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Generalized Solutions to Degenerate Dynamical Systems

Philippe JOUAN*, Ulysse SERRES�

January 30, 2023

Abstract

The solutions to Degenerate Dynamical Systems of the form A(x)ẋ = f(x) are studied
by considering the equation as a di�erential inclusion. The set Z = {det(A(x)) = 0}, called
the singular set, is assumed to have empty interior.

The reasons leading us to the de�nition of the sets used for the di�erential inclusion are
exposed in detail.

This de�nition is then applied on the one hand to generic cases, and on the other hand
to the particular cases resulting from physics which can be found in [18].

It is shown that generalized solutions may enter, leave, or remain in the singular locus.

Keywords: Degenerate Dynamical Systems, di�erential inclusions, generalized solutions,
genericity.

1 Introduction

The aim of the present paper is to investigate the solutions of degenerate dynamical systems,
also called singular di�erential equations, of the form:

A(x)ẋ = f(x), (1)

where x ∈ Rn, f is a smooth vector �eld on Rn, and A: Rn 7−→ M(n;R) is a �eld of square
matrices, smoothly depending on x. From now on, degenerate dynamical systems are referred
to as DDSs.

The singular locus of (E), denoted by Z, is the set of points where the determinant of A
vanishes:

Z = {x ∈ Rn; det(A(x)) = 0}.

Assumption. All along the paper the set Z is assumed to be non empty but with empty interior.

We are particularly interested in the problem of the existence of solutions lying in Z and
to the extension in Z of classical solutions ending in the singular locus. Our motivation comes
from a discussion with one of the authors of the papers [18] and [5], where some equations of
the previous kind coming from physics are analyzed. In a �rst step, and contrary to [18], we do
not assume any regularity on the set Z and we allow f to vanish on Z, even if in some cases
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this setting is not related to a physical model. Actually, we are interested in de�ning general
notions of solutions to these systems that remain valid in all situations and we only assume that
everything is smooth and that the interior of Z is empty.

There is an important literature about the kind of equations we consider here, under di�erent
names, in particular Di�erential-Algebraic Equations (DAE) and Implicit Di�erential Equations.

Di�erential-Algebraic Equations are actually partially di�erent to the one we consider here
because it is generally assumed in the literature about DAEs that the matrix A is either constant,
hence singular everywhere, or is singular of constant rank on an open subset of Rn (see for example
the pioneer book [3]). The same kind of assumption is made in the nonlinear case, as explained
in the book [11] where an important bibliography about DAEs can be found. Let us quote [4],
[15], [13], [14], [19]. Di�erential-Algebraic Equations can also be controlled, see [4] or [2] on Lie
groups.

The paper [16] deals with equations of the form (1) at singular points, but with a point of
view close to the one of DAE.

The geometric approach of Implicit Di�erential Equations goes back to Poincaré. An ele-
mentary account can be found in [1] and more complete overview in [17].

The point of view of the present paper is di�erent: it considers generalized solutions to (E)
de�ned as trajectories of a di�erential inclusion. Assuming that a closed and convex set Γ(x)
has been assigned to each point x ∈ Rn in a way that will be made clear later, we can use the
following classical de�nition of solutions to a di�erential inclusion:

De�nition 1 A solution to (E) is an absolutely continuous function x(t) from an interval I of

R to Rn that satis�es

ẋ(t) ∈ Γ(x(t)) for almost every t ∈ I.

Outside the singular locus the equation simply reads ẋ = A(x)−1f(x), and every solution
to (E) must be a trajectory of the vector �eld F (x) = A(x)−1f(x). Consequently all possible
de�nitions of Γ must imply Γ(x) = {A(x)−1f(x)} whenever x /∈ Z.

In a �rst approach (Section 2) the sets Γ are de�ned by imitating Filippov's solutions to
di�erential equations with discontinuous right-hand side. However, in Filippov's book [7] (see
also [6]) the vector �eld that de�nes the equation is assumed to be bounded (similarly in the
literature about di�erential inclusions, for instance in [20] and [10], the sets Γ(x) are assumed to
be bounded). This assumption cannot be made herein since A(x)−1f(x) is generally unbounded
in the neighborhood of a singular point. Though the Filippov-like de�nition works well in some
simple cases (Examples 1-3 of Section 2.1) this lack of boundedness causes drawbacks that are
examined in Section 4.2 and leads to a new de�nition, di�erent from Filippov's one (De�nition
4 in Section 4.2).

