
HAL Id: hal-03962614
https://hal.science/hal-03962614v1

Preprint submitted on 31 Jan 2023 (v1), last revised 25 Oct 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kernel Stein Discrepancy thinning: a theoretical
perspective of pathologies and a practical fix with

regularization
Clément Bénard, Brian Staber, Sébastien Da Veiga

To cite this version:
Clément Bénard, Brian Staber, Sébastien Da Veiga. Kernel Stein Discrepancy thinning: a theoretical
perspective of pathologies and a practical fix with regularization. 2023. �hal-03962614v1�

https://hal.science/hal-03962614v1
https://hal.archives-ouvertes.fr


Kernel Stein Discrepancy thinning: a theoretical perspective of pathologies and a
practical fix with regularization

Clément Bénard * 1 Brian Staber * 1 Sébastien Da Veiga 2

Abstract
Stein thinning is a promising algorithm proposed
by (Riabiz et al., 2022) for post-processing out-
puts of Markov chain Monte Carlo (MCMC). The
main principle is to greedily minimize the ker-
nelized Stein discrepancy (KSD), which only re-
quires the gradient of the log-target distribution,
and is thus well-suited for Bayesian inference.
The main advantages of Stein thinning are the
automatic remove of the burn-in period, the cor-
rection of the bias introduced by recent MCMC
algorithms, and the asymptotic properties of con-
vergence towards the target distribution. Neverthe-
less, Stein thinning suffers from several empirical
pathologies, which may result in poor approxima-
tions, as observed in the literature. In this article,
we conduct a theoretical analysis of these patholo-
gies, to clearly identify the mechanisms at stake,
and suggest improved strategies. Then, we intro-
duce the regularized Stein thinning algorithm to
alleviate the identified pathologies. Finally, theo-
retical guarantees and extensive experiments show
the high efficiency of the proposed algorithm.

1. Introduction
Bayesian inference is a powerful approach to solve statis-
tical tasks, and is especially efficient to incorporate prior
expert knowledge of the studied system, or to provide uncer-
tainties of the estimated quantities. Bayesian methods have
thus demonstrated a high empirical performance for a wide
range of applications, in particular in the fields of physics
and computational biology, to just name a few. However,
the Bayesian framework often leads to the evaluation of ex-
pectations with respect to a posterior distribution, which is
not tractable (Green et al., 2015), except in the specific case
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of conjugate prior distribution and likelihood, which hardly
occurs in practice. To overcome this issue, Markov chain
Monte Carlo (MCMC) is one of the most commonly used
computational method to estimate these integrals. Indeed,
MCMC algorithms iteratively generate a sample, which fol-
lows the targeted posterior distribution, as the Markov chain
converges to its stationary state (Robert & Casella, 1999;
Brooks et al., 2011). Consequently, the quality of the result-
ing estimates strongly depends on the convergence of the
MCMC and how its output is post-processed.

Standard post-processing procedures of MCMC outputs con-
sist in removing the first iterations, called the burn-in period,
and thinning the Markov chain with a constant frequency.
Burn-in removal aims at reducing the bias introduced by
the random initialization of the Markov chain. The R̂ con-
vergence diagnosis of Gelman et al. (1995) is, for instance,
a well known method for determining the burn-in period.
On the other hand, thinning the Markov chain allows for
compressing the MCMC output and may also reduce the
correlation between the iteratively selected points. More
recently, promising kernel-based procedures were proposed
to automatically remove the burn-in period, compress the
output, and reduce the asymptotic bias (South et al., 2022).
These approaches consist in minimizing a kernel-based dis-
crepancy measure D(P,Qm) between the empirical distri-
bution Qm of a subsample of the MCMC output of size m,
and the target distribution P. In this respect, minimization
of the maximum mean discrepancy (MMD) was investi-
gated by several authors, but these strategies require the full
knowledge of the target distribution P, whose density is not
tractable in non-conjugate Bayesian inference.

Based on the previous works of Chen et al. (2018) and Chen
et al. (2019), Riabiz et al. (2022) propose to minimize the
kernelized Stein discrepancy (KSD), to design an efficient
kernel-based algorithm to thin MCMC outputs in a non-
tractable Bayesian setting. The KSD (Liu et al., 2016) is a
score-based discrepancy measure, i.e., it only requires the
knowledge of the score function of the target P, which is
readily available in our Bayesian framework. Importantly,
Gorham & Mackey (2017) showed that under suitable mild
conditions, the KSD enjoys good convergence properties.
More precisely, the KSD is a valid distance to detect sam-
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ples drawn form the target distribution, provided that the
sample size is large enough. Therefore, KSD thinning is a
highly promising tool for post-processing and measuring
the quality of MCMC outputs. This article thus focuses
on the Stein thinning algorithm proposed by Riabiz et al.
(2022), which consists in selecting m points amongst the
n iterations of the MCMC output, by greedily minimizing
the KSD distance. Thanks to the convergence properties
of the KSD, the empirical measure of the selected points
weakly converges towards the posterior law P. However, on
the practical side, several articles (Wenliang & Kanagawa,
2020; Korba et al., 2021) have noticed empirical limitations
of KSD-based sampling algorithms, especially for multi-
modal target distributions. In fact, these limitations happen
to be quite problematic, even in simple experiments, and
have been slightly overlooked in the literature so far, in our
opinion. Therefore, this article first focuses on the analysis
of KSD pathologies in Section 2, taking both an empirical
and theoretical point of view. Then, we propose strategies
to mitigate the identified problems, and introduce the regu-
larized Stein thinning in Section 3. We show the efficiency
of our algorithm through both a theoretical analysis and
extensive experiments in Section 4. In the remaining of
this initial section, we mathematically formalize the KSD
distance and the associated Stein thinning algorithm.

Kernelized Stein discrepancy. Kernelized Stein discrep-
ancy was independently introduced by (Chwialkowski et al.,
2016; Liu et al., 2016; Gorham & Mackey, 2017) as a
promising tool for measuring dissimilarities between two
distributions P and Q on Rd with d ≥ 1, whenever P admits
a continuously differentiable density p, and the normaliza-
tion constant of p is not tractable. Let k : Rd×Rd → R be a
positive semi-definite kernel and letH(k) be the associated
reproducing kernel Hilbert space (RKHS) with inner prod-
uct 〈·, ·〉H(k) and norm ‖ · ‖H(k). Kernelized Stein discrep-
ancy belongs to the family of maximum mean discrepancies
(MMD) (Gretton et al., 2006) defined as

MMDk(P,Q) = sup
‖f‖H(k)≤1

|E[f(X)]− E[f(Z)]| , (1)

where X ∼ P, Z ∼ Q. If the kernel k is characteristic, then
the MMD is a distance between probability distributions. In
practice, the MMD may not be computable as it involves
mathematical expectations with respect to P, whose den-
sity is not tractable. To circumvent this issue, Gorham &
Mackey (2015) proposed the Stein discrepancy which re-
lies on Stein’s method (Stein, 1972). It consists in defining
an operator Tp that maps functions g : Rd → Rd to real-
valued functions such that E[Tpg(X)] = 0, with X ∼ P, for
all g in G(k) = {g : Rd → Rd :

∑d
i=1 ‖gi‖2H(k) ≤ 1}. The

probability measure P on Rd is assumed to admit a contin-
uously differentiable Lebesgue density p ∈ C1(Rd), such
that E[‖∇ log p(X)‖22] <∞. The Stein discrepancy is then

defined as SD(P,Q) = supg∈G(k) |E[(Tpg)(Z)]|, where
Z ∼ Q. If the Stein operator Tp is chosen as the Langevin
operator (Tpg)(x) = 〈g(x),∇ log p(x)〉+ 〈∇, g(x)〉, then
Stein’s discrepancy has a closed-form expression known as
kernelized Stein discrepancy (Chwialkowski et al., 2016;
Liu et al., 2016), KSD2(P,Q) = E[kp(Z,Z

′)], where
Z ∼ Q,Z′ ∼ Q, and kp denotes the Langevin Stein kernel
defined from the score function sp(x) = ∇ log p(x), as

kp(x,x
′) = 〈∇x,∇x′k(x,x′)〉+ 〈sp(x),∇x′k(x,x′)〉

+ 〈sp(x′),∇xk(x,x′)〉+ 〈sp(x), sp(x
′)〉k(x,x′) . (2)

The main advantage of the KSD is that it only requires the
knowledge of the score function, and does not involve any
integration with respect to P. Gorham & Mackey (2017)
also established convergence guaranties when the kernel k is
chosen as the inverse multi-quadratic (IMQ) kernel function
k(x,x′) = (c + ‖x − x′‖2Γ)−β with c > 0, β ∈ (0, 1),
the positive definite matrix Γ is the identity matrix, and
the density p is distantly dissipative as defined below. Log-
concave distributions outside of a compact set are a typical
example of such probability densities.
Definition 1.1 (Distant dissipativity Gorham & Mackey
(2017)). The density p ∈ C1(Rd) is distantly dissipative if
lim infr→∞ κ(r) > 0, where

κ(r) = inf
{
− 2
〈sp(x)− sp(y),x− y〉

‖x− y‖22
: ‖x− y‖2 = r

}
.

Stein thinning algorithm. Let P be a target probability
measure that admits density p, and let {xi}ni=1 ⊂ Rd be a
MCMC output. The Stein thinning algorithm (Riabiz et al.,
2022) selects m ≤ n particles xπ1 , . . . ,xπm by greedily
minimizing the kernelized Stein discrepancy. Given t− 1 <
m particles xπ1

, . . . ,xπt−1
, the t-th particle is defined as

πt ∈ argmin
i∈{1,...,n}

kp(xi,xi) + 2

t−1∑
j=1

kp(xπj
,xi) ,

where the KSD of an empirical distribution has been used
to simplify the objective function. The kernel function k
is chosen as the IMQ kernel function, defined above, for
both its good theoretical properties and empirical efficiency.
Several articles (Riabiz et al., 2022; Chen et al., 2018) have
led extensive experiments to show the better practical per-
formance of the IMQ kernel over other choices, in particular
with c = 1, β = 1/2, and Γ = `2I, with ` given by the
median heuristic (i.e., the median of pairwise distances be-
tween the particles). Therefore, we consider the IMQ kernel
with these settings throughout the article. Also notice that
the bandwidth parameter ` is quite influential on the algo-
rithm performance, but happens to be very difficult to tune,
as highlighted by Chopin & Ducrocq (2021). Indeed, since
the normalization constant of the target distribution is un-
known, no additional metric is available to assess the precise
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performance of the thinning procedure when ` varies. Fur-
thermore, the sample quality output by Stein thinning varies
in an erratic fashion with respect to `, making the design of
heuristic procedures for the choice of ` notoriously difficult.
Finally, we use the median heuristic for ` in the sequel, and
refer to Garreau et al. (2017) for an extensive analysis of
this approach for kernel methods.

