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Abstract

In this paper, we provide a novel framework for decision making under
uncertainty based on information available in the form of a data set of
cases. A case contains information about an action taken, an outcomes
obtained, and other circumstances that were recorded with the action and
the outcome. The set of actions, the set of outcomes and the set of possibly
relevant recorded characteristics are derived from the cases in the data set.
The information from the data set induces a belief function over outcomes
for each action. From a decision maker’s preferences over belief functions
one can derive a representation evaluating outcomes according to the α-max
min criterion. New data affects behavioral parameters, such as awareness,
ambiguity and ambiguity attitude, and may suggest a classifications of data
into states.
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1 Introduction

Decision theory under uncertainty in the tradition of Savage (1954) is purely sub-
jective. Uncertainty concerns unknown states of the world and probabilities are
derived from a subjective preference order over state-contingent outcomes (acts).
The set of states are exogenously given and may differ for different decision mak-
ers. In economic models, one often reasonably assumes that all agents agree on
the state space, possibly because all observe the same data. Such an assumption
is however hardly ever made explicit.

In this paper, we suggest a fundamentally different approach to modeling un-
certainty. In the spirit of Gilboa and Schmeidler (2001), we consider a data set
of cases observed in the past as basis of our theory. Cases in the data set will
record actions, outcomes and circumstances of decisions observed in the past. For
each action, this data will induce a mass distribution (belief function) over sets
of outcome distributions. Subjective preferences over such mass distributions will
induce a representation of preferences over actions as in Jaffray (1989). In gen-
eral, data allows only for an incomplete description of the outcomes of an action
leaving room for a subjective evaluation of ambiguity. If agents use the same
data set their models of uncertainty will be anchored in the same fundamental
data-based framework. In general, however, data will not allow for a description
of states in the sense of Savage (1954) that resolve all uncertainty regarding the
outcomes of actions. Such a detailed description of circumstances may only arise
with sufficiently large and complete data sets.

To illustrate the approach suggested in this paper, consider the portfolio choice
problem of an investor who chooses a portfolio of two assets a = (a1, a2), and
assume that the investor has no other information regarding the (monetary) payoffs
of these assets than those observed in a data set D of cases, t = 1, ..., T . A case
(at, rt, xt) registers the quantity of an asset purchased at, the outcome obtained
rt,

1 and some characteristics of the decision environment xt. For example, a
characteristic feature recorded in the data of a portfolio choice problem could be
the inflationary environment, high inflation H or low inflation L, respectively.2

Disregarding private information of the investors, we assume data in D to be
equally available for all agents.

Given a (finite) set D of cases, for each action a and each characteristic x
recorded in the data, a set RD(a, x) of outcome distributions can be associated.

For pairs of actions and characteristics, either a frequency distribution ρ(a, x)
over outcomes r obtained with this action will be recorded in the data set D or no
information will be available. In the former case, the set of outcome distributions
RD(a, x) = {ρ(a, x)} is a singleton, in the latter case, there is complete ambiguity

1E.g., the return rate over a given period.
2The features of a decision situation that may recorded as a characteristic may consist of

either unintentionally collected data or deliberately chosen observations, e.g., reflecting a theory
about the factors influencing the payoffs. We will discuss this issue in more detail below.
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characteristic, frequency

actions H, fH L, fL

a1 RD(a1, H) RD(a1, L)

a2 RD(a2, H) RD(a2, L)

Table 1: Outcome distributions for action-characteristic pairs (a, x)

regarding the outcome distribution for (a, x). In this case, a subjective set of
possible outcome distributions RD(a, x) can be assigned. As a default, we will
assume that all outcome distributions observed in D will be considered possible.3

Notice that outcome distributions observed in D may be degenerate and based on
few observations.4

A table of outcome distributions such as Table 1 induces a mass distribution
(belief function) for each action in the data D. Assuming subjective preferences
over the set of mass distributions (belief functions) induced by the actions for a
given data set, we can deduce a preference representation that combines subjective
elements such as risk and ambiguity attitudes of a decision maker with objective
elements, i.e., data-based elements, such as the frequency information in the given
data set. Decision makers with the same data set share the data-based common
objective elements.

In this paper, we provide axioms inspired by those advanced in Jaffray (1989)
yielding an α-max min representation:5

VD (a) =
∑
x∈XD

fD (x)

[
α max

ρ∈RD(a,x)

∑
r

u (r) ρ (r) + (1− α) min
ρ∈RD(a,x)

∑
r

u (r) ρ (r)

]
.

While probabilities of outcomes are largely based on data in this representation,
some probabilities will be based on a large amount of evidence, while others will
be supported by few observations only.6This motivates us to extend this model
by allowing for unforeseen contingencies in the spirit of Karni and Vierø (2013);
Karni and Vierø (2017) in order to model a subjective response to a lack of data.
The following example is inspired by Dow and da Costa Werlang (1992) and will
illustrate how a lack of data may induce reasoning about other, so far unobserved
contingencies, that may change the investor’s behavior.

3In particular, all Dirac measures in the support of outcome distributions observed in D,
RD(a, x) = {δrt | (at, rt, xt) ∈ D} will be assumed to be possible. We will discuss other assump-
tions regarding outcome distributions in Section 2.

4Indeed, if supported by many observations, degenerate distributions δr yielding a particular
outcome r with probability one for some characteristic may suggest this characteristic as a state
in the sense of Savage (1954).

5As in state-based decision theory, different representations of preferences can be deduced
from different systems of axiom, e.g., a smooth representation could be deduced from axioms as
in Eichberger and Pasichnichenko (2021).

6In Eichberger and Guerdjikova (2013), we studied this problem in the context of the case-
based decision model of Gilboa and Schmeidler (2002) and Billot et al. (2005).
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Example. For an explicit example, consider portfolios of two assets a = (s, b), a
stock and a corporate bond, and consider a data set D containing observations for
155 cases of trade in these assets.

� For the stock, the risky security, the data set D contains 20 cases of a high
(real) payoff r1 and 50 cases of a low (default) payoff r0 in a low inflation
environment, while, for high inflation, no observations are available.

� For the corporate bond b, the same payoff rb has been observed in 5 cases of
high inflation and 80 cases of low inflation.7

This data can be summarized in the following table.
frequency of characteristics {H,L}

actions fH = 5
155

fL = 150
155

s RD(s,H) = {δr1 , δr0} =
{
(r1s , 1), (r

0
s , 1)

}
RD(s, L) = {ρ(s, L)} =

{
( 20
70

, r1; 50
70

, r0)
}

b RD(b,H) = {δrb} = {(rb, 1)} {RD(b, L) = {ρ(b, L)}} = {δrb} = {(rb, 1)}

Notice that the data in D do not provide an outcome distribution for the stock
s in case of high inflation H. As a default, we consider distributions over outcomes
observed for the stock in the low inflation scenario L, in particular the best and
worst outcome distribution for the stock in this situation. Hence, ignorance about
the return distribution for the stock in the high inflation scenario H is modeled
by a set of outcome distributions RD(s,H) := {δr1 , δr0}.8 Choosing w.l.o.g. the

bond as the numeraire, suppose that the assets trade at prices qS for the stock and
qB = 1 for the bond. Moreover, suppose that short-sales of each of the two assets
are restricted to d. Assume that the decision maker takes the information provided
in the data D as objective and uses the available frequencies as probabilities. For
the sake of simplicity of our argument, assume that the investor is risk-neutral,
u(r) = r, and if faced with missing data ambiguity-averse, α = 0. Thus, a portfolio
is evaluated by

VD (s, b) =

[
fH min

rs∈{r0,r1}
(srs + brb) + fL

[
s

(
5

7
r0 +

2

7
r1
)
+ brb

]]
.

The investor is assumed to choose a portfolio (s, b) that maximizes VD (s, b) sub-
ject to a budget constraint qSs+ b ≤ w and the two short-sale constraints s ≥ −d
and b ≥ −d. Standard arguments, similar to those in Dow and da Costa Werlang
(1992), then yield the solution:

(s, b) =


(−d, w + qSd) for qS > Q,

(0, w) for qS ∈
(
Q,Q

)
,

(w+d
qS

,−d) for qS < Q,

7For notational simplicity, we assume that only two outcomes r1, r0 have been recorded for
the stock and a single outcome rb for the corporate bond, r1 > rb > r0.

8In our general approach below, we will allow for more general outcome distributions. For
simplicity of the example, we will consider only the extreme distributions.
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with Q =
fHr0+fL( 5

7
r0+ 2

7
r1)

rb
and Q =

fHr1+fL( 5
7
r0+ 2

7
r1)

rb

Given the lack of data for the high inflation scenario, a decision maker may
wonder whether a hyperinflation - a characteristic so far not observed in the data
- might not affect bond rates negatively, due to increased corporate defaults or
increased nominal costs that cannot be passed on to consumers. The investor may
take into account such concerns about the outcomes in situations not covered by
the data in D as ”other” characteristics o, to which she assigns a subjective weight
of γ, a degree of unawareness.

The weight assigned to the information in the original data D is thus scaled
down by (1− γ), the degree of confidence in the data.

frequency of characteristics {H,L} and o

actions (1− γ) fH = (1− γ) 5
155

(1− γ) fL = (1− γ) 150
155

γ

s RD(s,H) = {δr1 , δr0} RD(s, L) =
{
( 20
70

, r1; 50
70

, r0)
}

RD(s, o) = {δr1 , δr0}

b RD(b,H) = {δrb} RD(b, L) = {δrb} RD(b, o) = {δrb , δr̃}

With a degree of unawareness γ, suppose that the investor considers the same set

of outcome distributions {δr1 , δr0} for the stock given the characteristic o (hyper-
inflation) as for the characteristic H (high inflation), while for the corporate bond
under characteristic o a second outcome distribution concentrated on a low return
r̃, r̃ < r0 , is now taken into account, {δrb , δr̃} .

Given the ambiguity regarding the bad consequences for the corporate bond
in a situation of “hyperinflation”, i.e., for the characteristic o, a portfolio is now
evaluated as

VD (s, b) = (1− γ)

[
fH min

rs∈{r0,r1}

{
srs + brb

}
+ fL

[
s

(
5

7
r0 +

2

7
r1
)
+ brb

]]
+γ min

rs∈{r0,r1}
rb∈{rb,r̃}

{srs + brb}

while the budget constraint and the short-sale constraints remain the same.
If the decision maker is pessimistic (α = 0) and believes that holding corporate

bonds may result in a loss if a hyperinflation occurs, 9 then the investor may never
invest a strictly positive amount into the corporate bond. Moreover, the investor
will may not want to short-sell the corporate bond either. Hence, b = 0 will be
optimal. Thus, the corporate bond market may collapse due to worries about a
situation of hyperinflation, i.e., an unforeseen contingency that is not supported
by the data available in D.

The example illustrates how a decision-maker’s concern about ”other” unfore-
seen characteristics, i.e., characteristics not observed in the data, may change the
evaluation of assets and may make arbitrage based solely on observed data risky.
Notice that, in contrast to an exogenous prespecified state space, a data set de-
termines both a set of possible returns for the assets and the likelihood of the
characteristics. Hence, missing or incomplete data may justify a decision maker’s

9More precisely, if unawareness γ is sufficiently large and if a potential loss r̃ in case of a
hyperinflation is sufficiently high, i.e., if (1− γ) rb + γr̃ < rb holds, then b = 0 will be optimal..
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consideration of other characteristics of a decision situation influencing the out-
comes of an action. Therefore, the axiomatization of preferences over outcome
distributions that are partially supported by objective, data-based evidence will
not only allow for ambiguity attitudes and risk attitudes as subjective proper-
ties of the preference representation but also subjective concerns about unforeseen
contingencies.

In general, factors influencing outcome distributions of actions are restricted to
circumstances recorded in the data. However, circumstances considered in the data
do not resolve uncertainty completely as states in the framework of Savage (1954)
do. Hence, decision makers are likely to be aware of “other” circumstances that
may be relevant for determining the outcome distributions of actions. “Other”, so
far unobserved, characteristics may influence the choice of actions and may induce
exploratory actions generating cases for which the so far unobserved characteristics
may occur.10

In this paper, we will derive a subjective probability γ for the possibility that an
“other” so far unobserved characteristic may occur from preferences of the decision
maker over actions. The set of outcome distributions of an action in case of other
characteristics reflects on the one hand the ignorance of the decision maker due
to a lack of data-based information but, on the other hand, it may also reflect
“theories” in the sense of Karni (2022) about possible outcome distributions.

Notice that both the probability γ and the set of outcome distributions for
actions in case of an unforeseen “other” characteristic are subjective for a given
data set at a given point in time, but may become data-based objective informa-
tion at a later point in time, once data with new characteristics have becomes
available. The careful distinction between objective, i.e., data-based, information
and subjective theories based on preferences provides a framework for studying
the evolution of subjective information in the light of new data in which Bayesian
learning appears as a special but well-defined case.

For a given decision situation, we take the data set as given. Over time and
in response to the actions chosen in a period the data set will change. New data
may simply increase the number of observations of cases already considered. In
contrast to the state-based approach however, new characteristics may be recorded
and appear as potential factors influencing the outcome distributions of actions.

