 is given by p(Yi = 1|Xi,β, β0) = 1/(1 + exp(−β0 − βTXi)), for some
parameters θ = (β0,β) ∈ Rd+1. The prior distributions of the weight vector θ is assumed to be
Gaussian, p(β(j)|γ(j)) = N (β(j)|0, 1/γ(j)), and a Gamma prior with parameters (a, b) is chosen
for the precision γ(j). Following [Fong et al., 2019], the hyperparameters are chosen as a = b = 1.

Table 1: AUCs obtained with NUTS sampler for Stein
Thinning (ST) and Regularized Stein Thinning (RST).

m = 50 m = 300

Dataset ST RST ST RST

Breast W. 0.88 (0.02) 0.96 (0.00) 0.93 (0.01) 0.96 (0.00)
Diabetes 0.52 (0.01) 0.50 (0.02) 0.53 (0.02) 0.57 (0.02)

Haberman 0.51 (0.04) 0.53 (0.02) 0.53 (0.03) 0.58 (0.02)
Liver 0.53 (0.04) 0.69 (0.01) 0.61 (0.04) 0.70 (0.01)
Sonar 0.80 (0.02) 0.81 (0.01) 0.81 (0.01) 0.81 (0.01)

The posterior distribution of the weights
θ is sampled with both MALA and
NUTS using 48 independent chains,
of respectively 104 and 105 iterations,
and four step sizes ε are considered
along with three thinning sizes m.
Each MCMC sample is post-processed
with the two Stein thinning algorithms.
For a new input x?, the resulting
thinned samples are used to approxi-
mate the posterior predictive distribu-
tion p(Y = 1|x?,DN ), defined by∫
p(Y = 1|x?,θ)p(θ|DN )dθ. The per-

formance of Stein thinning algorithms are assessed using the standard AUC metric for classification
problems, estimated with 10-fold cross-validation and 10 repetitions for uncertainties. Table 1 gathers
the results for five public datasets from the UCI repository [Dua and Graff, 2017], and described
in Appendix A.3, where the best AUC obtained for each algorithm over the four MCMC step sizes
are reported. Clearly, regularized Stein thinning significantly improves the performance of Bayesian
logistic regression.

5 Conclusion

Stein thinning has raised a high interest in recent years, as a powerful tool to post-process MCMC
outputs, by the greedy minimization of the kernelized Stein discrepancy. Unfortunately, empirical
studies have shown that KSD-based algorithms suffer from strong pathologies. We have conducted
an in-depth theoretical analysis to identify the mechanisms at stake. From this understanding, we
propose an improved Stein thinning algorithm relying on entropic regularization and Laplacian
correction. This approach exhibits relevant theoretical properties regarding pathologies, as well as
highly improved empirical performance. Finally, the analysis of these regularization terms for other
types of KSD-based algorithms, such a KSD descent, seems a promising route for future work.
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Appendix

A Additional Experiments

A.1 Illustration of Theorem 2.3

To better illustrate Theorem 2.3, we run an additional experiment, where p is still defined as in
Figure 7 from Example 2 recalled below, with unbalanced mode weights of 0.2 and 0.8. The density
q is distributed as p, but each mode is truncated outside a circle of two standard deviation radius,
and q has weight w. Next, for various values of w ∈ [0.1, 0.9], we draw two samples of size
n = 3000 from p and q, and compute KSD(P,Qw) (with 30 repetitions for each w value). The
result is displayed in Figure 8, and shows that the optimal weight is close to 1/2, as predicted by
Theorem 2.3, since |KSD2(P,QL)/KSD2(P,QR)− 1| is estimated as 0.01 in this case, implying
that |w? − 1/2| < 0.005.
Example 2. Let the density p be a Gaussian mixture model of two components, respectively centered
in (−µ,0d−1) and (µ,0d−1), of weights w and 1 − w, and of variance σ2Id. The initial particles
{xi}ni=1 are drawn from p. The KSD thinning algorithm selects m < n points to approximate p.

Figure 7: Illustration of Pathology I with the Gaussian mixture of Example 2 (d = 2, µ = 3, σ = 1, w = 0.2,
n = 3000, m = 300). Initial particles are in black, and the Stein thinning output is red.

A.2 Gaussian and Banana-shaped Mixtures

This appendix gathers additional results and details for the Gaussian and banana-shaped mixtures, as
well as the MMD distance used to evaluate thinning performance, and the regularization parameter λ.

Gaussian mixture. The second batch of experiments in Section 4 considers a d-dimensional
Gaussian mixture of four modes of equal weight, with d ≥ 2, illustrated in Figure 9. The center of
modes are chosen as (−2, 0), (2, 0), (−3, 4), and (3, 4), and null values for the higher dimension
coordinates. The first two modes have an identity covariance matrix, while the remaining two modes
have a diagonal covariance matrix with variance equal to 2. The results for regularized Stein thinning
and the original Stein thinning are provided in Figure 10 for MALA sampler, and in Figure 11 for
NUTS sampler. In both figures, the three tested step size ε are displayed, with a small impact on the
resulting performance. Figures 9, 10, and 11 show the high performance improvement of regularized
Stein thinning over the original algorithm.

Regularization parameter λ. Figure 12 displays the MMD obtained with regularization parameters
λ, set as λ = 1/m2 and λ = 1/ log(m). These results should be compared with the ones shown in
Figures 10 and 11, which were obtained with a regularization parameter λ = 1/m. These additional
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Figure 8: KSD(P,Qw) for p as defined in Example 2 with µ = 3, σ = 1, wp = 0.2, and q a
truncation of p and with weight w. The KSD is estimated with n = 3000 and 30 repetitions for each
w value.

Figure 9: (Gaussian mixture with d = 2, MALA) First two panels: solutions obtained with Stein
thinning and regularized Stein thinning with contour lines of the target distribution. Last panel:
heatmap of the Laplacian correction ∆+ log(p).

experiments show the importance of choosing the regularization parameter as λ = O(1/m), as
suggested by Theorem 3.6. Indeed, slower rates of λ give poor quality samples, and faster rates
than λ = O(1/m) tend to remove the effect of the entropic regularization, and we then recover
similar performance than the original Stein thinning. On the other hand, λ = 1/m provides a high
improvement over the standard thinning, as shown in Figures 10 and 11.

Banana-shaped mixture with t-tails. The first batch of experiments in Section 4 considers a
banana-shaped mixture with t-tails, defined as follows. Let ϕ : Rd → Rd be the transformation
defined by ϕi(x) = xi if i 6= 2, and ϕ2(x) = x2 + bx2

1 − 100b. Let Z be a random variable that
follows the multivariate t-Student distribution with degrees of freedom 7. Then, the random variable
X = ϕ(Z) + µ follows a t-banana-shaped distribution centered at µ. We consider a mixture of
two t-banana-shaped distributions centered in 0d and (0, 8,0d−2), with weights w1 = 0.25 and
w2 = 0.75, respectively, which is illustrated in Figure 13 for d = 10. The results for regularized
Stein thinning and the original Stein thinning are provided in Figure 14 for MALA sampler, and
in Figure 15 for NUTS sampler. In both figures, the three tested step size ε are displayed, which
confirms the higher performance of regularized Stein thinning. Figures 13, 14, and 15 show the high
performance improvement of regularized Stein thinning over the original algorithm.
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Figure 10: (Gaussian mixture, MALA) Graphs of the MMD distance with respect to the thinning size
m (with d = 2) and with respect to d (with m = 300) for various step sizes ε.

