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Abstract

This paper first analyzes the negative impact of the end-of-horizon effect when solving the ca-

pacitated multi-item lot-sizing problem with setup costs and times on a rolling horizon. Maximum

ending inventories for items and a global minimum ending inventory are considered to define a new

optimization problem whose optimal solutions are much less impacted by the end-of-horizon effect.

Then, a generation scheme is proposed to create new instances with initial inventories and ending

inventories. This scheme relies on the analysis of the cyclical production planning problem to derive

relevant parameters. Computational experiments are carried out to compare the solutions obtained

for original instances of the literature and for the new instances, and to analyze the relevance of the

new instances on a rolling horizon.

Keywords: Manufacturing, Multi-item lot sizing, setup times, ending inventories, rolling horizon.

1. Introduction

Lot-sizing problems aim at determining a production or distribution plan to satisfy demands on

a time horizon discretized into periods and that minimizes the total cost. Since the middle of the

20th century, lot sizing has been a very active research field, in particular because of its numerous

applications in manufacturing and logistics. Yet, the first results on lot sizing come from the beginning

of the 20th century, where Harris (1913) developed the notion of Economic Order Quantity (EOQ)

for a cyclical and stationary single-item production planning problem. A global overview on various

types of lot-sizing problems can be found in Pochet and Wolsey (2006).

Throughout the years, the focus is increasingly on finding ways to model industrial problems as

close to the reality as possible (Jans and Degraeve (2008)). Additional constraints in single-item lot-

sizing problems have been extensively considered (Brahimi et al. (2017)). Although some dynamic

lot-sizing problems are polynomial, the first one being studied in Wagner and Whitin (1958), they are

generally NP-Hard, and many heuristics have been proposed in the literature to find good feasible

solutions for single-item and multi-item problems. Lagrangian relaxations (see e.g. Brahimi et al.
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(2006) and Süral et al. (2009)) and partial LP-relaxations (see e.g. Absi and Kedad-Sidhoum (2007)

and Helber and Sahling (2010)) are two of the most popular methods.

To model the fact that, in many industrial contexts, starting a new product incurs a fixed time

to configure the resource, Trigeiro et al. (1989) consider the notion of setup times in the multi-item

capacitated lot-sizing problem (CLSP). Usually industrial lot-sizing problems are solved on a rolling

horizon. In this context, only the decisions for the immediate periods are taken, after which the horizon

is rolled forward and the model is applied once more with updated inventory, demand and capacity

parameters. Using this approach enables for each period to be optimized several times and updated

according to new information on future demands. However, because each optimization problem only

considers a finite time horizon, an end-of-horizon effect can occur. As described in Fisher et al. (2001),

most lot-sizing problems have in common that there exists a solution with a zero-ending-inventory

property, meaning that there is no inventory at the end of the time horizon. The fact that the ending

inventory is 0 for an optimal solution raises some issues, and can affect the production plan during the

first periods in such a way that the quality of the solution decreases over time. Stadtler (2000), Fisher

et al. (2001), van den Heuvel and Wagelmans (2005) propose ways to either define an adequate length

of the time horizon or modify the objective function in order to cope with this end-of-horizon effect.

However, they only consider single item uncapacitated lot-sizing problems. They deduce inventory

valuations based only on the cost, using indicators such as the Economic Order Quantity (Harris

(1913)). In addition, the proposed approaches do not apply since capacity is not taken into account

when evaluating the ending inventory. These methods do not apply to the CLSP because they assume

the zero inventory ordering (ZIO) property (Wagner and Whitin (1958)) and extend the dynamic

programming algorithm proposed by Wagner and Whitin (WW). However the CLSP does not have

the ZIO property, so an update on the cost coefficients when solving the problem using the WW

algorithm as proposed by Stadtler (2000), van den Heuvel and Wagelmans (2005) cannot be used to

determine the ending inventory of a multi-item capacitated lot-sizing problem. In such problems, the

obtained solutions will not respect the capacity constraints. We also quote the work of Fisher et al.

(2001) that provides a valuation for the ending inventory in the objective function, however this cost

is not linear and cannot be solved by a linear solver.

Studying the impact of the end-of-horizon effect on a multi-item capacitated lot-sizing problem

with setup times cannot be neglected. Yet, in the literature, the ending-horizon effect on the CLSP

is very rarely considered. As illustrated in Section 2, independently of the number of periods of the

planning horizon, the decisions in the first periods might be impacted by the zero-ending-inventory

property. To the best of our knowledge, this phenomenon has never been studied in the literature.

Clark and Clark (2000) considered a rolling horizon setting for a capacitated lot-sizing problem with

multiple machines and setup carry-over and proposed a new model that modifies production times

according to the average demand in order to get better LP-relaxations. Similarly to our approach, their

model also takes into account a number of setups per period but the setting of this parameter is left

to the user and does not depend on neither the costs nor the capacity at each period. Moreover, they

do not consider additional inventory constraints. Campbell and Mabert (1991) justify the fact that

cyclical schedules are often preferred in practice, mainly because they can be efficiently implemented.

They also point out that cyclical schedules provide good results on average when solving capacitated

lot-sizing problems. They impose a cyclical CLSP where cycle lengths are picked among a set of

discrete values based on the Time Between Order (TBO) for each item. In our paper, cycle lengths

are not predefined, setup times are considered in the TBO calculation, and we use a cyclical sub-

problem to define relevant inventory indicators. The numerical results in Campbell and Mabert (1991)

show that cyclical schedules are especially relevant for small demand variability, which is consistent

with our computational results. Campbell and Mabert (1991) also point out that tighter capacity

constraints provide larger gaps between the costs obtained by solving a cyclical problem and a non-
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cyclical problem. However, this can be caused by the fact that, when considering the set of cycle

lengths, capacity is not taken into account in Campbell and Mabert (1991). In our approach, the

theoretical cycle lengths also take capacity into account, adjusting the cycle length for each item

accordingly.

In Chand et al. (2002), the authors point out the importance and the impact of the length of

the time horizon on the solution quality. As pointed out by Carlson et al. (1979), to reduce the

nervousness of a material requirement planning problem (MRP), we ideally want to minimize the

changes in the production plan on a practical level when we add a period on a rolling horizon. Yet

the added information on the new demand might change the optimal order of setups. Federgruen

and Tzur (1994) extend the notion of nervousness in the MRP and propose an algorithm to find a

minimum forecast horizon that is sufficient to not affect the decisions taken over a planning horizon

for the uncapacitated single-item lot-sizing problem (ULSP). Their numerical results show that the

minimum forecast horizon varies a lot depending on the parameters but it can be quite high for static

costs. Moreover, finding a minimal forecast horizon is a problem that is of the same complexity as the

ULSP. This importance is even greater when there are setup times and when the capacity is tight. In

this case, there is no guarantee that all demands can be satisfied, and lost sales should be allowed and

penalized. A common belief among researchers in the field is that extending the planning horizon is

enough to ensure that decisions in the first periods are not impacted by the end-of-horizon effect. We

show in this paper that this belief is not true for the the CLSP with setup times, and that allowing zero

ending inventories might lead to poor decisions on arbitrarily large planning horizons, in particular

when planning on a rolling horizon as it is the case in practice.

Hence, in this article, we propose a way to mitigate the end-of-horizon effect by adding to the

CLSP with setup times and lost sales (Absi and Kedad-Sidhoum (2007, 2008)) both a maximum

ending inventory per item and a global minimum ending inventory to be fulfilled at the end of the

horizon. From the generation scheme of Trigeiro et al. (1989) (still used as a benchmark for capacitated

lot-sizing problems, see e.g. Absi and Kedad-Sidhoum (2007) and de Araujo et al. (2015)), we propose a

new framework to create instances for this new lot-sizing problem where the edge effect is avoided, and

that are relevant when solving lot-sizing problems on a rolling horizon where the available information

on future demands can be used.

The paper is organized as follows. Section 2 motivates the need to mitigate the end-of-horizon

effect by the addition of a global minimum ending inventory as well as maximum inventory levels

when solving a CLSP with setup times. In Section 3, an analysis of optimal solutions in a capacitated

cyclical configuration is performed in order to evaluate relevant inventory levels on a rolling horizon,

in a way similar to the definition of the TBO (Harris (1913)) but taking the capacity into account.

Section 4 addresses some extensions of the CLSP for which the same analysis can be applied. In

Section 5, an extension of the CLSP with setup times and global minimum ending inventory for all

items is introduced. A new generation scheme which extends the one of Trigeiro et al. (1989) to create

more relevant instances is then proposed. The generation scheme is extended in Section 4 to more

general cases. A computational analysis is carried out in Section 6.1 to compare the solutions obtained

by solving the original and the new instances, and the effect of planning on a rolling horizon. Some

conclusions and perspectives can be found in Section 7.

2. Motivations

Section 2.1 recalls the multi-item CLSP model with setup times and lost sales. Section 2.2 illus-

trates the impact of a global minimum ending inventory, and Section 2.3 shows how the end-of-horizon

effect can affect decisions taken in the first periods when planning on a rolling horizon, and thus the
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limits of the model and the instances of Trigeiro et al. (1989). Section 2.4 focuses on the impact of

initial inventories.

2.1. Problem formulation

We consider the capacitated lot-sizing problem with setup times and lost sales, where N items have

to be produced over a planning horizon of T periods. The discrete demand of each item i is given by

dit at period t. Each unit of item i produced at period t induces a production time bit as well as a fixed

setup time sit. We aim at finding an optimal production plan, i.e. a production plan complying with

the capacity restriction cmax
t for each period t while minimizing the total cost. This cost comprises the

fixed and unitary production costs to be incurred each time a production takes place, the inventory

holding costs for all the items as well as the lost-sales costs penalizing the unsatisfied demand. The

cost parameters are the unitary production pit, fixed setup fit and unitary inventory holding hit costs

for item i at period t. The lost-sales costs penalizing each unit of unsatisfied demand of item i at

period t is defined by lit. We recall the mathematical formulation of the problem that can be found

in Trigeiro et al. (1989) (without lost sales) and Absi and Kedad-Sidhoum (2008).

Let us define the decision variables as follows:

Xit ≥ 0: Quantity of item i produced at period t,

Yit ∈ {0, 1}: Setup variable equals to 1 if there is an order for item i at period t, and 0

otherwise,

Iit ≥ 0: Inventory of item i at the end of period t,

Lit ≥ 0: Quantity of lost sales for item i at the end of period t.

We extend the definition of Iit with t = 0 to describe the initial inventory of item i. More-

over, we use .̄ to define the average value of a parameter over all items and all periods, e.g. f̄ =
1
NT

∑N
i=1

∑T
t=1 fit.