A special feature of the decision model in this paper is the learning process
generated by changing data. Learning of new categories of characteristics induces
a permanent revision process as new actions, outcomes, or circumstances appear.
Pairs of action and characteristics induce outcome distributions similar to theories
introduced in Karni (2022). New data of cases may make some of the action-
circumstance pairs less relevant leading to vanishing unconfirmed theories as in
the case of theories. In contrast, however, new cases may suggest new action-
circumstance pairs thus inducing potential new states. Delaying choices at the
expense of outcome distributions provides a natural notion of costly exploration.
Characteristics may suggest new explanation in cases of unforeseen contingencies.

10This is similar to unimaginable consequences or actions of which the decision maker is un-
aware of but that determine new conceivable states in Karni and Vierø (2017, p. 304).
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1.1 Relation to the Savage framework

Decision theory in the tradition of Savage (1954) considers a set of states of the
world and an independent set of outcomes as primitive concepts of the theory. Ac-
tions, also called “state-contingent outcomes” or “acts”, map states to outcomes.
Observing a state is assumed to resolve all uncertainty regarding the outcome of an
action. The subjective expected utility theory of Savage (1954) derives an expected
utility representation with a subjective probability distribution over states and a
subjective utility function evaluating outcomes from the subjective preferences of
a decision maker over state-contingent outcomes.

In this setup, the set of states, the set of outcomes as well as the mapping
from states to outcomes have to be exogenous specified by the analyst while the
probability distribution over states as well as the evaluation of outcomes are de-
duced from preferences alone. Factual information regarding the set of states and
the outcomes of actions as well as the frequencies of states do not enter the de-
scription of a decision maker’s choice situation. Experimental evidence suggests,
however, that information about the set of states and the frequency of observations
influences choice behavior.11

In a recent paper, Gilboa et al. (2020) study the tension between the require-
ment for states to provide a complete description of all circumstances relevant
for determining the outcomes of an action and the observability of actions and
outcomes. Re-assessing the Savage paradigm, Gilboa et al. (2020) write:

“Models of decision making under uncertainty gain much of their
power from the specification of states so as to resolve all uncertainty.
However, this specification can undermine the presumed observability
of preferences on which axiomatic theories of decision making are based.
We introduce the notion of a contingency. Contingencies need not re-
solve all uncertainty, but preferences over functions from contingencies
to outcomes are (at least in principle) observable. In sufficiently sim-
ple situations, states and contingencies coincide. In more challenging
situations, the analyst must choose between sacrificing observability
in order to harness the power of states that resolve all uncertainty, or
preserving observability by working with contingencies.”

In our model, we will distinguish and identify from the data of cases: (i) actions,
(ii) outcomes, and (iii) characteristics of a situation. Characteristics are factors
that influence or determine the set of outcomes of an action. They can be recorded
as part of legal requirements, medical history, statistical data, etc. They are
observable and can be retrieved from data: they can thus serve as empirical proxies
for states.

However, characteristics differ from the Savage (1954) concept of states, in
three important aspects. First, a characteristic may fail to specify an outcome

11Indeed, one may interpret the famous paradoxes of Ellsberg (1961) as showing that partial
information about the probability of events (the proportion of colors in the urns) substantially
influences subjects’ choices.
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for all available actions, e.g., because it has never been observed in combination
with this action. Second, the set of characteristics observed in the data need not
be exhaustive: it may capture only a subset of all relevant contingencies. Third,
characteristics may provide a coarse description of the underlying uncertainty with
a single characteristic corresponding to a set of states. Taking characteristics as
a primitive for our approach means that the relevant factors for determining the
outcomes of an action need not and cannot be specified ex-ante before the analysis
can begin.

Thus, while data sets of cases in the spirit of Gilboa and Schmeidler (2002)
provide objective information both about the structure of the uncertainty and
about empirical frequencies, they typically do not uniquely identify the relevant
state space.12 Subjective factors will influence the decision maker’s evaluation
of actions. In particular: (i) predictions about counterfactuals; (ii) perception
of bounded awareness: existence of “other, yet unobserved” characteristics, or of
yet unidentified but relevant categories, and (iii) attitude to the indeterminacy of
predictions given such unawareness. In the first part of the paper, we derive a
preference representation from axioms over the preference order for a given data
set. This representation combines the objective information in the data with the
subjective characteristics of the decision maker and identifies his perception of
bounded awareness, as well as his attitude towards unawareness.

Changes in a data set may provide new evidence about the frequency of charac-
teristics and outcomes. They may lead to the observations of new characteristics,
similar in spirit though not in detail, to the approaches by (Karni and Vierø, 2017)
and by Gilboa et al. (2017). They can also make the decision maker aware of the
existence of factors that are relevant for the outcome of an action, but unobserved
in the data. The second part of the paper describes by means of an example how
these three types of learning can occur. While statistical frequency-based learning
leaves the perception of the relevant state space unchanged, the discovery of new
characteristics leads to an expansion of the perceived state space. The discovery
of new categories can provide a refinement for an initially coarse perception of the
state space. Our framework thus provides a way of modeling dynamic awareness
of the state space which evolves with the available data and might approach the
ideal of a Savagean state space.

2 Basic notation and leading examples

In this paper, we will not assume a priori known sets of actions and consequences.
In contrast to most of the literature, we will derive these sets from a data set of
previously observed cases. Before discussing our leading examples, however, we
need to introduce a common notation.

12A decision situation where there is complete information about the relevant states mapping
actions into outcomes is the exception rather than the rule. Lotteries or bets are the prototypes
of acts in the Savage approach: they are the special case of actions describing the link between
the states of a random device and a monetary outcome directly. We discuss this special case in
Section 2.2.2 below.
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2.1 Cases and states: the basic model

The primitive concept of our approach is a case c = (a, x, r) that records an action
a, an outcome r, and a vector of characteristics x listing possibly relevant context
variables. Information available at the point of decision making is a finite data
set of cases that have been observed and recorded in previous decision situations:

D =
{
(an, xn, rn)

N
n=1

}
.

Note that the same case c = (a, x, r) may have been observed several times.13

Given a data set of cases D, the set of observed actions is given by:

AD = {a | (an = a;xn; rn) ∈ D for some n ∈ {1...N}} .

The set of observed outcomes is:

RD = {r | (an;xn; rn = r) ∈ D for some n ∈ {1...N}} .

Characteristics recording the circumstances of a decision may be classified in
categories. For example, a medical doctor who has recorded the case of a patient
with a particular treatment usually also notes some biometric characteristics of
the patient. We will refer to the type of biometric data recorded, such as blood
pressure, temperature, weight, etc, as categories and to the entries in these cate-
gories as characteristics. Hence, categories classify characteristics. The data set
D identifies a set of categories T and, for each category t ∈ T , the set of observed
characteristics:

X t
D =

{
xt |

(
an;xn =

(
x1
n, .., x

t
n = xt, ..xT

n

)
; rn

)
∈ D for some n ∈ {1...N}

}
.

The set of all characteristics is obtained as the Cartesian product of X t
D:

XD =
T∏
t=1

X t
D.

When we refer to characteristics without mentioning a category, we mean the
vector x ∈ XD with components xt for all categories t ∈ T .

The data set D also specifies for each characteristic x ∈ XD the frequency with
which this characteristic has been observed

fD (x) =
|{(an, xn, rn) ∈ D | (an, xn, rn) = (an, x, rn)}|

N
.

Let X t be the set of characteristics of category t and denote by T the set of
categories distinguished in the data. The set of characteristics X =

∏
t∈T X t is

the Cartesian product of the categories of characteristics.14

13In principle, there may be missing entries for some cases. In our basic model, however, we
will assume that records of a case are complete.

14Over time, with changing data, both the set of categories T and the set of characteristics
observed within a category, Xt, may change.
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Typically, in a data set D, the outcome observed from an action a ∈ AD in
combination with characteristic x ∈ XD will not be unique. Thus, we associate
with a pair (a, x) the conditional frequency ρD (r | a, x) of an outcome r ∈ RD

when action a ∈ AD is chosen and characteristic x ∈ XD has been realized:

ρD (r | a, x) = |{(an, xn, rn) ∈ D | (an, xn, rn) = (a, x, r)}|
|{(an, xn, rn) ∈ D | (an, xn) = (a, x)}|

.

Denoting by ∆(Z) the simplex of all probability distributions over a finite set
Z, we have fD ∈ ∆(XD) and ρD (· | a, x) ∈ ∆(RD). We will denote by ℜD the set
of all finite subsets of ∆(RD).

Remark 1. We emphasize that, for a given point in time, the decision maker’s
information is fully summarized by the data set D, which we take as given. In
particular, there is no prior information about the set of possible categories, their
relevance, or the number of characteristics within each category. Over time with
new data, however, new actions, new outcomes, new categories, or new character-
istics may be discovered, as discussed in Section 4.

2.1.1 Ambiguity: Uncertainty about outcome distributions

While a state identifies the outcome of each available action, this need not be
the case for a characteristic. If an action-characteristic combination (a, x) has not
been observed15 in D, the corresponding frequency of outcomes ρD (· | a, x) is not
well defined. The decision maker will thus have to make a subjective prediction
about the outcome of a when characteristic x occurs.

Different methods can be used to arrive at such predictions: statistical meth-
ods, logical inference, analogy or similarity. In certain situations, such a method
might uniquely identify the distribution of outcomes. In general, however, a set of
possible distributions will obtain,16 see the examples in Section 2.2.

We denote by RD (a, x) ⊂ ∆(RD) the set of possible outcome distributions
the decision maker associates with (a, x), and assume that this set is finite, i.e.
RD(a, x) ∈ ℜD . For observed (a, x)-combinations, this set is a singleton and
comprises the observed frequency of outcomes RD (a, x) ={ρD (· | a, x)}.

Sometimes the context of a decision situation may suggest a particular set of
outcome distributions for an unobserved action-characteristic combination. The
following sets of outcome distributions appear to be natural candidates for un-
observed action-characteristics pairs (a, x): (i) the (finite) set of all frequencies
over outcomes in the data D, RD = ∪(a,x)∈AD×XD

RD(a, x); (ii) the set of all
frequencies over outcomes observed in combination with a particular action a,

15Missing counterfactuals may not only be a problem of small data sets D. In some decision
situations, counterfactuals cannot be observed, because of practical, legal or moral constraints
on actions. For instance, testing certain treatments on pregnant women might be considered too
risky for the fetus and, thus, the outcomes of such treatments might never be observed.

16E.g., a non-parametric model might be only partially identified; the decision maker may
decide to use the confidence interval of a parametric estimation instead of the estimate itself;
there might be uncertainty about the correct analogy, etc.
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RD (a) = ∪x∈XD
RD(a, x); (iii) the set of all frequencies over outcomes observed

in combination with a particular characteristic x, RD(x) = ∪a∈AD
RD(a, x). Note

that the sets of outcome distributions RD,RD (a) ,RD (x), are all finite subsets of
∆(RD).

2.1.2 Awareness of unawareness: Other characteristics

While the set of Savage states is exhaustive, i.e., describes all relevant contingen-
cies, the set of observed characteristics need not be: there might be a state which
does not correspond to any of the characteristics observed in the data, XD. It
may be that such characteristics cannot occur in the context in which the data
were collected or that there have not yet been sufficient observations. Recording
categories of decision-relevant characteristics may make a decision maker aware of
the fact that some category could contain characteristics which have not yet been
observed.

We model the awareness of “other, so far unobserved, characteristics” by ex-
tending the set of characteristics XD with a (place holder) characteristic ”xo” (for
“other characteristics”). The augmented set of characteristics is X̂D = XD ∪ {xo}
.

From the data set D, neither a frequency for such “other” characteristics nor
an outcome distributions ρD(· | a, xo) can be deduced. A decision maker thus
faces ambiguity given this lack of information and may again associate a set of
distributions RD (a, xo)with the occurrence of xo. A natural such candidate is
the set of all outcome distributions that have been observed for an action in D,
RD (a, xo) = ∪x∈XD

RD (a, x).17

The decision maker is assumed to attribute a subjective weight, interpreted as
his degree of unawareness, γD to this unobserved characteristic. (1−γD) is then the
degree of confidence assigned to the information in the data set and in particular
to the frequency of observed characteristics fD(x). This degree of unawareness is
purely subjective and will be derived from the decision maker’s preferences.18

2.1.3 Awareness of unawareness: Other categories

Each state uniquely identifies the outcome of an action. In contrast, as we saw
above, an action a in combination with a given characteristic x can result in several
distinct outcomes. In some situation, such variation can be considered as noise
and the decision maker might reasonably use the observed frequency of outcomes

17In general, however, one may want to allow also for other sets of outcome distributions.
Chung et al. (2018) provide a method of estimating the outcomes on “unknown unknowns” in
the context of machine learning.

18Although unknown in the data set at a particular point in time, a sequence of data sets
may reveal information about the frequency of unobserved characteristics. Over time, a decision
maker may learn about the reliability of the data in D and the likelihood of observing a so far
unknown characteristic. Thus, the degree of unawareness can be related to the frequency of new
characteristics observed over time. We will study such learning in Section 4. See also Chung et al.
(2018) for an econometric method for estimating the weight assigned to “unknown unknowns”
in the context of classification.
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ρD (· | a, x) as a unique prediction. In other contexts, the decision maker might
infer that the observed variability is due to some underlying, but so far unobserved
(latent) factor. He would thus be aware that the characteristic x corresponds
to a set of states rather than to a single state and hypothesize the existence of
a yet unobserved category, the characteristics of which would correspond to the
underlying states grouped in x. This can result in ambiguity in the immediate sense
of the word.19 The identification of such a category would explain the variability
of outcomes of a in combination with x. We discuss this type of unawareness in
Section 4.3.2.