Figure 11: (Gaussian mixture, NUTS) Graphs of the MMD distance with respect to the thinning size
m (with d = 2) and with respect to d (with m = 300) for various step sizes ε.

A.3 Bayesian Logistic Regression

This appendix gathers additional results for Bayesian logistic regression. In particular, Table 2
provides a description of the tested datasets. Table 3 gives the resulting AUC, for m = 50, 100, 300,
using NUTS or MALA sampler. We recall that only the best AUC over the four tested MCMC step
size ε is reported.

Recall that the Bayesian logistic regression defines the probability that Yi is of class 1
as p(Yi = 1|Xi,β, β0) = 1/(1 + exp(−β0 − βTXi)), for some vector of parameters θ =
(β0,β) ∈ Rd+1. The prior distributions of the weight vector θ is assumed to be Gaussian,
p(β(j)|γ(j)) = N (β(j)|0, 1/γ(j)), and a Gamma prior with parameters (a, b) is chosen for the
precision γ(j). Upon marginalizing, it is found that β(j) is distributed as the non-standardized
t-distribution Student-t(2a, 0, b/a) [Bishop and Nasrabadi, 2006]. Following [Fong et al., 2019], the
hyperparameters are chosen as a = b = 1.
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Figure 12: (Gaussian mixture, MALA) Graphs of the MMD distance with respect to the thinning size
m (with d = 10) for various step sizes ε. For the first row, we set λ = 1/m2, and we observe that
the effect of entropic regularization almost vanishes, since the performance is close to the original
Stein thinning. For the second row, we set λ = 1/ log(m), violating the convergence assumption,
and resulting in bad thinned samples.

Figure 13: (t-banana-shaped mixture with d = 10, MALA) First two panels: solutions obtained with
Stein thinning and regularized Stein thinning with contour lines of the target distribution. Last panel:
heatmap of the Laplacian correction ∆+ log(p) for x(3) = . . . = x(10) = 0.

Table 2: Description of UCI datasets

Dataset Sample size Dimension

Breast Wisconsin 569 30
Diabetes 768 8

Haberman 306 3
Liver Disorders 345 6

Sonar 208 60
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Figure 14: (Mixture of t-banana-shaped distributions, MALA) Graphs of the MMD distance with
respect to the thinning size m (with d = 2) and with respect to d (with m = 300) for various step
sizes ε.

Figure 15: (Mixture of t-banana-shaped distributions, NUTS) Graphs of the MMD distance with
respect to the thinning size m (with d = 2) and with respect to d (with m = 300) for various step
sizes ε.

B Proof of Theorem 2.3

Assumption 2.1 (Distant bimodal mixture distributions). Let p and q be two mixture distributions
in Rd, made of two modes centered in (−µ,0d−1) and (µ,0d−1), with µ > 0. The distribution of
each mode of p ∈ C1(Rd) has Rd as support, whereas each mode distribution of q have a compact
support, included in a ball of radius r > 0, with r < µ. The left mode of p has weight wp 6= 1/2,
and the right mode has weight 1− wp. Similarly, w and 1− w are the mode weights of q. Let QL
and QR be the probability measures that respectively admit the density of the left and right modes of
q, and P and Qw be also the probability laws for p and q.
Assumption 2.2. For distant bimodal mixture distributions q and p satisfying Assumption 2.1, and
for η ∈ (0, 1), we have

∣∣KSD2(P,QL)/KSD2(P,QR)− 1
∣∣ < η.

Theorem 2.3. Let kp be the Stein kernel associated with the radial kernel k(x,x′) = φ(‖x−x′‖2/`),
where x,x′ ∈ Rd, ` > 0, and φ ∈ C2(R), such that φ(z) → 0, φ′(z) → 0, and φ′′(z) → 0 for
z →∞. Let p and q be two bimodal mixture distributions satisfying Assumptions 2.1 and 2.2, for
any η ∈ (0, 1). We define w? as the optimal mixture weight of q with respect to the KSD distance, i.e.,
w? = argmin

w∈[0,1]

KSD(P,Qw). Then, for µ large enough, we have
∣∣w? − 1

2

∣∣ < η
2(1−η) .
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Table 3: AUCs obtained by Stein Thinning (ST) and Regularized Stein Thinning (RST). A 10-fold
cross-validation is performed and the experiments are repeated 10 times to provide uncertainties.

NUTS Sampler

m = 50 m = 100 m = 300

Dataset ST RST ST RST ST RST

Breast W. 0.88 (0.020) 0.96 (0.004) 0.91 (0.023) 0.96 (0.003) 0.93 (0.008) 0.96 (0.004)
Diabetes 0.52 (0.009) 0.50 (0.019) 0.52 (0.021) 0.55 (0.018) 0.53 (0.015) 0.57 (0.019)

Haberman 0.51 (0.038) 0.53 (0.023) 0.54 (0.033) 0.58 (0.035) 0.53 (0.034) 0.58 (0.017)
Liver 0.53 (0.044) 0.69 (0.014) 0.56 (0.038) 0.70 (0.013) 0.61 (0.039) 0.70 (0.011)
Sonar 0.80 (0.021) 0.81 (0.007) 0.81 (0.009) 0.82 (0.011) 0.81 (0.011) 0.81 (0.009)

MALA Sampler

m = 50 m = 100 m = 300

Dataset ST RST ST RST ST RST

Breast W. 0.68 (0.044) 0.93 (0.010) 0.72 (0.048) 0.93 (0.007) 0.72 (0.037) 0.88 (0.026)
Diabetes 0.51 (0.012) 0.48 (0.010) 0.53 (0.028) 0.51 (0.014) 0.53 (0.016) 0.56 (0.016)

Haberman 0.52 (0.034) 0.60 (0.027) 0.53 (0.024) 0.58 (0.017) 0.55 (0.024) 0.61 (0.013)
Liver 0.54 (0.033) 0.70 (0.008) 0.55 (0.034) 0.69 (0.005) 0.57 (0.024) 0.62 (0.032)
Sonar 0.80 (0.019) 0.80 (0.019) 0.80 (0.010) 0.80 (0.010) 0.81 (0.013) 0.80 (0.010)

Lemma 1. If kp is the Stein kernel associated with the radial kernel k(x,y) = φ(‖x − y‖2/`),
where ` > 0, φ ∈ C2(R), and x,y ∈ Rd such that sp(x), sp(y) < s0, then we have

|kp(x,y)| ≤ d− 1

`‖x− y‖2
φ′(‖x− y‖2/`) +

1

`2
φ′′(‖x− y‖2/`) +

2s0

`
φ′(‖x− y‖2/`)

+ s2
0φ(‖x− y‖2/`).

Proof of Theorem B. We consider the mixture distributions p and q satisfying Assumption 2.1, for
µ > 0 and r > 0, and assume that Assumption 2.2 is satisfied for η ∈ (0, 1). More precisely, we
denote by qL the distribution of the left mode of the mixture q, and similarly, qR is the distribution of
the right mode of q. The probability measures QL and QR respectively admits the densities qL and
qR.