The formulation of the CLSP with setup times and lost sales is given below:

min

N∑
i=1

T∑
t=1

(fitYit + pitXit + hitIit + litLit) (1)

Ii,t−1 +Xit + Lit = dit + Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (2)

N∑
i=1

(sitYit + bitXit) ≤ cmaxt , ∀t ∈ 1, . . . , T (3)

Xit ≤MitYit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (4)

Lit ≤ dit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (5)

Yit ∈ {0, 1}, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (6)

Xit, Iit, Lit ≥ 0, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (7)

The objective function (1) minimizes the total production, setup, inventory and lost sales costs of

all items over the planning horizon. Constraints (2) are the flow conservation constraints that balance,

for each item, the inventory at period t − 1 and the production and lost sales quantities at period t

with the inventory and the demand at period t. Constraints (3) ensure that the capacity consumed

by setup and production times does not exceed the maximum production capacity. Constraints (4)

link the continuous production variables with the binary setup variables, Mit being an upper bound

on the optimal production quantity (e.g. Mit = min(
∑T

k=t dik, c
max
t − sit)). Constraints (5) state that
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the quantity of lost sales cannot exceed the demand. Constraints (6) and (7) define the domain of the

variables.

As in Trigeiro et al. (1989), we only consider the case where there are no production costs, and

where the cost parameters are constant over the horizon. Thus, the index t is removed in the cost

parameters.

2.2. Impact of global minimum ending inventory

In this section, we show through an illustrative example, that the end-of-horizon effect can affect

the capacity consumption in the first periods even for large horizon lengths. On a rolling horizon, as

discussed in Section 2.3, this can lead to significant lost sales. The example shows that the addition

of a global minimum ending inventory can mitigate the end-of-horizon effect.

To illustrate the impact on the first periods of a production plan of considering an ending inventory,

let us consider the optimal solution of an instance of the problem with 2 items, i.e. N = 2, and T = 20.

The demand is constant over time and is set to 100, and the holding costs, unitary production times

and setup times are set to 1. No setup and production costs are considered. The available capacity is

cmax = 201 in each period. In addition, the initial inventory I1,0 is set to 100 for the first item.

Figure 1a (resp. 1b) shows the optimal solution obtained without (resp. with) a global minimum

ending inventory set to 100 using the method proposed in Section 5.2, while Figure 1c (resp. 1d) shows

the optimal solution for the first 20 periods when solving the problem with T = 101 (resp. T = 200).

(a) Without ending inventory, T = 20 (b) With ending inventory, T = 20

(c) Without ending inventory, T = 101 (d) Without ending inventory, T = 200

Figure 1: Production quantities in the first 20 periods

The addition of the global minimum ending inventory enables the decisions in the first periods

to match the optimal decisions observed over a very long horizon. Even with T = 20 and only two

items (Figures 1a and 1b), not considering inventory constraints at the end of the horizon directly

impacts the decisions taken in the first periods. Without a global minimum ending inventory, Figure

1a shows that the capacity at the end of the horizon is used to add additional setups at each period.
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This leads to a poor capacity utilization in the first period, where only a little over half the capacity

is consumed. On the opposite, Figure 1b shows that capacity is better used with the ending inventory

constraints. As shown in Figures 1c and 1d, the optimal production plan over longer horizon tends to

the production plan of Figure 1b.

In order to illustrate the impact of the end-of-horizon effect on an instance with more items,

Figure 6a shows the optimal plan for an instance of Trigeiro et al. (1989) with 10 items, where each

color corresponds to an item. All the optimal solutions of the instances of Trigeiro et al. (1989) share

the same shape, with small production lots in the first periods and an under-utilization of the capacity

in the last periods of the horizon, as discussed in more details in Sections 2.3 and 2.4.

Figure 2: Optimal solution for an instance of Trigeiro et al. (1989).

Enough inventories should be available at the end of horizon, in particular on a rolling horizon,

to make better use of production capacity in the first periods. The benefits of considering ending

inventories on a rolling horizon are discussed in the following section.

It should also be pointed out that the number of periods affected by the edge effect (both the first

and last periods of the horizon) can vary depending on the capacity and cost parameters. The impact

of this effect is especially hard to evaluate for the CLSP with setup times, where regular indicators

such as the TBO or the EOQ used for instance in Fisher et al. (2001) cannot be applied to capacitated

problems. This impact is illustrated in Section 2.3, where even large time horizons cannot cope with

the end-of-horizon effect.

2.3. Planning on a rolling horizon

In this section, we consider the process of planning on a rolling horizon, where τ ≤ T is the number

of first periods in which decisions are fixed after optimizing the production plan. Let us denote by

T the number of periods of each planning horizon and by Ω the number of periods of the total time

horizon (T ≤ Ω). Let us consider an instance of the problem with N = 4, T = 10 and τ = 1. The

demand is constant over time and is set to 100. The holding costs and unitary production times are

set to 1. Setup times are fixed to 50. No setup and production costs are considered. The available

capacity is cmax = 450 for each period of the horizon. An initial inventory of 300 units is considered

for each item. Note that, since no setup costs are considered, the best policy, only guided by the

holding costs, is to have the lowest possible inventory levels. Ideally, no inventory would be carried

and 100 units of both items would be produced at each period. However this production plan is not
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possible because of the limited capacity at each period. In this example, we assume that lost sales are

highly penalized.

Figure 3 (resp. Figure 4) shows for this instance the inventory levels and lost sales (resp. the

capacity consumption) on a rolling horizon with or without ending inventory constraints as proposed

in Section 5.2. Let us first analyze the two different cases in Figure 3:

• Figure 3a shows the inventory levels and lost sales in the first 16 periods when no ending inven-

tory constraints are considered. Without ending inventory constraints, the additional capacity

provided at the end of the horizon, because of the zero-inventory policy, enables the inventory

in the first periods of the rolling horizon to be immediately consumed and not kept to satisfy

later demands. At each step of the rolling horizon process, the initial inventory decreases until

it reaches a point where it is no longer possible to find a feasible solution without lost sales due

to capacity limitations. We then get a cyclic production plan where 50 units are lost every two

iterations.

• Figure 3b shows the inventory and lost sales evolution for the same instance with the addition of

a global minimum ending inventory of 600 units and a maximum ending inventory of 300 units

for each item (using the method proposed in Section 5.2). The ending inventory constraints

force the capacity to be fully used throughout the planning horizon, and that the decisions of

the first periods are not impacted by the unused capacity at the end of the horizon. We can see

that no lost sales are observed in this case.

When lost sales are not allowed we get an infeasible production plan when there are no ending

inventory constraints. When lost sales are penalized and not forbidden, because we have a cyclic

production plan after 7 periods for the case without ending inventory and 2 periods with ending

inventory, we can calculate the optimal cost over a rolling horizon of Ω ≥ 7 periods. Assuming l

as a unit lost sales cost parameter, we get for the instance of the problem without ending inventory

(Figure 3a) an optimal cost of:

C1 = 2550 + (400 + 50l)bΩ− 5

2
c+ 350dΩ− 5

2
e

and

C2 = 1450 + (Ω− 2)600

for the instance of the problem with ending inventory (Figure 3b). In this case, for Ω = 100, we get

that C1 ≥ C2 for:

38150 + 2350l ≥ 60250

Thus if l ≥ 9.5 the production plan in Figure 3b becomes less costly than the plan in Figure 3a,

and the difference increases with l. In many industrial applications, lost sales costs are the primary

objective to optimize. Note that there are multiple optimal production plans when there are no ending

inventory constraints.

Let us now analyze the capacity consumption for the two considered cases in Figure 4:

• In Figure 4a, because there are no ending inventory constraints, more capacity is allocated to

setup times since the initial inventory is used in the first periods, and then not enough inventory

is kept to fully satisfy part of the demands, leading to the lost sales observed in Figure 3a.

• Figure 4b shows that ending inventory constraints better allocate setup times throughout the

horizon. This explains why there are no lost sales in Figure 3b.
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(a) Without ending inventory (b) With ending inventory

Figure 3: Inventory evolution on a rolling horizon

(a) Without ending inventory (b) With ending inventory

Figure 4: Capacity consumption on a rolling horizon
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One can consider that the production plan patterns in Figures 3b and 4b could be obtained by

significantly increasing the number of periods of the planning horizon. However, this leads to some

negative effects. Indeed, the introduction of non accurate demands, because of the lack of information

at the end of the horizon, should impact the quality of the obtained solutions. Moreover, increasing

the number of periods negatively affects the computational efficiency of solution approaches. As

the capacity gets tighter, the number of periods T that needs to be considered on a rolling horizon

increases. In contrast, setting a global minimum ending inventory based on future demand predictions

on a rolling horizon allows capacity to be better used. Moreover, contrarily to studies on uncapacitated

lot-sizing problems (e.g. Carlson et al. (1979)), there is no theoretical guarantee that, for capacitated

problems with setup times, there exists a forecast horizon ensuring that the decisions in the first

periods will not be affected by demands outside of the planning horizon.

2.4. Initial inventories

Figure 6a shows that there are 5 setups in the first period while, from period 2 to 18, the number

of setups oscillates between 2 and 3. Note also that the fraction of the capacity consumption taken

by setup times is larger in the first period than in the following ones. This is because, when there are

neither lost sales nor initial inventory, as it is the case for the CLSP, a setup will occur for every item

before or at the period corresponding to its first positive demand. The first production periods are

not impacted by production and setup costs, which explain the difference in the number of setups.

This leads the optimization process to focus on packing the first production quantities to meet the

demands of the first periods as well as making full use of the capacity constraints.

The feasibility of the problem highly depends on whether or not the capacity in the first periods is

large enough to cover the demands of the first periods. As the capacity is constant over the planning

horizon, in order to avoid infeasibility for these instances due to the required capacity for covering the

demands during the first periods, 25% of the demands in the first four periods were set to 0 in the

instances provided by Trigeiro et al. (1989). This choice was arbitrarily made to guarantee feasibility,

and has no practical reality. Optimizing the production quantities in the first production periods,

which increases the computational complexity of the optimization problem, also does not make much

sense when planning on a rolling horizon.

Initial inventories can also have a significant impact on the feasibility of the solution when planning

on a rolling horizon, as the initial inventories are linked to the decisions that are taken in the first

periods.