2.2 Leading examples

Before proceeding to the analysis of choice under uncertainty in this framework,
we will illustrate our suggested approach by three examples, ranging from the case
of no information about characteristics, over the classic situation of betting on an
urn, to the more applied situation of a medical decision.

2.2.1 No information about characteristics

Consider first the special case where cases record only actions and outcomes.
Hence, cases cannot be distinguished according to characteristics. We refer to
such a decision situation as no information about characteristics.20

Example 1 (no characteristics). Consider the data set

D = {(a1, r1), (a3, r2), (a1, r4), (a2, r1), (a3, r4),
(a2, r1), (a3, r4), (a1, r3), (a2, r3), (a3, r2), (a1, r1)} .

From the data, one obtains a single outcome distribution ρD(a) ∈ ∆(RD) for
each action a as recorded in the left column of Table 2. Depending on the size
and quality of the data set, a decision maker may have limited confidence in these
outcome distributions and, therefore, may attach a weight γ to some other outcome
distributions she considers possible although she is not aware of them in the sense
of not having observed them in the data set. This is illustrated in the right column
of Table 2.

For large data sets, frequencies of outcomes will approximate the probabilities
of the outcomes. Hence, with no information about characteristics, choice over
actions corresponds to the choice of a lottery over outcomes as in (von Neumann
and Morgenstern, 1944). There is little room for unawareness and ambiguity if
cases are recorded properly. Ambiguity can arise only due to incomplete records
or small data sets (see Eichberger and Guerdjikova, 2010) and will vanish as the
number of observations increases.

19Cicero writes “ex ambiguous controversial nascitur, cum res in unam sententiam scripta duas
aut plures sententias significat“.(Short, 2018, p.3)

20This is similar to the early models of case-based decision making (Gilboa and Schmeidler,
2002), where cases only record actions and outcomes c = (a, r) for a given decision problem. A
data set D contains information only about the frequency distributions ρD(a).
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(1− γ) γ
a1 ρD (a1) =

(
2
4
, 0
4
, 1
4
, 1
4

)
RD(a1, xo)

a2 ρD (a2) =
(
2
3
, 0
3
, 1
3
, 0
3

)
RD(a2, xo)

a3 ρD (a3) =
(
0
4
, 2
4
, 0
4
, 2
4

)
RD(a3, xo)

Table 2: No information from characteristics

2.2.2 Urn with unknown content

Consider an urn containing unknown objects. Sequentially, objects are drawn from
the urn. For each object a list of properties (characteristics) is recorded in the data
D. Such characteristics could include

� color: red, blue, yellow, ....

� shape: ball, cube, pyramid,.....

� material: wood, iron, glass, .....

� weight (grams): 20,10,50, ....

Characteristics are classified into categories: color c, shape s, material m, and
weight w. A category is a set of characteristics of the same type, such as a set
of colors or a set of shapes. Hence, a characteristic registered in a case may be
a quadruple (xc, xs, xm, xw) indicating the color, the shape, the material, and the
weight of the object drawn from the urn in this case.

Actions are bets on characteristics of the next object drawn from the urn.
Outcomes are monetary payments r ∈ R. All information of the agent is given by
a data set of N observed cases:

D =
{
(an, xn, rn)

N
n=1

}
.

Example 2. Table 3 shows a data set D =
{
(cn)

20
n=1

}
of 20 cases with four

actions, AD = {a1, a2, a3, a4}, two outcomes, RD = {0, 1} and a single category,
the color of the objects, XD = {R,B, Y }. Table 4 organizes these cases in a
matrix listing the observed outcome distributions with respect to the actions and
the characteristics. The first table records the first 10 cases and the second table
all 20 cases. A tuple (x, y) records the frequency of outcome r = 0 by x and the
frequency of outcome r = 1 by y. If an action-characteristic pair (a, x) has not
been observed yet, then there is ambiguity about the outcome distribution with a
set of possible distributions RD(a, x). The more cases are contained in the data
set the fewer cells of the matrix will be left open. We have also included a column
for so far unobserved colors, that is for characteristics xo the decision maker might
be unaware of.

For a bet where the winning condition is recorded as a characteristic, e.g. a2
means “betting on B” and B is a characteristic in XD, it appears natural to
assume that outcome distributions are concentrated, i.e., ρD(a2,,B) = (0, 1) and
ρD(a2,,x) = (1, 0) for x ̸= B. If the action is, however, not specified completely
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D A X1 R D A X1 R

c1 a2 Y 1 c11 a2 B 1

c2 a1 B 0 c12 a1 Y 0

c3 a3 Y 1 c13 a3 B 0

c4 a4 Y 1 c14 a2 B 1

c5 a2 B 1 c15 a1 R 1

c6 a3 R 1 c16 a3 Y 1

c7 a4 B 1 c17 a4 R 0

c8 a4 B 1 c18 a1 R 1

c9 a1 Y 0 c19 a3 B 0

c10 a2 Y 0 c20 a2 Y 0

Table 3: Data set: N = 20

(1− γ)fD(R) = (1−γ)
10 (1− γ)fD(B) = 4(1−γ)

10 (1− γ)fD(Y ) = 5(1−γ)
10 γ

a1 RD(a1, R) {(1, 0)} {(1, 0)} RD (a1, xo)

a2 RD(a2, R) {(0, 1)}
{(

1
2 ,

1
2

)}
RD (a2, xo)

a3 {(0, 1)} RD(a3, B) {(0, 1)} RD (a3, xo)

a4 RD (a4, R) {(0, 1)} {(0, 1)} RD (a4, xo)

N = 10

(1− γ)fD(R) = 4(1−γ)
20 (1− γ)fD(B) = 8(1−γ)

20 (1− γ)fD(Y ) = 8(1−γ)
20 γ

a1 {(0, 1)} {(1, 0)} {(1, 0)} RD (a1, xo)

a2 RD (a2, R) {(0, 1)}
{(

2
3 ,

1
3

)}
RD (a2, xo)

a3 {(0, 1)} {(1, 0)} {(0, 1)} RD (a3, xo)

a4 {(1, 0)} {(0, 1)} {(0, 1)} RD (a4, xo)

N = 20

Table 4: Data sets: N = 10 and N = 20

in regard to the characteristics in the data, for example, if action a2 was a “bet
on the color Y and the shape cube, while the set of characteristics XD records
only colors, then outcome frequencies need not be concentrated on r = 0 or r =
1. Instead, non-degenerate outcome frequencies

(
2
3
, 1
3

)
will occur, reflecting the

missing category of “shapes”. Outcome distributions that are not Dirac measures
might make the decision maker aware of missing categories.

Example 2 shows the distinction between our framework and typical experi-
ments in statistics which rely on the specification of states. The latter consider an
urn for which it is known that all objects are balls that are distinct only in color.
Furthermore, the set of possible colors is specified. It is thus known that there is
a single category “color” with an exhaustive list of possible characteristics. The
only unknown aspect concerns the frequency of the colors in the urn.

The only acts in this scenario are bets on colors which are known to be in the
urn. Learning the color of the ball drawn from the urn resolves all uncertainty

14



and determines uniquely the outcome for all acts. Each characteristic, i.e., each
“color”, is a state in the sense of (Savage, 1954).

Observing repeated drawings from this urn, one learns the frequencies (and
thus, the probabilities) of the characteristics “color”. Bayesian learning is thus
sufficient to resolve all existing uncertainty.

2.2.3 The history of bone marrow transplants

At the end of the 1960’s bone-marrow transplantation was still in its infancy.
The HLA-typing, which is the standard compatibility test between donor and
recipient nowadays, was yet to be discovered and implemented. The most common
distinction in studies and in practice was that of a syngeneic, i.e., genetically
equivalent (identical twin) donor and an allogeneic, i.e., genetically distinct, one.
Furthermore, the use of immunosuppressants prior to the transplantation was also
not commonly practiced.

Example 3. In 1967, a physician facing a patient in need of a bone-marrow
transplant (HCT)21 as a result of an Aplastic Anemia (AA) or Severe Combined
Immunodeficiency (SCI), might have had at his disposal the following data set22

The set of recorded characteristics distinguishes two categories: (i) the type of

Disease Donor Action Outcome ♯ cases

AA allogeneic HCT improvement 1
AA allogeneic steroids + HCT improvement 4
AA allogeneic HCT no improvement 6
AA allogeneic steroids + HCT no improvement 2
AA allogeneic HCT death 39
AA allogeneic steroids+HCT death 17
AA syngeneic HCT recovery 3
AA syngeneic steroids+HCT death 2
AA syngeneic steroids+HCT recovery 2
SCI allogeneic HCT death 9

Table 5: Data on bone-marrow transplantations in 1967

disease where AA is denoted by x1
1 and SCI by x1

2, and (ii) the type of donor where
x2
1 is used for allogeneic and x2

2 for syngeneic. Hence, the set of all characteristics
is

XD = X1
D ×X2

D =
{
x1
1, x

1
2

}
×
{
x2
1, x

2
2

}
21HCT stands for Hematopoietic C ell T ransplantation, i.e., bone marrow transplant.
22Both AA and SCI are diseases for which bone-marrow transplant is currently used. The

data set below is loosely based on Bortin (1970). Bortin’s data also include malignant disease
and leukemia. Certain cases contain further specifications for the allogeneic donor (family re-
lationship, ABO-compatibility), and more details concerning outcomes, (e.g., whether grafting
occurred). For the purposes of the example, the table below abstracts from these details. It also
assumes that the two successful transplants for SCI recorded by Brotin and first published in
1969 were not yet available as data points.
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and the set of observed actions is AD = {a1, a2} with a1 denoting bone-marrow
transplant (HCT), and a2 an bone-marrow transplant preceded by a steroid treat-
ment. The set of possible outcomes RD = {r1...r4} contains recovery, r1, improve-
ment, r2, no improvement (but alive), r3, and death, r4. The number of cases of
each type is indicated in the last column. The frequency of characteristics is

fD (x) =

(
fD

(
x1
1, x

2
1

)
=

69

85
, fD

(
x1
1, x

2
2

)
=

7

85
, fD

(
x2
1, x

2
1

)
=

9

85
, fD

(
x2
1, x

2
2

)
= 0

)
.

Notice that the data specifies the frequency of outcomes for a given characteristic
(x1

1, x
2
1), i.e., AA with an allogeneic donor, and a given action a1, i.e., HCT, as

ρD
(
a1,

(
x1
1, x

2
1

))
=

(
0,

1

46
,
3

23
,
39

46

)
.

The data set does not include all combinations of actions and characteristics, e.g.,
there is no observation for (a1, (x

1
2, x

2
2)), i.e., a transplant from a syngeneic donor

in a case of SCI.
A physician treating such a patient might thus consider the outcomes of other
cases as relevant, e.g., transplants with syngeneic donors for AA and transplants
with allogeneic donors for SCI, yielding a set of outcome distributions:

RD

(
a1,

(
x1
2, x

2
2

))
= {(1, 0, 0, 0) , (0, 0, 0, 1)} .

Consider now the director of a medical training program who has to decide whether
to include HCT into the curriculum. The available data suggest that the benefits
of HCT are rather limited. However, the possibility of observing ”other” charac-
teristics, i.e., other diseases which can potentially be treated with HCT need to
be considered. For example, the chronic granulomatous disease, a rare immunod-
eficiency condition in infants, was discovered only in 1959. In the late 1960’s no
cases of HCT had been performed yet for this disease.23

Although no data was available for the treatment of this disease, a possible
assignment of outcome distributions to yet unobserved action-characteristics pairs
could contain all frequencies observed in the data for the specific action, a1 (HCT):

RD (a1, x
o) =

{(
0,

1

46
,
3

23
,
39

46

)
, (1, 0, 0, 0) , (0, 0, 0, 1)

}
.

3 Decisions for a given set of data

In this section, we will show that the data-based framework that we introduced
generates a belief function over outcome distributions for each action. Hence,
one can derive a representation of preferences over these belief functions similar
to Jaffray (1989). In addition, we will provide axioms in order to characterize a
subjective degree of unawareness regarding potential other characteristics.

23The first HCT for the treatment of this disease was performed in 1973. By 2011 a total of 99
bone marrow transplants for this disease were performed resulting in survival rates of 95-99%,
see Kang et al. (2011).
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3.1 From data to choice options

At a given point in time, a decision maker knows the data in a set D. As described
in Section 2, for each pair of actions and characteristics (a, x) ∈ AD ×XD, there
is a finite set of outcome distributions RD(a, x) ⊂ ∆(RD). Recall that RD :=
∪a∈AD,x∈XD

RD(a, x) is the finite set of all frequency distributions over outcomes
in D. We will assume that RD contains all degenerate outcome distributions, δr
for r ∈ RD. We denote by RD the set of all subsets of RD and by ∆ (RD)the set
of all probability distributions on RD.