Section 4.2 is preceded by a detailed analysis of generic DDSs, which is the key to under-
standing the meaning of the possible de�nitions of the sets Γ (Section 3). It is in particular shown
that generically the singular set Z is the disjoint union of the codimension r2 submanifolds Zr

where the rank of A is n− r, and then in Section 4.1, that at a generic point p belonging to the
stratum Z1 of a generic system the Filippov-like set Γf (p) is equal to Rn. This is due to the
variation of the kernel of A(x) as the point x moves within Z1. A consequence is that according
to the Filippov-like de�nition, all absolutely continuous curves lying inside Z1 are generalized
solutions to (E).

It was therefore necessary to modify the de�nition of the sets Γ in order to reduce their
dimension at generic points of Z1 while preserving the results obtained in the simple cases. This
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brings us to De�nition 4 according to which the set Γ at a generic point of Z1 is a dimension
1 a�ne space. Moreover the trace of these sets on the tangent space of Z1 provides a smooth
vector �eld (in an open and dense subset of Z1, there are singularities). The gap between the
Filippov-like sets and the ones of De�nition 4 and its consequences are exhibited in a generic
example postponed to Section 7.

Section 5 is devoted to the computation of the solutions to (E) outside of Z by reparametriza-
tion of the trajectories of a vector �eld f̃ that has the double interest to be de�ned and smooth
everywhere, including Z, and to be colinear with F outside the singular locus. It is also shown
that in many cases the solutions thus obtained can be extended to solutions inside Z.

These results are adapted in Section 6 to the particular and motivating case of [18] that deals
with systems in R2 of the form

(S) ϕ(x, y)

(
0 1
−1 0

)(
ẋ
ẏ

)
=

(
a1(x, y)
a2(x, y)

)
.

Assuming that ϕ is generic, hence a Morse function, we study the behaviour of (S) in the three
generic cases.

In conclusion the DDSs under consideration behave very di�erently from the classical ones for

various reasons, the main ones being:

1. It may exist trajectories that enter the singularities in �nite time.

2. They may be extended to trajectories that live in Z.

3. The DDSs are not always deterministic and even if a system is deterministic the time

reversed one need not be.

Notations. The set Rn is endowed with the Euclidean norm denoted by ∥.∥. The inner product
is denoted by ⟨., .⟩.

The points of Rn are denoted by x, sometimes by p or q, and their coordinates by (x1, x2, . . . , xn).
In low dimension examples the coordinates are often (x, y) or (x, y, z).

The convex hull of a subset S of Rn is denoted by co S and the closure of the convex hull of
S by co S.

The open set Rn \ Z is denoted by Ω.
The vector �eld F is de�ned outside of Z by F (x) = A(x)−1f(x).

2 Basic settings

2.1 The Filippov-like de�nition

De�nition 2 At all points x ∈ Rn the set Γf (x) is de�ned by

Γf (x) =
⋂
r>0

co {F (x) = A(x)−1f(x); x ∈ B(x, r) \ Z}.

where B(x, r) stands for the open ball of radius r centered at x.
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This de�nition is equivalent to Filippov's one in the case where the Lebesgue mesure of the
set of discontinuities vanishes. The sets Γf (x) are closed and convex and it could be proved that
at least one solution exists for any initial condition if the vector �eld A(x)−1f(x) were bounded
(see [7]). This existence statement also holds for bounded di�erential inclusions (see [20]).

Unfortunately the existence of solutions is not guaranteed for unbounded equations as shown
by the following example.

y

Z = {y = 0}

Figure 1: Example 1

Example 1 Consider in R2 {
y2ẋ = 1
ẏ = 0

The vector �eld F is here
1

y2
∂

∂x
and is everywhere parallel to the singular locus Z = {y = 0}.

A possible solution starting from p = (x, 0) ∈ Z (or ending to p) would consequently remain

in Z but
1

y2
∂

∂x
tends to in�nity in only one direction, so that this solution should have in�nite

velocity.

Actually Γf (p) = ∅ at all p ∈ Z because co {A(q)−1f(q); q ∈ B(p, r)\Z} =

[
1

r2
,+∞

)
×{0}

for r > 0.
The conclusion is that no solution exists for an initial point in Z. It should be noticed that

there is no solutions to this equation starting from Z for any de�nition of solution we know.