Following this discussion, we propose to mitigate the end-of-horizon effect by adding inventory

constraints at the end of the last period of the planning horizon. Adding inventory constraints is a

relevant way to ensure that ending conditions are satisfied. Indeed, it makes sense from a practical

point of way to always keep a minimum inventory level of all items. This global minimum inventory

level differs from the minimum inventory level per item in each period that is typically associated

to safety stocks. To avoid that the ending inventory only includes a single item, typically the one

with the smallest holding cost, and to balance the ending inventory among items, a maximum ending

inventory level for each item is also considered.

3. Inventory levels for the capacitated lot-sizing problem with setup times on a rolling
horizon

The main goal of this section is to define new indicators to characterize relevant inventory levels for

the considered capacitated lot-sizing problem on a rolling horizon. To this end, we use similar argu-

ments that the ones used to define the Time Between Order and the Economic Order Quantity (Harris

(1913)). To do that, we define in Section 3.1 a new problem that enables us to find approximated
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analytical values whose relevance will be discussed in the numerical analysis of Section 6. We show in

Section 3.2 that this problem is relevant compared to the CLSP, and more specifically to the problem

with static costs and the parameters considered in Trigeiro et al. (1989). This simplified model will

be used in Section 5.2 to update the instance generation scheme proposed in Trigeiro et al. (1989), in

order to create instances whose optimal plans will not be affected by the end-of-horizon effect.

3.1. Multi-item cyclical production planning with bounded average capacity consumption

Let us consider the multi-item lot-sizing problem with setup times that consists in finding optimal

cycle lengths on a rolling horizon. All costs and demands are static. Let us denote by φi ∈ N∗ the

cycle length of an item i, i.e. the number of periods between two production periods. The production

cycle length φ̄ ∈ N∗ is defined as the minimum number of periods, such that each item has an integer

number of cycles, i.e. the least common multiple of the cycle length of all the items. Additionally,

the cycle lengths of each item should be such that the average capacity consumed in each period

of a production cycle should not exceed the maximum capacity cmax. Figure 5 illustrates the item

and the production cycle length for an instance with four items and a horizon of ten periods, where

φ1 = φ2 = 3, φ3 = φ4 = 2 and φ̄ = 6.

Figure 5: Example of cyclical production with 4 items.

The total inventory cost for one cycle of length φi is h̄di
∑φi−1

t=1 t = h̄diφi
φi−1

2 . The total inventory

cost in a production cycle of length φ̄ is then:

N∑
i=1

φ̄

φi
h̄diφi

φi − 1

2
= h̄φ̄

N∑
i=1

di
φi − 1

2

The average inventory at each period ˜Iinf , as well as the maximum inventory Isupi for item i, can

be defined as:

˜Iinf =
N∑
i=1

di
φi − 1

2
(8)

Isupi = (φi − 1)di (9)

We denote φ = {φ1, · · · , φN}. The optimization problem (PC) that minimizes the cost per period
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in a production cycle φ̄ can be defined as follows:

min
φ∈N∗N

N∑
i=1

fi
φi

+ h̄

N∑
i=1

di
φi − 1

2
(10)

s.t.
N∑
i=1

si
φi
≤ cmax −Nb̄d̄ (11)

The objective function (10) minimizes the average setup and inventory costs for a period of the

cycle length. In a cyclical configuration, the average production time per period is Nb̄d̄, which means

that, on average, the capacity available for setup times is cmax −Nb̄d̄. Constraint (11) thus imposes

an upper bound on the average number of setups.

3.2. Similarities between (PC) and the optimization problem of Trigeiro et al. (1989)

To consider a problem with similar data than the instances generated in Trigeiro et al. (1989),

average values for costs and demands are set identical for all items. These values correspond to the

average values of the parameters defined in Section 2.1, except for the production costs that are equal

to 0 and the lost sales that are not allowed.

The expected number of setups per period ki ∈ R∗+ for item i corresponds to the reciprocal of the

cycle length φi:
1

φi
= ki

This implies that the average number of setups k ∈ R∗+ in each period of a production cycle is related

to the cycle length of each item:

k =

N∑
i=1

ki =

N∑
i=1

1

φi

The optimization problem (P̄C) that minimizes the cost per period in a production cycle φ̄ can be

derived from problem (PC) and is defined as follows:

min
(k,φ)∈R∗

+×N∗N
f̄k + h̄d̄

N∑
i=1

φi − 1

2
(12)

s.t.
N∑
i=1

1

φi
= k (13)

k ≤ cmax −Nb̄d̄
s̄

(14)

The objective function (12) as well as constraint (14) are similar to (10) and (11). Constraint (13)

links the number of setups per period with the cycle length of each item.

The cyclical approximation is a simple but relevant simplification of the model in order to get a

general idea of the behaviour of a solution as it provides insights on the role of the costs and the

capacity. In the Trigeiro et al. (1989) generation scheme, all costs are static. The costs can vary

between each item, but they are all generated by doing slight changes around common average values.

Even though the demands are dynamic, they are also generated around the same common value. In

(P̄C), we only consider the case where the average capacity consumed in each period is lower than

cmax, which is a relaxation of the initial problem where there is an upper bound on the capacity in each

period. However, with N production cycle lengths, we assume that there is one configuration such

that the capacity used in each period is close to the average capacity consumption. Furthermore, in

12



this paper, we are only interested in approximating the inventories in each period. The idea is not to

consider the dynamics of production. Thus, analyzing the cyclical multi-item problem, where all costs

and demands are averaged and where the average capacity consumption is bounded, should provide

enough insight on the shape of an optimal solution of the problem addressed in Trigeiro et al. (1989)

on a rolling horizon. The relevance of our assumptions is analyzed in the computational experiments

of Section 6.1. The study of the continuous relaxation of (P̄C) helps to evaluate the average total

inventory as well as the maximum inventory per item.

3.3. Analysis of the continuous relaxation of (P̄C)

When the integrality constraints on variables φi are relaxed in (P̄C), the following non-linear

problem (P̃C) can be derived:

−Nh̄
2
d̄+ min

{k∈R∗
+|k≤

cmax−Nd̄b̄
s̄

}
(f̄k +

h̄

2
d̄ min
{φ∈R∗N

+ |
∑N
i=1

1
φi

=k}

N∑
i=1

φi),

as the set {φ ∈ R∗N+ |
∑N

i=1
1
φi

= k} is non-empty for all k ∈ R∗+.

Let us show that the continuous relaxation of (P̄C) can be analytically solved to optimality. Pro-

viding an easy-to compute analytical formula might give insights on the links between the costs and

the capacity for an instance of the problem.

Property 1. If cmax−Nd̄b̄
s̄ ≥ N

√
h̄d̄
2f̄

, then the optimal solution is reached for k∗ = N
√

h̄d̄
2f̄
, and the

optimal value is: − h̄d̄N
2 + N

√
2h̄d̄f̄ . Otherwise, the optimal solution is reached for k∗ = cmax−Nd̄b̄

s̄ ,

and the optimal value is: h̄d̄N
2 ( Ns̄

cmax−Nd̄b̄ − 1) + f̄ (cmax−Nd̄b̄)
s̄ .

Proof. Let us first show that:

min
{φ∈R∗N

+ |
∑N
i=1

1
φi

=k}

N∑
i=1

φi =
N2

k

Using the Euclidian norm and its corresponding scalar product, the Cauchy-Schwarz inequality

states that, for φi ∈ R∗+N :

(

N∑
i=1

√
φi
φi

)2 ≤ (

N∑
i=1

1

φi
)(

N∑
i=1

φi)

Thus, by positivity:
N∑
i=1

φi ≥
N2∑N
i=1

1
φi

So that:

min
{φ∈R∗N

+ |
∑N
i=1

1
φi

=k}

N∑
i=1

φi ≥
N2

k

When φi = φ̄ = N
k , for all i, we have

∑N
i=1

1
φi

= k and
∑N

i=1 φi = N2

k , and then:

min
{φ∈R∗N

+ |
∑N
i=1

1
φi

=k}

N∑
i=1

φi =
N2

k

13



The continuous relaxation of (P̄C) is equivalent to:

− h̄d̄N
2

+ min
{k∈R∗

+|k≤
cmax−Nd̄b̄

s̄
}

(f̄k +
h̄d̄N2

2k
)

Let us consider the function g(x) = f̄x + h̄d̄N2

2x on R∗+. This function of x ∈ R∗+ is decreasing

until x∗ = N
√

h̄d̄
2f̄

, and then increasing. If k∗ denotes the optimal average number of setups and as

k∗ ≤ cmax−Nb̄d̄
s̄ , then:

• If cmax−Nd̄b̄
s̄ ≥ N

√
h̄d̄
2f̄

, then k∗ = N
√

h̄d̄
2f̄

and the optimal value is: − h̄d̄N
2 +N

√
2h̄d̄f̄ ,

• Otherwise, k∗ = cmax−Nd̄b̄
s̄ , and the optimal value is: h̄d̄N

2 ( Ns̄
cmax−Nd̄b̄ − 1) + f̄ (cmax−Nd̄b̄)

s̄ .

Let us introduce kcapa = cmax−Nd̄b̄
s̄ and kcost = N

√
h̄d̄
2f̄

. In a cyclical configuration, the number of

setups k in each period is close to:

k = min(kcost, kcapa) (15)

and the cycle length φi is close to N
k for all items.

If the capacity constraints are not binding, the production cycles follow the time between order

TBO =
√

2 f̄
d̄h̄

for each item. On average, k = kcost items will be produced in each period, consuming

a capacity of N
k s̄+Nd̄b̄.

By applying the same analysis to the original Trigeiro et al. (1989) instances, we find that, for

some of these instances, kcapa < 1. This would imply that these instances are only feasible because

of the extra capacity freed by the demands randomly set to 0 in the first periods of the planning

horizon. For the other instances, we have kcapa > N , which is not relevant when the capacity is

constrained. Moreover, if the costs are defined such that N
k is integer, then the optimal solution of

the relaxed problem (P̃C) is an optimal solution of problem (P̄C). Indeed, because of the relaxation

of the integrity property of the φ variables we have:

min
{φ∈R∗N

+ |
∑N
i=1

1
φi

=k}

N∑
i=1

φi =
N2

k
≤ min
{φ∈N∗N

+ |
∑N
i=1

1
φi

=k}

N∑
i=1

φi

For φi = N
k ∈ N∗, the value of N2

k is reached for problem (P̄C).

If the cycle length φi of item i is integer, then we have already established that the average

inventory of item i is equal to d̄φi−1
2 . The maximum inventory is d̄(φi − 1). We then apply these

formula to deduce the approximate values of the total average and the maximum inventory for each

item. As φi = N
k , we get the following values:

˜Iinf = d̄

N∑
i=1

N
k − 1

2
=
N(N − k)

k

d̄

2
(16)

Isupi = Isup =
N − k
k

d̄ (17)

.
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We can define analytical values for ˜Iinf and Isup even when φi = N
k is not an integer. We show in

Section 6.1 that this indicator is effective on a rolling horizon.