2. Analysis of KSD Pathologies
Although kernelized Stein discrepancy is a highly promising
approach to thin MCMC outputs, several empirical studies
have highlighted that KSD-based algorithms may suffer
from strong pathologies in simple experiments (Wenliang
& Kanagawa, 2020; Korba et al., 2021; Riabiz et al., 2022).
The most established KSD pathology is that Stein thinning
ignores the weights of distant modes of the target distribu-
tion, leading to the selection of samples of poor quality by
Stein thinning. This problem, called Pathology I throughout
the article, is analyzed in Subsection 2.1. Additionally, Ko-
rba et al. (2021) also notice that KSD thinning may result
in samples concentrated in regions of low probability of p.
As opposed to Pathology I, the mechanism leading to this
problematic behavior is not well understood in the literature,
to our best knowledge. Subsection 2.2 is thus dedicated to
the theoretical characterization and illustration of Pathology
II. Throughout the article, we illustrate KSD thinning using
the running example of a Gaussian mixture, defined in Ex-
ample 1 below, where initial particles are directly sampled
from p to better highlight pathologies. We will come back
to the thinning of MCMC outputs in detail in Section 4.

Example 1. Let the density p be a Gaussian mixture model
of two components, respectively centered in (−µ,0d−1) and
(µ,0d−1), of weights w and 1 − w, and of variance σ2Id.
The initial particles {xi}ni=1 are drawn from p. The KSD
thinning algorithm selects m < n points to approximate p.

2.1. Pathology I: mode proportion blindness

We first focus on Pathology I, which states that Stein thin-
ning is blind to the relative weights of multiple distant modes
of a target distribution. Indeed, Wenliang & Kanagawa
(2020) show that the score sp is insensitive to distant mode
weights. Consequently, the KSD distance is unable to prop-
erly identify samples with different weights than those of
the target, in finite sample settings, as long as samples are
accurately distributed within each mode. To be more spe-
cific, we illustrate this pathology with our Example 1 of a
Gaussian mixture. We set µ = 3 and σ = 1 to enforce the
two modes to be well separated, and take an unbalanced
proportion w = 0.2 for the left mode, and 1 − w = 0.8
for the right mode. We generate n = 3000 observations
and select m = 300 particles with Stein thinning. Clearly,
the red selected sample displayed in Figure 1 has wrong

Figure 1. Illustration of Pathology I with the Gaussian mixture of
Example 1 (µ = 3, σ = 1, w = 0.2, n = 3000, m = 300).
Initial particles are in black, and the Stein thinning output is red.

proportions, with about half of the particles in each mode,
instead of the expected 20 − 80%, reflected by the initial
black particles sampled from p. More precisely, over 100
repetitions of the Stein thinning algorithm, we obtain an av-
erage proportion of 0.53 of particles in the left mode, with
a standard deviation of 0.08 across the 100 runs.

Although Wenliang & Kanagawa (2020) clearly show that
the KSD distance is insensitive to the mode weights in the
specific case of Gaussian mixtures, the mechanism leading
to the selection of about half of the particles in each mode for
Example 1, remains unexplained in the literature, to our best
knowledge. Therefore, we conduct a theoretical analysis in
the general case of any mixture distribution with two distant
modes, stated in Assumption 2.1 below. For the sake of
clarity, we only study the case of a number of modes of two,
without loss of generality. Importantly, notice that a finite
sample drawn from p with distant modes, takes the form
of clusters of particles around each mode, as illustrated in
Figure 1. In this case, Stein thinning selects particles among
these clusters to approximate p. Then, these particles define
an empirical law of a density q with a compact support
around each mode. Wenliang & Kanagawa (2020) explain
that the score sp is especially insensitive to the mode weights
in these compact areas around modes, leading to output
samples with wrong proportions, as in Figure 1 for example.
Therefore, Assumption 2.1 below restricts our analysis to
densities q with a compact support around each mode.

Assumption 2.1 (Distant bimodal mixture distributions).
Let p and q be two mixture distributions in Rd, made of two
modes centered in (−µ,0d−1) and (µ,0d−1), with µ > 0.
The distribution of each mode of p ∈ C1(Rd) has Rd as
support, whereas each mode distribution of q have a compact
support, included in a ball of radius r > 0, with r < µ. The
left mode of p has weight wp 6= 1/2, and the right mode has
weight 1−wp. Similarly, w and 1−w are the mode weights
of q. Let QL and QR be the probability measures that



Regularized Stein thinning

respectively admit the density of the left and right modes of
q, and P and Qw be also the probability laws for p and q.

To state our main result about the KSD blindness to mode
proportions, we need to formalize the assumption below,
which tells that the distributions of the two modes of the
mixture q have a close KSD distance with respect to the
target p. In particular, this assumption can be easily verified
when both p and q have symmetric mode distributions, since
the KSD is insensitive to the weights of p.

Assumption 2.2. For distant bimodal mixture distributions
q and p satisfying Assumption 2.1, and for η ∈ (0, 1), we
have

∣∣KSD2(P,QL)/KSD2(P,QR)− 1
∣∣ < η.

Theorem 2.3. Let p and q be two bimodal mixture distribu-
tions satisfying Assumption 2.1 and 2.2, for any η ∈ (0, 1).
We define w? as the optimal mixture weight of q with respect
to the KSD distance, i.e., w? = argmin

w∈[0,1]

KSD(P,Qw).

Then, for µ large enough, we have
∣∣w? − 1

2

∣∣ < η
2(1−η) .

Theorem 2.3, proved in Appendix B, states that the weight
w? of the optimal mixture q, which minimizes the KSD
distance to the target p, is close to 1/2 regardless of the
true target weight wp, whenever the distributions of the two
modes of the mixture q have a close KSD distance to p, and
provided that the two modes are far enough. In particular,
this is the case in the experiment of Example 1 and Figure
1, where the two modes are symmetric and well separated.
A more specific empirical illustration of Theorem 2.3 can
be found in Appendix A.1. Finally, also notice that the
experiment of Figure 1, involving the full procedure of Stein
thinning, quickly becomes quite unstable as µ increases.
Indeed, for higher values of µ, we frequently observe about
half of the selected particles in each mode as in Figure 1, but
also often almost all particles in the same mode, switching
from left to right over repetitions. This behavior of ignored
distant mode, mentioned in Riabiz et al. (2022), means
that an additional phenomenon than the one highlighted
by Theorem 2.3, is at work in the Stein thinning of target
densities with distant modes. Since this problem of KSD
blindness to mode proportion is a well known drawback of
score-based methods, we do not elaborate more about its
analysis, to rather focus on the more intriguing Pathology II
in the following subsection. Next, we will propose strategies
to recover accurate mode proportions and stabilize Stein
thinning outputs in Section 3.

2.2. Pathology II: spurious minimum

The core of this section is dedicated to the theoretical
characterization of Pathology II. We first need to intro-
duce additional notations to formalize our analysis. We
thus defineMs0 , the region of the input space where the
score norm is lower than the threshold s0 ≥ 0, formally

Figure 2. Illustration of Pathology II in the case of the Gaussian
mixture from Example 1 (µ = 2, σ = 1, w = 0.5, n = 3000,
m = 300): many particles are selected around the line x(1) = 0.

Ms0 = {x ∈ Rd : ‖sp(x)‖2 ≤ s0}. We also intro-
duce an independent and identically distributed (iid) sample
X1, . . . ,Xm of P, with Pm the associated empirical mea-
sure for a positive integer m, and X(j) the j-th component
of X. Now, we can state our main result about Pathology II.

Theorem 2.4 (KSD spurious minimum). Let {xi}mi=1 ⊂
Ms0 = {x ∈ Rd : ‖sp(x)‖2 ≤ s0} be a fixed set of points
of empirical measure Qm = 1

m

∑m
i=1 δ(xi), with s0 ≥ 0

and m ≥ 2. We have

KSD2
(
P,Qm

)
< E[KSD2

(
P,Pm

)
],

if the score threshold s0 and the sample size m are small
enough to satisfy m < 1 +

E[‖sp(X)‖22]−s20
d/`2+s0/`+s20

.

Theorem 2.4 shows that samples concentrated in regions of
the input space where the norm of the score is low, have
smaller KSD than samples drawn from the true target distri-
bution, for small sample size. Additionally, the score norm
is low around stationary points of the density p, including
local minimum and saddle points, as shown in Corollary 2.5
below. However, samples concentrated in local minimum
of p are bad approximations of the target distribution by
definition. Therefore, these results highlight that patholog-
ical samples may be generated by Stein thinning, which
minimizes the empirical KSD, and thus explains Pathology
II observed by Korba et al. (2021), and shown in Figure 2.

Corollary 2.5 (Low KSD samples at density minimum).
Let p be a density with at least one local minimum or
one saddle point. For m ≥ 2, if {xi}mi=1 ⊂ Rd is a set
of points, all located at local minimum or saddle points
of p, then we have KSD2

(
P,Qm

)
< E[KSD2

(
P,Pm

)
] if

m < 1 + `2

d E[‖sp(X)‖22].

The proofs of Theorem 2.4 and Corollary 2.5, reported
in Appendix C, are built on the idea that the KSD of
the empirical law of {xi}ni=1, has a bias of the form
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Figure 3. Squared first component of the score sp(x) along x(1)

for a Gaussian mixture, as defined in Example 1 (µ = 3, σ = 1).

∑m
i=1 ‖sp(xi)‖22/m2. Consequently, when m is small, the

bias has a strong influence on KSD estimates, which favor
samples concentrated in regions of low score norm, as sta-
tionary points of p. This mechanism is illustrated in Figure
2 and Corollary 2.6 for Gaussian mixtures. In this case,
Stein thinning aligns a large number of particles around the
line defined by x(1) = 0, an area of low probability of the
targeted mixture distribution, because of the variations of
the score function, displayed in Figure 3.

Corollary 2.6 (KSD spurious minimum for Gaussian mix-
tures). Let the density p be a Gaussian mixture model of
two components with equal weights, respectively centered
in (−µ,0d−1) and (µ,0d−1), of variance σ2Id, and let
ν = µ/σ. If ν > 1 and 0 ≤ s0 <

[
ν
√
ν2 − 1 − ln(ν +√

ν2 − 1)
]
/µ, then for any {xi}mi=1 ⊂ Ms0 of empirical

measure Qm, we have

(i) KSD2
(
P,Qm

)
< E[KSD2

(
P,Pm

)
] if m and s0 satisfy

m < 1 +
E[‖sp(X)‖22]−s20
d/`2+s0/`+s20

,

(ii) it exists three disjoint intervals I−µ, I0, Iµ ⊂ R,
respectively centered around −µ, 0, and µ, such that
x

(1)
1 , . . . , x

(1)
m ∈ I−µ ∪ I0 ∪ Iµ.