According to the geometry of the equation the behaviour may be completely di�erent, for
instance some solutions may cross the singular locus (Example 2 ) or remain in that last (Example
3 ).

Example 2 Consider in R2 {
ẋ = 0
3y2ẏ = 1

It is clear that the function (x0, t
1
3 ) is a solution through the point (x0, 0) for any x0, and that it

is unique for this initial state at t = 0.

The vector �eld F is here equal to
1

3y2
∂

∂y
and the set Γf (x, 0) is empty at all points (x, 0) ∈ Z.

It is not in contradiction with the de�nition of solutions since it is su�cient that the di�erential
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Z = {y = 0}•
p

Figure 2: Example 2

inclusion be satis�ed for almost all t. On the other hand the emptiness of the sets Γf at the

points of Z implies that there are no other solutions than the exhibited ones.

Z = {y = 0} •
p

Figure 3: S−

Example 3 Consider in R2

(S−)

{
ẋ = 1
2yẏ = −1

Again Z = {y = 0}.

It is clear that x(t) = x0 + t− t0, y(t) = ±
√
−(t− t0) is solution on (−∞, t0] and ends in Z.

Thanks to De�nition 2 we can obtain solutions that remain in Z. Indeed Γf (x, 0) = {1} ×R
and each of these sets contains the vector (1, 0) which is tangent to Z. This de�nes a constant

vector �eld in Z, the solutions of which are t 7−→ (t+ a, 0), where a ∈ R, on any time interval.

In conclusion all solution curves starting from a point (x0, y0) outside of Z reach the singular

locus at a �nite time t0 and at a point (a, 0). They extend into t 7−→ (a+ t− t0, 0) on [t0,+∞).
We can also consider the similar system

(S+)

{
ẋ = 1
2yẏ = 1

As previously the solutions t 7−→ (a+t−t0, 0) exist in the singular locus but starting from any point

(a, 0) ∈ Z at a time t0 three trajectories are available: the two curves t 7−→ (a+ t− t0,±
√
t− t0)

that escape from Z and the solution t 7−→ (a+ t− t0, 0) that remains in Z.

This shows that the equation (S+) is not deterministic. It is clear that the time-reversed

system of (S−) is neither deterministic, although (S−) is.
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Z = {y = 0}•
p

Figure 4: S+

These three examples show that the Fillippov's like de�nition may provide acceptable so-
lutions in simple cases. However, we will see in Section 4 that the sets Γf are generically too
big.

Before looking at what generic systems are, let us turn our attention to other possible de�-
nitions of the sets Γ.

2.2 Other possible de�nitions

In this subsection two other de�nitions are proposed and analyzed.

De�nition 3 1. The naive de�nition: at all points x ∈ Rn the set Γ(x) is equal to

E(x) = {ξ ∈ Rn; A(x)ξ = f(x)}.

2. The set of limit values: at all points x ∈ Rn the set Γ(x) is the smallest closed and convex

set A(x) containing the limits of all sequences (F (pk))k≥1, where pk /∈ Z and lim
k 7→+∞

pk = x.

It is clear that in both cases the set Γ(x) is reduced to {F (x) = A(x)−1f(x)} whenever x /∈ Z.
On the other hand E(x) is an a�ne subspace of Rn as soon as it is not empty, it is therefore

closed and convex. However, let x ∈ Z; then E(x) ̸= ∅ ⇐⇒ f(x) ∈ Im(A(x)) which not generic
since rank (A(x)) < n.

The insu�ciency of the naive de�nition is well illustrated by Example 3: the set E(x, 0)
is empty at all points (x, 0) belonging to Z and the solutions that remain in Z are lost if
Γ(x, 0) = E(x, 0).

It is possible to state a notion of solutions that encompasses as well the ones obtained by the
Filippov-like de�nition than the naive ones by setting:

Γ(x) =
⋂
r>0

co {ξ; ∃x ∈ B(x, r) such that A(x)ξ = f(x)},

but these sets are bigger than the Filippov-like ones and su�er the same defect analyzed in the
next section.

The sets A(x) have the interest to be often easier to compute than the sets Γf (x), and to be
included in both Γf (x) and E(x). Indeed let (pk)k≥1 be a sequence in Ω that tends to a point x
in Z and such that the sequence F (pk) tends to a limit ξ. Then:
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1. The vector ξ belongs to Γf (x), and since this set is closed and convex, it contains A(x).