3.4. Lost sales costs

Considering the problem defined in Section 3.1 where we allow for a fraction of the demand to

not be satisfied, we can find an analytic value for lost sales costs which would ensure that there exists

an optimal solution without lost sales. The detailed analysis for this problem leading to (18) can be

found in the appendix and shows that there is an optimal solution without lost sales if we set the lost

sales cost parameter for item i as:

li = max

 Ns̄h̄cmax

2(cmax −Nb̄d̄)2
,

√
2f̄ h̄

d̄
,
h̄

2
(

Ns̄

cmax −Nb̄d̄
− 1) +

f̄

Nds̄
(cmax −Nb̄d̄)

 (18)

This proposed definition of the lost sales cost better integrates the cost and the capacity parameters

of the instances. Expression (18) relies on the analysis of the cyclical problem, where the possibility

for only a fraction of the demand to be satisfied is considered, and the characterization of sufficient

conditions for the optimal cycle to have no lost sales.

4. Extensions to more general cases

This section considers some extensions of the CLSP for which the same rationale can be applied

and analytical values for the optimal cycle lengths can be deduced from the relaxed problem. The

first extension addresses the case where the average demand varies between items, and the second

extension the case where, in addition, the setup times and costs are linearly dependent.

4.1. Average demand per product

Let us consider the case where the average demand di over time is different for each item. Let us

define an optimal cyclical production plan where the average capacity consumption does not exceed

cmax by solving the following problem:

min
(k,φ)∈R∗×N∗N

f̄k + h̄
N∑
i=1

di
φi − 1

2
(19)

s.t.
N∑
i=1

1

φi
= k (20)

k ≤ cmax −Nb̄d̄
s̄

(21)

Constraint (21) is still valid for the model above, since the average capacity consumed in each

period by the production setup time is
∑N

i=1 dib̄ = Nb̄d̄. Hence, the capacity available for setup times

is still cmax −Nb̄d̄. The continuous relaxation of the problem can be written as:

−h̄
N∑
i=1

di
2

+ min
{k∈R∗

+|k≤
cmax−Nd̄b̄

s̄
}

(f̄k +
h̄

2
min

{φ∈R∗N |
∑N
i=1

1
φi

=k}

N∑
i=1

diφi)

Property 2. If c
max−Nb̄d̄

s̄ ≥
√

h̄
2f̄

∑N
i=1

√
di, then the optimal solution is reached for k∗ =

√
h̄
2f̄

∑N
i=1

√
di,

and the optimal value is:
√

2f̄ h̄
∑N

i=1

√
di − h̄

∑N
i=1

di
2 . Otherwise, the optimal solution is reached for

k∗ = cmax−Nb̄d̄
s̄ and the optimal value is: f̄

s̄ (cmax −Nb̄d̄) + s̄h̄
2

(
∑N
i=1

√
di)

2

cmax−Nb̄d − h̄
∑N

i=1
di
2 .

15



The proof of Property 2 follows similar arguments than the proof of Property 1.

4.2. Average demand per item and correlated setup costs and times

Let us now assume that the setup times and costs are correlated, i.e. there exists λ ∈ R∗ such

that fi = λsi, ∀i ∈ {1, . . . , N}, and also that the average demand di is not the same for all items. We

set k̃ =
∑N

i=1
si
φi

, which corresponds to the average setup time per period. The average setup cost per

period is then
∑N

i=1
fi
φi

= λ
∑N

i=1
si
φi

= λk̃.

Similarly, the following cyclical production planning problem is solved:

min
(k̃,φ)∈R∗×N∗N

λk̃ + h̄

N∑
i=1

di
φi − 1

2
(22)

s.t.
N∑
i=1

si
φi

= k̃ (23)

k̃ ≤ cmax −Nb̄d̄ (24)

The continuous relaxation of the problem can be written as:

−h̄
N∑
i=1

di
2

+ min
{k̃∈R∗

+|k̃≤cmax−Nd̄b̄}
(λk̃ +

h̄

2
min

{φ∈R∗N |
∑N
i=1

si
φi

=k̃}

N∑
i=1

diφi)

Property 3. If cmax−Nb̄d̄ ≥
√

h̄
2λ

∑N
i=1

√
disi, then the optimum is reached for k̃∗ =

√
h̄
2λ

∑N
i=1

√
disi,

and the optimal value is:
√

2λh̄
∑N

i=1

√
disi − h̄

∑N
i=1

di
2 . Otherwise, the optimum is reached for

k̃∗ = cmax −Nb̄d̄, and the optimal value is: λ(cmax −Nb̄d̄) + h̄
2

(
∑N
i=1

√
disi)

2

cmax−Nb̄d − h̄
∑N

i=1
di
2 .

The proof of Property 3 follows similar arguments than the proof of Property 1.

5. New instance generation scheme

The new generation scheme proposed in this paper is based on the one proposed in Trigeiro et al.

(1989) with additional enhancements and parameters. The original instance generation scheme is

recalled in Section 5.1, and the new generation scheme is outlined in Section 5.2. The parameters are

described and analyzed in details in Section 5.3.

5.1. Original generation scheme

In the CLSP instances of Trigeiro et al. (1989), the cost and capacity parameters are constant

over time. The number of items varies from 10 to 30, and the production costs are equal to 0. The

instances were built as follows:

• Demand range. Demands are dynamic with an average value d̄ = 100. Half of the instances

have demands following a uniform probability distribution in the range [75, 125], the other half

in the range [0, 200]. In addition, 25% of the demands in the first four periods are set to 0.

• Time Between Order (TBO). The time between order, defined as TBO =
√

2 f̄
d̄h̄

(Harris

(1913)), is in {1, 2, 4}. In all the original instances, h̄ = 1.

• Production and Setup times. Half of the instances have an average setup time of s̄ = 11,

and of s̄ = 43 for the other half. All unitary production times are set to b̄ = 1.
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• Capacity tightness. For each instance, an average capacity use per period is computed

following the EOQ of Harris (1913). This capacity consumption is divided by a factor ρ ∈
{0.75, 0.85, 0.95} to define the instance capacity per period: cmax = N

ρ ( s̄
TBO + b̄d̄).

• Variability between items. Setup times as well as inventory and setup costs for each item

are generated based on their average values multiplied by coefficients taking values uniformly in

the range [0.5, 1.5].

5.2. New generation scheme

In this section, we propose a new generation scheme integrating the features discussed in Section 2.

Since we consider an extension of the CLSP with lost sales, new related parameters will be defined.

Lost sales are allowed but at a very high cost.

In order to obtain optimal solutions with limited edge effects at the beginning or at the end of the

planning horizon, we solve a new mixed integer linear problem based on the CLSP formulation (1-7)

with the following additional parameters and constraints:

• A global minimum ending inventory Iinf , so that the inventory level is not equal to 0 at the end

of the horizon, subject to the following constraint:

N∑
i=1

IiT ≥ Iinf

• An upper bound on the final inventory Isup of each item in order to have enough item diversity

in the ending stock, subject to the following constraint:

IiT ≤ Isup, ∀i ∈ [1, N ]

• An initial inventory per item Ii0 to have enough stock to satisfy the first demands.

The tricky point is the set up of the new parameters Iinf , Isup and Ii0, so that they will be in line

with the practical considerations discussed in Section 2. The parameters that do not appear in the

outline of the generation scheme below, are generated according to the original scheme described in

Section 5.1. For the new parameters, a reference to the section with the detailed analysis is provided.

• Demand range. Demands are dynamic with an average value d̄ = 100. Half of the instances

have demands following a uniform probability distribution in the range [75, 125], the other half

in the range [0, 200]. Contrary to Trigeiro et al. (1989), no demands in the first four periods are

set to 0.

• TBO, Setup times. As defined in Section 5.1.

• Lost sales cost for item i. As defined in Section 3.4.

• Maximum inventory per unit. Isup = N−k
k d̄ (see (17) derived in Section 3.3), where k =

min(kcost, kcapa) (see (15) derived in Section 3.3), with kcost = N
√

d̄h̄
2f̄

and kcapa = cmax−Nd̄b̄
s̄ .

• Global minimum ending inventory. Iinf =
∑N

i=1 I
∗
iT , where the values of I∗iT are obtained

by solving the Mixed Integer Linear Program (MILP) (Pf ) in Section 5.3.

• Initial inventory per item. Ii0 = I∗i0, where the values of I∗i0 are obtained by solving (Pf ) in

Section 5.3.
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• Capacity tightness. cmax = ks̄+Nd̄b̄+ c∗o, where the value of c∗o is obtained by solving (Pf )

in Section 5.3.

Section 3 showed how the last four parameters of the new generation scheme were derived. These

parameters are fitted in Section 5.3. In Section 3.3, we defined an approximate global minimum

ending inventory Iinf , and a maximum inventory per item, denoted by Isup, based on the value of a

time between order deduced from the average value of the demands, the average holding and setup

costs and the maximum capacity per period. From these parameters, we then define in Section 5.3

a new Mixed Integer Linear Program (MILP) which, given a global inventory value Iinf as well as a

maximum inventory per item Isup, determines feasible initial inventory values for each item as well as

a capacity limit. The value of Iinf is also fitted in order to follow the dynamic nature of the demand.

5.3. Fitting Iinf and setting initial inventories

In Section 3, a global minimum ending inventory and a maximum inventory based on a static

cyclical model were proposed. In order to find fitted values for the initial inventories of the dynamic

CLSP with lost sales, we solve a MILP where all the constraints of the original model (2)-(7), as well

as additional global minimum ending inventory and maximum inventory constraints, are considered.

The initial inventory of each item must be set so that the total initial inventory should be close to

Ĩinf , yet individually each initial inventory should be lower than Isup. This comes from the fact that,

ideally, the total inventory is constant throughout the time horizon, and individual inventories should

not exceed the value of Isup deduced in Section 3.3.