Remark 2.7. Corollary 2.6 states that for a given target
distribution of Gaussian mixture, Pathology II appears if the
sample size m is small enough. From another perspective,
for any sample size m, it exists a Gaussian mixture with
µ/σ large enough, such that Pathology II occurs, when
the bandwidth ` is chosen with the heuristic of the median
distance of initial particles. Therefore, Pathology II can
appear for arbitrarily large samples m, depending on the
target distribution properties.

3. Regularized Stein Thinning
Stein thinning suffers from two main pathologies, analyzed
in Section 2. In a word, Pathology I comes from the insensi-
tivity of the score to the relative weights of distant modes,

whereas Pathology II originates from the variations of the
score norm, which do not differentiate local minimum from
local maximum of the target distribution. We propose to
regularize the KSD distance to fix these two problems, using
terms that are highly sensitive to the type of stationary point
and the relative weights of modes. The proposed algorithm
is first introduced in Subsection 3.1, then theoretical prop-
erties are discussed in Subsection 3.2, and finally the good
empirical performance will be shown in Section 4.

3.1. Algorithm

Entropic regularization. In order to compensate the
blindness of the KSD to mode proportions in multimodal
distributions, we introduce the following entropic regular-
ized KSD, denoted by KSDλ, and defined as

KSD2
λ(P,Q) = E[kp(Z,Z

′)]− λE[log(p(Z))],

where Z and Z′ have probability law Q, and P admits the
density p. In our Bayesian setting, E[log(p(Z))] is known
up to an additive constant since the normalization factor of p
is not tractable. However, it is possible to use KSD2

λ(P,Q)
as the objective function of the Stein thinning algorithm, as
the greedy selection of particles to optimize this quantity
does not rely on the unknown additive constant. The main
idea of this entropic regularization is that − log(p(x)) takes
higher values in modes of smaller probability, and therefore
provides the relative mode weight information, which is
missing in the KSD distance.

Laplacian correction. Chen et al. (2018) and Riabiz et al.
(2022) have noticed that the term kp(xi,xi), which naturally
appears in the empirical kernelized Stein discrepancy with
the Langevin operator, can be interpreted as a regularization
term. For example, Stein thinning does not select particles
in the burn-in period of an MCMC output thanks to this
regularization. However, this term kp(xi,xi) is also respon-
sible for Pathology II, of samples concentrated in stationary
points of p, as shown in Theorem 2.4. Therefore, we add a
second regularization term to compensate the weaknesses of
kp(xi,xi), by penalizing particles located at local minimum
and saddle points of the density p. Such points are located in
areas of convexity of the target distribution, which can thus
be detected with the positive values of the Laplacian of the
density. Therefore, using the truncated Laplacian operator

∆+f(x)
def
=
∑d
j=1

(
∂2f(x)
∂x(j)2

)+

for a function f ∈ C2(Rd),
we propose the L-KSD estimate with a Laplacian correction
for densities p ∈ C2(Rd), defined by

L-KSD2(P,Qm) =
1

m2

m∑
i 6=j

kp(xi,xj)

+
1

m2

m∑
i=1

[
kp(xi,xi) + ∆+ log(p(xi))

]
.
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Figure 4. Pathologies fixed by the regularized Stein thinning.

Regularized Stein thinning. Overall, we obtain the fol-
lowing estimate for the entropic regularized KSD with
Laplacian correction

L-KSD2
λ(P,Qm) = L-KSD2(P,Qm)− λ

m

m∑
i=1

log(p(xi)).

Then, at each iteration t ∈ {1, . . . ,m}, the regularized Stein
thinning greedily minimizes

πt ∈ argmin
i∈{1,...,n}

kp(xi,xi) + 2

t−1∑
j=1

kp(xπj
,xi)

+ ∆+ log(p(xi))− λt log(p(xi)) .

Finally, Figure 4 illustrates the performance of regularized
Stein thinning to fix the two pathologies analyzed in Section
2, in the case of Example 1 with Gaussian mixtures. Indeed,
the left panel of Figure 4 shows that the majority of particles
are selected in the right mode, as expected from the target
distribution with w = 0.2. More precisely, an average
proportion of 0.11 of the particles are located in the left
mode over 100 repetitions of the procedure (0.89 in the
right mode), with a standard deviation of 0.03. For the
value choice of λ, we refer to the next subsection and the
experimental Section 4. On the right panel of Figure 4, we
observe that no particle is now selected on the line x(1) = 0,
as expected from the target Gaussian mixture distribution.
Remark 3.1. The Laplacian correction of kp introduces
second-order derivatives of p in the Stein discrepancy, and
therefore enables to differentiate local minimum and saddle
points of the density p from its local maximum. A natural
approach to introduce second-order derivatives of p in KSD
estimates, is to define the Stein discrepancy using second-
order operators. A Laplacian Stein operator (Oates et al.,
2017) is derived in Appendix G, but experiments show that
this strategy is not efficient to fix Pathologies I & II.

3.2. Theoretical properties

This subsection is dedicated to the theoretical analysis of
regularized Stein thinning. First, we show that the proposed

algorithm now enjoys good theoretical properties regarding
Pathologies I and II, and thus mitigates the identified prob-
lems of the original Stein thinning. Secondly, we extend
the convergence analysis of Riabiz et al. (2022) for the post-
treatment of MCMC output, to show the weak convergence
of the empirical law output by regularized Stein thinning
towards the target probability measure.

Entropic regularization. In the previous section, The-
orem 2.3 highlights how Pathology I of mode proportion
blindness originates from the score insensitivity to mode
weights. On the other hand, the entropic regularization is
directly built on the target density, and therefore strongly
depends on the mode weights. In the same setting of As-
sumption 2.1 for Theorem 2.3 with distant bimodal mixture
distributions, the following theorem shows that the entropic
regularized KSD is minimized for the appropriate target
weight, with the suitable regularization strength λ.

Theorem 3.2. Let p and q be two bimodal mixture distribu-
tions satisfying Assumption 2.1. We definew?λ as the optimal
mixture weight of q with respect to the entropic regularized
KSD distance, i.e., w?λ = argmin

w∈[0,1]

KSDλ(P,Qw).

If E[log(p(ZL))] 6= E[log(p(ZR))] where ZL ∼ QL and
ZL ∼ QR, it exists λ ∈ R such that w?λ = wp.

Notice that Theorem 3.2, proved in Appendix D, is valid
if E[log(p(ZL))] 6= E[log(p(ZR))], otherwise the impact
of the entropic regularization on w?λ vanishes. However,
as wp 6= 1/2 is required in Assumption 2.1 for Pathol-
ogy I to occur, p is asymmetric, and E[log(p(ZL))] =
E[log(p(ZR))] is only possible in very specific cases. The-
orem 3.2 clearly shows that the regularized entropic KSD is
sensitive to the weights of distant modes. Efficient strategies
to choose the regularization strength will be first discussed
in the asymptotic analysis below, and then in the experi-
ments of the next section.

Laplacian correction. First, we stress that the L-KSD is a
strongly consistent estimate of the KSD distance, where the
proof follows from the law of large numbers. Therefore, the
Laplacian correction introduced in the L-KSD estimate does
not undermine the good asymptotic properties of the KSD
distance. Secondly, the following theorem shows that sam-
ples concentrated in local minimum or saddle points of the
target distribution and of low density values, are well identi-
fied by the L-KSD as samples of worse quality than those
truly sampled from the target. Consequently, the Lapla-
cian correction fixes Pathology II, previously formalized in
Theorem 2.4.

Theorem 3.3. For m ≥ 2, let {xi}mi=1 ⊂ Rd be a set of
points concentrated at x0, a local minimum or saddle point
of p, where the density is lower than the following positive
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threshold,

p(x0) <
∆+p(x0)

E[‖sp(X)‖22] + E[∆+ log p(X)]
.

Then, with Qm the empirical measure of {xi}mi=1, we have

L-KSD2
(
P,Qm

)
> E[L-KSD2

(
P,Pm

)
].

Convergence of regularized Stein thinning. While regu-
larized Stein thinning fixes finite sample size pathologies,
the asymptotic properties of Stein thinning are also pre-
served. Indeed, if the initial set of particles is drawn from a
different distribution than the target using a Markov chain
Monte Carlo, Theorem 3.5 states that the empirical measure
of the sample obtained with regularized Stein Thinning, con-
verges towards the target measure P, and thus extends the
results of Riabiz et al. (2022). Notice that the weak conver-
gence of a sequence of probability measure is denoted by
⇒, and that distantly dissipative distributions are defined in
Definition 1.1. The required assumption below, essentially
states mild integrability conditions, and enforces that the
MCMC output is not too far from a sample drawn from p.

Assumption 3.4. Let Q be a probability distribution on
Rd, such that P is absolutely continuous with respect to
Q. Let {Zi}i∈N ⊂ Rd be a Q-invariant, time-homogeneous
Markov chain, generated using a V -uniformly ergodic transi-
tion kernel, such that V (x) ≥ dP

dQ
√
d/`2 + ‖sp(x)‖22. Sup-

pose that, for some γ > 0,

sup
i∈N

E
[
eγmax(1, dPdQ (Zi)

2)(d/`2+‖sp(Zi)‖22)
]
<∞,

sup
i∈N

E[eγ| log(p(Zi))|] <∞, sup
i∈N

E[eγ∆+ log p(Zi)] <∞,

sup
i∈N

E
[ dP
dQ

(Zi)
√
d/`2 + ‖sp(Zi)‖22V (Zi)

]
<∞.

Theorem 3.5. Let P be a distantly dissipative probability
measure, that admits the density p ∈ C2(Rd), kp be the
Stein kernel associated with the IMQ kernel, {Zi}i∈N ⊂ Rd
be a Markov chain satisfying Assumption A3.4, π be the
index sequence of length mn generated by regularized Stein
thinning, and Qmn

be the associated empirical measure of
{Zπi

}i=1,...,mn
. If log(n)β < mn < n, with any β > 1,

and λmn
= o(log(mn)/mn), then we have almost surely

Qmn
=⇒
n→∞

P.

Theorem 3.5, proved in Appendix F, provides us with in-
teresting insights about the entropic regularization strength
λ. Indeed, for our ultimate application of MCMC post-
processing, the Stein thinning sample distribution converges
towards the target, provided that the regularization parame-
ter satisfies λ = o(log(m)/m). This strongly suggests that

λ should be chosen with a rate at least as fast as O(1/m).
In practice, it is not possible to tune this regularization pa-
rameter λ for computational reasons, and because no metric
is available to assess the Stein thinning quality for various
values of λ on real cases in our Bayesian setting. However,
we will see in experiments of the following section that the
effect of the entropic regularization vanishes with faster de-
cay rate of λ with respect to m. Therefore, we set λ = 1/m
in the regularized Stein thinning, to ensure the algorithm
convergence and good empirical performance.