2. The equality A(pk)F (pk) = f(pk) holds for all k, hence A(x)ξ = f(x) and ξ ∈ E(x).

Though the sets A(x) are included in the sets Γf (x) there are many examples where they are
not equal. It is easy to prove that these sets would be equal if the vector �eld F were bounded
(it is shown in [7]), but it is not the case in the present more general setting, and as well as the
sets E(x) the sets A(x) are not big enough in many cases. In Example 3 again, the set A(x) is
empty if x ∈ Z since ∥F (x)∥ → +∞ as x approaches Z.

2.3 A universal vector �eld

. Let A be a n × n square matrix. We denote by Ã the transpose of its cofactor matrix. It

satis�es AÃ = ÃA = det(A)In, and A
−1 =

1

det(A)
Ã if det(A) ̸= 0.

In what follows we consider the smooth vector �eld f̃ de�ned by f̃(x) = Ã(x)f(x) and we
denote by δ(x) the determinant of A(x).

This vector �eld has the interest to be always de�ned and smooth on Rn (everywhere).
Moreover the vector �elds F and f̃ are colinear outside of Z since for x /∈ Z:

F (x) = A−1(x)f(x) =
1

det(A(x))
Ã(x)f(x) =

1

δ(x)
f̃(x).

Proposition 1 Let p ∈ Z.

If rank A(p) = n− 1, then f(p) ∈ ImA(p) ⇐⇒ f̃(p) = 0.
If rank A(p) < n− 1, then f̃(p) = 0.
Moreover f̃(p) ̸= 0 =⇒ E(p) = A(p) = ∅

Proof. It holds for any square matrix A: ker Ã = ImA if rank A = n − 1, and Ã = 0 if
rank A < n− 1. The two �rst assertions are proved.

Next f̃(p) ̸= 0 may happen only if rank A(p) = n − 1 and f(p) /∈ ImA(p). But this last
condition implies E(p) = ∅ and also A(p) = ∅ since A(p) is included in E(p).

■

Remarks.

1. Let Z1 be the set of points x ∈ Z where the rank of A(x) is n− 1. The set of points of Z1

where f̃ does not vanish is open and we will see in the next section that it is generically
dense.

2. On the other hand f̃ vanishes on Z \Z1. This case cannot be neglected because there exist
generically points where rank (A) < n− 1 as soon as n ≥ 4, this is the subject of the next
section.

3 Genericity

The systems A(x)ẋ = f(x) considered in this paper are completely determined by the mapping:

x 7−→ Φ(x) = (A(x), f(x)) from Rn to Mn(R)× Rn,
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where Mn(R) stands for the set of real n× n matrices. More generally we denote by Mn×m(R)
the set of real n×m matrices and Mn(R)× Rn can be identi�ed with Mn×(n+1)(R).

In what follows we will say that a property of degenerate dynamical systems is generic if
the set of smooth mappings from Rn to Mn(R)×Rn for which this property is satis�ed is open
and dense in the C2 Whitney topology (see [8] and [9]).

The proof of the next theorem uses several times the product of coranks theorem, that
states: let Lr be the set of elements of Mn×m(R) of corank r. It is a submanifold of Mn×m(R)
of codimension (n− q + r)(m− q + r) where q = min{n,m} (see [8]).

Theorem 1 Let Zr be the set of points where the rank of A(x) is n− r and let R be the largest

integer such that R2 ≤ n. The following properties are generic:

1. For 1 ≤ r ≤ R the set Zr is a codimension r2 submanifold of Rn and the singular locus Z
is the disjoint union of these submanifolds.

2. The submanifold Zr+1 is included in the closure Zr of Zr for r = 1, . . . , R− 1.

3. The mapping x 7−→ δ(x) = det(A(x)) is a submersion at all points x ∈ Z1.

4. In each stratum Zr the set ZIr of points x where f(x) belongs to Im(A(x)) is a submanifold

of codimension r(r + 1) in Rn, hence of codimension r in Zr.

Proof.

1. For each r in {1, . . . , n} the set Lr of elements of Mn(R) of corank r is a submanifold of
Mn(R) of codimension r2. Moreover the union of the Lr for r = 1, . . . , n is closed. According
to [8] (Theorem 4.9, and Exercise 3 page 59) the set of smooth �elds of matrices A(x) that are
tranversal to all the Lr is open and dense in C∞(Rn,Mn(R)) endowed with the C2 Whitney
topology 1.