We want an inventory configuration at the end of the horizon that is similar to the one at the

beginning of the horizon. Therefore, the goal is to find a feasible solution that minimizes the absolute

value of the difference between the total initial inventory and the total inventory at the end of the

planning horizon. Let us denote by (Pf ) the following MILP:

min Kco + δ (25)

Ii,t−1 +Xit = dit + Iit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (26)

N∑
i=1

(sitYit + bitXit) ≤ c̃max + co, ∀t ∈ 1, . . . , T (27)

0 ≤ Ii0 ≤ Isup, ∀i ∈ 1, . . . , N (28)

0 ≤ IiT ≤ Isup, ∀i ∈ 1, . . . , N (29)

γĨinf ≤
N∑
i=1

Ii0 ≤ Ĩinf , (30)

δ ≥
N∑
i=1

(Ii0 − IiT ), (31)

δ ≥
N∑
i=1

(IiT − Ii0), (32)

Xit ≤MitYit, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (33)

Yit ∈ {0, 1}, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (34)

Xit ≥ 0, ∀i ∈ 1, . . . , N, ∀t ∈ 1, . . . , T (35)

Iit ≥ 0, ∀i ∈ 1, . . . , N, ∀t ∈ 0, . . . , T (36)

co, δ ≥ 0 (37)
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where c̃max is defined using average values on the costs and capacity, c̃max = ks̄+Nd̄b̄ with k defined

as shown in Section 3.3.

The capacity limit is the sum of the fixed capacity c̃max and the overtime co. The fixed parameter

represents the estimated capacity consumption in the cyclical configuration. Overtime is added to

guarantee the feasibility of the problem with dynamic demands, but is highly penalized in the objective

function (25) by the parameter K. The fixed capacity is defined according to the EOQ provided

either by the average costs or by the capacity cmax. Variable δ is the gap between the initial inventory

and the ending inventory. This gap has to be minimized as well. Constraints (27) are the capacity

constraints. Constraints (28) and (29) set bounds on the initial inventories and the ending inventories.

Constraint (30) ensures that the total initial inventory is close to the global minimum ending inventory,

and parameter γ defines the tightness in Constraint (30), where 0 ≤ γ ≤ 1. Constraints (31) and (32)

link δ with the inventory gap, while Constraints (33) connect the production and setup variables.

Finally, the domains of the variables are given by Constraints (34)-(37).

In the proposed generation scheme, we define cmax = c̃max + c∗o, where c∗o is the optimal value

obtained by solving (Pf ). In addition, the global minimum ending inventory is fitted to guarantee

that a feasible solution without lost sales can be found, Iinf =
∑N

i=1 I
∗
iT , where I∗iT is the optimal

ending inventory obtained by solving (Pf ). In our case, we want to avoid adding overtime to the

analytical capacity unless to avoid infeasible instances when lost sales are not allowed. We set K, the

penalty per unit of overtime, to an order of magnitude higher that the unit penalization of the gap

between the initial and the ending inventories. Regarding the γ parameter, ideally it should be close

to 1 to keep the same global inventory at the beginning and at the end of the horizon. However, in

order to allow some slacks due to the variability of the costs and the parameters, we can set a slightly

lower value. In our computational experiments, we set K = 100 and γ = 0.95.

The initial inventory values Ii0 are considered as decision variables because we want to create

instances that are relevant on a rolling horizon. However, a possible extension could be to assume

that the initial inventories are known parameters and to define an adequate minimum ending inventory

level Iinf that is close to Ĩinf but takes into account the potential lack of inventory during the first

periods and the impact of the capacity tightness. Ideally the ending inventory should be close to Ĩinf

without lost sales or extra capacity. The analytical minimum inventory target Ĩinf might be reached

after a few iterations over the rolling horizon even with a lack of initial inventory. If we assume Ii0 are

known parameters, we can remove Constraints (28) and (30) and modify Constraints (31) and (32)

from (Pf ) as follows:

δ ≥ Ĩinf −
N∑
i=1

IiT , (38)

δ ≥
N∑
i=1

IiT − Ĩinf , (39)

Constraints (38) and (39) defines δ as the absolute value of the difference between the ending inventory

and the analytical ending inventory Ĩinf .

6. Computational experiments

The original instances of Trigeiro et al. (1989) are compared with our new instances in Section 6.1

while, in Section 6.2, the relevance of considering ending inventories on a rolling horizon is shown.
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6.1. Comparison of original and new instances

As a benchmark for the creation of the new proposed instances, we used the 180 instances of

Trigeiro et al. (1989) with N = 10 items and T = 20 periods, and the 180 instances with N = 30

items. All the instances have an average demand of 100 units per period and per item and, for a given

instance, all items have the same cost and demand pattern. Half of the instances have low demand

variability (demand between 75 and 125), and the other half have high demand variability (demand

between 0 and 200). We first modified the demands that were originally set to 0 in the first periods

to ensure the feasibility of the instances, by assigning them a random value generated as the strictly

positive demand (see Section 5.1). The original instances will be referred as “Orig.”, and the instances

created by applying the new generation scheme summarized in Section 5.2 as “New”.

The mathematical models are solved using IBM ILOG CPLEX 12.7 on a computer with 2.6 GHz

PC, 64 GB of RAM and 2 processors, with a maximum running time of 600 seconds for each instance,

except for Table 3 where the time limit is set to 100 seconds.

Adding the initial inventory and the ending inventory constraints is supposed to mitigate the edge

effect, whose potential main impacts are a drop of production in the last periods and a large number

of setups in the first periods to satisfy the initial demands. A way to measure this edge effect is to

analyze the variation of the number of setups and of the production between periods. Indeed, for the

original instances, this variation is high because of the edge effects, as observed in Figure 6a. The

initial and ending inventories are established using a cyclical sub-model, where we assume a constant

production and number of setups over time. Even if the CLSP model with minimum and maximum

ending inventories is not cyclical, we expect to find an optimal production plan with low variability

between periods, which should lead to a reduction of the impact of the edge effects (Figure 6b). In

order to show that the constraints on the minimum and maximum ending inventories do not make the

model easier to solve, the optimality gaps obtained within the same time limit of 100 seconds were

computed for both the original model and the new model.

Let us define a variability coefficient as the ratio between the standard deviation and the average

value over all the periods. For the original and new instances, Table 1 provides the variability co-

efficients for the number of setups per period, the total quantity produced per period and the total

inventory per period. The results are classified according to different parameters: Number of items

(N), Time Between Orders (TBO), demand range, average setup time and capacity tightness. Except

for the capacity tightness, the classification parameters are not affected by the modification of the

original instances using the new generation scheme. It is worth noticing that the capacity tightness

relies on the computation of EOQ, and hence on the average demand. The following point is inter-

esting to note about the original instances. Because the capacity is defined by dividing the capacity

required for an EOQ production with a coefficient that is smaller than 1, in the problem studied in

Section 3.1, the shape of the relaxed solution is only guided by the costs, that is k = kcost. By following

the new generation scheme in Section 5, it should also be the case for the new instances. However,

in all the original instances of Trigeiro et al. (1989), the capacity was deduced by taking an average

demand of 90 to compute the EOQ. This should not be the case as Trigeiro et al. (1989) state that

the average demand is equal to 100. However, unlike described in their generation scheme, not 25%

but 50% of the demands in the first four periods were set to 0 when generating the original instances,

and the demands that were removed were not balanced among the demands at other periods. When

recomputing kcapa with the same capacity but with an average demand of 100 for the new instances,

there are cases where kcapa < kcost, thus an optimal solution guided by the capacity.

Table 1 shows that the expected behavior is observed, i.e. the variability is greatly reduced

when adding the initial inventories and the global minimum ending inventory. The variability of the

inventory is larger than the variability of the setup and production, but always significantly lower for

the new instances than for the original ones. On average, the variability coefficients for the quantity
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Variability coefficient
Setup Production Inventory

Orig. New Orig. New Orig. New

10 0.29 0.15 0.26 0.04 0.70 0.40
N

30 0.26 0.11 0.25 0.03 0.59 0.27

1 0.22 0.09 0.23 0.06 1.17 0.75
2 0.24 0.13 0.25 0.03 0.42 0.18TBO
4 0.37 0.16 0.28 0.01 0.35 0.08

[75;125] 0.27 0.09 0.25 0.02 0.76 0.32Demand
range [0;200] 0.28 0.16 0.25 0.05 0.53 0.35

11 0.28 0.14 0.25 0.02 0.68 0.34Average
setup time 43 0.27 0.11 0.26 0.04 0.61 0.33

EOQ/0.75 0.31 0.12 0.31 0.04 0.66 0.37
EOQ/0.85 0.27 0.12 0.26 0.04 0.76 0.46

Capacity

tightness(*)

EOQ/0.95 0.25 0.14 0.18 0.02 0.52 0.17

Table 1: Comparison of the variability for the original and new instances.
(*)This classification only applies on the original instances.

produced are between 5 to 28 times smaller when the ending inventory constraints are added (from

0.28 to 0.01 for the instances with a TBO of 4). This implies that the deviation from the average

quantity produced at each period is much smaller for the new instances. As illustrated in Figure 6a,

this variability in the produced quantities was mostly caused by the edge effects. Note that the setup

range, defined by the difference between the maximum and the minimum number of setups in a period,

is also lower for the new instances.

Capacity Utilization
Mean (%) Variability coefficient

Orig. New Orig. New

10 84.0 98.2 0.25 0.03
N

30 84.1 98.4 0.24 0.02

1 83.0 95.8 0.22 0.05
2 84.2 99.3 0.24 0.02TBO
4 85.0 99.8 0.28 0.00

[75;125] 84.6 99.4 0.25 0.01Demand
range [0;200] 83.5 97.2 0.25 0.04

11 84.5 98.9 0.24 0.02Average
setup time 43 83.6 97.7 0.25 0.03

EOQ/0.75 74.4 97.6 0.31 0.03
EOQ/0.85 84.5 98.1 0.26 0.03

Capacity

tightness(*)

EOQ/0.95 93.2 99.3 0.17 0.01

Table 2: Capacity utilization mean and variability.
(*)This classification only applies on the original instances.

Let us now analyze the capacity utilization in more detail. Table 2 shows the mean capacity

utilization over all periods and the standard deviation between the periods. The mean capacity

utilization is defined as the average value of the ratio between the consumed capacity and the available

capacity over the time horizon. The capacity parameters of the original instances were generated by

taking an average value of the capacity required to have a production based on the EOQ of each item
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and by dividing it by a coefficient of 0.75, 0.85 and 0.95 (Trigeiro et al. (1989)). It is clear that the

mean capacity utilization is much larger for the new instances, always larger than 95% and most often

close or larger than 98%. On the opposite, the mean capacity utilization for the original instances

is nearly always smaller than 85%, and is even equal to 74.4% when the capacity tightness is equal

to EOQ/0.75. The results are even more impressive when considering the variability, which is never

larger than 0.05 in the new instances, whereas it is always larger than 0.17 in the original instances

with a peak at 0.31, again when the capacity tightness is equal to EOQ/0.75.