4. Empirical Assessment
This section shows how regularized Stein thinning out-
performs the original algorithm through three batches
of experiments, namely: a Gaussian mixture with four
modes, a mixture of banana-shaped distributions with t-
tails, and Bayesian logistic regression on real datasets.
Two Metropolis-Hastings samplers are considered: the
Metropolis-Adjusted Langevin Algorithm (MALA) and the
No-U-Turn sampler (NUTS). Notice that additional details
and experiments are provided in Appendix A, and that the
code is available in the Supplementary Material.

4.1. Gaussian and banana-shaped mixtures

As a first experiment, we consider a d-dimensional Gaussian
mixture of four modes of equal weight, illutrated in Figure
5, where the two modes at the top have a variance four
times higher than the two bottom modes. We sample the
target Gaussian mixture with both MALA and NUTS using
three different step sizes ε and 104 iterations. The generated
samples are post-processed with the Stein thinning and reg-
ularized Stein thinning algorithms, and their performances
are compared with the MMD between the post-processed
samples and samples drawn from the known target Gaussian
mixture. This experiment is run for various thinning sizes
m and dimensions d, with 20 repetitions to quantify uncer-
tainties. The results obtained with the MALA sampler are
shown in Figure 6, and it is found that the regularized Stein
thinning yields lower MMD distances than the vanilla Stein
thinning. An example of post-processed MALA output is
depicted in Figure 5, together with a heatmap of the Lapla-
cian correction. On the left panel of Figure 5, we see that
Pathologies I & II are especially strong in this experiment,
with a large number of particles lying between modes in
regions of low probability, and highly unbalanced mode
weights. On the right panels, we observe that the entropic
regularization and the Laplacian correction fix both patholo-
gies. Similar results were obtained with NUTS and are
reported in Appendix A for brevity. Besides, we take advan-
tage of this first experiment to explore other regularization
rates than our default λ = 1/m. Figure 11 in Appendix
A shows that a rate of λ = 1/ log(m), which violates the
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Figure 5. (Gaussian mixture) First two panels: solutions obtained
with Stein thinning and regularized Stein thinning with contour
lines of the target distribution. Last panel: heatmap of the Laplace
correction ∆+ log(p).

Figure 6. (MALA) Graphs of the MMD with respect to the thinning
size m (with d = 2) and with respect to d (with m = 300). Top
row: Gaussian mixture. Bottom row: banana-shaped mixture.

convergence assumptions of Theorem 3.5, has significantly
worse performance than the original Stein thinning. On the
other hand, with a faster rate than 1/m such as 1/m2, the
effect of the entropic regularization vanishes, and results
are similar to the original Stein thinning. Therefore, this
justifies the default value of λ = 1/m. Finally, we conduct
the same experiment for a mixture of d-dimensional banana-
shaped distributions with t-tails (Haario et al., 1999; Pompe
et al., 2020), with details in Appendix A. Again, Figure 6
shows the better performance of regularized Stein thinning.

4.2. Bayesian logistic regression

We now compare the two Stein thinning algorithms in the
Bayesian logistic regression setting for binary classification,
since such problem usually involves multimodal posterior—
see, e.g., Gershman et al. (2012); Liu & Wang (2016); Fong
et al. (2019); Korba et al. (2021). Given a dataset DN =
{(Xi, Yi)}Ni=1 made of N pairs of features Xi ∈ Rd and la-
bels Yi ∈ {0, 1}, the probability that Yi is of class 1 is given
by p(Yi = 1|Xi,β, β0) = 1/(1 + exp(−β0 −βTXi)), for
some parameters θ = (β0,β) ∈ Rd+1. The prior distribu-
tions of the weight vector θ is assumed to be Gaussian,
p(β(j)|γ(j)) = N (β(j)|, 0, 1/γ(j)), and a Gamma prior

Table 1. AUCs obtained with NUTS sampler with Stein Thinning
(ST) and Regularized Stein Thinning (RST), estimated with 10-
fold cross-validation (10 repetitions for uncertainties).

m = 50 m = 300
Dataset ST RST ST RST

Breast W. 0.88 (0.02) 0.96 (0.00) 0.93 (0.01) 0.96 (0.00)
Diabetes 0.52 (0.01) 0.50 (0.02) 0.53 (0.02) 0.57 (0.02)

Haberman 0.51 (0.04) 0.53 (0.02) 0.53 (0.03) 0.58 (0.02)
Liver 0.53 (0.04) 0.69 (0.01) 0.61 (0.04) 0.70 (0.01)
Sonar 0.80 (0.02) 0.81 (0.01) 0.81 (0.01) 0.81 (0.01)

with parameters (a, b) is chosen for the precision γ(j). Upon
marginalizing, it is found that β(j) is distributed as the non-
standardized t-distribution Student-t(2a, 0, b/a) (Bishop &
Nasrabadi, 2006). Following (Fong et al., 2019), the hyper-
parameters a and b are chosen as a = b = 1. The posterior
distribution of the weights θ is sampled with both MALA
and NUTS using 48 independent chains, of respectively
104 and 105 iterations, and four step sizes ε are considered
along with three thinning sizes m. Each MCMC sample is
post-processed with the two Stein thinning algorithms. For
a new input x?, the resulting thinned samples are used to
approximate the posterior predictive distribution defined by
p(Y = 1|x?,DN ) =

∫
p(Y = 1|x?,θ)p(θ|DN )dθ. The

performances of Stein thinning algorithms are assessed us-
ing the standard AUC metric for classification problems,
estimated with 10-fold cross-validation and 10 repetitions
for uncertainties. Table 1 gathers the results for five public
datasets from the UCI repository (Dua & Graff, 2017), and
described in Appendix A, where the best AUC obtained for
each algorithm over the four MCMC step sizes are reported.
Clearly, regularized Stein thinning significantly improves
the performance of Bayesian logistic regression.

5. Conclusion
Stein thinning has raised a high interest in recent years,
as a powerful tool to post-process MCMC outputs, by the
greedy minimization of the kernelized Stein discrepancy.
Unfortunately, empirical studies have shown that KSD-
based algorithms suffer from strong pathologies. We have
conducted an in-depth theoretical analysis to identify the
mechanisms at stake. From this understanding, we propose
an improved Stein thinning algorithm relying on entropic
regularization and Laplacian correction. This approach ex-
hibits relevant theoretical properties regarding pathologies,
as well as highly improved empirical performance. Also no-
tice that the scope of this article was restricted to moderate
dimensions of MCMC outputs. The analysis of higher di-
mensional problems seems a challenging research direction
with a wide range of critical applications.
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for adaptive mcmc targeting multimodal distributions.
The Annals of Statistics, 48:2930–2952, 2020.

Riabiz, M., Chen, W., Cockayne, J., Swietach, P., Niederer,
S., Mackey, L., and Oates, C. Optimal thinning of MCMC
output. Journal of the Royal Statistical Society: Series B,
in press, 2022.

Robert, C. and Casella, G. Monte Carlo statistical methods,
volume 2. Springer, 1999.

Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fuku-
mizu, K. Equivalence of distance-based and rkhs-based
statistics in hypothesis testing. The Annals of Statistics,
pp. 2263–2291, 2013.

South, L., Riabiz, M., Teymur, O., and Oates, C. Postpro-
cessing of mcmc. Annual Review of Statistics and Its
Application, 9:529–555, 2022.

Stein, C. A bound for the error in the normal approxima-
tion to the distribution of a sum of dependent random
variables. In Proceedings of the sixth Berkeley sympo-
sium on mathematical statistics and probability, volume
2: Probability theory, volume 6, pp. 583–603. University
of California Press, 1972.

Wenliang, L. and Kanagawa, H. Blindness of score-based
methods to isolated components and mixing proportions.
arXiv preprint arXiv:2008.10087, 2020.



Regularized Stein thinning

Supplementary Material for Regularized Stein thinning

A. Additional Experiments
A.1. Illustration of Theorem 2.3

To better illustrate Theorem 2.3, we run an additional experiment, where p is still defined as in Figure 1 from Example 1,
with unbalanced mode weights of 0.2 and 0.8. The density q is distributed as p, but each mode is truncated outside a circle of
two standard deviation radius, and q has weight w. Next, for various values of w ∈ [0.1, 0.9], we draw two samples of size
n = 3000 from p and q, and compute KSD(P,Qw) (with 30 repetitions for each w value). The result is displayed in Figure
7, and shows that the optimal weight is close to 1/2, as predicted by Theorem 2.3, since |KSD2(P,QL)/KSD2(P,QR)− 1|
is estimated as 0.01 in this case.

A.2. Gaussian and Banana-shaped Mixtures

This appendix gathers additional results and details for the Gaussian and banana-shaped mixtures, as well as the MMD
distance used to evaluate thinning performance, and the regularization parameter λ.

Maximum Mean Discrepancy. When the target distribution is known, the efficiency of the Stein thinning algorithms are
assessed by computing the MMD distance between a sample drawn from the target distribution and the thinned samples.
The kernel function in Equation (1) is chosen as the distance-induced kernel studied by Sejdinovic et al. (2013). More
specifically, we use the following closed-form expression of the MMD (Gretton et al., 2006) with Z ∼ P and Z′ ∼ Q,

MMD2
k(P,Q) = E[k(Z,Z)] + E[k(Z′,Z′)]− 2E[k(Z,Z′)] , (3)

where k(X,X′) = ‖X‖2 + ‖X′‖2 − ‖X−X′‖2. In this setting, the MMD reduces to the well known energy distance, as
shown by Sejdinovic et al. (2013).

Gaussian mixture. The first batch of experiments in Section 4 considers a d-dimensional Gaussian mixture of four modes
of equal weight, with d ≥ 2, illustrated in Figure 8. The center of modes are chosen as (−1.6, 0), (1.6, 0), (−3, 4), and
(3, 4), and null values for the higher dimension coordinates. The first two modes have an identity covariance matrix, while
the remaining two modes have a diagonal covariance matrix with variance equal to 4. The results for regularized Stein
thinning and the original Stein thinning are provided in Figure 9 for MALA sampler, and in Figure 10 for NUTS sampler. In
both figures, the three tested step size ε are displayed, with a small impact on the resulting performance.

Regularization parameter λ. Figure 11 displays the MMD obtained with regularization parameters λ, set as λ = 1/m2

and λ = 1/ log(m). These results should be compared with the ones shown in Figures 9 and 10, which were obtained with
a regularization parameter λ = 1/m. These additional experiments show the importance of choosing the regularization
parameter such that λ = o(log(m)/m), as suggested by Theorem 3.5, and that faster rates than λ = 1/m tend to remove
the effect of the entropic regularization.