The codimension of Lr is r2 and transversality means nonintersection if r2 > n. If A−1(Lr)
is not empty transversality implies that it is a submanifold of Rn of codimension r2. This proves
the �rst point.
2. Let us consider a generic mapping A from Rn to Mn(R) and a point p belonging to Zr

with r ≥ 2. The rank of Λ = A(p) is n − r and there exists an invertible matrix P such that

PΛP−1 =

(
AΛ BΛ

CΛ DΛ

)
where AΛ ∈ Mn−r(R) is invertible. As in the proof of the product of

coranks Theorem we consider

T =

(
I 0

−CΛA
−1
Λ I

)
so that TPΛP−1 =

(
AΛ BΛ

0 DΛ − CΛA
−1
Λ BΛ

)
.

Let the matrix P be �xed. The set Ω of matrices Q such that, with obvious notations, AQ

is invertible is open and the mapping Θ(Q) = DQ − CQA
−1
Q BQ is a submersion from this open

subset of Mn(R) onto Mr(R). Clearly rank (Q) = n − r + rank (Θ(Q)) and for 0 ≤ s ≤ r we
have Ls

Mn(R) = Θ−1(Ls
Mr(R)) (with obvious notations again).

Since the mapping A is generic we have A −⋔p L
r which implies that Θ ◦ A is a submersion

at p (see [8], Lemma 4.3). Let V be an open neighborhood of p and W = V
⋂
A−1(Ω). Then

Θ ◦A(W ) is a neighborhood of 0 in Mr(R) that encounters Ls
Mr(R) for 0 ≤ s ≤ r. Consequently

∀s, 0 < s < r, V
⋂

Zs ̸= ∅.
1The Whitney topology is called the strong topology in [9]. The references in this book are Thom transversality

Theorem, the pararametric Theorem 2.7 and Exercise 15 p. 84
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3. Consider now the determinant mapping, denoted by det, from Mn(R) to R. The di�erential
of det at Λ ∈ Mn(R) applied to H is D det(Λ).H = Trace(Λ̃H) where Λ̃ stands for the transpose
of the matrix of cofactors of Λ. Consequently D det(Λ) ̸= 0 if and only if rank (Λ) ≥ n− 1. This

shows that det is a submersion on Mn(R) \

⋃
r≥2

Lr

. In particular det is a submersion in a

neighborhood W of L1 small enough for L1 = {det = 0}
⋂
W .

Let us consider a generic mapping A from Rn to Mn(R) and a point p belonging to Z1.
Since A −⋔p L

1 and according to [8] (Lemma 4.3) det ◦A is a submersion at p. In other words
x 7−→ det(A(x)) is a submersion at p.
4. We can identify Mn(R) × Rn with Mn×(n+1)(R). The codimension of the subset Lr

1 of
elements of Mn×(n+1)(R) of corank r is r(r + 1). Again the set of smooth mappings Φ that are
tranversal to all the Lr

1 is open and dense in the set C∞(Rn,Mn×(n+1)(R)) endowed with the C2

Whitney topology.
Consider such a generic mapping Φ. Then Φ−1(Lr

1) is a submanifold of Rn of codimension
r(r + 1). At any point x in this submanifold the rank of A(x) is n− r or n− r − 1. But the set
of points x where this rank is n− r is open in Φ−1(Lr

1) which proves that ZIr = Zr
⋂
Φ−1(Lr

1)
is a submanifold of Rn of codimension r(r + 1).

■

Notice that generically the singular locus is equal to the codimension 1 submanifold Z1 if
n = 2, 3. However the set ZI1 of points of Z1 where f(x) ∈ Im(A(x)) is generically not empty
even if n = 2, 3: it is made of isolated points if n = 2 and it is a submanifold of dimension 1 if
n = 3.