Tables 3 and 4 compare the average optimality gaps and the average computational times of

the original and new instances. With a maximum computational time of 100 seconds, the average

optimality gap for the new instances is as large as 2.3% when TBO is equal to 4, whereas it is never

larger than 0.9% for the original instances. When the maximum computational time is increased to

600 seconds, the differences between the optimality gaps remain large, up to 1.7% when TBO is equal

to 4. Average computational times are also much larger when solving the new instances.

Finally, Tables 3 and 4 show that the new instances are harder to solve than the original ones, i.e.

adding initial inventories and a global minimum ending inventory does not make the problem easier

to solve and raises issues as how to solve the new instances efficiently.

Gap (%) MaxGap (%) Time (sec.)
Orig. New Orig. New Orig. New

10 0.4 1.7 4.9 6.6 34.5 71.7
N

30 0.2 0.8 1.4 8.1 38.7 78.2

1 0.1 0.3 1.9 4.3 25.6 34.1
2 0.2 1.0 2.0 5.8 31.7 90.7TBO
4 0.5 2.3 4.9 8.1 52.6 100.2

[75;125] 0.4 1.5 4.9 8.1 41.9 78.2Demand
range [0;200] 0.2 0.9 3.4 4.6 31.3 71.8

11 0.3 1.5 4.9 8.1 39.0 81.6Average
setup time 43 0.3 0.9 2.7 4.6 34.2 68.3

EOQ/0.75 0.0 1.0 0.0 5.8 1.2 68.0
EOQ/0.85 0.0 0.9 0.7 6.4 19.2 67.2

Capacity

tightness(*)

EOQ/0.95 0.9 1.7 4.9 8.1 89.4 89.7

Table 3: Average optimality gaps and computational times for the original and new instances with Tlim = 100 sec.
(*)This classification only applies on the original instances.

Figure 6 displays the optimal plans for an original instance and its associated new instance. Note

that the production is relatively constant over time, as is the number of setups in each period. However,

in the first and last periods, there is both a decrease in the number of setups and an increase of the

capacity utilization, in line with the other periods, in Figure 6b compared to Figure 6a, i.e. in the new

instance compared to the original one. By adding initial inventories and a global minimum ending

inventory, the capacity is fully consumed in all the periods of the horizon in the optimal production

plan of the new instance. Moreover, except for slight variations caused by differences in the costs

between items, the fraction of capacity used for setup times is rather stable throughout the planning

horizon.

Initial and global minimum ending inventories were deduced from the study of a relaxed version of

the problem defined in Section 3.1. In Sections 3.3 and 4, analytical values for objective functions are

provided. To validate the study of this simplified problem to deduce values for the CLSP with setup

times, Table 5 displays the gaps between the best upper bound obtained by solving the MILP model

and the analytical optimal values for each instance.
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Gap (%) MaxGap (%) Time (sec.)
Orig. New Orig. New Orig. New

10 0.3 1.3 4.5 5.8 171.7 385.4
N

30 0.1 0.5 1.0 2.7 212.5 453.8

1 0.1 0.2 1.1 2.3 138.7 165.5
2 0.2 0.8 1.8 5.4 180.1 494.6TBO
4 0.4 1.7 4.5 5.8 257.5 598.6

[75;125] 0.3 1.2 4.5 5.8 225.4 453.6Demand
range [0;200] 0.2 0.6 3.2 3.1 158.7 385.5

11 0.2 1.1 4.5 5.8 206.2 467.8Average
setup time 43 0.2 0.7 2.4 3.6 178.0 371.4

EOQ/0.75 0.0 0.8 0.0 5.5 5.6 367.9
EOQ/0.85 0.0 0.7 0.0 5.5 62.9 361.3

Capacity

tightness(*)

EOQ/0.95 0.7 1.3 4.5 5.8 507.7 529.5

Table 4: Average optimality gaps and computational times for the original and new instances with Tlim = 600 sec.
(*)This classification only applies on the original instances.

Gap (%)
Orig. New

10 9.7 4.3
N

30 10.6 5.9
1 13.3 5.1
2 10.4 5.2TBO
4 6.7 5.1

[75;125] 6.2 2.4
Demand range

[0;200] 14.1 7.8
11 10.3 5.0

Average setup time
43 10.0 5.3

EOQ/0.75 11.4 5.1
EOQ/0.85 10.5 5.2Capacity tightness(*)

EOQ/0.95 8.5 5.1

Table 5: Gap with predicted objective value.
(*)This classification only applies on the original instances.
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(a) Solution for original instance.

(b) Solution for new instance.

Figure 6: Comparing the optimal plans of two related original and new instances.
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Table 5 shows that, for the original and new instances, the gap between the predicted and the

optimized objective values is on average equal to 5.1%, which implies that the problem defined in

Section 3.1 is a good relaxation of the CLSP with setup times. When the demand range is small,

the approximation is even better. The gap is equal to 2.4% for a small demand range, whereas it

increases to 7.8% when the demand has a larger range. That makes sense because the smaller the

demand range, the closer each demand is to its average value. For the original instances, the average

gap is equal to 10.2%, so the approximation is less precise. That can in part be explained by the

fact that the original instances have neither initial nor ending inventories, hence approximating the

original problem by a problem on a rolling horizon might be too constraining.

Note also that, in Table 5, the quality of the approximation does not seem to depend on the TBO

for the new instances. The TBO is theoretically linked to k = kcapa = kcost by the formula k = N
TBO

in the new generated instances. This is an interesting point as the average number of setups per

period k is the main factor shaping the production plan. Consequently, the optimal production plan

varies greatly depending on the TBO but the approximation remains of the same quality. In the

original instances of Trigeiro et al. (1989), the analytical optimal value better approximates the best

upper bound for the problem as the TBO increases (13.3% of average gap for a TBO of 1 to 6.7%

for a TBO of 4). The poor evaluation of the optimal objective value for smaller TBO can be partly

explained by the fact that, in the original instances of Trigeiro et al. (1989), 50% of the demands in

the first 4 periods are set to 0. For the instances with a TBO close to 1, when the capacity is not

constraining, the number of setups during the first periods can be reduced compared to the analytical

average number of setups. This leads to an overevaluation of the optimal objective value. For the

instances with tight capacity, some of the later demands need to be satisfied during the first periods

where demands were removed. This leads to additional inventory costs and an underevaluation of the

optimal objective value.

6.2. Analysis on a rolling horizon

To test the impact of the global minimum ending inventory on a rolling horizon, we extend the

instances of Trigeiro et al. (1989) with N = 30 by using the same generation scheme to create instances

with Ω = 100. The global minimum ending inventory and maximum ending inventory per item are

generated by solving the continuous relaxation of the problem (PC) defined in Section 4 and set the

minimum and maximum ending inventories using (8) and (9). The continuous relaxation of (PC) is:

min
(ki,φ)∈R∗

+
N×R∗

+
N

N∑
i=1

fiki + h̄
N∑
i=1

di
φi − 1

2
(40)

s.t.
N∑
i=1

siki ≤ cmax −Nb̄d̄ (41)

kiφi ≥ 1,∀i ∈ 1, . . . , N (42)

This problem is a Quadratic Constraint Problem that can be solved to optimality using the barrier

algorithm of CPLEX. The analytical expressions ((16), (17)) correspond to the specific case where the

average costs and demands over time are the same for all items. The main advantage of using the

quadratic model to fix the inventory levels is that it can be applied to instances with high variability on

the item parameters as it provides a different maximum ending inventory (9) for each item. However,

the analytical expressions do not require a solver and provide a very good approximation of the

maximum ending inventories for instances with low variability on the item parameters. The obtained

minimum and maximum inventory levels remain constant through the rolling horizon. Three settings

for the time horizon T are considered (T ∈ {5, 10, 20}) in order to fix the decisions period by period.
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Compared to the original instances, we modified the instances and the capacity by taking kcapa ∈
{3.75, 7.5, 15} and set cmax

t = Nb̄d̄+ ks̄, where k = min(kcapa, N
√

d̄h̄
2f̄

). The initial inventory for each

item has been set as half the maximum ending inventory for each item (Ii0 =
Isupi

2 ), which corresponds

to the average inventory level based on the cycle length determined in Section 4.

When optimizing on a rolling horizon, Constraint (5.2) was slightly modified to allow lost sales on

the global minimum ending inventory:

N∑
i=1

IiT ≥ Iinf + lT+1.

The new parameter lT+1, which is the unit cost of lost sales for the ending inventory, is defined so

that it is less costly to have lost sales in the last period of the horizon than in previous periods.

Fraction of lost sales (%)
T=5 T=10 T=20

Minimum ending Inventory Minimum ending Inventory Minimum ending Inventory
w/o with w/o with w/o with

Avg — Max Avg — Max Avg — Max Avg — Max Avg — Max Avg — Max
[75;125] 6.74—9.68 0.61—1.87 4.14—5.85 0.09—0.40 2.13—3.02 0.13—0.65Demand

range [0;200] 6.20—10.65 0.93—3.45 3.87—6.45 0.52—2.29 1.99—3.28 0.38—2.36
11 4.38—6.24 0.25—1.36 2.93—4.46 0.22—1.29 1.60—3.06 0.19—2.36Average

setup time 43 8.56—10.65 1.29—3.45 5.08—6.45 0.40—2.29 2.52—3.28 0.33—1.19

Table 6: Fraction of lost sales (%) for N = 30 and kcapa = 3.75

Fraction of lost sales (%)
T=5 T=10 T=20

Minimum ending Inventory Minimum ending Inventory Minimum ending Inventory
w/o with w/o with w/o with

Avg — Max Avg — Max Avg — Max Avg — Max Avg — Max Avg — Max
[75;125] 5.06—7.16 0.24—0.72 2.78—3.58 0.17—0.70 1.23—1.61 0.19—0.47Demand

range [0;200] 4.56—7.71 0.79—1.89 2.53—4.15 0.58—1.63 1.04—1.77 0.32—1.12
11 3.56—5.13 0.47—1.89 2.22—3.57 0.39—1.63 1.06—1.77 0.22—1.12Average

setup time 43 6.05—7.71 0.56—1.88 3.09—4.15 0.36—1.37 1.21—1.71 0.28—0.66

Table 7: Fraction of lost sales (%) for N = 30 and kcapa = 7.5

Fraction of lost sales (%)
T=5 T=10 T=20

Minimum ending Inventory Minimum ending Inventory Minimum ending Inventory
w/o with w/o with w/o with

Avg — Max Avg — Max Avg — Max Avg — Max Avg — Max Avg — Max
[75;125] 1.71—2.87 0.15—0.47 0.75—1.54 0.14—0.40 0.21—0.65 0.07—0.20Demand

range [0;200] 1.39—3.06 0.47—2.15 0.57—1.85 0.28—1.43 0.16—0.89 0.11—0.58
11 1.48—3.06 0.44—2.15 0.79—1.85 0.29—1.43 0.29—0.89 0.11—0.58Average

setup time 43 1.62—3.01 0.18—0.74 0.53—1.05 0.13—0.40 0.08—0.24 0.07—0.20

Table 8: Fraction of lost sales (%) for N = 30 and kcapa = 15

Tables 6, 7 and 8 compare the fraction of lost sales on a rolling horizon on instances classified

according to their demand range and average setup time. Each table presents the results for a specific

value of kcapa without or with the global minimum ending inventory and for different planning horizons
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(T ). The influence of each parameter is similar in each table, even if it can be noticed that the average

fraction of lost sales seems to increase when the capacity becomes tighted. With kcapa = 3.75, the

average fraction of lost sales is equal to 6.74% for T = 5 and no ending inventory constraint while, for

the same instances and kcapa = 15, the average fraction of lost sales decreases to 1.96%.