The following table summarizes the primitive concepts derived from data in D
and the relevant notation:

Summary of basic notation:
A finite data set of cases: c = (a, x, r)∈D, induces

� a set of actions: a ∈ AD,

� a set of characteristics: x ∈ XD,

– a frequency distribution over characteristics: fD ∈ ∆(XD),

� extended set of characteristics: X̂D = XD ∪ {xo}

– degree of unawareness: γD

� a set of outcomes: RD,

– a frequency distribution over outcomes: ρ ∈ ∆(RD),

– the set of all finite subsets of ∆(RD): ℜD

– for each (a, x) ∈ AD × XD, a finite set of frequencies over outcomes:
RD(a, x) ∈ ℜD

� the set of all frequency distributions over outcomes in D: RD :=
∪a∈AD,x∈XD

RD(a, x)

– δr ∈ RD for all r ∈ RD

– the set of all subsets of RD: RD

– the set of all probability distributions on RD: ∆ (RD)

3.2 From actions to mass distributions

In this section, we concentrate on the specification of actions on the set of observed
characteristics, XD, disregarding for the time being xo (we will return to it in
section 3.3).

For a given action a ∈ AD, consider the mapping: a : XD →RD which to
every characteristic x assigns the predicted set of outcomes of action a for this
characteristic, a (x) = RD(a, x) ∈ RD. Note that the frequency of characteristics
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in the data fD (x) gives a probability distribution over these predictions, assigning
a probability of fD (x) to RD(a, x). Thus, for a given action a, the observed
frequency of characteristics generates a probability distribution over the power set
of RD, RD, given by:

mfD
a (R) =

∑
{x∈XD|RD(a,x)=R}

fD(x).

By definition, mfD
a (R) ≥ 0 for all R ∈ RD and

∑
R∈RD

mfD
a (R) = 1.

A probability distribution over the elements of a power set, mfD
a ∈ ∆(RD),

however, is a mass distribution that defines a belief function Grabisch (2016, p.
380). The fact that the outcomes of actions on the set of observed characteristics
can be represented as a mass distribution allows us to use the seminal approach
by Jaffray (1989) to characterize preferences.

The set of actions AD together with the realized frequency fD generates a finite
set of mass distributions

{
mfD

a : a ∈ AD

}
. Similarly to Savage (1954), we assume

that the set of hypothetical actions AD which the decision maker can conceive is
larger than

{
mfD

a : a ∈ AD

}
and includes all mappings from characteristics to sets

of observed outcome distributions in RD:

AD = {a : XD → RD} .

We call an action unambiguous when a (x) is a singleton for all x. Such actions
induce a probability distribution over outcomesma (r) =

∑
x∈XD

fD (x) ρD (r | a, x).
Note that the specification of an action combines the (set-valued) consequences

of actions with the information contained in the mass distribution. If this infor-
mation suffices to associate a probability distribution with each action (when all
actions are unambiguous) then preferences will be over probability distributions
as in von Neumann and Morgenstern (1944).

The following example illustrates this construction.

Example 4. Consider a data setD with two characteristicsXD = {x1, x2} yielding
two outcome distributions RD = {ρ1, ρ2} with the power set RD = P({ρ1, ρ2}) =
{{ρ1}, {ρ2}, {ρ1, ρ2}}. The set of all basic actions is AD = {a : XD → RD}. Given
a probability (frequency) distribution over the characteristics {x1, x2}, say (f1, f2),
each action a ∈ AD induces a mass distribution mf

a in ∆(RD). Given the distri-
bution f on XD, the nine acts in AD induce nine mass distributions mf

a ∈ ∆(RD)
as illustrated in Table 6.

As Example 4 illustrates, the set of mass distributions mfD
a induced by the

actions a ∈ AD together with the frequency distribution fD observed in a data set
D will be a small subset of all mass distributions ∆ (RD). Allowing for mixtures of
acts in AD, however, will extend the set of mass distributions on RD considerably.

For λ ∈ [0, 1] and two actions a1, a2 ∈ AD, denote by λa1 + (1− λ) a2 the
lottery over elements of RD which associates with each x ∈ XD the set of outcome
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a ∈ AD mf
a ∈ ∆(RD)

(a(x1), a(x2)) mf
a ({ρ1}) mf

a ({ρ2}) mf
a ({ρ1, ρ2})

a1 ({ρ1} , {ρ1}) 1 0 0

a2 ({ρ1} , {ρ2}) f1 f2 0

a3 ({ρ1} , {ρ1, ρ2}) f1 0 f2

a4 ({ρ2} , {ρ1}) f2 f1 0

a5 ({ρ2} , {ρ2}) 0 1 0

a6 ({ρ2} , {ρ1, ρ2}) 0 f1 f2

a7 ({ρ1, ρ2} , {ρ1}) f2 0 f1

a8 ({ρ1, ρ2} , {ρ2}) 0 f2 f1

a9 ({ρ1, ρ2} , {ρ1, ρ2}) 0 0 1

Table 6: Induced mass distributions: mf
a ∈ ∆(RD)

distributions a1 (x) with probability λ and the set of outcome distributions a2 (x)
with probability (1− λ). The resulting mass distribution is:

mf
λa1+(1−λ)a2

= λmf
a1
+ (1− λ)mf

a2
. (1)

Mixtures of acts in AD are elements of the simplex ∆ (RD). Given the frequency
distribution fD on XD and the set of basic actions AD, let

M(AD, fD) =

{
mfD

a =
∑
k

λkm
fD
ak

| ak ∈ AD, k ∈ N

}
be the set of all mass distributions induced by mixed actions in AD.

The following Lemma 1 shows that the set of mass distributions M(AD, fD)
obtained from all mixtures of actions in AD equals the set of all mass distributions
on RD , ∆ (RD), provided that RD contains all Dirac measures over outcomes in
RD.

Lemma 1. M (AD, fD) = ∆ (RD).

3.3 Actions on the extended set of characteristics

As argued in Section 2, a decision maker may also consider the possibility of
characteristics xo that have not been recorded in the data D. In this section, we
will extend the specification of actions to xo.

Assume that a decision maker associates a finite set of possible outcome dis-
tribution Ro

a ∈ ℜD with xo for every act a ∈ AD. Allowing for a (xo) = Ra
o ∈ ℜD

amounts to assuming that the decision maker can in principle envision hypothetical
outcome distributions that have not been observed before.24

24Outcome distributions ρ ∈ Ro
a must, however, be elements of ∆ (RD), i.e., must only consider

outcomes observed in D. In this paper, we do not consider the possibility of ”new outcomes”
and the resulting ”new actions” as Karni and Vierø (2017) do. Such an extension is, however,
possible.
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Given the extended set of characteristics X̂D = XD ∪{xo}, we consider actions
in the extended action set Ao

D = AD ×ℜD. As shown in the previous subsection,
each basic actions in AD induces a mass distribution mfD

a ∈ ∆(RD) which is then
combined with the set of outcome distributions Ro

a = a (xo) ∈ ℜD associated with
xo. Omitting the index fD, an extended action a can be written as (ma, Ra) ∈
∆(RD)×ℜD.

As in Subsection 3.2, we allow for mixtures on the extended set of actions
a ∈ Ao

D. Given two actions a1 =
(
ma1 , R

o
a1

)
and a2 =

(
ma2 , R

o
a2

)
and any λ ∈ [0, 1],

define the convex combination of the two actions λa1 + (1− λ) a2 as the action

a =
(
mλa1+(1−λ)a2 ;R

o
λa1+(1−λ)a2

)
where mλa1+(1−λ)a2 is the mixture of ma1 and ma2

as defined above in (1) and Ro
λa1+(1−λ)a2

is the set of outcome distributions,

Ro
λa1+(1−λ)a2

= λRo
a1
+ (1− λ)Ro

a2
=

{
λρ1 + (1− λ) ρ2| ρ1 ∈ Ro

a1
, ρ2 ∈ Ro

a2

}
.

By construction, mλa1+(1−λ)a2 ∈ ∆(RD) and Ro
λa1+(1−λ)a2

∈ ℜD. That is,

all convex combinations of extended actions a = (ma, R
o
a) will be elements of

∆ (RD)×ℜD.
We thus consider the set of actions AD = ∆(RD) × ℜD. It is easy to check

that AD is a mixture set.

Lemma 2. AD = ∆(RD)×ℜD is a mixture set.

3.4 Preferences and Suggested Representation

Denote by ≿ on ∆ (RD) × ℜD, the preference order of the decision maker on
the set of actions AD. We assume that the decision maker can rank all actions
in this set. Similarly to Savage (1954) this amounts to the ability to rank the
consequences of the actions associated with the different characteristics. We will
present axioms that imply that any action a = (ma, R

o
a) ∈ AD is evaluated by the

following functional:

VD (a) = (1− γD)
∑

R∈RD

ma (R)

[
αD max

ρ∈R

∑
r

u (r) ρ (r) + (1− αD)min
ρ∈R

∑
r

u (r) ρ (r)

]
(2)

+ γD

[
αo
D max

ρ∈Ro
a

∑
r

u (r) ρ (r) + (1− αo
D) min

ρ∈Ro
a

∑
r

u (r) ρ (r)

]

where

� u : RD → R is a von Neumann-Morgenstern utility function over outcomes
(unique up to a positive-affine transformation);

� αD ∈ [0, 1] is the parameter of optimism, (1− αD) is the degree of pessimism
regarding ambiguity in the outcome distributions given the observed data D,
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and αo
D ∈ [0, 1] and (1− αo

D) are the degrees of optimism and pessimism with
regard to the outcome distributions for other, yet unobserved, characteristics.
The degrees of optimism/ pessimism αD and αo

D may, but need not, coincide;

� γD ∈ (0, 1) is the degree of unawareness, the subjective weight assigned to
xo.

In particular, any actually observed action a ∈ AD can be evaluated using the
observed frequencies of characteristics fD (x) and the outcome predictionsRD(a, x)
derived from the data:

VD (a) = (1− γD)
∑
x∈XD

fD (x)

[
αD max

ρ∈RD(a,x)

∑
r

u (r) ρ (r) + (1− αD) min
ρ∈R(a,x)

∑
r

u (r) ρ (r)

]
(3)

+ γD

[
αo
D max

ρ∈R(a,xo)

∑
r∈Ro

u (r) ρ (r) + (1− αo
D) min

ρ∈R(a,xo)

∑
r

u (r) ρ (r)

]

To illustrate the representation reconsider Example 3.

Example (Example 3 resumed). Given D the evaluation of action a1, (HCT) can
be written as:

VD (a1) = (1− γD)

[
69

85

(
1

46
u (r2) +

3

23
u (r3) +

39

46
u (r4)

)
+

7

85
u (r1) +

9

85
u (r4)

]
(4)

+γD [αo
Du (r1) + (1− αo

D)u (r4)] .

The evaluation thus combines the observed outcomes of a1 for each of the observed
characteristics with the subjective evaluation for the case of “other” characteris-
tics. In the latter case, only the extreme distributions in RD (a1, x

o), (1, 0, 0, 0)
and (0, 0, 0, 1) are taken into account, weighted by the corresponding degrees of
optimism and pessimism for unobserved characteristics.
Limited confidence in the data (high γD) combined with sufficient optimism, αo

D,
might lead to the conclusion that including HCT into training programs is the right
decision, especially if the cost of doing so are relatively low. As it was, given the
limited success of the early attempts at HCT, by 1967, the procedure was declared
a “dead-end”, Granot and Strob, (2020, p. 2717), implying that the medical field
felt rather pessimistic about future attempts.

3.5 Axiomatization

We now provide an axiomatization of preferences over the set of actionsAD=∆(RD)×
ℜD, a = (ma, R

o
a). Our axiomatization builds on the approach in Jaffray (1989).

Axiom 1 The preference order ≿ on AD is complete, transitive and non-trivial
in the following sense: there is an Ro ∈ RD and ma1 , ma2 ∈ ∆(RD) such
that for a1 = (ma1 , R

o) and a2 = (ma2 , R
o) ∈ AD, (ma1 , R

o) ≻ (ma2 , R
o).
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The non-triviality condition in Axiom 1 is somewhat stronger than usual. In
particular, it requires that there is some outcome Ro associated with the “other
characteristics” which is a subset of the actually observed probability distributions
in the data and for which the decision maker is not fully indifferent among all
extended actions. This non-triviality condition requires that the decision maker
be not indifferent among all mass functions for at least some set of probability
distributions associated with the ”other” characteristics.

Axiom 2 For all
(
ma1 , R

o
a1

)
,
(
ma2 , R

o
a2

)
,
(
ma3 , R

o
a3

)
∈ AD and all λ ∈ [0; 1],(

ma1 , R
o
a1

)
≿

(
ma2 , R

o
a2

)
⇔λ

(
ma1 , R

o
a1

)
+ (1− λ)

(
ma3 , R

o
a3

)
≿ λ

(
ma2 , R

o
a2

)
+ (1− λ)

(
ma3 , R

o
a3

)
.

Axiom 3 For all
(
ma1 , R

o
a1

)
,
(
ma2 , R

o
a2

)
,
(
ma3 , R

o
a3

)
∈ AD such that

(
ma1 , R

o
a1

)
≻(

ma2 , R
o
a2

)
≻

(
ma3 , R

o
a3

)
, there are λ, µ ∈ (0; 1) such that

λ
(
ma1 , R

o
a1

)
+(1− λ)

(
ma3 , R

o
a3

)
≻

(
ma2 , R

o
a2

)
≻ µ

(
ma1 , R

o
a1

)
+(1− µ)

(
ma3 , R

o
a3

)
.

Remark 2. The three Axioms imply that preferences are separable across the two
dimensions, m and Ro, see Proposition 1 in the Appendix.