By definition of the KSD, we can write

KSD2(P,Qw) =

∫
kp(x,x

′)q(x)q(x′)dxdx′.

Additionally, given the above notations, q takes the form q = wqL + (1 − w)qR. Then, we can
develop the KSD expression to get

KSD2(P,Qw) =

∫
kp(x,x

′)(wqL(x) + (1− w)qR(x))(wqL(x′) + (1− w)qR(x′))dxdx′

=w2

∫
kp(x,x

′)qL(x)qL(x′)dxdx′ + (1− w)2

∫
kp(x,x

′)qR(x)qR(x′)dxdx′

+ 2w(1− w)

∫
kp(x,x

′)qL(x)qR(x′)dxdx′,

where the last term follows from the symmetry of kp. Finally, we have

KSD2(P,Qw) =w2KSD2(P,QL) + (1− w)2KSD2(P,QR)

+ 2w(1− w)

∫
kp(x,x

′)qL(x)qR(x′)dxdx′,
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and we denote by ∆L,R the last term of this equation, which now writes

KSD2(P,Qw) =w2KSD2(P,QL) + (1− w)2KSD2(P,QR) + 2w(1− w)∆L,R. (4)

We first focus on the last term ∆L,R of this expression, which can be shown to be arbitrarily small
when µ gets large. According to Assumption 2.1, the distance between the centers of the two modes
is 2µ, and both qL and qR have a compact support included in a ball of radius r. Consequently, for
x,x′ ∈ Rd such that qL(x) > 0 and qR(x′) > 0, then ‖x − x′‖2 > 2(µ − r). Additionally, since
the score sp is continuous, sp is bounded on a compact set, and it exists s0 > 0 such that sp(x) < s0

and sp(x′) < s0. Then, from Lemma 1, we have

|kp(x,x′)| ≤
d− 1

2`(µ− r)
φ′(‖x− x′‖2/`) +

1

`2
φ′′(‖x− x′‖2/`) +

2s0

`
φ′(‖x− x′‖2/`)

+ s2
0φ(‖x− x′‖2/`),

and since qL(x)qR(x′) = 0 for ‖x− x′‖2 < 2(µ− r), we get

∆L,R ≤ sup
z>2(µ−r)/`

{ d− 1

2`(µ− r)
φ′(z) +

1

`2
φ′′(z) +

2s0

`
φ′(z) + s2

0φ(z)
}
.

By assumption, φ(z)→ 0, φ′(z)→ 0, and φ′′(z)→ 0 for z →∞, and then, we have

lim
µ→∞

∆L,R = 0.

Next, we reorder the terms of equation (4) to get a second-order polynomial in w as follows

KSD2(P,Qw) =w2
[
KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

]
− 2w

[
KSD2(P,QR)−∆L,R

]
+ KSD2(P,QR).

Notice that the coefficient of w2 is KSD2(P,Q1/2)/4, and is therefore positive. Then, KSD2(P,Qw)
admits a unique minimum with respect to w, given by

w? =
KSD2(P,QR)−∆L,R

KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

.

We rewrite w? as follows,

w? =
1/2KSD2(P,QR) + 1/2KSD2(P,QL)−∆L,R + 1/2KSD2(P,QR)− 1/2KSD2(P,QL)

KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

=
1

2
+

1

2

KSD2(P,QR)−KSD2(P,QL)

KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

=
1

2
+

1

2

1−KSD2(P,QL)/KSD2(P,QR)

1 + KSD2(P,QL)/KSD2(P,QR)− 2∆L,R/KSD2(P,QR)

=
1

2
+

1

2

1−KSD2(P,QL)/KSD2(P,QR)

2(1−∆L,R/KSD2(P,QR)) + (KSD2(P,QL)/KSD2(P,QR)− 1)
.

We can deduce the following bound∣∣∣∣w? − 1

2

∣∣∣∣ ≤ 1

2

|KSD2(P,QL)/KSD2(P,QR)− 1|
|2(1−∆L,R/KSD2(P,QR)) + (KSD2(P,QL)/KSD2(P,QR)− 1)|

. (5)

According to Assumption 2.2, with 0 < η < 1,∣∣∣∣KSD2(P,QL)

KSD2(P,QR)
− 1

∣∣∣∣ < η,

which gives an upper bound for the numerator of the right hand side of inequality (5). Additionally, for
µ large enough, ∆R,L is arbitrarily small, and in particular, we can have ∆R,L < KSD2(P,QR)/2,
and then 2(1−∆L,R/KSD2(P,QR)) > 1. Next, we use the triangle inequality to get

|2(1−∆L,R/KSD2(P,QR)) + (KSD2(P,QL)/KSD2(P,QR)− 1)|
≥ 2(1−∆L,R/KSD2(P,QR))− |KSD2(P,QL)/KSD2(P,QR)− 1|
≥ 1− η,
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where the last inequality is obtained using 2(1−∆L,R/KSD2(P,QR)) > 1 for µ large enough, and
Assumption 2.2 again. Finally, this lower bound on the denominator and the upper bound on the
numerator combined with inequality (5) give∣∣∣∣w? − 1

2

∣∣∣∣ < η

2(1− η)
.

Proof of Lemma 1. We consider x,y ∈ Rd, such that x 6= y, sp(x) < s0 and sp(y) < s0. From
Equation (2) of the main article, we derive the Stein kernel obtained for a radial kernel φ(‖x−y‖2/`),
where ` > 0 and φ ∈ C2(R), and get

kp(x,y) =
1− d

`‖x− y‖2
φ′(‖x− y‖2/`)−

1

`2
φ′′(‖x− y‖2/`)

− (sp(x)− sp(y)) · (x− y)
φ′(‖x− y‖2/`)
`‖x− y‖2

+ (sp(x) · sp(y))φ(‖x− y‖2/`).

Using Cauchy-Schwartz inequality, we have sp(x) · sp(y) ≤ s2
0, and

(sp(x)− sp(y)) · (x− y)

`‖x− y‖2
≤ 2s0

`
.

Overall, we obtain the following bound

|kp(x,y)| ≤ 1− d
`‖x− y‖2

φ′(‖x− y‖2/`) +
1

`2
φ′′(‖x− y‖2/`) +

2s0

`
φ′(‖x− y‖2/`)

+ s2
0φ(‖x− y‖2/`).