For a specific value of kcapa, several remarks can be raised. In terms of lost sales, the results are

much better with ending inventory constraints. In Table 6 with T = 5, the average lost sales of 6.47%

without ending inventory constraints drops to 0.77%. In Table 7, the average lost sales decreases

from 4.81% to 0.52% and, in Table (8), from 1.55% to 0.31%. The average lost sales without ending

inventory constraints is almost always larger than 1%, except when both the planning horizon and

the capacity are large. With ending inventory constraints, even with a small planning horizon and a

constraining capacity, the average lost sales is almost always smaller than 1%. With ending inventories,

there are on average both less lost sales and less setup times. In Table 6 for T = 10, the average lost

sales are equal to 2.93% with s̄ = 11 and 5.08% with s̄ = 43. This makes sense because, when setup

times are small compared to the available capacity, the impact they can have on the feasibility of

the problem is less relevant. When setup times are large, up to a certain point, it becomes more

difficult to recover from a lack of production in a previous period, leading to an increase of the lost

sales. However, this seems to no longer be the case when setup times reach a given threshold. This is

because the number of setups per period becomes fixed, and the decisions in the first periods do not

lead to more lost sales in later periods.

To illustrate the previous point, let us consider the case with N = 3, T = 5, d = 100, and

no setup and production costs. The holding costs and unitary production times are set to 1. Let

us consider different values for the setup times, s̄ ∈ {0, 10, 100}. Let us set kcapa = 1 and define

cmax = 300 + kcapas̄. To model the lack of production in a period before the start of the planning

horizon, we consider the case where the initial inventory is set to 0 for all items. Lost sales are highly

penalized. The optimal production plans can be found in Figure 7.

• For s̄ = 0: There are no lost sales in the optimal solution. This can be explained by the fact that

the initial lack of production can be recovered because all demands at a period can be satisfied

by production quantities at the same period, which is not the case for s̄ > 0.

• For s̄ = 10: There are 80 units of lost sales (20 units of item 2 at each period) in the optimal

solution. The production plan is similar to the one obtained for s̄ = 0. However, when there are

3 setups in a period, only 280 units can be produced, leading to a deficit of 20 units per period.

• For s̄ = 100: There are 300 units of lost sales (100 units of item 2 at t = 1 and at t = 3, 100

units of item 3 at t = 1) in the optimal solution. Because each setup takes 1
4 of the capacity,

it is suboptimal to have 3 setups in the first period. However, we get a production plan that is

optimal on a rolling horizon if one period is fixed in each optimization run, leading to less lost

sales compared to Figure 7b.

• For s̄ ≥ 300: Each setup takes more than half the capacity available during a period, so the

optimal production plan consists in having exactly one setup in each period. There are also 300

units of lost sales in the optimal solution. Because the production capacity forces to have at

most one setup per period, the resulting production plan is the optimal production plan on a

rolling horizon.
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(a) s̄ = 0 (b) s̄ = 10

(c) s̄ = 100

Figure 7: Production quantities for different values of s̄

Note that, without inventory levels, the results depend a lot on the length of the time horizon.

The fluctuation between the fraction of lost sales when the length of the planning horizon increases is

larger without ending inventories. Table 7 shows that, for s̄ = 43, the fraction of lost sales decreases

from 6.05% to 3.09% when T increases from 5 to 10. With ending inventories, the best results are

obtained when there is a small variability in demands. For instance, for T = 10 in Table 7, the fraction

of lost sales drops from 0.79% for instances with a large demand range to 0.24% for instances with a

small demand variability. This also makes sense because the computation of the ending inventories are

based on models using averages. When looking more specifically at the evolution of the inventories in

each period, note that the ending inventories enable for inventories to be kept throughout the horizon

rather than being depleted in the first periods.

7. Conclusions

In this paper, we first highlight the issues associated with classical instances of the literature for the

capacitated lot sizing problem with setup times. Our analysis shows that the lack of ending inventories

creates inconsistencies with the industrial reality where planning is performed on a rolling horizon. In

particular, even when using a long planning horizon, decisions in the first periods might be negatively

impacted. Building on this analysis and to mitigate the end-of-horizon effect, we propose to modify

the problem by considering a global minimum ending inventory and maximum ending inventories for

items. A new scheme, extending the one of Trigeiro et al. (1989), is proposed to generate instances with

initial and ending inventories. Numerical results on the new instances show the practical relevance of

the new problem.

28



Although we believe inventory constraints at the end of the planning horizon are the most relevant

and simple mechanism to avoid the end-of-horizon effect, other ideas could be investigated. For

instance, minimum capacity consumption constraints could be added in the last periods, to ensure

that the resources are fully used until the end of the planning horizon. However, this might lead

to unnecessary setups. Another idea is to set, as proposed by Fisher et al. (2001), negative holding

costs at the end of the last period to counterbalance the ZIO property. However, as we have shown,

defining updated linear holding costs is not straightforward for capacitated lot-sizing problems. A

third idea could be to relax the minimum and maximum ending inventory constraints and penalize

their non-satisfaction in the objective function. Again, defining such penalties is not an easy task.

We are now working on solving large instances of the new CLSP with setup times and ending

inventories. Parallelized relax-and-fix heuristics are being developed, together with a Lagrangian

heuristic inspired by the one proposed in Trigeiro et al. (1989). As future research perspectives, we

believe it is interesting to study how constraints on ending inventories impact various extensions of

the CLSP with setup times, such as demand and production time windows or inventory capacity

constraints. Another interesting research topic would be to pursue the work started at the end of

Section 5.3, namely investigating approaches to determine relevant ending inventories from known

initial inventories and probably also demand forecasts.

Acknowledgements

This work has been partially financed by the ANRT (Association Nationale de la Recherche et de

la Technologie) through the PhD number 2017/1048 with CIFRE funds and a cooperation contract

between DecisionBrain and ARMINES.

The authors would also like to thank two anonymous reviewers for their insightful comments that

contributed to strongly improve the paper.

References

Absi, N., Kedad-Sidhoum, S., 2007. MIP-based heuristics for multi-item capacitated lot-sizing problem

with setup times and shortage costs. RAIRO - Operations Research 41, 171–192.

Absi, N., Kedad-Sidhoum, S., 2008. The multi-item capacitated lot-sizing problem with setup times

and shortage costs. European Journal of Operational Research 185, 1351–1374.

de Araujo, S.A., De Reyck, B., Degraeve, Z., Fragkos, I., Jans, R., 2015. Period Decompositions

for the Capacitated Lot Sizing Problem with Setup Times. INFORMS Journal on Computing 27,

431–448.

Brahimi, N., Absi, N., Dauzère-Pérès, S., Nordli, A., 2017. Single-item dynamic lot-sizing problems:

An updated survey. European Journal of Operational Research 263, 838–863.

Brahimi, N., Dauzère-Pérès, S., Najid, N.M., 2006. Capacitated Multi-Item Lot-Sizing Problems with

Time Windows. Operations Research 54, 951–967.

Campbell, G.M., Mabert, V.A., 1991. Cyclical Schedules for Capacitated Lot Sizing with Dynamic

Demands. Management Science 37, 409–427.

Carlson, R.C., Jucker, J.V., Kropp, D.H., 1979. Less Nervous MRP Systems: A Dynamic Economic

Lot-Sizing Approach. Management Science 25, 754–761.

29



Chand, S., Hsu, V.N., Sethi, S., 2002. Forecast, Solution, and Rolling Horizons in Operations Man-

agement Problems: A Classified Bibliography. Manufacturing & Service Operations Management

4, 25–43.

Clark, A.R., Clark, S.J., 2000. Rolling-horizon lot-sizing when set-up times are sequence-dependent.

International Journal of Production Research 38, 2287–2307.

Federgruen, A., Tzur, M., 1994. Minimal Forecast Horizons and a New Planning Procedure for the

General Dynamic Lot Sizing Model: Nervousness Revisited. Operations Research 42, 456–468.

Fisher, M., Ramdas, K., Zheng, Y.S., 2001. Ending Inventory Valuation in Multiperiod Production

Scheduling. Management Science 47, 679–692.

Harris, F.W., 1913. How Many Parts to Make at Once. Factory, The Magazine of Management 10,

135–136.

Helber, S., Sahling, F., 2010. A fix-and-optimize approach for the multi-level capacitated lot sizing

problem. International Journal of Production Economics 123, 247–256.

van den Heuvel, W., Wagelmans, A.P., 2005. A comparison of methods for lot-sizing in a rolling

horizon environment. Operations Research Letters 33, 486–496.

Jans, R., Degraeve, Z., 2008. Modeling industrial lot sizing problems: a review. International Journal

of Production Research 46, 1619–1643.

Pochet, Y., Wolsey, L.A., 2006. Production planning by mixed integer programming. Springer series

in operations research and financial engineering, Springer, New York ; Berlin.

Stadtler, H., 2000. Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem.

Management Science 46, 318–326.
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Appendix: Study on lost sales costs

We want to study a special case of the cyclical problem defined in Section 3.1, where only a fraction

of the demand can be satisfied in each period. Let us denote by γ ∈ [0, 1] the fraction of the average

demand that is satisfied in a cyclical production process, and by l̄ the average lost sales cost over all

items. We want to find sufficient conditions on l̄ in order to get γ∗ = 1 , and thus an optimal solution

where all demands are satisfied. We assume that Nh̄
2l̄+h̄

≤ cmax

s̄ otherwise Formula (47) implies that it

is optimal to lose all demands (γ∗ = 0).