4 Analysis of the sets Γ

4.1 Critique of the Filippov-like de�nition

Let us consider a generic system and let p be a point in Z1. In order to determine the Filippov-
like set Γf (p), we �rst compute f̃ and δ in a neighborhood of p. For this purpose we consider
a point x outside of Z and it orthogonal projection π(x) onto Z1 (the points x are assumed to
belong to a tubular neighborhood of Z1 around p for the orthogonal projection to exist). Since
δ = det(A) is a submersion on Z1 its gradient does not vanish and is orthogonal to TqZ1 at all

points q ∈ Z1. In what follows −→a (x) stands for
−−→
gradδ(π(x)) and a(x) for ∥−→a (x)∥. To begin with

we have:
f̃(x) = f̃(π(x)) +Df̃(π(x)).(x− π(x)) +O(∥x− π(x)∥2),

where Df̃ is the di�erential of f̃ . On the one hand x − π(x) is orthogonal to Z1 at π(x) hence
equal to α−→a (x) for some real number α. On the other hand there exists a unique unitary vector
ξ in TpZ1 such that π(x)− p = βξ +O(β2). Consequently:

f̃(x) = f̃(p) + βDf̃(p).ξ + αDf̃(π(x)).−→a (x) +O(α2) +O(β2).

The variation of Df̃(π(x)).−→a (x) from Df̃(p).−→a (p) being of order β + α we obtain:

f̃(x) = f̃(p) + βDf̃(p).ξ + αDf̃(p).−→a +O(α2 + β2),

9



where −→a stands for −→a (p). In the same way:

δ(x) = δ(π(x)) + αDδ(π(x)).−→a (x) + α2D(2)δ(π(x)).(−→a (x),−→a (x)) +O(α3)

= 0 + α
〈−−→
gradδ(π(x)),−→a (x)

〉
+ α2D(2)δ(π(x)).(−→a (x),−→a (x)) +O(α3)

= αa2(x)

(
1 +

α

a2(x)
D(2)δ(π(x)).(−→a (x),−→a (x)) +O(α2)

)
= αa2(p)

(
1 + αD(2)δ(p).(−→u ,−→u ) +O(α2 + β2)

)
,

where −→u stands for a(p)−1−→a (p). Finally we get

1

δ(x)
=

1

αa2

(
1− αD(2)δ(p).(−→u ,−→u ) +O(α2 + β2)

)
,

and according to F (x) =
1

δ(x)
f̃(x):

F (x) =
1

αa2

(
f̃(p) + βDf̃(p).ξ + αDf̃(p).−→a − αD(2)δ(p).(−→u ,−→u )f̃(p) +O(α2 + β2)

)
=

1

αa2
f̃(p) +

1

a2

(
Df̃(p).−→a −D(2)δ(p).(−→u ,−→u )f̃(p)

)
+
β

α

1

a2
Df̃(p).ξ +O(|α|+ |β|). (2)

Consider a point y outside of Z equal to −βξ − α−→a at �rst order. Then

1

2
(F (x) + F (y)) =

1

a2

(
Df̃(p).−→a −D(2)δ(p).(−→u ,−→u )f̃(p)

)
+
β

α

1

a2
Df̃(p).ξ +O(|α|+ |β|).

Since the ratio
β

α
can take any real value and ξ is an arbitrary unitary vector in TpZ there exists

some vector v such that v +Df̃(p)(TpZ) be included in Γf (p).
We can state:

Proposition 2 Let p be a point in the stratum Z1 of a generic DDS. Then Γf (p) contains an

a�ne space whose direction is Rf̃(p) +Df̃(p)(TpZ1).

It is shown in the next proposition that the dimension of Df̃(p)(TpZ1) is generically equal to
n− 1. If moreover p belongs to Z1 \ ZI1, then f(p) does not belong to the image of A(p), and
according to Proposition 1 the vector �eld f̃ does not vanish at p. Consequently Γf (p) = Rn as

soon as f̃(p) does not belong to Df̃(p)(TpZ1).

Proposition 3 For a generic point p ∈ Z1 \ ZI1 of a generic system, the dimension of the set

Df̃(p)(TpZ) is n− 1 and Γf (p) = Rn.

Sketch of the proof. Since rank A(p) = n−1 there exist coordinates such that A(p) =

(
0 l(p)
0 ∆(p)

)
where ∆(p) is an invertible (n − 1) × (n − 1) matrix, and there exists a neighborhood V of p

where A(x) =

(
a(x) l(x)
c(x) ∆(x)

)
with ∆(x) invertible. Let ξ =

(
α
Λ

)
be a nonzero vector, where
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α ∈ R and Λ ∈ Rn−1. For x ∈ V , A(x)ξ = 0 is not possible if α = 0 and we can assume that
α = 1.