The following corollary obtains:

Corollary 1. Axioms 1–3 imply that for any ma,mb ∈ ∆(RD), and any Ro
a, R

o
b ∈

ℜD, (ma, R
o
a) ≿ (mb, R

o
a) iff (ma, R

o
b) ≿ (mb, R

o
b) and (ma, R

o
a) ≿ (ma, R

o
b) iff

(mb, R
o
a) ≿ (mb, R

o
b).

Remark 3. Note that in general m and R are different objects, m is a probabil-
ity distribution on RD, whereas R is an element of ℜD ⊃ RD. Nevertheless,
each m which assigns a probability of 1 to a single set R ∈ RD can be uniquely
identified with an Ro ∈ ℜD such that Ro = R. We could thus use the subset of
actions for which the mass distributions have a singleton support, ∆(RD)

C ×ℜD,
as well as the subset of actions for which the set assigned to xo is an element
of RD, ∆(RD) × RD to formulate an Anscombe-Aumann-type axiom of state-
independence of preferences. More specifically, to allow for different degrees of
optimism in regard to observed and unobserved contingencies and thus for the
possibility that two sets R and R′ can be ranked when associated with the already
observed or the unobserved characteristics. Thus, our state-independence axiom
is imposed only on singleton sets.

Axiom 4 For any λ ∈ [0, 1], any {ρ1}, {ρ2} and {ρ} ∈ RD, and m and m′ ∈
∆(RD) such that m ({ρ1}) = λ, m ({ρ2}) = 1− λ, m′ ({ρ}) = 1,

(m̃, λ {ρ1}+ (1− λ) {ρ2}) ≿ (m̃, {ρ}) for some m̃ ∈ ∆(RD) holds iff

(m,Ro) ≿ (m′, Ro) holds for some Ro ∈ ℜD.
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While our last Axiom 4 concentrated on preferences with respect to singletons,
we now turn to preferences regarding sets with multiple elements. Consider R
and R′ ∈ ℜD. We will write R ≿o R′ iff (m,R) ≿ (m,R′) for some and thus, by
Corollary 1, for all m ∈ ∆(RD). We will write R ≿d R′ iff for ma (R) = 1 and
mb (R

′) = 1, (ma, R
′′) ≿ (mb, R

′′) for some and thus, by Corollary 1, for all R′′ ∈
ℜD. Axiom 4 then implies that these two relations coincide for singletons {ρ} ∈
RD: {ρ} ≿o {ρ′} iff {ρ} ≿d {ρ′} for {ρ} ∈ RD, while for {ρ} or {ρ′} ∈ ℜD\RD,
the preference ≿d is not defined and the comparison of the two sets is determined
by ≿o. In both cases, with a slight abuse of notation, we write ρ ≿ ρ′. Axiom 4
thus implies a well-defined preference order over the singleton sets, regardless of
whether they are associated with observed or unobserved characteristics. This in
turn allows us to define for each set of outcome distributions R ∈ ℜD, a ”best”
and ”worst” outcome distribution ρ

R
, ρR ∈ ∆(RD). The following axiom is an

adaptation of the axiom introduced in Jaffray (1989):

Axiom 5 For all R, R′, if ρ
R
≿ ρ

R′ and ρR ≿ ρR′ , then R ≿o R′ and R ≿d R′.

Axiom 5 implies that the comparison between any two sets of outcome distributions
only depends on their best and worst elements. In contrast to Jaffray (1989),
however, preferences between sets of outcome distributions may depend on whether
they are associated with an already observed characteristic, or a yet unobserved,
”other” characteristic, i.e., ≿d and ≿o might differ on non-singleton sets.

Axioms 1–5 allow a representation similar to 2, but for the fact that the degrees
of optimism in general depend on the best and worst outcomes in the set. To obtain
αD and αo

D that are independent of the set, we impose two additional axioms, see
Proposition 3 in the Appendix.

To understand the axiom, suppose that we compare two actions a and b with
identical mass distributions ma = mb =: m. One of the actions attributes a set
with two outcome distributions to xo, Ra = {ρ, ρ′} with ρ ≻ ρ′, while, for the
second action b, the set of outcome distributions on xo contains only the mixture
Rb = {αρ+ (1− α) ρ′}. Axioms 1–5 imply that there exists a unique α ∈ [0, 1]
such that Ra ∼o Rb. This α is the weight assigned to the best outcome of the set
Ra, i.e., the degree of optimism relative to unobserved characteristics with respect
to this set. Axiom 6 postulates that the so-determined α is independent of the set
Ra under consideration.

Axiom 6 For any ρ, ρ′, ρ′′, ρ′′′ ∈ ∆(RD), such that ρ ≻ ρ′ and ρ′′ ≻ ρ′′′ and any
m ∈ ∆(RD), let Ra = {ρ, ρ′}, Rc = {ρ′′, ρ′′′} and for some α ∈ [0, 1],

Rb = {αρ+ (1− α) ρ′}
Rd = {αρ′′ + (1− α) ρ′′′}

Then (m,Ra) ∼ (m,Rb) iff (m,Rc) ∼ (m,Rd).

The final Axiom is analogous to Axiom 6, but imposed on the set ∆ (RD), i.e.,
on the mass functions associated with the observed characteristics XD. It implies
that the degree of optimism relative to observed characteristics does not depend
on the specific set under consideration.
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Axiom 7 For any {ρ} , {ρ′} , {ρ′′} , {ρ′′′} ∈ RD, such that ρ ≻ ρ′ and ρ′′ ≻ ρ′′′ and
any R ∈ ℜD, let

25 ma ({ρ, ρ′}) = 1, mc ({ρ′′, ρ′′′}) = 1 and for some α ∈ [0, 1],

mb ({ρ}) = α, mb ({ρ′}) = (1− α)

md ({ρ′′}) = α, md ({ρ′′′}) = (1− α)

Then (ma, R) ∼ (mb, R) iff (mc, R) ∼ (md, R).

Axioms 1–7 are necessary and sufficient to obtain our desired representation:

Theorem 1. The preference order ≿ on AD = ∆(RD) × ℜD satisfies Axioms
1–7, iff there is a representation

VD (m,Ro) =
∑

R∈RD

(1− γD)m (R)

[
αD max

ρ∈R

∑
r∈RD

u (r) ρ (r) + (1− αD)min
ρ∈R

∑
r∈RD

u (r) ρ (r)

]
(5)

+ γD

[
αo
D max

ρ∈Ro

∑
r∈RD

u (r) ρ (r) + (1− αo
D) min

ρ∈Ro

∑
r∈RD

u (r) ρ (r)

]

where u is a unique (up to a positive-affine transformation) von-Neumann-Morgenstern
utility function over outcomes, γD ∈ (0, 1) is a unique parameter describing the
perception of unawareness and αD, α

o
D ∈ [0; 1] are unique parameters of optimism

relevant to the set of observed, respectively, unobserved, characteristics.

A special case of the representation is the one in which the coefficient of op-
timism does not depend on the type of characteristics under consideration, i.e.,
αD = αo

D. Such a representation can be easily obtained by replacing Axiom 7 with
the following one:

Axiom 7′ For any {ρ} , {ρ′} ∈ RD, such that ρ ≻ ρ′ and any R ∈ ℜD, let
ma ({ρ, ρ′}) = 1, and for some α ∈ [0, 1],

mb ({ρ}) = α, mb ({ρ′}) = (1− α)

Then (ma, R) ∼ (mb, R) iff for some m ∈ ∆(RD),

(m, {ρ, ρ′}) ∼ (m, {αρ+ (1− α) ρ′}) . (6)

Axiom 7′ can be seen as an extension of Axiom 4 to sets in RD containing two
elements. It requires that the mass function concentrated on a two element set
{ρ, ρ′}is considered indifferent to a mass function which mixes the two singletons
in proportions α (for the better one) and (1− α) for the worse one iff the same two
element set, but assigned on the ”other” characteristics is considered indifferent

25Recall that RD is the set of all subsets of observed frequencies in the data, RD. Thus, if
RD contains the singletons {ρ}, {ρ′}, {ρ′′} and {ρ′′′}, then it also contains the sets {ρ, ρ′} and
{ρ′′, ρ′′′} and vice-versa.
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to the singleton set {αρ+ (1− α) ρ′} which is a mixture of its two elements in
the same proportions α and (1− α). Since by Axiom 6, the coefficient α does not
depend on the choice of ρ and ρ′, we obtain that the αo

D identified in the proof of
Proposition 1 applies also to all two-element sets {ρ′′, ρ′′′} ∈ RD ⊂ ℜD. We can
thus set αo

D = αD and obtain the following Corollary:

Corollary 2. The preference order ≿ on AD satisfies Axioms 1–6 and 7′, iff there
is a representation

VD (m,Ro) =
∑

R∈RD

(1− γD)m (R)

[
αD max

ρ∈R

∑
r∈RD

u (r) ρ (r) + (1− αD)min
ρ∈R

∑
r∈RD

u (r) ρ (r)

]
(7)

+ γD

[
αD max

ρ∈Ro

∑
r∈RD

u (r) ρ (r) + (1− αD) min
ρ∈Ro

∑
r∈RD

u (r) ρ (r)

]

where u is a unique (up to a positive-affine transformation) von-Neumann-Morgenstern
utility function over outcomes, γD ∈ (0, 1) is a unique parameter describing the
perception of unawareness and αD is a unique parameter of optimism relevant both
to the set of observed and the unobserved, characteristics.

4 Acquiring new data

So far, we have kept the data set, D, and thus, the corresponding sets of char-
acteristics, XD, outcomes, RD and observed actions, AD, fixed. As a result, we
were able to identify: (i) the vNM utility function on outcomes, u, (ii) the weight
assigned on ”other characteristics”, xo, γD, which can be interpreted as the degree
of unawareness, (iii) the parameters of optimism for the known characteristics,
αD and the ”other” characteristics, αo

D. In general, these three components of the
representation depend on the available data set D.

Assume now that the decision maker obtains access to a different data set D′.
This data set may take the form of a ”continuation” of the history recorded in
D, i.e., D ⊆ D′. Alternatively, D′ may be a hypothetical data set, disjoint from
D, containing different cases with an alternative set of circumstances and different

outcomes that the decision maker may face. We will write D =
{
(an, xn, rn)

N
n=1

}
and D′ =

{
(a′n, x

′
n, r

′
n)

N ′

n=1

}
for the two data sets in question. For the purposes

of the following discussion, we will assume that as long as the set of outcomes
remains constant, RD = RD′ , the decision maker uses the same utility function u
to evaluate lotteries over outcomes.

We will use Example 3 from Section 2 to illustrate how new information may
affect the parameters of the model and, thus, the decision maker’s predictions.
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4.1 Statistical learning

In the case of statistical learning, the set of characteristics, XD, the set of ac-
tions, AD, and the set of outcomes, RD, do not change with the arrival of new
information. The data sets D and D′ differ only in terms of their length, N
and N ′ respectively, and of the observed frequencies of outcomes for each action-
characteristic combination (a, x): ρD (· | a, x), ρD′ (· | a, x). Learning concerns only
the frequency of outcomes and possibly, as the number of observations increases,
the perception of unawareness.

Reconsider the data in Table 5 of Example 3 where the value of including the
BMT procedure into a medical program was computed in Equation (4). Suppose
that the director of the program obtains additional data, D̃ of size Ñ consisting of
the same characteristics, actions and outcomes. This information can be pooled

to yield a new data set D′ =

(a1, x1, r1) ... (aN , xN , rN )︸ ︷︷ ︸
D

, (ã1, x̃1, r̃1) ... (ãN , x̃N , r̃N )︸ ︷︷ ︸
D̃

 with

corresponding new frequencies of characteristics fD′ (x) and outcomes ρD′ (a, x).
In a special, but particularly relevant case, D̃ exactly replicates the informa-

tion in D, D̃ = D, so that fD′ (x) = fD (x) and ρD (a, x) = ρD′ (a, x) remain
unchanged for all x and a. Assuming also that the outcomes of “other” categories
remain unchanged, RD (a1, xo) = RD′ (a1, xo), the evaluations VD′ (a1) and VD (a1)
can only differ because of differences in the subjective parameters of unawareness
γ and the degree of optimism, αo. Since the new data confirm the already avail-
able evidence, the decision maker’s attitude towards ambiguity should not change,
αo
D′ = αo

D. Furthermore, since the additional data do not contain observations of
“other” characteristics, the decision maker perceives less unawareness and more
confidence in the light of the larger data set D′, γD′ < γD.

Based on the data set D, a sufficiently optimistic program director may well
believe that HCT should be part of the curriculum, yet the additional data in
D̃, confirming the limited rate of success of this treatment, leaves less room for
the possibility that the treatment of some other, so far unobserved diseases might
benefit from the procedure. Hence, although the director’s optimism remains
unchanged, the decrease in perceived unawareness due to the additional evidence,
γD′ < γD, may reduce the evaluation of HCT as treatment for some other illness
sufficiently to lead to its exclusion from the curriculum. Formally, VD′ (a1) <
VD (a1) obtains, whenever unawareness decreases, γD > γD′ and optimism αo

D is
sufficiently large.26

4.2 Learning new characteristics

The set of characteristics relevant for the outcome of an action may not be con-
tained in a given data set ex-ante. First, we will consider a scenario in which the

26That is, if the max-min utility assigned to "other" characteris-
tics, αo

Du (r1) + (1− αo
D)u (r4), exceeds the average utility in the data[

69
85

(
1
46u (r2) +

3
23u (r3) +

39
46u (r4)

)
+ 7

85u (r1) +
9
85u (r4)

]
.