30



The mathematical formulation of the problem is given by:

min
(k,φ,γ)∈R∗×N∗N×[0,1]

f̄k + h̄γd

N∑
i=1

φi − 1

2
+N(1− γ)d̄l̄ (43)

s.t.
N∑
i=1

1

φi
= k (44)

k ≤ cmax −Nb̄γd̄
s̄

(45)

which can be rewritten as:

Nd̄l̄ + min
k∈]0, c

max

s̄
]
(f̄k + d̄ min

{γ∈[0,1]|k≤ cmax−Nb̄γd̄
s̄

}
γ[h̄ min

{φ∈N∗N |
∑N
i=1

1
φi

=k}
(
N∑
i=1

φi
2

)−Nl̄ − h̄N

2
]) (46)

The continuous relaxation is equivalent to:

Nd̄l̄ + min
k∈]0, c

max

s̄
]
(f̄k +

Nd̄

2
min

{γ∈[0,1]|γ≤ cmax−ks̄
Nb̄d̄

}
γ[h̄(

N

k
− 1)− 2l̄]) (47)

If h̄(Nk − 1) − 2l̄ ≥ 0 ⇔ k ≤ Nh̄
2l̄+h̄

, then γ∗ = 0. The term Nd̄
2 h̄(Nk − 1) represents the average

inventory costs per period if all demands are satisfied while the term Nd̄l̄ corresponds to the cost of

losing all demands for a period. For a given cycle with k setups per period, when the average inventory

costs are higher than the lost sales costs, it will always be better to lose all demands.

When k ≥ Nh̄
2l̄+h̄

, the average inventory costs per period are smaller than the lost sales costs, we

try to satisfy as much of the demands as possible. Otherwise γ∗ = min(1, c
max−ks̄
Nb̄d̄

).

Characterization of optimal solutions

The optimal solution of the problem in Formula (47) is denoted by F ∗. We can divide the problem

into three distinct cases depending on the definition domain of the average number of setups k:

• Case 1. K1 = {k ∈]0, c
max

s̄ ]|k ≤ Nh̄
2l̄+h̄
}.

In that case we have γ∗ = 0 as shown previously and it is optimal to lose all demands:

F ∗ = Nd̄l̄ + min
k∈K1

f̄k = Nd̄l̄

• Case 2. K2 = {k ∈]0, c
max

s̄ ]|k ≥ Nh̄
2l̄+h

and k ≤ cmax−Nb̄d̄
s̄ }.

In that case we have cmax−ks̄
Nb̄d̄

≥ 1 and thus γ∗ = 1. It is optimal to satisfy all demands:

F ∗ = Nd̄l̄ + min
k∈K2

(f̄k +
Nd̄

2
(h̄(

N

k
− 1)− 2l̄))

F ∗ = −Nd̄h̄
2

+ min
k∈K2

(f̄k +
N2d̄h̄

2k
) (48)
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The minimum of the function in Formula (48) is either reached for k∗ = N
√

d̄h̄
2f̄

if N
√

d̄h̄
2f̄

is in

the definition domain (which would correspond to a solution guided only by the costs), or k∗

corresponds to one of the domain bounds.

– Case 2.1. Nh̄
2l̄+h

≤ N
√

d̄h̄
2f̄
≤ cmax−Nb̄d̄

s̄ . We have k∗ = N
√

d̄h̄
2f̄

and then:

F ∗ = N(

√
2f̄ d̄h̄− d̄h̄

2
)

– Case 2.2. N
√

d̄h̄
2f̄
≤ Nh̄

2l̄+h̄
. F ∗ is increasing between Nh̄

2l̄+h̄
and cmax−Nb̄d̄

s̄ , so we have

k∗ = Nh̄
2l̄+h̄

and:

F ∗ = Nd̄h̄(
f̄

d̄(2l̄ + h̄)
+
l̄

h̄
)

It is worth noticing that this case corresponds to a case where the average inventory costs

are equal to the lost sales costs, thus all values of γ∗ are equivalent. This means that the

solution consisting of satisfying all demands is equivalent to the solution considering all

demands as lost sales.

– Case 2.3. N
√

d̄h̄
2f̄
≥ cmax−Nb̄d̄

s̄ . F ∗ is decreasing between Nh̄
2l̄+h̄

and cmax−Nb̄d̄
s̄ , so we have

k∗ = cmax−Nb̄d̄
s̄ and then

F ∗ =
Nd̄h̄

2
(

Ns̄

cmax −Nb̄d̄
− 1) +

f̄

s̄
(cmax −Nb̄d̄)

• Case 3. K3 = {k ∈]0, c
max

s̄ ]|k ≥ Nh̄
2l̄+h

and k ≥ cmax−Nb̄d̄
s̄ and k ≤ cmax

s̄ }.

In that case we have cmax−ks̄
Nb̄d̄

≤ 1 and γ∗ = cmax−ks̄
Nb̄d̄

. It can be optimal to satisfy only a fraction

of the demand.

F ∗ = Nd̄l̄ + min
k∈K3

(f̄k +
(cmax − ks̄)

2b̄
(h̄(

N

k
− 1)− 2l̄))

Let us define f̃ = f̄ + s̄(2l̄+h̄)

2b̄
and h̃ = cmax

Nb̄d̄
h̄.

F ∗ = Nd̄l̄ − (2l̄ + h̄)cmax +Nh̄s̄

2b̄
+ min
k∈K3

(f̃k +
N2d̄h̃

2k
) (49)

This corresponds to a new cyclical problem with updated setup and inventory costs. The mini-

mum of the function defined in Formula (49) is either reached for k∗ = N

√
d̄h̃
2f̃

if this value is in

the definition domain (which would correspond to a solution guided only by the updated costs),

or k∗ corresponds to one of the domain bounds.

– Case 3.1. cmax

s̄ ≤ N
√

d̄h̃
2f̃

:

In this case the minimum is reached for k∗ = cmax

s̄ , which corresponds to γ∗ = 0 and none

of the demand is satisfied.
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F ∗ = Nd̄l̄ +
f̄

s̄
cmax

– Case 3.2. cmax

s̄ ≥ N
√

d̄h̃
2f̃

and Nh̄
2l̄+h̄

≤ cmax−Nb̄d̄
s̄ :

Then the lower bound of K3 is cmax−Nb̄d̄
s̄ and the minimum of the function in Formula (49)

is reached in cmax−Nb̄d̄
s̄ or in N

√
d̄h̃
2f̃

.

∗ Case 3.2.1. cmax−Nb̄d̄
s̄ ≤ N

√
d̄h̃
2f̃

, we have k∗ = N

√
d̄h̃
2f̃

and γ∗ ≤ 1. It can be optimal

to satisfy only part of the demand. We have:

F ∗ = Nd̄l̄ − (2l̄ + h̄)cmax +Nh̄s̄

2b̄
+N

√
2f̃ h̃d̄

∗ Case 3.2.2. cmax−Nb̄d̄
s̄ ≥ N

√
d̄h̃
2f̃

. We have k∗ = cmax−Nb̄d̄
s̄ and γ∗ = 1. It is optimal to

satisfy all demands. We have:

F ∗ =
Nd̄h̄

2
(

Ns̄

cmax −Nb̄d̄
− 1) +

f̄

s̄
(cmax −Nb̄d̄)

– Case 3.3. cmax

s̄ ≥ N
√

d̄h̃
2f̃

and cmax−Nb̄d̄
s̄ ≤ Nh̄

2l̄+h̄
:

∗ Case 3.3.1. Nh̄
2l̄+h̄

≤ N

√
d̄h̃
2f̃

, we have k∗ = N

√
d̄h̃
2f̃

and γ∗ ≤ 1. It can be optimal to

satisfy only part of the demand. We have:

F ∗ = Ndl̄ − (2l̄ + h̄)cmax +Nh̄s̄

2b̄
+N

√
2f̃ h̃d̄

∗ Case 3.3.2. Nh̄
2l̄+h̄

≥ N

√
d̄h̃
2f̃

, we have k∗ = Nh̄
2l̄+h̄

and γ∗ ≤ 1 because cmax−Nb̄d̄
s̄ < Nh̄

2l̄+h
.

It can be optimal to satisfy only part of the demand. We have:

F ∗ = N(d̄l̄ +
f̄ h̄

2l̄ + h̄
)

Definition of relevant lost sales costs

The goal of this section is to propose sufficient conditions to define lost sales costs that will

guarantee that the optimal solution does not have a fraction of demand unsatisfied for the problem

defined in Formula (47). With regards to the different cases introduced previously, we want to consider

only the cases where γ∗ = 1 is the only optimal value for γ. This corresponds to Cases 2.1, 2.3 and

3.2.2. Sufficient conditions for the optimal cycle to have no lost sales can be set as follows:

1. In order to prevent Case 3.1:

cmax

s̄
≥ N

√
d̄h̃

2f̃

2. In order to prevent Cases 3.1, 3.3 and 3.2.1, we want to define l̄ such that cmax−Nb̄d̄
s̄ ≥ N

√
d̄h̃
2f̃
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and cmax−Nb̄d̄
s̄ ≥ Nh̄

2l̄+h̄
. By setting:

l̄ ≥ cmax

(cmax −Nb̄d̄)

Ns̄h̄

2(cmax −Nb̄ ¯̄d)

this condition on l̄ ensures that both conditions are respected. This condition also implies that

cmax

s̄ ≥ N
√

d̄h̃
2f̃

and cmax

s̄ ≥
Nh̄

2l̄+h̄
.

3. In order to prevent Case 2.2 and to ensure that Case 2.1 is lower than Case 1, we want to define

l̄ such that N
√

d̄h̄
2f̄
≥ Nh̄

2l̄+h̄
and N(

√
2f̄ d̄h̄− d̄h̄

2 ) ≤ Nd̄l̄. By setting:

l̄ ≥

√
2f̄ h̄

d̄

this condition on l̄ ensures that both conditions are respected.

4. In order to ensure that Cases 2.3 and 3.2.2 are lower than Case 1, we want to define l̄ such that
Nd̄h̄

2 ( Ns̄
cmax−Nb̄d̄ − 1) + f̄

s̄ (cmax −Nb̄d̄) ≤ Nd̄l̄, which implies:

l̄ ≥ h̄

2
(

Ns̄

cmax −Nb̄d̄
− 1) +

f̄

Nds̄
(cmax −Nb̄d̄)

It should be pointed out that because the goal was to find sufficient conditions for l̄ that were

easy to express, the focus for Points 2. and 3. was not to find the minimum l̄ satisfying the required

conditions but only a threshold that would guarantee that these conditions are respected.
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