C Proofs of Theorem 2.4, Corollary 2.5, and Corollary 2.6

Theorem 2.4 (KSD spurious minimum). Let kp be the Stein kernel associated with the IMQ kernel
with ` > 0, β ∈ (0, 1), and c = 1. Let {xi}mi=1 ⊂Ms0 = {x ∈ Rd : ‖sp(x)‖2 ≤ s0} be a fixed
set of points of empirical measure Qm = 1

m

∑m
i=1 δ(xi), with s0 ≥ 0 and m ≥ 2. We have

KSD2
(
P,Qm

)
< E[KSD2

(
P,Pm

)
], if the score threshold s0 and the sample size m are small

enough to satisfy m < 1 + (E[‖sp(X)‖22]− s2
0)/(2βd/`2 + 2βs0/`+ s2

0).
Corollary 2.5 (Low KSD samples at density minimum). Let kp be the Stein kernel associated with
the IMQ kernel with ` > 0, β ∈ (0, 1), and c = 1. Let p be a density with at least one local minimum
or saddle point. For m ≥ 2, if {xi}mi=1 ⊂ Rd is a set of points, all located at local minimum or
saddle points of p, then we have KSD2

(
P,Qm

)
< E[KSD2

(
P,Pm

)
], if m < 1 + `2

2βdE[‖sp(X)‖22].
Corollary 2.6 (KSD spurious minimum for Gaussian mixtures). Let kp be the Stein kernel associated
with the IMQ kernel with ` > 0, β ∈ (0, 1), and c = 1. Let the density p be a Gaussian mixture
model of two components with equal weights, respectively centered in (−µ,0d−1) and (µ,0d−1), of
variance σ2Id, and let ν = µ/σ. If ν > 1 and 0 ≤ s0 <

[
ν
√
ν2 − 1− ln(ν +

√
ν2 − 1)

]
/µ, then

for any {xi}mi=1 ⊂Ms0 of empirical measure Qm, we have
(i) KSD2

(
P,Qm

)
< E[KSD2

(
P,Pm

)
] if m and s0 satisfy m < 1 +

E[‖sp(X)‖22]−s20
2βd/`2+2βs0/`+s20

,
(ii) there exists three disjoint intervals I−µ, I0, Iµ ⊂ R, respectively centered around −µ, 0, and µ,
such that x(1)

1 , . . . , x
(1)
m ∈ I−µ ∪ I0 ∪ Iµ.

Lemma 2. Let kp be the Stein kernel associated to the IMQ kernel, with parameters ` > 0, β ∈ (0, 1),
and c = 1. For s0 ≥ minx∈Rd ‖s(x)‖2, and x,y ∈Ms0 , we have

kp(x,y) ≤ 2βd

`2
+

2βs0

`
+ s2

0.

Proof of Theorem 2.4. By definition of the kernelized Stein discrepancy between the target distribu-
tion P and the empirical measure Pm = 1

m

∑m
i=1 δ(Xi), we have

E[KSD2(P,Pm)] =
1

m2

m∑
i,j=1

E[kp(Xi,Xj)]
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In what follows, kp denotes the Stein kernel obtained for the inverse multi-quadratric kernel function,
i.e.,

kp(x,y) =− 4β(β + 1)

`4
‖x− y‖22(1 + ‖x− y‖22/`2)−β−2

+
2β

`2
(d+ (sp(x)− sp(y)) · (x− y))(1 + ‖x− y‖22/`2)−β−1

+ (sp(x) · sp(y))(1 + ‖x− y‖22/`2)−β .

Given that Xi and Xj are independent random variables that follow the distribution P, one has
E[kp(Xi,Xj)] = 0 for any i 6= j. Using this property and the closed-form expression of the Stein
kernel kp, it is found that

E[KSD2(P,Pm)] =
1

m2

m∑
i=1

E[kp(Xi,Xi)]

=
1

m
E[kp(X,X)]

=
2βd

m`2
+

E[‖sp(X)‖22]

m
,

where X ∼ P. On the other hand, the kernelized Stein discrepancy between the target P and the
empirical distribution Qm = 1

m

∑m
i=1 δ(xi) is given by

KSD2(P,Qm) =
1

m2

m∑
i,j=1

kp(xi,xj)

=
1

m2

m∑
i=1

kp(xi,xi) +
1

m2

m∑
i6=j

kp(xi,xj)

=
2βd

m`2
+

1

m2

m∑
i=1

‖sp(xi)‖22 +
1

m2

m∑
i 6=j

kp(xi,xj).

Next, it can be shown that the difference m
(
KSD2(P,Qm)− E[KSD2(P,Pm)]

)
takes the form

m
(
KSD2(P,Qm)− E[KSD2(P,Pm)]

)
=

1

m

m∑
i=1

‖sp(xi)‖22 +
1

m

m∑
i 6=j

kp(xi,xj)− E[‖sp(X)‖22].

Since xi,xj ∈Ms0 , we can use Lemma 2 to bound the terms kp(xi,xj), and then obtain

m
(
KSD2(P,Qm)− E[KSD2(P,Pm)]

)
≤ s2

0 + (m− 1)
(2βd

`2
+

2βs0c1
`

+ s2
0

)
− E[‖sp(X)‖22],

where the right hand side is always negative if

m < 1 +
E[‖sp(X)‖22]− s2

0

2βd/`2 + 2βs0/`+ s2
0

.

Proof of Lemma 2. The Stein kernel kp obtained for the inverse multi-quadratric kernel function,
with parameters ` > 0, β ∈ (0, 1), and c = 1, is given by

kp(x,y) =− 4β(β + 1)

`4
‖x− y‖22(1 + ‖x− y‖22/`2)−β−2

+
2β

`2
(d+ (sp(x)− sp(y)) · (x− y))(1 + ‖x− y‖22/`2)−β−1

+ (sp(x) · sp(y))(1 + ‖x− y‖22/`2)−β .
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Since the first term is always negative and (1 + ‖x− y‖22/`2)−α ≤ 1 for α = β, β + 1, we obtain

kp(x,y) ≤2βd

`2
+

2β

`2
|(sp(x)− sp(y)) · (x− y)|(1 + ‖x− y‖22/`2)−β−1 + |(sp(x) · sp(y))|

≤2βd

`2
+

2β

`

∣∣(sp(x)− sp(y)) · x− y

‖x− y‖2
∣∣ ‖x− y‖2/`
(1 + ‖x− y‖22/`2)β+1

+ |(sp(x) · sp(y))|.

We define the function g for z ≥ 0 as

g(z) =
z

(1 + z2)β+1
,

and a simple function analysis shows that
c1
2

def
= sup

z≥0
g1(z) =

1√
2β + 1

(2β + 1

2β + 2

)β+1

.

Since β ∈ (0, 1), we have c1 ≤ 1. We combine the last two inequalities for kp(x,y) and c1 to get

kp(x,y) ≤ 2βd

`2
+
β

`

∣∣(sp(x)− sp(y)) · x− y

‖x− y‖2
∣∣+ |(sp(x) · sp(y))|.

We can apply Cauchy-Schwartz inequality, and since x,y ∈Ms0 , we get∣∣(sp(x)− sp(y)) · x− y

‖x− y‖2
∣∣ ≤ ‖(sp(x)− sp(y))‖2

‖x− y‖2
‖x− y‖2

≤ 2s0,

and also

|(sp(x) · sp(y))| ≤ s2
0.

Overall, we obtain

kp(x,y) ≤ 2βd

`2
+

2βs0

`
+ s2

0.

Proof of Corollary 2.5. As minimum and saddle points are stationary points of p, we have

{xi}mi=1 ⊂M0,

and we can apply Theorem 2.4 for s0 = 0 to get the final result.