Now A(x)ξ = 0 is equivalent to a(x)+ l(x)Λ = 0 and c(x)+∆(x)Λ = 0. The second equality
implies Λ = −∆−1(x)c(x), and the �rst one becomes a(x)− l(x)∆−1(x)c(x) = 0. If x belongs to
Z1 this equality must be satis�ed, so that:

∀x ∈ Z1

⋂
V, kerA(x) = RΦ(x) where Φ(x) =

(
1

−∆−1(x)c(x)

)
.

It is clear that the set of points of Z1
⋂
V where the rank of DΦ(x) is n− 1 is generically open

and dense, and that we can assume without lost of generality that p belongs to this set.
But for all x ∈ Z1 the vector f̃(x) belongs to kerA(x) and there exists a function θ de�ned

in Z1
⋂
V such that f̃(x) = θ(x)Φ(x). To �nish θ(p) ̸= 0 because p /∈ ZI1 and the rank of the

restriction of Df̃(p) = Dθ(p)Φ(p) + θ(p)DΦ(p) to TpZ1 is n− 1.

Moreover the vector f̃(p) is generically not in the image of TpZ1 by Df̃(p) and according to
Formula (2) the set Γf (p) is equal to Rn.

■

Before trying to state a better de�nition of the sets Γ let us consider again a generic system
and a point p in Z1 \ ZI1. Since the vector �eld f̃ does not vanish at p, it holds for x in a
neighborhood of p, but outside of Z:

F (x)

∥F (x)∥
=

f̃(x)∥∥∥f̃(x)∥∥∥ −−−→
x→p

f̃(p)∥∥∥f̃(p)∥∥∥ .
It seems therefore natural that the set Γ(p) be a one-dimensional a�ne space of direction Rf̃(p).

4.2 Our de�nition of the sets Γ

To overcome the drawbacks raised in the previous subsection we propose herein a construction
of the sets Γ(p) that takes into account the vectors F (q) for q in the orthogonal complement to
TpZr only. In order to consider such orthogonal complements in nongeneric cases, it is necessary
that the singular locus be locally strati�ed, which is always the case of generic DDSs according
to Theorem 1, but not only see for instance Section 6. We keep otherwise the Filippov-like
de�nition. This leads to:

De�nition 4 Let p be a point in Z.

1. If the set Z can be locally strati�ed around p in the disjoint union of the codimension k
submanifolds Zk and p belongs to Zk0, let Np be the orthogonal complement to TpZk0 in

Rn. Then:

Γ(p) =
⋂
r>0

co {F (x) = A(x)−1f(x); x ∈
(
B(p, r)

⋂
Np

)
\ Z}.

2. The set Γ(p) is otherwise de�ned as the Filippov-like set:

Γ(p) = Γf (p) =
⋂
r>0

co {F (x) = A(x)−1f(x); x ∈ B(p, r) \ Z}.

11



Remark. This de�nition makes use of the orthogonal complement to TpZ. Consequently it
depends on the Euclidean structure, or more generally on the Riemannian structure, with which
Rn is endowed.

Consider a generic system and a point p in Z1. The set Np is then the line generated by
−→a =

−−→
gradδ(p). Let x = p + α−→a be a point in this line. According to the computation of the

previous section, but with π(x) = p, we get:

F (x) =
1

αa2
f̃(p) +

1

a2

(
Df̃(p).−→a −D(2)δ(p).(−→u ,−→u )f̃(p)

)
+O(|α|) (3)

The set Γ(p) is therefore equal to ξ + Rf̃(p) where ξ stands for 1
a2
Df̃(p).−→a . The vector ξ

need not be orthogonal to f̃(p) and could be replaced by the vector ξ0 of minimal norm in Γ(p)
which is indeed orthogonal to f̃(p) so that:

Γ(p) = ξ0 + Rf̃(p) where ξ0 ⊥ f̃(p).

Remarks.

1. It is clear that a modi�cation of the Euclidean structure would not change the direction
of Γ(p), given by f̃(p), but would modify the vector ξ (or ξ0). This must be taken into
account if a change of coordinates is made.

2. The analysis and conclusions of Examples 1 to 3 are not modi�ed while replacing the
Filippov-like sets by the ones of De�nition 4.