Banana-shaped mixture with t-tails. The second batch of experiments in Section 4 considers a banana-shaped mixture
with t-tails, defined as follows. Let ϕ : Rd → Rd be the transformation defined by ϕi(x) = xi if i 6= 2, and ϕ2(x) =
x2 + bx2

1 − 100b. Let Z be a random variable that follows the multivariate t-Student distribution with degrees of freedom 7.
Then, the random variable X = ϕ(Z) + µ follows a t-banana-shaped distribution centered at µ. We consider a mixture of
two t-banana-shaped distributions with weights w1 = 0.25 and w2 = 0.75, respectively, which is illustrated in Figure 12
for d = 2. The results for regularized Stein thinning and the original Stein thinning are provided in Figure 13 for MALA
sampler, and in Figure 14 for NUTS sampler. In both figures, the three tested step size ε are displayed, with a quite small
impact on the resulting performance.
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Figure 7. KSD(P,Qw) for p as defined in Example 1 with µ = 3, σ = 1, wp = 0.2, and q a truncation of p and with weight w. The
KSD is estimated with n = 3000 and 30 repetitions for each w value.

Figure 8. (Gaussian mixture) First two panels: solutions obtained with Stein thinning and regularized Stein thinning with contour lines of
the target distribution. Last panel: heatmap of the Laplace correction ∆+ log(p).
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Figure 9. (Gaussian mixture, MALA) Graphs of the MMD distance with respect to the thinning size m (with d = 2) and with respect to d
(with m = 300) for various step sizes ε.

Figure 10. (Gaussian mixture, NUTS) Graphs of the MMD distance with respect to the thinning size m (with d = 2) and with respect to d
(with m = 300) for various step sizes ε.
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Figure 11. (Gaussian mixture, MALA) Graphs of the MMD distance with respect to the thinning size m (with d = 2) and with respect to
d (with m = 300) for various step sizes ε. For the first row, we set λ = 1/m2, and we observe that the effect of entropic regularization
almost vanishes. For the second row, we set λ = 1/ log(m), violating the convergence assumption, and resulting in bad thinned samples.

Figure 12. (t banana-shaped mixture) First two panels: solutions obtained with Stein thinning and regularized Stein thinning with contour
lines of the target distribution. Last panel: heatmap of the Laplace correction ∆+ log(p).
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Figure 13. (Mixture of t-banana-shaped distributions, MALA) Graphs of the MMD distance with respect to the thinning size m (with
d = 2) and with respect to d (with m = 300) for various step sizes ε.

Figure 14. (Mixture of t-banana-shaped distributions, NUTS) Graphs of the MMD distance with respect to the thinning size m (with
d = 2) and with respect to d (with m = 300) for various step sizes ε.
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Table 2. Description of UCI datasets
Dataset Sample size Dimension

Breast Wisconsin 569 30
Diabetes 768 8

Haberman 306 3
Liver Disorders 345 6

Sonar 208 60

Table 3. AUCs obtained by Stein Thinning (ST) and Regularized Stein Thinning (RST). A 10-fold cross-validation is performed and the
experiments are repeated 10 times to provide uncertainties.

NUTS Sampler
m = 50 m = 100 m = 300

Dataset ST RST ST RST ST RST
Breast W. 0.88 (0.020) 0.96 (0.004) 0.91 (0.023) 0.96 (0.003) 0.93 (0.008) 0.96 (0.004)
Diabetes 0.52 (0.009) 0.50 (0.019) 0.52 (0.021) 0.55 (0.018) 0.53 (0.015) 0.57 (0.019)

Haberman 0.51 (0.038) 0.53 (0.023) 0.54 (0.033) 0.58 (0.035) 0.53 (0.034) 0.58 (0.017)
Liver 0.53 (0.044) 0.69 (0.014) 0.56 (0.038) 0.70 (0.013) 0.61 (0.039) 0.70 (0.011)
Sonar 0.80 (0.021) 0.81 (0.007) 0.81 (0.009) 0.82 (0.011) 0.81 (0.011) 0.81 (0.009)

MALA Sampler
m = 50 m = 100 m = 300

Dataset ST RST ST RST ST RST
Breast W. 0.68 (0.044) 0.93 (0.010) 0.72 (0.048) 0.93 (0.007) 0.72 (0.037) 0.88 (0.026)
Diabetes 0.51 (0.012) 0.48 (0.010) 0.53 (0.028) 0.51 (0.014) 0.53 (0.016) 0.56 (0.016)

Haberman 0.52 (0.034) 0.60 (0.027) 0.53 (0.024) 0.58 (0.017) 0.55 (0.024) 0.61 (0.013)
Liver 0.54 (0.033) 0.70 (0.008) 0.55 (0.034) 0.69 (0.005) 0.57 (0.024) 0.62 (0.032)
Sonar 0.80 (0.019) 0.80 (0.019) 0.80 (0.010) 0.80 (0.010) 0.81 (0.013) 0.80 (0.010)

A.3. Bayesian Logistic Regression

This appendix gathers additional results for Bayesian logistic regression. In particular, Table 2 provides a description of the
tested datasets. Table 3 gives the resulting AUC, for m = 50, 100, 300, using NUTS or MALA sampler. We recall that only
the best AUC over the four tested MCMC step size ε is reported.

B. Proof of Theorem 2.3
Lemma B.1. Let kp be the Stein kernel associated with the multi-quadratic kernel for c = 1, β = 1/2, and ` > 0. For
δ > 0, if x,y ∈ Rd, such that ‖x− y‖2 > δ, sp(x) < s0 and sp(y) < s0, we have

|kp(x,y)| < s2
0`

δ
+

2s0`

δ2
+

(d+ 3)`

δ3
.

Proof of Theorem 2.3. We consider the mixture distributions p and q satisfying Assumption 2.1, for µ > 0 and r > 0, and
assume that Assumption 2.2 is satisfied for η ∈ (0, 1). More precisely, we denote by qL the distribution of the left mode of
the mixture q, and similarly, qR is the distribution of the right mode of q. The probability measures QL and QR respectively
admits the densities qL and qR.

By definition of the KSD, we can write

KSD2(P,Qw) =

∫
kp(x,x

′)q(x)q(x′)dxdx′.

Additionally, given the above notations, q takes the form q = wqL + (1− w)qR. Then, we can develop the KSD expression



Regularized Stein thinning

to get

KSD2(P,Qw) =

∫
kp(x,x

′)(wqL(x) + (1− w)qR(x))(wqL(x′) + (1− w)qR(x′))dxdx′

=w2

∫
kp(x,x

′)qL(x)qL(x′)dxdx′ + (1− w)2

∫
kp(x,x

′)qR(x)qR(x′)dxdx′

+ 2w(1− w)

∫
kp(x,x

′)qL(x)qR(x′)dxdx′,

where the last term follows from the symmetry of kp. Finally, we have

KSD2(P,Qw) =w2KSD2(P,QL) + (1− w)2KSD2(P,QR)

+ 2w(1− w)

∫
kp(x,x

′)qL(x)qR(x′)dxdx′,

and we denote by ∆L,R the last term of this equation, which now writes

KSD2(P,Qw) =w2KSD2(P,QL) + (1− w)2KSD2(P,QR) + 2w(1− w)∆L,R. (4)

We first focus on the last term ∆L,R of this expression, which can be shown to be arbitrarily small when µ gets large.
According to Assumption 2.1, the distance between the centers of the two modes is 2µ, and both qL and qR have a
compact support included in a ball of radius r. Consequently, for x,x′ ∈ Rd such that qL(x) > 0 and qR(x′) > 0, then
‖x− x′‖2 > 2(µ− r). Additionally, since the score sp is continuous, sp is bounded on a compact set, and it exists s0 > 0
such that sp(x) < s0 and sp(x′) < s0. Then, from Lemma B.1, we have

|kp(x,x′)| <
s2

0`

2(µ− r)
+

2s0`

4(µ− r)2
+

(d+ 3)`

8(µ− r)3
.

Additionally, since ` is chosen with the median heuristic, and wp 6= 1/2, then ` < r, which gives

|kp(x,x′)| <
s2

0r

2(µ− r)
+

2s0r

4(µ− r)2
+

(d+ 3)r

8(µ− r)3
.

Finally, we obtain the following upper bound

|∆L,R| <
s2

0r

2(µ− r)
+

2s0r

4(µ− r)2
+

(d+ 3)r

8(µ− r)3
.

Now, it is clear that

lim
µ→∞

∆L,R = 0.

Next, we reorder the terms of equation (4) to get a second-order polynomial in w as follows

KSD2(P,Qw) =w2
[
KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

]
− 2w

[
KSD2(P,QR)−∆L,R

]
+ KSD2(P,QR).

Notice that the coefficient of w2 is KSD2(P,Q1/2)/4, and is therefore positive. Then, KSD2(P,Qw) admits a unique
minimum with respect to w, given by

w? =
KSD2(P,QR)−∆L,R

KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

.
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We rewrite w? as follows,

w? =
1/2KSD2(P,QR) + 1/2KSD2(P,QL)−∆L,R + 1/2KSD2(P,QR)− 1/2KSD2(P,QL)

KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

=
1

2
+

1

2

KSD2(P,QR)−KSD2(P,QL)

KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

=
1

2
+

1

2

1−KSD2(P,QL)/KSD2(P,QR)

1 + KSD2(P,QL)/KSD2(P,QR)− 2∆L,R/KSD2(P,QR)

=
1

2
+

1

2

1−KSD2(P,QL)/KSD2(P,QR)

2(1−∆L,R/KSD2(P,QR)) + (KSD2(P,QL)/KSD2(P,QR)− 1)
.

We can deduce the following bound∣∣∣∣w? − 1

2

∣∣∣∣ ≤ 1

2

|KSD2(P,QL)/KSD2(P,QR)− 1|
|2(1−∆L,R/KSD2(P,QR)) + (KSD2(P,QL)/KSD2(P,QR)− 1)|

. (5)

According to Assumption 2.2, with 0 < η < 1, ∣∣∣∣KSD2(P,QL)

KSD2(P,QR)
− 1

∣∣∣∣ < η,

which gives an upper bound for the numerator of the right hand side of inequality (5). Additionally, for µ large enough, ∆R,L

is arbitrarily small, and in particular, we can have ∆R,L < KSD2(P,QR)/2, and then 2(1−∆L,R/KSD2(P,QR)) > 1.
Next, we use the triangle inequality to get

|2(1−∆L,R/KSD2(P,QR)) + (KSD2(P,QL)/KSD2(P,QR)− 1)|
≥ 2(1−∆L,R/KSD2(P,QR))− |KSD2(P,QL)/KSD2(P,QR)− 1|
≥ 1− η,

where the last inequality is obtained using 2(1−∆L,R/KSD2(P,QR)) > 1 for µ large enough, and Assumption 2.2 again.
Finally, this lower bound on the denominator and the upper bound on the numerator combined with inequality (5) give∣∣∣∣w? − 1

2

∣∣∣∣ < η

2(1− η)
.