Proof of Corollary 2.6. Let the density p be a Gaussian mixture model of two components with
equal weights, respectively centered in (−µ,0d−1) and (µ,0d−1), and of variance σ2Id, and let
ν = µ/σ. We assume that ν > 1 and 0 ≤ s0 <

[
ν
√
ν2 − 1− ln(ν +

√
ν2 − 1)

]
/µ. Then, according

to Theorem 2.4, for any {xi}mi=1 ⊂Ms0 of empirical measure Qm = 1
m

∑m
i=1 δ(xi), we have

(i) KSD2
(
P,Qm

)
< E[KSD2

(
P,Pm

)
] if m and s0 satisfy m < 1 +

E[‖sp(X)‖22]−s20
2βd/`2+2βs0/`+s20

.

To prove statement (ii), we need to characterize the shape of the setMs0 ⊂ Rd, given by the level
lines of the squared score norm ‖sp(x)‖22. The density p is a Gaussian mixture, i.e.,

p(x) =
1

2(2π)d/2σd
e−‖x

(−1)‖22/2σ
2(
e−(x(1)+µ)2/2σ2

+ e−(x(1)−µ)2/2σ2)
,

where x(−1) is the vector x without the first component. Then, the score is also given by an explicit
formula,

sp(x) =

(
−x

(1)

σ2 + µ
σ2 tanh( µσ2x

(1))

−x(−1)

σ2

)
,

where tanh is the standard hyperbolic tangent function. An important property of this score function is
that the j-th component of sp only depends on x(j), which makes s(j)

p (x) invariant by any translation
orthogonal to the j-th axis. Then, we can compute the squared score norm

‖sp(x)‖22 = s(1)
p (x(1))2 +

‖x(−1)‖22
σ4

,
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Figure 16: Squared first component of the score for a Gaussian mixture with µ = 3 and σ = 1.

where s(1)
p (z)2 =

(
z
σ2 − µ

σ2 tanh( µσ2 z)
)2

. A simple function analysis of this univariate function,
illustrated in Figure 16, shows that s(1)

p (z)2 has two local maximum in z−max and z+
max, and three

local minimum in z−min, 0, and z+
min, provided that ν = µ/σ > 1. We also get that s(1)

p (z)2 grows to
+∞ when x(1) → +/−∞. The extreme values are ordered as follows

−µ < z−min < z−max < 0 < z+
max < z+

min < µ.

The values of z−min, z−max, z+
max, and z+

min are given by the zeros of the first derivative of s(1)
p (z)2,

defined by

ds
(1)
p (z)2

dz
= 2
(
− 1

σ2
+
( µ
σ2

)2 1

cosh( µσ2 z)2

)(
− z

σ2
+

µ

σ2
tanh

( µ
σ2
z
))
.

This derivative vanishes when one of the two factors is null. Since µ/σ > 1, the first term is null
when

µ2

σ2

1

cosh( µσ2 z)2
= 1,

which leads to

z−max = −σ
2

µ
arcosh

(µ
σ

)
and z+

max =
σ2

µ
arcosh

(µ
σ

)
.

The second factor is null when

tanh
( µ
σ2
z
)
− z

µ
= 0. (6)

Obviously, z = 0 is solution. Since µ/σ > 1, equation (6) has two additional solutions. Although
they do not have a closed form, we have

z−min ∈ (−µ, z−max)

z+
min ∈ (z+

max, µ).

Also notice that, as µ/σ gets larger, z−min is closer to −µ, and z+
min to µ. For example in Figure 16,

we set µ/σ = 3, and we hardly see a gap between −µ and z−min, or µ and z+
min.

23



By definition, for x ∈Ms0 , we have

s(1)
p (x(1))2 ≤ ‖sp(x)‖22 ≤ s2

0.

Therefore, given the variations of s(1)
p (x(1))2 detailed above and illustrated in Figure 16, if s2

0 <

s
(1)
p (z−max)2 = s

(1)
p (z+

max)2, it exists three disjoint intervals I−µ, I0, Iµ ⊂ R, respectively centered
around −µ, 0, and µ, such that

x ∈Ms0 =⇒ x(1) ∈ I−µ ∪ I0 ∪ Iµ.

To conclude, we compute the value of s(1)
p (z−max), that is

s(1)
p (z+

max) = − 1

µ
arcosh

(µ
σ

)
+

µ

σ2
tanh

(
arcosh

(µ
σ

))
.

Using the formulas tanh(arcosh(x)) =
√
x2−1
x for |x| > 1, arcosh(x) = ln(x+

√
x2 − 1), and with

ν = µ/σ, we get

s(1)
p (z+

max) =
√

(µ/σ)2 − 1/σ − ln(µ/σ +
√

(µ/σ)2 − 1)/µ

=
[
ν
√
ν2 − 1− ln(ν +

√
ν2 − 1)

]
/µ,

which is always strictly positive since ν > 1. By assumption, 0 ≤ s0 <
[
ν
√
ν2 − 1 − ln(ν +√

ν2 − 1)
]
/µ, and therefore, we have s0 < s

(1)
p (z+

max) = s
(1)
p (z−max), which concludes the proof of

statement (ii).

D Proof of Theorem 3.3

Theorem 3.3. Let kp be the Stein kernel associated with the radial kernel k(x,x′) = φ(‖x−x′‖2/`),
where x,x′ ∈ Rd, ` > 0, and φ ∈ C2(R). Let p and q be two bimodal mixture distributions satisfying
Assumption 2.1. We define w?λ as the optimal mixture weight of q with respect to the entropic
regularized KSD distance, i.e., w?λ = argmin

w∈[0,1]

KSDλ(P,Qw). If E[log(p(ZL))] 6= E[log(p(ZR))]

where ZL ∼ QL and ZR ∼ QR, it exists λ ∈ R such that w?λ = wp.

Proof of Theorem 3.3. We consider the mixture distributions p and q satisfying Assumption 2.1, for
µ > 0 and r > 0, and denote by qL the distribution of the left mode of the mixture q, and similarly,
qR is the distribution of the right mode of q. The probability measures QL and QR respectively
admits the densities qL and qR. As in the proof of Theorem 2.3, we get that

KSD2(P,Qw) =w2
[
KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

]
− 2w

[
KSD2(P,QR)−∆L,R

]
+ KSD2(P,QR).

Next, we define Z ∼ Qw, ZL ∼ QL, and ZR ∼ QR, and develop the entropic regularization term,

E[log(p(Z))] =

∫
log(p(x))(wqL(x) + (1− w)qR(x))dx

= w

∫
log(p(x))qL(x)dx + (1− w)

∫
log(p(x))qR(x))dx

= wE[log(p(ZL))] + (1− w)E[log(p(ZR))].

Combining these two results, we have

KSD2
λ(P,Qw) =w2

[
KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

]
− 2w

[
KSD2(P,QR)−∆L,R + λ/2(E[log(p(ZL))]− E[log(p(ZR))])

]
+ KSD2(P,QR)− λE[log(p(ZR))].

We recall that p does not depend on w, but only on the fixed weight wp and the two mode distributions.
Consequently, KSD2

λ(P,Qw) is a second-order polynomial with respect tow. As for Theorem 2.3, the
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coefficient of w2 is KSD2(P,Q1/2)/4, and is therefore positive. Then, the polynomial is minimized
with respect to w, at w? defined by

w?λ =
KSD2(P,QR)−∆L,R + λ/2(E[log(p(ZL))]− E[log(p(ZR))])

KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

.