26



set of observed categories T remains unchanged but where a new characteristic is
observed within a given category.

Returning to Example 3, in 1968 a 2-year old boy was diagnosed with Wiskott-
Aldrich syndrome (an immune-deficiency disorder).27 His sister served as an allo-
geneic donor for an HCT and the boy’s condition substantially improved. A physi-
cian with access to the data set in table 5 and having read the article by Bach et al.
(1968) reporting the new case, would add a new case (a1, (x

1
3 = Wiskott-Aldrich syndrome, x2

1) , r2)
to his data set. In particular, the new case contains an unforeseen so far un-
observed characteristic in the category “desease”, xnew = (x1

3, x
2
1). Let D′=

D∪{(xnew, a1, r2)} be the new data set and the sets of categories of characteristics
evolve as X1

D′ = X1
D ∪ {x1

3}, X2
D′ = X2

D, whereas the sets actions and outcomes
remain unchanged. Three effects may follow as a result of obtaining such new
additional evidence.

Firstly, the number of unobserved action-characteristics pairs increases: there
are no observations for the cases (a1, (x

1
3, x

2
2)), (a2, (x

1
3, x

2
1)), (a2, (x

1
3, x

2
2)) in D′.

Unable to associate a single outcome distribution based on data in D perceived
ambiguity will increase. This effect will manifest itself in the specification of
RD (a, (x1

3, x
2)) for a ̸= a1, and x2 ̸= x2

1.
Secondly, the observation of a new, previously unobserved characteristic in

D′ will constitute a ”surprise”, since it may serve as evidence for the existence of
further ”other” characteristics and reinforce perceived unawareness, γD′ > γD. For
example, the fact that a so-far unobserved disease could be successfully treated
with an HCT might provide credence for the hypothesis that other, yet unobserved
diseases might be also treatable in this way.

Thirdly, the new data set D′ also records the outcome r2 for the treatment
by HCT realized for the new characteristic x1

3. We will call the new observation
(a1, (x

1
3, x

2
1) , r2) in D′ a ”positive surprise” (”negative surprise”) if the action a1

results in strictly higher (lower) utility in case of the new characteristic compared
to the evaluation of action a1 given the data recorded in D: u (r2) > (<)VD (a1).
Positive and negative surprises may effect expectations about future potential
outcomes for other yet unobserved characteristics making them more optimistic or
pessimistic, αo

D′ > (<)αo
D, respectively.

28

Notice that the initial evaluation of HCT combines the negative evidence
from HCTs in D with its evaluation for unobserved characteristics xo, α

o
Du (r1) +

(1− αo
D)u (r4) . The observation of the new characteristic constitutes a ”positive

surprise” provided that either the initial confidence (1− γD) is sufficiently large
or the degree of optimism αo

D is sufficiently small.
Our framework allows one to formally model learning as observed in the shift

of attitude of physicians reported in Granot and Strob (2020, p. 2718). Physicians

27The Wiskott-Aldrich symptom is a rare genetic disease which was first discovered in 1937
and later described in 1954. In 1968, a physician might have been unaware of the possibility of
using HCT for the treatment of this disease.

28This defines the notions of a positive or negative surprise relative to the global evaluation of
the action given the data. Other benchmarks for xo, such as observed average utility or max-min
utility, are possible. Which one will be relevant for the adjustment of the optimism parameter
is an empirical question that can be studied using our framework.
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view of bone-marrow transplants in 1967 was rather pessimistic, corresponding to
low levels of αo

D a low evaluation VD (a1). The success recorded in the new case
can be viewed a positive surprise, u (r2) > VD (a1) that provided new impetus for
the further development of HCT procedures. Even with the limited amount of
data available at this time, a single successful case would not significantly affect
the recorded rates of success for this treatment. It is therefore likely that the
overall increase in the positive evaluation of HCT reported by Granot and Strob
(2020) can be be attributed to an increase in optimism with respect to other
characteristics, αo

D′ > αo
D, combined with an increase in perceived unawareness,

the total effect might be sufficiently strong so as to reverse the initially negative
assessment.

HCT is by now part of the standard treatment for a variety of diseases but
conditions (characteristics) for which the treatment might be beneficial continue
to be identified. An example is the CTLA-4 insufficiency, a rare genetic immune
disorder first identified in 2014. Treatment options for this disease are being in-
vestigated shed light on the limited success of the initial transplants., see Egg and
et al. (2021) with HCT being one such option applied successfully in the cases of
13 out of 18 patients.

4.3 Learning new categories

New data may contain not only information about new characteristics but may
also reveal the existence of new relevant categories for characteristics. In the late
1960’s researchers gained a better understanding of the human immune system
that also shed new light on the limited success of HCT. Researchers discovered the
HLA system responsible for the immune responses of the body and its role in graft
rejection and in graft-versus-host disease. This insight allowed the set of relevant
characteristics of patients to be refined such as to include HLA-compatibility of
the donor.29 This refinement of the categories substantially increased the success
rate of future HCT.

Formally, let tnew stand for the new category “HLA-comatibility” and let the
components of this category be given by X tnew

:= X3 = {x3
1, x

3
2, x

3
3} , where x3

1

stands for HLA-matched, x3
2 for HLA-haploidentical and x3

3 for neither matched
nor haploidentical.

4.3.1 Reconstructing missing data

When a new relevant category is identified, it may be that measurements of the
characteristics corresponding to this category are available also for past observa-
tions and, thus, existing data in D can be completed to take the new category into
account. In this case, it is straightforward to rewrite the valuation in Equation

29An HLA-haploidentical donor is one who shares, by common inheritance, exactly one HLA
haplotype with the recipient and is mismatched for a variable number of HLA genes, ranging from
zero to six (HLA-A, -B, -C, -DRB1, DQB1, and -DPB1), on the unshared haplotype. Potential
HLA-haploidentical donors include biological parents, biological children, full or half siblings,
and even extended family donors.
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(5) for the expanded set of categories. Since the total number of characteristics
increases, the number of combinations (a, x) so far unobserved in the data will
also increase. Hence, the decision-maker needs to specify potentially ambiguous
payoff distributions for these scenarios and perceived unawareness with respect to
observed characteristics is likely to increase.

In general, data for characteristics of categories either unknown or deemed ir-
relevant in the past will not be available. This is the case for the data on HCT
assembled by Bortin (1970). For syngeneic donors (identical twins), HLA-matching
is guaranteed. Since most physicians were unaware of the HLA-system, however,
only very few cases of allogeneic donors contain information about their HLA-
compatibility.30This raises the question of how one should interpret data recon-
structed from past cases.

Consider the data set D restricted only to the set of HCTs (a1) for aplastic ane-

mia with an an allogeneic donor D =

(
a1,

(
x1
1, x

2
1

)
, r2

)︸ ︷︷ ︸
1 time

,
(
a1,

(
x1
1, x

2
1

)
, r3

)︸ ︷︷ ︸
3 times

,
(
a1,

(
x1
1, x

2
1

)
, r4

)︸ ︷︷ ︸
39 times

. For
this data, the initial set of characteristics is a singleton: XD = {(x1

1, x
2
1)} and the

corresponding outcome frequency is ρD (a1, (x
1
1, x

2
1)) =

(
0, 1

46
, 3
23
, 39
46

)
. Suppose now

that the decision maker learns of additional data for which HLA-compatibility has
been recorded, D̃ =

{(
a1,

(
x1
1, x

2
1, x

3
1

)
, r1

)
,
(
a1,

(
x1
1, x

2
1, x

3
2

)
, r2

)
,
(
a1,

(
x1
1, x

2
1, x

3
2

)
, r3

)
,
(
a1,

(
x1
1, x

2
1, x

3
3

)
, r4

)}
.

Combining D and D̃ into a new data set D′, yields the new set of characteristics
XD′ = {(x1

1, x
2
1, x

3
1) , (x

1
1, x

2
1, x

3
2) , (x

1
1, x

2
1, x

3
3)} . The data set D′, however, contains

some observations (those in D) for which only the categories, x1 and x2, have been
recorded.

Hence, the additional information about a new category X tnew
generates ad-

ditional ambiguity due to missing observations.31The decision-maker does not
know which HLA-characteristic, x3

1, x
3
2 or x3

3, to associate with the observations
(a1, (x

1
1, x

1
2)). As far as one is concerned with the evaluation of an action across all

possible characteristics, i.e., all possible HLA-types of donors, such ambiguity need
not be of concern, because the outcome distribution for each characteristic can be
evaluated according to with its own category. In our example, the decision-maker
could consider the set of characteristics X̃D′ = {(x1

1, x
1
2) , (x

1
1, x

2
1, x

3
1) , (x

1
1, x

2
1, x

3
2) , (x

1
1, x

2
1, x

3
3)}

and replace XD by X̃D′ in Equation (3) in order to obtain an evaluation of a1. Such
an approach may be appropriate if the number of observations containing charac-
teristics of the new category is small.

A physician, however, facing a patient with SCI who has a haplo-identical donor
will find such ambiguity highly relevant, since information about the HLA-type is
recorded in only two cases, while in 46 cases the record is missing. As more evidence

30Instead, in some cases the family relationship with the donor is mentioned, while others
contain the ABO-compatibility with the donor. In some cases the HLA-classification can be
recovered since a parent-donor is by definition HLA-haploidentical. In contrast, a sibling is
identical in 25%, haplo-identical in 50% and neither in 25% of the cases.

31Arad and Gayer (2012) also address ambiguity which arises from incomplete data and pro-
vide experimental evidence. Dominiak and Guerdjikova (2021 forthcoming) discuss the issue
of increase in ambiguity resulting from the discovery of new finer contingencies in a Savagean
framework.
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is accumulated, however, the relative frequency of observations with missing data,
f (x) will become negligibly small and thus of little impact for the evaluation of
the actions, regardless of the predictions RD′ (a, x).

4.3.2 Contradictory evidence and new categories

When observable characteristics fail to uniquely predict the outcome of an ac-
tion, the decision maker may perceive data as contradictory. Consider HCT
for the case of SCI and an allogeneic donor. In D, all 9 cases of such trans-
plants resulted in the death as the unique prediction of outcome for the patient,
ρD (r4 | (a1, (x1

2, x
2
1))) ∼ 1. According to Granot and Strob (2020, p. 2718), two

new cases published in 1968 documented success of HCT in patients with SCI and

allogeneic donors resulting in a new data set D′ =

(
a1,

(
x1
2, x

2
1

)
, r4

)︸ ︷︷ ︸
9 times

,
(
a1,

(
x1
2, x

2
1

)
, r1

)︸ ︷︷ ︸
2 times

.
Such evidence may appear contradictory and suggest that some unobserved un-
derlying factor may influence the result of the treatment as illustrated by the
HLA-classification).32 Thus, rather than averaging out the evidence and using
ρD′ (r1 | (a1, (x1

2, x
2
1))) =

2
11

and ρD′ (r4 | (a1, (x1
2, x

2
1))) =

9
11

for evaluating the ac-
tions, the physician may consider a set of outcome distributionsRD′ (a1, (x

1
2, x

2
1)) =

{ηδr1 + (1− η) ρD (a1, (x
1
2, x

2
1)) , ηδr4 + (1− η) ρD (a1, (x

1
2, x

2
1))}. This set combines

the data-based information ρD (a1, (x
1
2, x

2
1)) with the extreme distributions regard-

ing the extreme observed outcomes r1 or r4. These extreme distributions would
correspond to potential discoveries of a characteristic for which the outcome of a1
is r for sure. Each of these distributions is an “η-distance” away from the ob-
served frequency. The parameter η can be interpreted as the subjective relevance
assigned to the identification of a category which would allow to differentiate be-
tween the outcomes for action a1. Special cases of these beliefs are η = 0, for
which RD′ (a1, (x

1
2, x

2
1)) = {ρD′ (a1, (x

1
2, x

2
1))}, and the likelihood of identifying the

relevant category is null. For η = 1, the decision maker considers only the Dirac
measures concentrated on the extreme outcomes, RD′ (a1, (x

1
2, x

2
1)) = {δr1 , δr4}.

This corresponds to the case where the relevance of discovering the new category
is maximal and for the evaluation of action a1 the largest.

Assuming that both the disease as well as the type of donor are identified and,
thus, no weight is assigned to other characteristics xo, the evaluation of a planned
HCT then becomes

VD′ (a1|η) = (1− η)

[
2

11
u (r1) +

9

11
u (r4)

]
+ η [αD′u (r1) + (1− αD′)u (r4)] .

Depending on η, as well as on his degree of optimism the doctor may issue a
recommendation in favor or against the treatment.33

32Similar problems arise when randomized controlled trials are conducted in different countries
and document varying levels of success of the policy intervention studied. A simple aggregation
of the results without taking into account locally specific factors might significantly bias the
results, see Deaton and Cartwright (2018).

33Such hypothetical reasoning can be applied before the relevant category is identified, allowing
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4.3.3 The value of new categories

One can use this approach to determine the value of identifying a new category.
To do so, suppose that a data set D̃′with a discriminatory category X̃3 is discov-
ered such that the outcome of (a1, (x

1
2, x

2
1, x̃

3
1)) is always r1, whereas the outcome of

(a1, (x
1
2, x

2
1, x̃

3
3)) is always r4 with frequencies D̃′ =

(
a1,

(
x1
2, x

2
1, x̃

3
3

)
, r4

)︸ ︷︷ ︸
9 times

,
(
a1,

(
x1
2, x

2
1, x̃

3
1

)
, r1

)︸ ︷︷ ︸
2 times

.