Proof of Lemma B.1. We consider x,y ∈ Rd, such that x 6= y, sp(x) < s0 and sp(y) < s0. The Stein kernel obtained for
the inverse multi-quadratic kernel function is defined by

kp(x,y) =− 3

`4
‖x− y‖22(1 + ‖x− y‖22/`2)−5/2

+
1

`2
(d+ (sp(x)− sp(y)) · (x− y))(1 + ‖x− y‖22/`2)−3/2

+ (sp(x) · sp(y))(1 + ‖x− y‖22/`2)−1/2.

For the first term, we have

3

`4
‖x− y‖22(1 + ‖x− y‖22/`2)−5/2 <

3

`4
‖x− y‖22(‖x− y‖22/`2)−5/2

< 3`‖x− y‖−3
2 .

For the second term, we first have

d/`2(1 + ‖x− y‖22/`2)−3/2 < d/`2(‖x− y‖22/`2)−3/2 < d`‖x− y‖−3
2 .
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For the second part of the second term, we use Cauchy-Schwartz inequality to get∣∣(sp(x)− sp(y)) · (x− y)
∣∣ ≤ ‖(sp(x)− sp(y))‖2‖x− y‖2 ≤ 2s0‖x− y‖2,

and then
1

`2
|(sp(x)− sp(y)) · (x− y)|(1 + ‖x− y‖22/`2)−3/2

< 2s0/`
2‖x− y‖2(‖x− y‖22/`2)−3/2

< 2s0`‖x− y‖−2
2 .

Finally, for the last term, we have

|sp(x) · sp(y)|(1 + ‖x− y‖22/`2)−1/2 < s2
0`‖x− y‖−1

2 .

Overall, we use the triangle inequality and all the previous inequalities to upper kp as follows

|kp(x,y)| < 3`‖x− y‖−3
2 + d`‖x− y‖−3

2 + 2s0`‖x− y‖−2
2 + s2

0`‖x− y‖−1
2 .

Finally, if ‖x− y‖2 > δ, we have

|kp(x,y)| < s2
0`

δ
+

2s0`

δ2
+

(d+ 3)`

δ3
.

C. Proofs of Theorem 2.4, Corollary 2.5, and Corollary 2.6
Lemma C.1. Let kp be the Stein kernel associated to the IMQ kernel, with parameters c = 1, β = 1/2, and ` > 0. For
s0 ≥ minx∈Rd ‖s(x)‖2, and x,y ∈Ms0 , we have

−c0
`2
− c1s0

`
− s2

0 ≤ kp(x,y) ≤ d

`2
+
c1s0

`
+ s2

0,

where c0 = 2
(

3
5

)5/2

≈ 0.56, and c1 = 4
33/2 ≈ 0.77.

Proof of Theorem 2.4. By definition of the kernelized Stein discrepancy between the target distribution P and the empirical
measure Pm = 1

m

∑m
i=1 δ(Xi), we have

E[KSD2(P,Pm)] =
1

m2

m∑
i,j=1

E[kp(Xi,Xj)]

In what follows, kp denotes the Stein kernel obtained for the inverse multi-quadratric kernel function, i.e.,

kp(x,y) =− 3

`4
‖x− y‖22(1 + ‖x− y‖22/`2)−5/2

+
1

`2
(d+ (sp(x)− sp(y)) · (x− y))(1 + ‖x− y‖22/`2)−3/2

+ (sp(x) · sp(y))(1 + ‖x− y‖22/`2)−1/2.

Given that Xi and Xj are independent random variables that follow the distribution P, one has E[kp(Xi,Xj)] = 0 for any
i 6= j. Using this property and the closed-form expression of the Stein kernel kp, it is found that

E[KSD2(P,Pm)] =
1

m2

m∑
i=1

E[kp(Xi,Xi)]

=
1

m
E[kp(X,X)]

=
d

m`2
+

E[‖sp(X)‖22]

m
,
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where X ∼ P. On the other hand, the kernelized Stein discrepancy between the target P and the empirical distribution
Qm = 1

m

∑m
i=1 δ(xi) is given by

KSD2(P,Qm) =
1

m2

m∑
i,j=1

kp(xi,xj)

=
1

m2

m∑
i=1

kp(xi,xi) +
1

m2

m∑
i 6=j

kp(xi,xj)

=
d

m`2
+

1

m2

m∑
i=1

‖sp(xi)‖22 +
1

m2

m∑
i 6=j

kp(xi,xj).

Next, it can be shown that the difference m
(
KSD2(P,Qm)− E[KSD2(P,Pm)]

)
takes the form

m
(
KSD2(P,Qm)− E[KSD2(P,Pm)]

)
=

1

m

m∑
i=1

‖sp(xi)‖22 +
1

m

m∑
i 6=j

kp(xi,xj)− E[‖sp(X)‖22].

Since xi,xj ∈Ms0 , we can use Lemma C.1 to bound the terms kp(xi,xj), and then obtain

m
(
KSD2(P,Qm)− E[KSD2(P,Pm)]

)
≤ s2

0 + (m− 1)
(s0c1

`
+
d

`2
+ s2

0

)
− E[‖sp(X)‖22],

where the right hand side is always negative if

m < 1 +
E[‖sp(X)‖22]− s2

0

d/`2 + c1s0/`+ s2
0

,

which provides the advertised result, since c1 < 1.

Proof of Lemma C.1. The Stein kernel kp obtained for the inverse multi-quadratric kernel function, with parameters c = 1,
β = 1/2, and ` > 0 is given by

kp(x,y) =− 3

`4
‖x− y‖22(1 + ‖x− y‖22/`2)−5/2

+
1

`2
(d+ (sp(x)− sp(y)) · (x− y))(1 + ‖x− y‖22/`2)−3/2

+ (sp(x) · sp(y))(1 + ‖x− y‖22/`2)−1/2.

Since the first term is always negative, we obtain

kp(x,y) ≤ d

`2
+

1

`2
|(sp(x)− sp(y)) · (x− y)|(1 + ‖x− y‖22/`2)−3/2

+ |(sp(x) · sp(y))|(1 + ‖x− y‖22/`2)−1/2.

We define the function g1 for z ≥ 0 as

g1(z) =
z

(1 + z2)3/2
,

and a simple function analysis shows that

c1
2

def
= sup

z≥0
g1(z) =

2

33/2
≈ 0.385.

Additionally, we clearly have (1 + ‖x− y‖22/`2)−1/2 ≤ 1, and combining these last two results, we get

kp(x,y) ≤ d

`2
+
c1
2`

∣∣(sp(x)− sp(y)) · x− y

‖x− y‖2
∣∣+ |(sp(x) · sp(y))|.
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We can apply Cauchy-Schwartz inequality, and since x,y ∈Ms0 , we get∣∣(sp(x)− sp(y)) · x− y

‖x− y‖2
∣∣ ≤ ‖(sp(x)− sp(y))‖2

‖x− y‖2
‖x− y‖2

≤ 2s0,

and also

|(sp(x) · sp(y))| ≤ s2
0.

Overall, we obtain

kp(x,y) ≤ d

`2
+
c1s0

`
+ s2

0.

For the lower bound, we first define

g0(z) =
3z2

(1 + z2)5/2
,

and a simple function analysis shows that

c0
def
= sup

z≥0
g0(z) = 2

(3

5

)5/2

≈ 0.558.

Similarly to the upper bound case, we finally get

kp(x,y) ≥ −c0
`2
− c1s0

`
− s2

0.

Proof of Corollary 2.5. As minimum and saddle points are stationary points of p, we have

{xi}mi=1 ⊂M0,

and we can apply Theorem 2.4 for s0 = 0 to get the final result.

Proof of Corollary 2.6. Let the density p be a Gaussian mixture model of two components with equal weights, respectively
centered in (−µ,0d−1) and (µ,0d−1), and of variance σ2Id, and let ν = µ/σ. We assume that ν > 1 and 0 ≤ s0 <[
ν
√
ν2 − 1 − ln(ν +

√
ν2 − 1)

]
/µ. Then, according to Theorem 2.4, for any {xi}mi=1 ⊂ Ms0 of empirical measure

Qm = 1
m

∑m
i=1 δ(xi), we have

(i) KSD2
(
P,Qm

)
< E[KSD2

(
P,Pm

)
] if m and s0 satisfy m < 1 +

E[‖sp(X)‖22]−s20
d/`2+s0/`+s20

.

To prove statement (ii), we need to characterize the shape of the setMs0 ⊂ Rd, given by the level lines of the squared score
norm ‖sp(x)‖22. The density p is a Gaussian mixture, i.e.,

p(x) =
1

2(2π)d/2σd
e−‖x

(−1)‖22/2σ
2(
e−(x(1)+µ)2/2σ2

+ e−(x(1)−µ)2/2σ2)
,

where x(−1) is the vector x without the first component. Then, the score is also given by an explicit formula,

sp(x) =

(
−x

(1)

σ2 + µ
σ2 tanh( µσ2x

(1))

−x(−1)

σ2

)
,

where tanh is the standard hyperbolic tangent function. An important property of this score function is that the j-th
component of sp only depends on x(j), which makes s(j)

p (x) invariant by any translation orthogonal to the j-th axis. Then,
we can compute the squared score norm

‖sp(x)‖22 = s(1)
p (x(1))2 +

‖x(−1)‖22
σ4

,
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Figure 15. Squared first component of the score for a Gaussian mixture with µ = 3 and σ = 1.

where s(1)
p (z)2 =

(
z
σ2 − µ

σ2 tanh( µσ2 z)
)2

. A simple function analysis of this univariate function, illustrated in Figure 15,
shows that s(1)

p (z)2 has two local maximum in z−max and z+
max, and three local minimum in z−min, 0, and z+

min, provided that
ν = µ/σ > 1. We also get that s(1)

p (z)2 grows to +∞ when x(1) → +/−∞. The extreme values are ordered as follows

−µ < z−min < z−max < 0 < z+
max < z+

min < µ.

The values of z−min, z−max, z+
max, and z+

min are given by the zeros of the first derivative of s(1)
p (z)2, defined by

ds
(1)
p (z)2

dz
= 2
(
− 1

σ2
+
( µ
σ2

)2 1

cosh( µσ2 z)2

)(
− z

σ2
+

µ

σ2
tanh

( µ
σ2
z
))
.

This derivative vanishes when one of the two factors is null. Since µ/σ > 1, the first term is null when

µ2

σ2

1

cosh( µσ2 z)2
= 1,

which leads to

z−max = −σ
2

µ
arcosh

(µ
σ

)
and z+

max =
σ2

µ
arcosh

(µ
σ

)
.