Since E[log(p(ZL))]− E[log(p(ZR))] 6= 0 by assumption, we get that w?λ = wp for lambda defined
by

λ = 2
wpKSD2(P,QL)− (1− wp)KSD2(P,QR) + (1− 2wp)∆L,R

E[log(p(ZL))]− E[log(p(ZR))]
.

E Proof of Theorem 3.4

Theorem 3.4. Let kp be the Stein kernel associated with the IMQ kernel with ` > 0, β ∈ (0, 1), and
c = 1. Form ≥ 2, let {xi}mi=1 ⊂ Rd be a set of points concentrated at x0, a local minimum or saddle
point of p, and of empirical measure Qm. Then, we have L-KSD2

(
P,Qm

)
> E[L-KSD2

(
P,Pm

)
], if

the density at x0 satisfies p(x0) < ∆+p(x0)/
(
E[‖sp(X)‖22] + E[∆+ log p(X)]

)
.

Proof of Theorem 3.4. Following the same approach as in the proof of Theorem 2.4, we have

E[L-KSD2(P,Pm)] =
2βd

m`2
+

E[‖sp(X)‖22]

m
+

E[∆+ log p(X)]

m
,

where X ∼ P, and, with the empirical distribution Qm = 1
m

∑m
i=1 δ(xi),

L-KSD2(P,Qm) =
2βd

m`2
+

1

m2

m∑
i=1

‖sp(xi)‖22 +
1

m2

m∑
i6=j

kp(xi,xj) +
1

m2

m∑
i=1

∆+ log(p(xi)).

As {xi}mi=1 are concentrated at a local minimum or saddle point x0, the score is null for all particles,
as well as the distances between them, and we get

L-KSD2(P,Qm) =
2βd

m`2
+

(m− 1)2βd

m`2
+

∆+ log(p(x0))

m
.

Next, the difference m
(
L-KSD2(P,Qm)− E[L-KSD2(P,Pm)]

)
writes

m
(
L-KSD2(P,Qm)− E[L-KSD2(P,Pm)]

)
= ∆+ log(p(x0)) + (m− 1)

2βd

`2

−
(
E[‖sp(X)‖22] + E[∆+ log p(X)]

)
.

By definition,

∆+ log p(x)
def
=

d∑
j=1

(
∂2 log p(x)

∂x(j)2

)+

, (7)

with

∂2 log p(x)

∂x(j)2
=

1

p(x)

∂2p(x)

∂x(j)2
−
(

1

p(x)

∂p(x)

∂x(j)

)2

.

As x0 is a stationary point of p, ∂p(x0)/∂x(j) = 0, and we obtain

∂2 log p(x0)

∂x(j)2
=

1

p(x0)

∂2p(x0)

∂x(j)2
,

leading to

∆+ log p(x0) =

d∑
j=1

1

p(x0)

(
∂2p(x0)

∂x(j)2

)+

=
∆+p(x0)

p(x0)
. (8)
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Finally, we get

m
(
L-KSD2(P,Qm)− E[L-KSD2(P,Pm)]

)
=

∆+p(x0)

p(x0)
+ (m− 1)

2βd

`2

−
(
E[‖sp(X)‖22] + E[∆+ log p(X)]

)
,

which ensures that L-KSD2(P,Qm)− E[L-KSD2(P,Pm)] > 0 for m ≥ 2, provided that

p(x0) <
∆+p(x0)

E[‖sp(X)‖22] + E[∆+ log p(X)]
.

F Proof of Theorem 3.6

Assumption 3.5. Let Q be a probability distribution on Rd, such that P is absolutely continuous
with respect to Q. Let {Zi}i∈N ⊂ Rd be a Q-invariant, time-homogeneous Markov chain, generated
using a V -uniformly ergodic transition kernel, such that V (x) ≥ dP

dQ
√

2βd/`2 + ‖sp(x)‖22. Suppose
that, for some γ > 0, sup

i∈N
E[eγ| log(p(Zi))|] <∞, sup

i∈N
E[eγ∆+ log p(Zi)] <∞,

sup
i∈N

E
[
eγmax(1, dPdQ (Zi)

2)( 2βd

`2
+‖sp(Zi)‖22)

]
<∞, sup

i∈N
E
[ dP
dQ

(Zi)

√
2βd

`2
+ ‖sp(Zi)‖22V (Zi)

]
<∞.

Assumption 3.5 is close to the assumption made in Riabiz et al. [2022]. For the last two finite
expectations of the assumption, notice that we have just plugged the formula kp(x,x) = 2βd/`2 +
||sp(x)||2 into the integrability conditions, since this formula is quite straightforward. But in addition
to Riabiz et al. [2022], we require two integrability assumptions, one for each regularization term.
We give additional insights about these quite complex conditions below. Overall, our assumptions are
hardly stronger than those of Riabiz et al. [2022].

The conditionE[eγ| log(p(Zi))|] <∞ is satisfied if
∫
f(x)p(x)−γdx <∞, where f is the distribution

of Zi (since p(x) > 1 only on a compact set and p is continuous). Therefore, there exists γ > 0
satisfying such condition, provided that the tails of density f are not too heavy compared to the tails
of p. This has to be verified for all iterations of the Markov Chain, and happens to be a quite mild
assumption.

Regarding the condition involving the Laplacian term, we can use the analysis from Riabiz et al.
(2022) (Appendix S2.4). It relies on a Lipschitz condition for the score function∇ log p, to transform
the first finite expectation of Assumption 3.5 into a more amenable and practical integrability
condition which writes E[κ‖Zi‖22] < ∞ for some κ ∈ (0,∞). In the same spirit, if we add a
Lipschitz condition on ∆+ log p, our second additional integrability assumption reduces to a similar
amenable condition. Finally, even though Riabiz et al (2022) do not elaborate further on this condition,
it can be noticed that it is satisfied if all Zi have subgaussian tails, for example. Besides, one of the
main example of distantly dissipative distributions are log-concave functions outside of a compact
set. In this case, the Laplacian regularization is null outside of a compact set, since the Laplacian is
negative for concave functions. Then, the integrability condition is automatically satisfied for this
type of distributions.
Theorem 3.6. Let P be a distantly dissipative probability measure, that admits the density p ∈ C2(Rd),
kp be the Stein kernel associated with the IMQ kernel wh `, c > 0, β ∈ (0, 1). Let {Zi}i∈N ⊂ Rd
be a Markov chain satisfying Assumption 3.5, π be the index sequence of length mn generated by
regularized Stein thinning, and Qmn be the empirical measure of {Zπi}

mn
i=1. If log(n)α < mn < n,

with any α > 1, and λmn = o(log(mn)/mn), then we have almost surely Qmn =⇒
n→∞

P.

Theorem 3.6 extends Theorem 3 from Riabiz et al. [2022] to regularized Stein Thinning, us-
ing Lemmas 3-4 and assuming the following convergence rate of the regularization parameter
λmn = o(log(mn)/mn). Lemma 3 also extends Theorem 1 from Riabiz et al. [2022][Theorem 1],
whereas Lemma 4 is a slight modification of Lemma 5 from Riabiz et al. [2022].
Lemma 3. Let P be a probability measure on Rd that admits density p ∈ C2(Rd), kp be a reproducing
Stein kernel, and {xi}ni=1 ⊂ Rd a fixed set of points. If π is an index sequence of length m produced
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by regularized Stein thinning, then we have for λ > 0,

KSD2
( 1

m

m∑
j=1

δ(xπj )
)
≤ KSD2

( n∑
i=1

w?i δ(xi)
)

+
1 + log(m)

m
max

i=1,...,n
kp(xi,xi)

+
1 + log(m)

m
max

i=1,...,n
∆+ log(p(xi)) + 2λ max

i=1,...,n
| log(p(xi))|,

where the weights w? are defined as

w? ∈ arg min∑
i wi = 1
wi ≥ 0

KSD2
( n∑
i=1

wiδ(xi)
)
.