According to the data in D̃′, the recorded frequency of x̃3
1 would be 2

11
, whereas

that of x̃3
3 is

9
11
. The evaluation of a1 given (x1

2, x
2
1, x̃

3
1) and (x1

2, x
2
1, x̃

3
3), respectively,

aggregated across the realizations of X̃3 becomes VD̃′ (a1 | (x1
2, x

2
1)) = 2

11
u (r1) +

9
11
u (r4). The difference

V NC(a1, η) := VD̃′

(
a1 |

(
x1
2, x

2
1

))
− VD′

(
a1 | η,

(
x1
2, x

2
1

))
captures the value of identifying the new category X̃3. It represents the decision
maker’s willingness to pay in order to get access to a new category which perfectly
explains the variability of outcomes of action a1. For η ̸= 0, it is positive (negative)
and depends positively (negatively) on the degree of relevance of the unobserved
category, η, whenever the decision maker is sufficiently pessimistic (optimistic),
i.e.,

2

11
u (r1) +

9

11
u (r4) ≥ (≤)αD′u (r1) + (1− αD′)u (r4) .

Once the willingness to pay has been identified, it can be compared to the
actual cost c of identifying and applying the additional categorization, such as
research cost, the cost of measuring and recording the relevant characteristics,
storing the data, as well as complexity cost related to the increased amount of
information to be processed by the decision maker.

This discussion shows that our framework allows us to also formally model the
perception of “other” categories, as well as the perception of “other” characteris-
tics. This perception relies on beliefs about the nature and the structure of the
data, which cannot however be inferred from the data set itself. Thus, just as
with the perception of unawareness about other characteristics, the perception of
unawareness about other categories will be an individual subjective feature of the
decision-maker and may depend on the context in which learning is taking place.
From a formal point of view, however, our representation derived in Proposition
1 can be used to evaluate actions given such unawareness and can also capture
the fact that unawareness will disappear, once the relevant categories have been
identified.34

the decision maker to determine the willingness to pay for research given the classification costs
associated with it.

34Grant et al. (2020) model the perception of ambiguity due to unawareness of propositions,
as well as the process by which such ambiguity diminishes as the decision-maker’s awareness
increases.
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5 Concluding remarks: From characteristics to

states

In an ideal Savagean world, data would be perfectly adapted to the description of
uncertainty by a set of states of the world. In particular, the decision maker would
be aware and know all contingencies and there would be no unobserved categories,
or characteristics. Notably, the following three conditions would be satisfied:

(i) The set XD corresponds exactly to the Savagean state-space S, XD = S.

(ii) Actions are functions from states to outcomes: a : S → R. For each action,
a ∈ AD, and each characteristic, x ∈ XD, exactly one outcome is observed
in the data, i.e., supp (ρD (· | a, x)) is a singleton for all a and x.

(iii) There are no redundant categories and characteristics, i.e., for each t ∈ T ,
xt ̸= x̃t implies that there is an a ∈ AD and x−t ∈ Πτ ̸=tX

τ
D such that

ρD (· | a, (xt, x−t)) ̸= ρD (· | a, (x̃t, x−t)).

Suppose that the number of relevant contingencies is finite and that within a finite
number of observations, all combinations (a, x) are observed in the data. If condi-
tions (i)–(iii) are satisfied, arrival of new data corresponds to the case of statistical
learning as described in Section 4.1. Since all possible characteristics have already
been observed, no surprises occur. Thus, as the number of observations goes to
∞, γD → 0 and the decision maker eventually behaves like an expected utility
maximizer w.r.t. the state space S = XD with probabilities informed by the limit
frequencies recorded in the data.

In general there will be few decision situations which would satisfy the condi-
tions listed above. Thus, a decision maker who wishes to be a Savagean, but is
faced with empirical data that do not perfectly fit the desiderata will have to learn
the best approximation of such a model given the available evidence.

The first type of learning was discussed in Section 4.2 and concerns becoming
aware of new characteristics. We can model awareness of such unawareness by
using a placeholder characteristic xo which is taken into account for the evaluation
of actions. As explained above, such learning increases the set of relevant charac-
teristics, while at the same time increasing the degree of unawareness concerning
the existence of ”other” yet unobserved characteristics.

The second type of learning concerns the learning of new categories discussed
in Section 4.3. Indeed, for a Savagean decision maker, an action which results in
two distinct outcomes for a given state entails a contradiction and signals that the
state-space is not well-specified. Call a data set D consistent if for each a and x, a
has resulted in a single outcome in combination with x and thus, supp(ρD (· | a, x))
is a singleton. Otherwise, we call the data set inconsistent. Let

XC
D = {x | supp(ρD (· | a, x)) is not a singleton for some a}

be the set of characteristics for which such indeterminacy of outcomes has been
generated. From the point of view of a Savagean decision maker, these are the
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characteristics in need of refinement, if they were to represent states of the world.
The existence of such characteristics signals the decision maker’s awareness that he
is unaware of some relevant categories, without knowing explicitly what those could
be. Such awareness of unawareness, in a natural way, also leads to ambiguity: the
decision maker assigns multiple payoffs to an already observed (a, x) combination,
rather than using the generated frequency of outcomes in the data.

In turn, observing a relevant category tnew such that supp(ρD (· | a, (x, xnew)))
is a singleton for each realization of the characteristic xnew, restores consistency of
the data set, but might generate ambiguity if the relevant characteristics have not
been measured for past observations.

As the decision maker learns new categories and thus, the elements of the
support of ρD (· | a, x) can be attributed to distinct characteristics, and as sufficient
observations of the so-refined characteristics are gathered, so that the number of
missing observations becomes negligible, the two types of ambiguity related to
categories also vanish.

Finally, new measurement methods might lead to the observation of new cate-
gories, even though these might appear redundant given the empirical information
available. In particular, if ρD (· | a, (xt, x−t)) = ρD (· | a, (x̃t, x−t)) holds for all xt,
x̃t ∈ X t, all x−t ∈ Πτ ̸=tX

τ
D and all a ∈ AD, the decision maker may decide that

the relevant state-space S = Πτ ̸=tX
τ
D is a sufficient description of the underlying

uncertainty, all be it coarser than the one suggested by the data set, XD.
Whether or not such coarsening of the state-space is warranted will be an em-

pirical question. As data accumulate, such coarsening might need to be reversed,
as new observations might result in an inconsistent data set signaling that category
t is not redundant after all. The process described above would then repeat.

The preceding discussion is closely related to the literature on unawareness.
Notably, the type of learning described in Section 4.2 corresponds to the decision
maker initially perceiving a reduction of the actual state-space, which then expands
to take into account new contingencies, see e.g., Grant and Quiggin (2013a,b);
Grant et al. (2017). In contrast, learning new categories (Section 4.3) models an
initial situation of coarsening of the state-space, which is sequentially refined, see,
e.g., Grant and Quiggin (2006). The works of Karni and Vierø (2013); Karni and
Vierø (2017) and Vierø (2018) also model expansion of the state-space, though one
related to the discovery of new acts or new outcomes, as opposed to learning new
characteristics. In this paper, we provide a unified framework which allows us to
capture these phenomena and relate them to empirical data.

In Eichberger and Guerdjikova (2022), we will study in detail how new data
affect the subjective parameters of the representation as well as the relation of our
approach to machine learning.

6 Appendix: Proofs

Proof of Lemma 1:
Note that for each set of outcome distributions R ∈ ℜD, there is a constant

action āR which has R as the set of outcomes for each x ∈ XD, a (x) ≡ R. The
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Dirac measures δR ∈ ∆(RD) are elements of M(AD, fD) since for each R ∈ ℜD,
āR ∈ AD.

Moreover, the set of Dirac measures {δR | R ∈ ℜD} are the extreme points of
the simplex ∆ (RD). By Carathéodory’s theorem, every m ∈ ∆(RD) can be
obtained as a convex combination of these extreme points. □

We prove the results of Theorem 1 using a sequence of Propositions. Combining
the result of Jaffray (1989) with the implications of the first three axioms in the
Anscombe-Aumann framework, see Kreps (1988, p. 102), we obtain:

Proposition 1. Preferences ≿ on AD satisfy Axioms 1 – 3 iff there exist functions
U : RD → R and Uo : ℜD → R such that for a = (ma, R

o
a) and b = (mb, R

o
b)

(ma, R
o
a) ≿ (mb, R

o
b) iff∑

R∈supp(ma)

ma (R)U (R) + Uo (R
o
a) ≥

∑
R∈supp(mb)

mb (R)U (R) + Uo (R
o
b) .

Furthermore, Uo is affine and U and Uo are unique up to a positive-affine trans-
formation with a common multiplication factor z1 > 0.

Lemma 3. Assume that preferences ≿ satisfy Axioms 1–4.

(i) For some singleton sets {ρ̄} and
{
ρ
}
∈ RD and for any m̃ ∈ ∆(RD),

(m̃, {ρ̄}) ≿ (m̃, {ρ}) ≿
(
m̃,

{
ρ
})

(8)

holds for all singleton sets {ρ} ∈ RD.

(ii) For m̄ and m satisfying m̄ ({ρ̄}) = 1 and m
({

ρ
})

= 1, and for any Ro ∈ ℜD,

(m̄, {Ro}) ≿ (m,Ro) ≿ (m,Ro) ,

holds for any m with m ({ρ}) = 1 for some singleton {ρ} ∈ RD.

(iii) If
(m̄, {ρ̄}) ≻

(
m,

{
ρ
})

there exists a unique γD ∈ [0, 1] such that

(m, {ρ̄}) ∼
(
γDm̄+ (1− γD)m, γD {ρ̄}+ (1− γD)

{
ρ
})

.

Proof of Lemma 3:
(i) Note that according to Corollary 1, by the finiteness of RD and the fact

that {δr} ∈ RD for each r ∈ RD, we have that there exist singleton sets {ρ̄} and{
ρ
}
∈ RD such that for some (and thus, for any) m̃ ∈ ∆(RD),

(m̃, {ρ̄}) ≿ (m̃, {ρ}) ≿
(
m̃,

{
ρ
})

holds for all singleton sets {ρ} ∈ RD. We refer to {ρ̄} and
{
ρ
}
as the best and

the worst singleton element of RD.
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(ii) Given the statement of part (i), the implication of Axiom 4 is that for m̄
and m satisfying m̄ ({ρ̄}) = 1 and m

({
ρ
})

= 1, and any m with m ({ρ}) = 1 for
some singleton {ρ} ∈ RD, we have for some (and thus for any) Ro ∈ ℜD,

(m̄, {Ro}) ≿ (m,Ro) ≿ (m,Ro) ,

i.e., m̄ andm are the best and the worst elements in ∆ (RD) among those assigning
full mass to singleton sets.

(iii) To show part (iii), consider next the extended action defined by (m, {ρ̄}).
We have, by Corollary 1,

(m̄, {ρ̄}) ≿ (m, {ρ̄}) ≿
(
m,

{
ρ
})

.

If (m̄, {ρ̄}) ≻
(
m,

{
ρ
})

, by continuity, Axiom 3, there exists a unique γD ∈ [0, 1]
such that

(m, {ρ̄}) ∼
(
γDm̄+ (1− γD)m, γD {ρ̄}+ (1− γD)

{
ρ
})

Using Axioms 1–4 we obtain the following result.

Proposition 2. Suppose that ≿ satisfy Axioms 1–4. If

(m̄, {ρ̄}) ≻ (m, {ρ̄}) ≻
(
m,

{
ρ
})

, (9)

then γD satisfies γD ∈ (0, 1). Furthermore, there exist functions U : RD → R and
UO : ℜD → R such that for a = (ma, R

o
a) and b = (mb, R

o
b)

(ma, R
o
a) ≿ (mb, R

o
b) iff

(1− γD)
∑

R∈supp(ma)

ma (R)U (R) + γDUO (Ro
a)

≥ (1− γD)
∑

R∈supp(mb)

mb (R)U (R) + γDUO (Ro
b) ,

where U is the function identified in Proposition 1 and there is a unique γD such
that UO ({ρ}) = U ({ρ}) for all singleton sets {ρ} ∈ RD and UO (R) = 1−γD

γD
Uo (R)

for any R ∈ ℜD.
UO is affine and U and UO are unique up to a positive-affine transformation

with a common multiplication factor z1 > 0.

Proof of Proposition 2:
Using γD identified in part (iii) of Lemma 3 and the representation from Propo-

sition 1, we have:

U
({

ρ
})

+ Uo ({ρ̄}) = γDU ({ρ̄}) + (1− γD)U
({

ρ
})

+γDUo {ρ̄}+ (1− γD)Uo

{
ρ
}

(1− γD)
[
Uo ({ρ̄})− Uo

({
ρ
})]

= γD
[
U ({ρ̄})− U

({
ρ
})]

(10)
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When condition (9) holds, we have that γD ̸∈ {0, 1} and we can rewrite (10) as:[
Uo ({ρ̄})− Uo

({
ρ
})]

=
γD

1− γD

[
U ({ρ̄})− U

({
ρ
})]

(11)

By continuity, Axiom 3, we have that for any singleton {ρ} ∈ RD, there is a
unique coefficient λρ ∈ [0, 1] such that for any m̃ ∈ ∆(RD)(

m̃, λρ {ρ̄}+ (1− λρ)
{
ρ
})

∼ (m̃, {ρ})

and by Axiom 4, this is equivalent to the statement that for m such that m ({ρ}) =
1 and any Ro ∈ ℜD,

(λρm̄+ (1− λρ)m,Ro) ∼ (m, {Ro}) .