The second factor is null when

tanh
( µ
σ2
z
)
− z

µ
= 0. (6)

Obviously, z = 0 is solution. Since µ/σ > 1, equation (6) has two additional solutions. Although they do not have a closed
form, we have

z−min ∈ (−µ, z−max)

z+
min ∈ (z+

max, µ).

Also notice that, as µ/σ gets larger, z−min is closer to −µ, and z+
min to µ. For example in Figure 15, we set µ/σ = 3, and we

hardly see a gap between −µ and z−min, or µ and z+
min.
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By definition, for x ∈Ms0 , we have

s(1)
p (x(1))2 ≤ ‖sp(x)‖22 ≤ s2

0.

Therefore, given the variations of s(1)
p (x(1))2 detailed above and illustrated in Figure 15, if s2

0 < s
(1)
p (z−max)2 = s

(1)
p (z+

max)2,
it exists three disjoint intervals I−µ, I0, Iµ ⊂ R, respectively centered around −µ, 0, and µ, such that

x ∈Ms0 =⇒ x(1) ∈ I−µ ∪ I0 ∪ Iµ.

To conclude, we compute the value of s(1)
p (z−max), that is

s(1)
p (z+

max) = − 1

µ
arcosh

(µ
σ

)
+

µ

σ2
tanh

(
arcosh

(µ
σ

))
.

Using the formulas tanh(arcosh(x)) =
√
x2−1
x for |x| > 1, arcosh(x) = ln(x+

√
x2 − 1), and with ν = µ/σ, we get

s(1)
p (z+

max) =
√

(µ/σ)2 − 1/σ − ln(µ/σ +
√

(µ/σ)2 − 1)/µ

=
[
ν
√
ν2 − 1− ln(ν +

√
ν2 − 1)

]
/µ,

which is always strictly positive since ν > 1. By assumption, 0 ≤ s0 <
[
ν
√
ν2 − 1− ln(ν +

√
ν2 − 1)

]
/µ, and therefore,

we have s0 < s
(1)
p (z+

max) = s
(1)
p (z−max), which concludes the proof of statement (ii).

D. Proof of Theorem 3.2
Proof of Theorem 3.2. We consider the mixture distributions p and q satisfying Assumption 2.1, for µ > 0 and r > 0, and
denote by qL the distribution of the left mode of the mixture q, and similarly, qR is the distribution of the right mode of q.
The probability measures QL and QR respectively admits the densities qL and qR. As in the proof of Theorem 2.3, we get
that

KSD2(P,Qw) =w2
[
KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

]
− 2w

[
KSD2(P,QR)−∆L,R

]
+ KSD2(P,QR).

Next, we define Z ∼ Qw, ZL ∼ QL, and ZR ∼ QR, and develop the entropic regularization term,

E[log(p(Z))] =

∫
log(p(x))(wqL(x) + (1− w)qR(x))dx

= w

∫
log(p(x))qL(x)dx + (1− w)

∫
log(p(x))qR(x))dx

= wE[log(p(ZL))] + (1− w)E[log(p(ZR))].

Combining these two results, we have

KSD2
λ(P,Qw) =w2

[
KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

]
− 2w

[
KSD2(P,QR)−∆L,R + λ/2(E[log(p(ZL))]− E[log(p(ZR))])

]
+ KSD2(P,QR)− λE[log(p(ZR))].

We recall that p does not depend on w, but only on the fixed weight wp and the two mode distributions. Conse-
quently, KSD2

λ(P,Qw) is a second-order polynomial with respect to w. As for Theorem 2.3, the coefficient of w2 is
KSD2(P,Q1/2)/4, and is therefore positive. Then, the polynomial is minimized with respect to w, at w? defined by

w?λ =
KSD2(P,QR)−∆L,R + λ/2(E[log(p(ZL))]− E[log(p(ZR))])

KSD2(P,QL) + KSD2(P,QR)− 2∆L,R

.

Since E[log(p(ZL))]− E[log(p(ZR))] 6= 0 by assumption, we get that w?λ = wp for lambda defined by

λ = 2
wpKSD2(P,QL)− (1− wp)KSD2(P,QR) + (1− 2wp)∆L,R

E[log(p(ZL))]− E[log(p(ZR))]
.
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E. Proof of Theorem 3.3
Proof of Theorem 3.3. Following the same approach as in the proof of Theorem 2.4, we have

E[L-KSD2(P,Pm)] =
d

m`2
+

E[‖sp(X)‖22]

m
+

E[∆+ log p(X)]

m
,

where X ∼ P, and, with the empirical distribution Qm = 1
m

∑m
i=1 δ(xi),

L-KSD2(P,Qm) =
d

m`2
+

1

m2

m∑
i=1

‖sp(xi)‖22 +
1

m2

m∑
i 6=j

kp(xi,xj) +
1

m2

m∑
i=1

∆+ log(p(xi)).

As {xi}mi=1 are concentrated at a local minimum or saddle point x0, the score is null for all particles, as well as the distances
between them, and we get

L-KSD2(P,Qm) =
d

m`2
+

(m− 1)d

m`2
+

∆+ log(p(x0))

m
.

Next, the difference m
(
L-KSD2(P,Qm)− E[L-KSD2(P,Pm)]

)
writes

m
(
L-KSD2(P,Qm)− E[L-KSD2(P,Pm)]

)
= ∆+ log(p(x0)) + (m− 1)

d

`2

−
(
E[‖sp(X)‖22] + E[∆+ log p(X)]

)
.

By definition,

∆+ log p(x)
def
=

d∑
j=1

(
∂2 log p(x)

∂x(j)2

)+

, (7)

with

∂2 log p(x)

∂x(j)2
=

1

p(x)

∂2p(x)

∂x(j)2
−
(

1

p(x)

∂p(x)

∂x(j)

)2

.

As x0 is a stationary point of p, ∂p(x0)/∂x(j) = 0, and we obtain

∂2 log p(x0)

∂x(j)2
=

1

p(x0)

∂2p(x0)

∂x(j)2
,

leading to

∆+ log p(x0) =

d∑
j=1

1

p(x0)

(
∂2p(x0)

∂x(j)2

)+

=
∆+p(x0)

p(x0)
. (8)

Finally, we get

m
(
L-KSD2(P,Qm)− E[L-KSD2(P,Pm)]

)
=

∆+p(x0)

p(x0)
+ (m− 1)

d

`2

−
(
E[‖sp(X)‖22] + E[∆+ log p(X)]

)
,

which ensures that L-KSD2(P,Qm)− E[L-KSD2(P,Pm)] > 0 for m ≥ 2, provided that

p(x0) <
∆+p(x0)

E[‖sp(X)‖22] + E[∆+ log p(X)]
.
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F. Proof of Theorem 3.5
Theorem 3.5 extends Theorem 3 from Riabiz et al. (2022) to regularized Stein Thinning, using Lemmas F.1-F.2 and assuming
the following convergence rate of the regularization parameter λmn = o(log(mn)/mn). Lemma F.1 also extends Theorem
1 from Riabiz et al. (2022)[Theorem 1], whereas Lemma F.2 is a slight modification of Lemma 5 from Riabiz et al. (2022).
Lemma F.1. Let P be a probability measure on Rd that admits density p ∈ C2(Rd), kp be a reproducing Stein kernel, and
{xi}ni=1 ⊂ Rd a fixed set of points. If π is an index sequence of length m produced by regularized Stein thinning, then we
have for λ > 0,

KSD2
( 1

m

m∑
j=1

δ(xπj
)
)
≤ KSD2

( n∑
i=1

w?i δ(xi)
)

+
1 + log(m)

m
max

i=1,...,n
kp(xi,xi)

+
1 + log(m)

m
max

i=1,...,n
∆+ log(p(xi)) + 2λ max

i=1,...,n
| log(p(xi))|,

where the weights w? are defined as

w? ∈ arg min∑
i wi = 1
wi ≥ 0

KSD2
( n∑
i=1

wiδ(xi)
)
.

Lemma F.2. Let f be a non-negative function on Rd. Consider a sequence of random variables (Xi)i∈N ⊂ Rd such that,
for some γ > 0,

b
def
= sup

i∈N
E[eγf(Xi)] <∞.

If log(n)β < mn < n, with any β > 1, then we have almost surely,

lim
n→∞

log(mn)

mn
max

i=1,...,n
f(Xi) = 0.

The proofs of Lemmas F.1 and F.2 are reported at the end of this section. We first proceed with the proof of Theorem 3.5.

Proof of Theorem 3.5. From Lemma F.1, we have

KSD2
( 1

mn

mn∑
j=1

δ(Zπj
)
)
≤KSD2

( n∑
i=1

w?i δ(Zi)
)

︸ ︷︷ ︸
(?)

+
1 + log(mn)

mn
max

i=1,...,n
kp(Zi,Zi)︸ ︷︷ ︸

(??)

+
1 + log(mn)

mn
max

i=1,...,n
∆+ log(p(Zi))︸ ︷︷ ︸

(???)

+ 2λmn
max

i=1,...,n
| log(p(Zi))|︸ ︷︷ ︸

(�)

.

Riabiz et al. (2022)[Proof of Theorem 3, p.12] showed that the term (?) converges towards 0 almost surely as n→∞. For
the remaining terms, from Assumption 3.4, we have

sup
i∈N

E[eγ(d/`2+‖sp(Zi)‖22)] <∞ , sup
i∈N

E[eγ| log(p(Zi))|] <∞ ,

and

sup
i∈N

E[eγ∆+ log(p(Zi))] <∞ .

We can use Lemma F.2 with f(x) = kp(x,x) and f(x) = ∆+ log(x) to deduce that (??)→ 0 and (???)→ 0, respectively.
The remaining term (�) can be rewritten as

2λmn
max

i=1,...,n
| log(p(Zi))| =

2mnλmn

log(mn)
× log(mn)

mn
max

i=1,...,n
| log(p(Zi))|.
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Using the assumption that λmn
= o(log(mn)/mn) and Lemma F.2 with f(x) = | log(p(x))|, we conclude that (�)→ 0. It

follows that KSD2
(

1
mn

∑mn

j=1 δ(xπj
)
)
→ 0 almost surely as n→∞. Given that p is assumed to be distantly dissipative,

we apply Theorem 4 from Chen et al. (2019) to obtain that Qmn ⇒ P almost surely, as n→∞.

Proof of Lemma F.1. We consider an iteration t ∈ {2, . . . ,m} of regularized Stein thinning, where m ≥ 2 is the final
length of the thinned sample. We define at = t2KSD2(P, 1

t

∑t
j=1 δ(xπj

)) and ft =
∑t
j=1 kp(xπj

, ·). We also denote
S2

1 = maxi=1,...,n kp(xi,xi) + maxi=1,...,n ∆+ log(p(xi)), and S2 = 2 maxi=1,...,n | log(p(xi))|. Using the definition of
the squared KSD of an empirical measure, we have

at = at−1 + kp(xπt
,xπt

) + 2

t−1∑
j=1

kp(xπj
,xπt

).