Lemma 4. Let f be a non-negative function on Rd. Consider a sequence of random variables
(Xi)i∈N ⊂ Rd such that, for some γ > 0,

b
def
= sup

i∈N
E[eγf(Xi)] <∞.

If log(n)α < mn < n, with any α > 1, then we have almost surely,

lim
n→∞

log(mn)

mn
max

i=1,...,n
f(Xi) = 0.

The proofs of Lemmas 3 and 4 are reported at the end of this section. We first proceed with the proof
of Theorem 3.6.

Proof of Theorem 3.6. From Lemma 3, we have

KSD2
( 1

mn

mn∑
j=1

δ(Zπj )
)
≤KSD2

( n∑
i=1

w?i δ(Zi)
)

︸ ︷︷ ︸
(?)

+
1 + log(mn)

mn
max

i=1,...,n
kp(Zi,Zi)︸ ︷︷ ︸

(??)

+
1 + log(mn)

mn
max

i=1,...,n
∆+ log(p(Zi))︸ ︷︷ ︸

(???)

+ 2λmn max
i=1,...,n

| log(p(Zi))|︸ ︷︷ ︸
(�)

.

Riabiz et al. [2022][Proof of Theorem 3, p.12] showed that the term (?) converges towards 0 almost
surely as n→∞. For the remaining terms, from Assumption 3.5, we have

sup
i∈N

E[eγ(d/`2+‖sp(Zi)‖22)] <∞ , sup
i∈N

E[eγ| log(p(Zi))|] <∞ ,

and

sup
i∈N

E[eγ∆+ log(p(Zi))] <∞ .

We can use Lemma 4 with f(x) = kp(x,x) and f(x) = ∆+ log(x) to deduce that (??) → 0 and
(? ? ?)→ 0, respectively. The remaining term (�) can be rewritten as

2λmn max
i=1,...,n

| log(p(Zi))| =
2mnλmn
log(mn)

× log(mn)

mn
max

i=1,...,n
| log(p(Zi))|.

Using the assumption that λmn = o(log(mn)/mn) and Lemma 4 with f(x) = | log(p(x))|, we
conclude that (�) → 0. It follows that KSD2

(
1
mn

∑mn
j=1 δ(xπj )

)
→ 0 almost surely as n → ∞.

Given that p is assumed to be distantly dissipative, we apply Theorem 4 from Chen et al. [2019] to
obtain that Qmn ⇒ P almost surely, as n→∞.

Proof of Lemma 3. We consider an iteration t ∈ {2, . . . ,m} of regularized Stein thinning, where
m ≥ 2 is the final length of the thinned sample. We define at = t2KSD2(P, 1

t

∑t
j=1 δ(xπj )) and
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ft =
∑t
j=1 kp(xπj , ·). We also denote S2

1 = maxi=1,...,n kp(xi,xi) + maxi=1,...,n ∆+ log(p(xi)),
and S2 = 2 maxi=1,...,n | log(p(xi))|. Using the definition of the squared KSD of an empirical
measure, we have

at = at−1 + kp(xπt ,xπt) + 2

t−1∑
j=1

kp(xπj ,xπt).

Let x?t = arg miny∈{xi}ni=1
ft−1(y). By definition, xπt minimizes the cost function of the regular-

ized Stein thinning algorithm at iteration t, and we have

kp(xπt ,xπt) + 2

t−1∑
j=1

kp(xπj ,xπt) + ∆+ log(p(xπt))− λt log(p(xπt))

≤ kp(x?t ,x?t ) + 2

t−1∑
j=1

kp(xπj ,x
?
t ) + ∆+ log(p(x?t ))− λt log(p(x?t )).

We combine this last inequality with the first equation to obtain

at ≤ at−1 + kp(x
?
t ,x

?
t ) + 2

t−1∑
j=1

kp(xπj ,x
?
t ) + ∆+ log(p(x?t ))−∆+ log(p(xπt))

− λt(log(p(x?t ))− log(p(xπt))),

and then,

at ≤ at−1 + kp(x
?
t ,x

?
t ) + 2

t−1∑
j=1

kp(xπj ,x
?
t ) + ∆+ log(p(x?t ))−∆+ log(p(xπt))

+ λt(| log(p(x?t ))|+ | log(p(xπt))|).

By definition, 0 ≤ | log(p(xi))| ≤ S2 and kp(x?t ,x
?
t ) + ∆+ log(p(x?t )) − ∆+ log(p(xπt)) ≤ S2

1 ,
hence, we have

at ≤ at−1 + S2
1 + tλS2 + 2 min

y∈{xi}ni=1

ft−1(y).

As in the proof of Riabiz et al. [2022], we have miny∈{xi}ni=1
ft−1(y) ≤ √at−1‖h?‖H(kp) where h?

is the element in the RKHSH(kp) of the form h? =
∑n
i=1 w

?
i kp(xi, ·). As a result, at is bounded as

follows:

at ≤ at−1 + S2
1 + tλS2 + 2

√
at−1‖h?‖H(kp).

We then show by induction that

at ≤ t2(‖h?‖2H(kp) + Ct + λS2),

where

Ct
def
=

1

t

(
S2

1 − ‖h?‖2H(kp)

) t∑
j=1

1

j
.

With such as a result, we will have KSD2(P, 1
t

∑t
j=1 δ(xπj )) ≤ KSD2(P,

∑n
i=1 w

?
i δ(xπj )) + Ct +

λS2 and obtain the advertised result in Theorem 3 for the last iteration t = m.

For t = 1, we have a1 = kp(xπ1
,xπ1

) ≤ S2
1 and thus a1 ≤ ‖h?‖2H(kp) +C1 +λS2. For a fixed t ≥ 2,

assume that at−1 ≤ (t−1)2(‖h?‖2H(kp)+Ct−1+λS2) whereCt−1 = 1
t−1 (S2

1−‖h?‖2H(kp))
∑t−1
j=1

1
j .