Hence, normalizing, w.l.o.g. U
({

ρ
})

= Uo

({
ρ
})

= 0 and U ({ρ̄}) = 1 and
thus, by (11) Uo ({ρ̄}) = γD

1−γD
, we obtain that for any {ρ} ∈ RD,

U ({ρ}) = λρ

Uo ({ρ}) =
γD

1− γD
λρ.

Using the representation in Proposition 1, we thus obtain that for ma and
mb which put their entire mass on singleton sets, i.e., supp (ma), supp (mb) ⊆
{{ρ} ∈ RD} and Ro

a = {ρa}, Ro
b = {ρb} for some singletons {ρa}, {ρb} ∈ RD, we

have

(ma, R
o
a) ≿ (mb, R

o
b) iff∑

{ρ}∈supp(ma)

ma ({ρ})U ({ρ}) + γD
1− γD

U ({ρa})

≥
∑

{ρ}∈supp(mb)

mb ({ρ})U ({ρ}) + γD
1− γD

U ({ρb})

iff

(1− γD)
∑

{ρ}∈supp(ma)

ma ({ρ})U ({ρ}) + γDU ({ρa})

≥ (1− γD)
∑

{ρ}∈supp(mb)

mb ({ρ})U ({ρ}) + γDU ({ρb}) .

Note further than since Uo is affine, we have that for any ρ ∈ ∆(RD),

Uo ({ρ}) =
∑
r∈RD

ρ (r)Uo ({δr}) .

Since {δr} ∈ RD for every r ∈ RD, this implies, that we can set ρ = δr and
ρ̄ = δr̄, where r is the ”worst” and r̄, the ”best” outcome in RD. It is then obvious
that the two inequalities in (8) hold for all singleton sets {ρ} ∈ ℜD, and we can
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thus refer to {ρ̄ = δr̄} and
{
ρ = δr

}
as the best and the worst singleton element of

ℜD. Thus, we can define u (r) = UO ({δr}) = 1−γD
γD

Uo ({δr}) = U ({δr}) for every
r ∈ RD so as to obtain for any ρ ∈ ∆(RD)

Uo ({ρ}) =
γD

1− γD

∑
r∈RD

ρ (r)U ({δr}) =
γD

1− γD

∑
r∈RD

ρ (r)u (r) (12)

and any {ρ} ∈ RD

U ({ρ}) =
∑
r∈RD

ρ (r)U ({δr}) .

Define the function UO : ℜD → R as follows. Let

UO ({ρ}) = U ({ρ}) =
∑
r∈RD

ρ (r)U ({δr}) =
∑
r∈RD

ρ (r)u (r) (13)

for all ρ ∈ ∆(RD). Provided that γD ̸= 0, for any R ∈ ℜD, we can define
UO (R) = 1−γD

γD
Uo (R) (note that by (12) and (12), this equality also holds for

singletons {ρ} ∈ ℜD). The so-defined UO (R) = 1−γD
γD

Uo (R) is a positive-affine
transformation of Uo determined in Proposition 1. Indeed, we obtain that for
a = (ma, R

o
a) and b = (mb, R

o
b)

(ma, R
o
a) ≿ (mb, R

o
b) iff∑

R∈supp(ma)

ma (R)U (R) + Uo (R
o
a)

≥
∑

R∈supp(mb)

mb (R)U (R) + Uo (R
o
b)

iff ∑
R∈supp(ma)

ma (R)U (R) +
γD

1− γD
UO (Ro

a)

≥
∑

R∈supp(mb)

mb (R)U (R) +
γD

1− γD
UO (Ro

b)

iff

(1− γD)
∑

R∈supp(ma)

ma (R)U (R) + γDUO (Ro
a)

≥ (1− γD)
∑

R∈supp(mb)

mb (R)U (R) + γDUO (Ro
b) .□

A consequence of the last part of the proof of Proposition 2 is that {ρ̄} and{
ρ
}
are also the best and the worst singleton elements of ℜD and that each of

them can be taken to be a Dirac measure on a single outcome, ρ̄ = δr̄, ρ = δr,
where r̄ and r, are respectively the best and the worst outcome in RD.
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Corollary 3. The two inequalities in (8) hold for all singleton sets {ρ} ∈ ℜD.
Furthermore, one can set ρ = δr and ρ̄ = δr̄, for some r and r̄ ∈ RD. Finally,
there exists a utility function over outcomes u : RD → R which is unique up to a
positive-affine transformation and satisfies:

u (r) = U ({δr}) = UO ({δr})

for any r ∈ RD and

U ({ρ}) =
∑
r∈RD

u (r) ρ (r) for all {ρ} ∈ RD

UO ({ρ}) =
∑
r∈RD

u (r) ρ (r) for all {ρ} ∈ ℜD.

A straightforward adaptation of Jaffray (1989)’s result yields the following
proposition.

Proposition 3. The preference order ≿ on AD satisfies Axioms 1–5 iff there exist
a non-constant functions wd : ∆ (RD) × ∆(RD) → R non-decreasing w.r.t. the
order ≿d in its arguments, a non-constant function wo : ∆ (RD) × ∆(RD) → R
non-decreasing w.r.t. the order ≿o in its arguments, and a unique weight γD ∈
(0, 1) such that

(ma;Ra) ≿ (mb;Rb) iff (14)∑
R∈RD

(1− γD)ma (R)wd
(
ρ
R
, ρR

)
+ γDw

o
(
ρ
Ra
, ρRa

)
≥

∑
R∈RD

(1− γD)mb (R)wd
(
ρ
R
, ρR

)
+ γDw

o
(
ρ
Rb
, ρRb

)
.

where wd (ρ, ρ) = wo (ρ, ρ) for all ρ such that {ρ} ∈ RD and wo (ρ, ρ) =
∑

r∈RD
u (r) ρ (r),

where u is the utility function over outcomes. The weights wo and wd are unique
up to a positive-affine transformation with a common factor z1 > 0.

Proof of Proposition 3:
Since the comparison between any two sets, R and R′ depends only on their

best and worst elements, since the ordering of the best and the worst elements is
the same as that of the singletons and coincides on the set RD and since the best
and the worst singletons on both RD and ℜD are given by {δr̄} and {δr}, we have
that for any (m,Ro) ∈ Ao

D,

(m ({δr̄}) = 1, {δr̄}) ≿ (m,Ro) ≿ (m ({δr}) = 1, {δr}) ,

or in the notation of Lemma 3,

(m̄, {ρ̄}) ≿ (m,Ro) ≿
(
m,

{
ρ
})

By Corollary 1, we further have:

(m̄, Ro) ≿ (m,Ro) ≿ (m,Ro) (15)
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while by the non-triviality condition in Axiom 1, we have that there is an (m,Ro)
for which either:

(m,Ro) ≻ (m,Ro) or

(m̄, Ro) ≻ (m,Ro) .

If (m,Ro) ≻ (m,Ro), we have by Corollary 1 that

(m̄, {ρ̄}) ≻ (m,Ro) ≿
(
m,

{
ρ
})

and thus, (m̄, {ρ̄}) ≻
(
m,

{
ρ
})

, whereas if (m̄, Ro) ≻ (m,Ro), we have

(m̄, {ρ̄}) ≿ (m̄, Ro) ≻
(
m,

{
ρ
})

and thus, again (m̄, {ρ̄}) ≻
(
m,

{
ρ
})

. It follows that the γD identified in Lemma
3 is unique.

Next, observe that
(m̄, {ρ̄}) ∼ (m, {ρ̄})

would contradict the non-triviality assumption imposed by Axiom 1. Indeed, it
would imply, by Corollary 1 and by equation (15),

(m̄, Ro) ∼ (m,Ro) ∼ (m,Ro)

for all m ∈ ∆(RD) and all Ro ∈ ℜD, in contradiction to Axiom 1. It follows that
(m̄, {ρ̄}) ≻ (m, {ρ̄}).

Next, assume that there is an m ∈ ∆(RD) and R and R′ ∈ ℜD such that
(m,R) ≻ (m,R′). Thus,

(m, {ρ̄}) ≻
(
m,

{
ρ
})

,

which by Lemma 3 implies that γD ∈ (0, 1) and, thus, the representation of
Proposition 2.

Thus, we can set U (R) = wd
(
ρ
R
, ρR

)
and UO (R) = wo

(
ρ
R
, ρR

)
. By Propo-

sition 2, these functions coincide on singleton sets {ρ} ∈ RD, i.e.,

wd (ρ, ρ) = wo (ρ, ρ)

and by Corollary 3, we can thus set wo (ρ, ρ) =
∑

r∈RD
u (r) ρ (r), where u is the

utility function over outcomes identified in the Corollary. The uniqueness of the
functions wo and wd follows from the respective uniqueness of U , UO and u.

Hence the result of the Proposition obtains, provided that there is an m ∈
∆(RD) and R and R′ ∈ ℜD such that (m,R) ≻ (m,R′) holds.

To complete the proof thus, suppose in a manner of contradiction that there
are no m ∈ ∆(RD), R and R′ ∈ ℜD such that (m,R) ≻ (m,R′). We then have

(m, {ρ̄}) ∼
(
m,

{
ρ
})

,

resulting in γD = 0. Furthermore, Uo ({δr̄}) = Uo ({δr}). Axiom 5 then implies,
Uo (R

o) = Uo ({δr}) for every Ro ∈ ℜD. But by Axiom 4, we then obtain that for
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any λ ∈ [0, 1], any {ρ} ∈ RD, and m and m′ such that m ({ρ1}) = λ, m ({ρ2}) =
1− λ, m′ ({ρ}) = 1,

(m̄, Ro) ∼ (m,Ro) .

for some and thus, by Corollary 1, for any Ro ∈ ℜD. At the same time, Axiom 5
gives us:

(m̄, Ro) ∼ (m,Ro) ∼ (m,Ro)

for any m ∈ ∆(RD) for any Ro ∈ ℜD in contradiction to the non-triviality
assumption in Axiom 1. □

Proof of Theorem 1
By representation (14), we can write for any R ∈ ℜD,

UO (R) = αo
D

(
ρ
R
, ρ̄R

)
wo (ρ̄R, ρ̄R)+

(
1− αo

D

(
ρ
R
, ρ̄R

))
wo

(
ρ
R
, ρ

R

)
= UO

({
ρ
R
, ρ̄R

})
(16)

and for any R ∈ RD,

U (R) = αD

(
ρ
R
, ρ̄R

)
wo (ρ̄R, ρ̄R)+

(
1− αD

(
ρ
R
, ρ̄R

))
wo

(
ρ
R
, ρ

R

)
= U

({
ρ
R
, ρ̄R

})
(17)

It is thus sufficient to determine UO and U for sets with two elements (the case
ρ
R
= ρ̄R has already been discussed above).
Consider thus ρ, ρ′ ∈ ∆(RD) with ρ ≻ ρ′, the corresponding set of these two

outcome distributions Ra = {ρ, ρ′} and the singleton set Rb = {αρ+ (1− α) ρ′}
for some α ∈ [0, 1]. By continuity, Axiom 3, there exists a unique α such that for
some (and then all) m ∈ ∆(RD), (m,Ra) ∼ (m,Rb). By Proposition 3, we then
have:

UO (Ra) = α (ρ′, ρ)
∑
r∈RD

u (r) ρ (r) + (1− α (ρ′, ρ))
∑
r∈RD

u (r) ρ′ (r)

= α
∑
r∈RD

u (r) ρ (r) + (1− α)
∑
r∈RD

u (r) ρ′ (r) = UO (Rb)

and, thus, αo
D (ρ′, ρ) = α.

By Axiom 6, for any ρ′′, ρ′′′ ∈ ∆(RD) with ρ′′ ≻ ρ′′′, the corresponding set
of these two outcome distributions Rc = {ρ′′, ρ′′′} and the singleton set Rd =
{αρ′′ + (1− α) ρ′′′} we have (m,Rc) ∼ (m,Rd). We thus obtain αo

D (ρ′′′, ρ′′) =
αo
D (ρ′, ρ) = α for any ρ, ρ′, ρ′′ and ρ′′′. It follows that

αo
D

(
ρ
R
, ρ̄R

)
= α

for all ρ
R
and ρ̄R and thus, for all R ∈ ℜD. Setting αo

D = α thus implies that for
any R ∈ ℜD,

UO (R) = αo
D max

ρ∈R

∑
r∈RD

u (r) ρ (r) + (1− αo
D)min

ρ∈R

∑
r∈RD

u (r) ρ (r) (18)

and thus, the optimism parameter for unobserved characteristics xo does not de-
pend on the set of outcomes R.
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The argument that Axiom 7 implies that there exists an αD ∈ [0, 1] such that
for any R ∈ RD,

U (R) = αD max
ρ∈R

∑
r∈RD

u (r) ρ (r) + (1− αD)min
ρ∈R

∑
r∈RD

u (r) ρ (r) (19)

is analogous and thus omitted.
Combining the representation in Proposition 2 with the expressions in (18) and

(19) gives the desired representation.□
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