Let x?t = arg miny∈{xi}ni=1
ft−1(y). By definition, xπt

minimizes the cost function of the regularized Stein thinning
algorithm at iteration t, and we have

kp(xπt ,xπt) + 2

t−1∑
j=1

kp(xπj ,xπt) + ∆+ log(p(xπt))− λt log(p(xπt))

≤ kp(x?t ,x?t ) + 2

t−1∑
j=1

kp(xπj ,x
?
t ) + ∆+ log(p(x?t ))− λt log(p(x?t )).

We combine this last inequality with the first equation to obtain

at ≤ at−1 + kp(x
?
t ,x

?
t ) + 2

t−1∑
j=1

kp(xπj
,x?t ) + ∆+ log(p(x?t ))−∆+ log(p(xπt

))

− λt(log(p(x?t ))− log(p(xπt
))),

and then,

at ≤ at−1 + kp(x
?
t ,x

?
t ) + 2

t−1∑
j=1

kp(xπj
,x?t ) + ∆+ log(p(x?t ))−∆+ log(p(xπt

))

+ λt(| log(p(x?t ))|+ | log(p(xπt
))|).

By definition, 0 ≤ | log(p(xi))| ≤ S2 and kp(x?t ,x
?
t ) + ∆+ log(p(x?t ))−∆+ log(p(xπt)) ≤ S2

1 , hence, we have

at ≤ at−1 + S2
1 + tλS2 + 2 min

y∈{xi}ni=1

ft−1(y).

As in the proof of (Riabiz et al., 2022), we have miny∈{xi}ni=1
ft−1(y) ≤ √at−1‖h?‖H(kp) where h? is the element in the

RKHSH(kp) of the form h? =
∑n
i=1 w

?
i kp(xi, ·). As a result, at is bounded as follows:

at ≤ at−1 + S2
1 + tλS2 + 2

√
at−1‖h?‖H(kp).

We then show by induction that

at ≤ t2(‖h?‖2H(kp) + Ct + λS2),

where

Ct
def
=

1

t

(
S2

1 − ‖h?‖2H(kp)

) t∑
j=1

1

j
.

With such as a result, we will have KSD2(P, 1
t

∑t
j=1 δ(xπj )) ≤ KSD2(P,

∑n
i=1 w

?
i δ(xπj )) + Ct + λS2 and obtain the

advertised result in Theorem F.1 for the last iteration t = m.
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For t = 1, we have a1 = kp(xπ1
,xπ1

) ≤ S2
1 and thus a1 ≤ ‖h?‖2H(kp) + C1 + λS2. For a fixed t ≥ 2, assume that

at−1 ≤ (t− 1)2(‖h?‖2H(kp) + Ct−1 + λS2) where Ct−1 = 1
t−1 (S2

1 − ‖h?‖2H(kp))
∑t−1
j=1

1
j . We then have

at ≤at−1 + S2
1 + tλS2 + 2

√
at−1‖h?‖H(kp)

≤(t− 1)2(‖h?‖2H(kp) + Ct−1 + λS2) + S2
1 + tλS2

+ 2(t− 1)
√
‖h?‖2H(kp) + Ct−1 + λS2‖h?‖H(kp)

= t2(‖h?‖2H(kp) + Ct + λS2) +Rt

(9)

where

Rt = (t− 1)2Ct−1 − t2Ct + (1− 2t)(‖h?‖2H(kp) + λS2) + S2
1

+ tλS2 + 2(t− 1)
√
‖h?‖2H(kp) + Ct−1 + λS2‖h?‖H(kp)

= (t− 1)2Ct−1 − t2Ct + (1− 2t)‖h?‖2H(kp) + S2
1

+ λS2(1− t) + 2(t− 1)
√
‖h?‖2H(kp) + Ct−1 + λS2‖h?‖H(kp)

Using (Riabiz et al., 2022)[Lemma 1], we have

2‖h?‖H(kp)

√
‖h?‖2H(kp) + Ct−1 + λS2 ≤ 2‖h?‖2H(kp) + Ct−1 + λS2

It follows from Equation (9) that we need Rt ≤ 0, i.e.,

2‖h?‖2H(kp) + Ct−1 + λS2 ≤
t2Ct − (t− 1)2Ct−1

t− 1
−
S2

1 − ‖h?‖2H(kp)

t− 1
+ λS2 + 2‖h?‖2H(kp).

The above inequality is always satisfied as long as

2‖h?‖2H(kp) + Ct−1+ ≤ t2Ct − (t− 1)2Ct−1

t− 1
−
S2

1 − ‖h?‖2H(kp)

t− 1
+ 2‖h?‖2H(kp),

which is equivalent to

tCt − (t− 1)Ct−1 ≥
1

t
(S2

1 − ‖h?‖2H(kp)),

and always true by definition of Ct. Hence we have shown that at ≤ t2(‖h?‖2H(kp) + Ct + λS2). Given that ‖h?‖2H(kp) =

KSD2(P,
∑n
i=1 w

?
i δ(xi)), we have

KSD2(P,
1

t

t∑
j=1

δ(xπj )) ≤ KSD2(P,
n∑
i=1

w?i δ(xi)) + Ct + λS2 ,

where Ct ≤ 1+log(t)
t

(
maxi=1,...,n kp(xi,xi) + maxi=1,...,n ∆+ log(p(xi))

)
(see (Riabiz et al., 2022)[Lemma 2]).

Proof of Lemma F.2. We follow the proof of Lemma 5 from (Riabiz et al., 2022). In the last step of the proof, we essentially
need to show that

∞∑
mn=1

c1(m2
n) <∞ and

∞∑
mn=1

c2(mn) <∞

where

c1(m2
n)

def
=

2 log(mn)

m2
n

log(nb)

γ
and c2(mn)

def
= 4

log(mn)

m2
n

log(n((mn + 1)2)b)

γ
.

With the assumption that log(n)β ≤ mn < n with β > 1, it is deduced that c1(m2
n)→ 0 and c2(mn)→ 0 as n→∞.
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G. Laplacian Stein Operator
Instead of the standard Langevin operator, we can use Tp(g) = ∆(pg)/p, mentioned in Oates et al. (2017, Appendix A.2).
However, such Stein operator introduces similar problems as Pathology I, since the Stein kernel associated with T ′p (g) also
has spurious minimum in regions where second derivatives of p vanish, as illustrated below. Therefore, it is more appropriate
to taylor a specific Laplacian correction as proposed in this paper, which cannot directly be derived from a Stein kernel,
since it is not differentiable. In this appendix, we study the operator Tp defined as Tpg = ∆(pg)/p and such that (Oates
et al., 2017, Appendix A.2)

E[(Tpg)(Z)] = 0 ,

for all g belonging to G, and with Z ∼ P. For each dimension j ∈ {1, . . . , d}, let T jp be the operator defined as

(T jp g)(x) =
1

p(x)

(
∇2
xj
p(x)g(x) + 2∇xj

p(x)∇xj
g(x) + p(x)∇2

xi
g(x)

)
for g : Rd → R, and where xj is the j-th coordinate of x to simplify notations. The operator Tpg can then be rewritten as
(Tpg)(x) =

∑d
j=1(T jp g)(x). Gorham & Mackey (2017)[Proposition 2] establishes the closed-form expression of the KSD

in the case of the multidimensional Langevin operator. We generalize the proof of Gorham & Mackey (2017)[Proposition
2] for the Laplacian operator (Tpg)(x) = ∆(p(x)g(x))/p(x) and establish a closed-form expression of the Stein kernel
kp : Rd × Rd → R. For a given kernel function k : Rd × Rd → R, k ∈ C2,2, the Stein kernel kp is given by (Gorham &
Mackey, 2017)

kp(x,y) =

d∑
j=1

kjp(x,y), (10)

where

kjp(x,y) = 〈T jp (k(x, ·)), T jp (k(·,y))〉Hk
. (11)

After a few developments, it is found that

p(x)p(y)kjp(x,y) = ∇2
xj
p(x)∇2

yjp(y)k(x,y)

+ 2∇2
xj
p(x)∇yjp(y)∇yjk(x,y) + p(y)∇2

xj
p(x)∇2

yjk(x,y)

+ 2∇xjp(x)∇2
yjp(y)∇xjk(x,y) + 4∇xjp(x)∇yjp(y)∇xi∇yjk(x,y)

+ 2p(y)∇xj
p(x)∇xj

∇2
yjk(x,y) + p(x)∇2

yjp(y)∇2
xj
k(x,y)

+ 2p(x)∇yjp(y)∇2
xj
∇yjk(x,y) + p(x)p(y)∇2

xj
∇2
yjk(x,y)

(12)

A closed-form expression can then be obtained in the case of, e.g., an inverse multiquadratic kernel of the form k(x,y) =
(1 + ‖x− y‖22/`2)−1/2 where ` denotes the bandwidth. In this case, one has

∇yjk(x,y) =
1

`2
k(x,y)3(xj − yj) , ∇xj

k(x,y) = −∇yjk(x,y)

∇2
yjk(x,y) = ∇2

xj
k(x,y) = − 1

`2
k(x,y)3 +

3

`4
k(x,y)5(xj − yj)2

∇xj
∇yjk(x,y) =

1

`2
k(x,y)3 − 3

`4
k(x,y)5(xj − yj)2

∇2
xj
∇yjk(x,y) =

−9k(x,y)5

`4
(xj − yj) +

15k(x,y)7

`6
(xj − yj)3

∇xj
∇2
yjk(x,y) = −∇2

xj
∇yjk(x,y)

∇2
xj
∇2
yjk(x,y) =

9k(x,y)5

`4
− 90k(x,y)7

`6
(xj − yj)2 +

105k(x,y)9

`8
(xj − yj)4

(13)

A closed-form expression of kp can then be obtained by combining Equations (10)-(13). In contrast to the Langevin Stein
kernel (see Equation 2), the above Stein kernel involves second-order derivatives of the density p.
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Figure 16. Stein thinning with the Stein operator Tpg = ∆(pg)/p, for Gaussian mixtures of Example 1, with µ = 2 (left panel), and
µ = 5 (right panel), σ = 1, and w = 0.5.

We run experiments based on our Example 1 of Gaussian mixtures for this new Stein operator Tpg = ∆(pg)/p. We
sequentially set µ = 2 and µ = 5, with σ = 1 and w = 0.5. Results are displayed in Figure 16. In the left panel with µ = 2,
we see that Pathology II does not occur, as opposed to Figure 2 with the Langevin Stein operator. However, when µ is
set to 5 in the right panel, all particles are concentrated in spurious minimum again. Therefore, introducing higher-order
derivatives of the target density through the Stein operator does not seem to be a promising route.