We then have

at ≤at−1 + S2
1 + tλS2 + 2

√
at−1‖h?‖H(kp)

≤(t− 1)2(‖h?‖2H(kp) + Ct−1 + λS2) + S2
1 + tλS2

+ 2(t− 1)
√
‖h?‖2H(kp) + Ct−1 + λS2‖h?‖H(kp)

= t2(‖h?‖2H(kp) + Ct + λS2) +Rt

(9)
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where

Rt = (t− 1)2Ct−1 − t2Ct + (1− 2t)(‖h?‖2H(kp) + λS2) + S2
1

+ tλS2 + 2(t− 1)
√
‖h?‖2H(kp) + Ct−1 + λS2‖h?‖H(kp)

= (t− 1)2Ct−1 − t2Ct + (1− 2t)‖h?‖2H(kp) + S2
1

+ λS2(1− t) + 2(t− 1)
√
‖h?‖2H(kp) + Ct−1 + λS2‖h?‖H(kp)

Using Riabiz et al. [2022][Lemma 1], we have

2‖h?‖H(kp)

√
‖h?‖2H(kp) + Ct−1 + λS2 ≤ 2‖h?‖2H(kp) + Ct−1 + λS2

It follows from Equation (9) that we need Rt ≤ 0, i.e.,

2‖h?‖2H(kp) + Ct−1 + λS2 ≤
t2Ct − (t− 1)2Ct−1

t− 1
−
S2

1 − ‖h?‖2H(kp)

t− 1
+ λS2 + 2‖h?‖2H(kp).

The above inequality is always satisfied as long as

2‖h?‖2H(kp) + Ct−1+ ≤ t2Ct − (t− 1)2Ct−1

t− 1
−
S2

1 − ‖h?‖2H(kp)

t− 1
+ 2‖h?‖2H(kp),

which is equivalent to

tCt − (t− 1)Ct−1 ≥
1

t
(S2

1 − ‖h?‖2H(kp)),

and always true by definition of Ct. Hence we have shown that at ≤ t2(‖h?‖2H(kp) + Ct + λS2).

Given that ‖h?‖2H(kp) = KSD2(P,
∑n
i=1 w

?
i δ(xi)), we have

KSD2(P,
1

t

t∑
j=1

δ(xπj )) ≤ KSD2(P,
n∑
i=1

w?i δ(xi)) + Ct + λS2 ,

where Ct ≤ 1+log(t)
t

(
maxi=1,...,n kp(xi,xi) + maxi=1,...,n ∆+ log(p(xi))

)
(see [Riabiz et al.,

2022][Lemma 2]).

Proof of Lemma 4. We follow the proof of Lemma 5 from [Riabiz et al., 2022]. In the last step of the
proof, we essentially need to show that

∞∑
mn=1

c1(m2
n) <∞ and

∞∑
mn=1

c2(mn) <∞

where

c1(m2
n)

def
=

2 log(mn)

m2
n

log(nb)

γ
and c2(mn)

def
= 4

log(mn)

m2
n

log(n((mn + 1)2)b)

γ
.

With the assumption that log(n)β ≤ mn < n with β > 1, it is deduced that c1(m2
n) → 0 and

c2(mn)→ 0 as n→∞.

G Laplacian Stein Operator

Instead of the standard Langevin operator, we can use Tp(g) = ∆(pg)/p, mentioned in Oates et al.
[2017, Appendix A.2]. However, such Stein operator introduces similar problems as Pathology I,
since the Stein kernel associated with T ′p (g) also has spurious minimum in regions where second
derivatives of p vanish, as illustrated below. Therefore, it is more appropriate to taylor a specific
Laplacian correction as proposed in this paper, which cannot directly be derived from a Stein kernel,
since it is not differentiable. In this appendix, we study the operator Tp defined as Tpg = ∆(pg)/p
and such that [Oates et al., 2017, Appendix A.2]

E[(Tpg)(Z)] = 0 ,
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for all g belonging to G, and with Z ∼ P. For each dimension j ∈ {1, . . . , d}, let T jp be the operator
defined as

(T jp g)(x) =
1

p(x)

(
∇2
xjp(x)g(x) + 2∇xjp(x)∇xjg(x) + p(x)∇2

xig(x)
)

for g : Rd → R, and where xj is the j-th coordinate of x to simplify notations. The operator Tpg
can then be rewritten as (Tpg)(x) =

∑d
j=1(T jp g)(x). Gorham and Mackey [2017][Proposition 2]

establishes the closed-form expression of the KSD in the case of the multidimensional Langevin
operator. We generalize the proof of Gorham and Mackey [2017][Proposition 2] for the Laplacian
operator (Tpg)(x) = ∆(p(x)g(x))/p(x) and establish a closed-form expression of the Stein kernel
kp : Rd × Rd → R. For a given kernel function k : Rd × Rd → R, k ∈ C2,2, the Stein kernel kp is
given by [Gorham and Mackey, 2017]

kp(x,y) =

d∑
j=1

kjp(x,y), (10)

where

kjp(x,y) = 〈T jp (k(x, ·)), T jp (k(·,y))〉Hk . (11)

After a few developments, it is found that

p(x)p(y)kjp(x,y) = ∇2
xjp(x)∇2

yjp(y)k(x,y)

+ 2∇2
xjp(x)∇yjp(y)∇yjk(x,y) + p(y)∇2

xjp(x)∇2
yjk(x,y)

+ 2∇xjp(x)∇2
yjp(y)∇xjk(x,y) + 4∇xjp(x)∇yjp(y)∇xi∇yjk(x,y)

+ 2p(y)∇xjp(x)∇xj∇2
yjk(x,y) + p(x)∇2

yjp(y)∇2
xjk(x,y)

+ 2p(x)∇yjp(y)∇2
xj∇yjk(x,y) + p(x)p(y)∇2

xj∇
2
yjk(x,y)

(12)

A closed-form expression can then be obtained in the case of, e.g., an inverse multiquadratic kernel
of the form k(x,y) = (1 + ‖x− y‖22/`2)−1/2 where ` denotes the bandwidth. In this case, one has

∇yjk(x,y) =
1

`2
k(x,y)3(xj − yj) , ∇xjk(x,y) = −∇yjk(x,y)

∇2
yjk(x,y) = ∇2

xjk(x,y) = − 1

`2
k(x,y)3 +

3

`4
k(x,y)5(xj − yj)2

∇xj∇yjk(x,y) =
1

`2
k(x,y)3 − 3

`4
k(x,y)5(xj − yj)2

∇2
xj∇yjk(x,y) =

−9k(x,y)5

`4
(xj − yj) +

15k(x,y)7

`6
(xj − yj)3

∇xj∇2
yjk(x,y) = −∇2

xj∇yjk(x,y)

∇2
xj∇

2
yjk(x,y) =

9k(x,y)5

`4
− 90k(x,y)7

`6
(xj − yj)2 +

105k(x,y)9

`8
(xj − yj)4

(13)

A closed-form expression of kp can then be obtained by combining Equations (10)-(13). In contrast
to the Langevin Stein kernel (see Equation (2) of the main article), the above Stein kernel involves
second-order derivatives of the density p.

We run experiments based on our Example 1 of Gaussian mixtures for this new Stein operator
Tpg = ∆(pg)/p. We sequentially set µ = 2 and µ = 5, with σ = 1 and w = 0.5. Results are
displayed in Figure 17. In the left panel with µ = 2, we see that Pathology II does not occur, as
opposed to Figure 2 of the main article with the Langevin Stein operator. However, when µ is
set to 5 in the right panel, all particles are concentrated in spurious minimum again. Therefore,
introducing higher-order derivatives of the target density through the Stein operator does not seem to
be a promising route.
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Figure 17: Stein thinning with the Stein operator Tpg = ∆(pg)/p, for Gaussian mixtures of Example
1, with µ = 2 (left panel), and µ = 5 (right panel), σ = 1, and w = 0.5.
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