In order to understand the behaviour of the dynamics inside the singular set it is necessary
to determine the elements of Γ(p) that belong to TpZ1. Let v = 1

a2
Df̃(p)(−→a )+ cf̃(p) be a vector

in Γ(p). Then

v ∈ TpZ1 ⇐⇒ v ⊥
−−→
gradδ(p) ⇐⇒

〈
1

a2
Df̃(p).−→a + cf̃(p),−→a

〉
= 0

We have consequently two di�erent cases:

1. If f̃(p) does not belong to TpZ1 then there is an unique element in TpZ1
⋂
Γ(p), it is

obtained for c = −

〈
Df̃(p).−→a ,−→a

〉
a2

〈
f̃(p),−→a

〉 .

2. If f̃(p) belongs to TpZ1, in particular if f̃(p) = 0, the intersection TpZ1
⋂
Γ(p) is empty

except if Df̃(p).−→a ⊥ −→a . In this last case Γ(p) ⊂ TpZ1.

This value of c allows to de�ne a smooth vector �eld in the open subset of Z1 where f̃(p)
does not belong to TpZ1. This vector �eld is de�ned as:

v(p) =
1

a2
Df̃(p).−→a −

〈
Df̃(p).−→a ,−→a

〉
a2

〈
f̃(p),−→a

〉 f̃(p). (4)

We can state:
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Theorem 2 For a generic DDS holds:

1. At all points p ∈ Z1 the set Γ(p) is 1
a2
df̃(p).−→a + Rf̃(p).

2. In the open subset of Z1 where f̃(p) does not belong to TpZ1 the intersection of Γ(p) with
TpZ1 is reduced to the smooth vector �eld v de�ned by (4).

3. All trajectories of v are generalized solutions to the DDS.

It appears in the proof of Proposition 3 that the dimension of Γf (p) at a generic point p ∈ Z1

depends on the variation of the direction of f̃(z), hence on the variation of kerA(z), when the
point z moves in a neighborhood of p inside Z. This is con�rmed by the following proposition.

Proposition 4 Let p be a point in the stratum Z1 of a generic system such that f̃(p) ̸= 0. If

there exists a neighborhood W of p in Z1 such that the kernel of A(z) does not depend on the

point z ∈W , then Γf (p) = Γ(p).

Proof. Since f̃ is contained in the kernel of A at all points of Z1 there exists a smooth function
θ de�ned on W such that

∀z ∈W, f̃(x) = θ(z)f̃(p).

The di�erential of f̃ applied to a vector ξ ∈ TpZ1 is therefore Df̃(p).ξ = (Dθ(p).ξ)f̃(p) and is

directed by f̃(p) for all ξ. Consequently Formula (2) becomes:

F (x) =
1

αa2
f̃(p) +

1

a2

(
Df̃(p).−→a −D(2)δ(p).(−→u ,−→u )f̃(p)

)
+
β

α

1

a2
(Dθ(p).ξ)f̃(p) +O(|α|+ |β|).

From this it is clear that:

Γf (p) =
1

a2
Df̃(p).−→a + Rf̃(p) = Γ(p).

■
An example that illustrates all the conclusions of this section is postponed to Section 7. In

particular the di�erence between the sets Γ and Γf , and the di�erence in the behaviour of the
system inside Z that it implies, appear clearly.

5 Computation of the solutions by reparametrization

In this section we make use of the universal vector �eld f̃ to compute the solutions to (E) by
reparametrization. Recall that

∀x ∈ Rn f̃(x) = Ã(x)f(x), and f̃(x) = δ(x)F (x) outside of Z.

The vector �eld f̃ is smooth and has well-de�ned trajectories everywhere in Rn.

Important remark. The singular locus Z splits the state space into domains where the sign of

δ is constant.

It is assumed in what follows that Z1 is a codimension 1 submanifold, which is in particular
the case when the system is generic. Locally Z1 splits the space in two disjoint open subsets and
the sign of δ = det(A) is constant on each of these sets. In the generic case the sign of δ changes
when crossing Z1 but the case where it is the same on both sides is also of interest because it
provides trajectories that cross the singular locus.
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5.1 The generic case

Let p ∈ Z1 and let us assume that f̃(p) does not vanish and points outside of Z toward a region

where δ > 0. Let x̃(s) be the solution to
dx̃

ds
= f̃(x̃) that satis�es x̃(0) = p and let θ(s) be

de�ned by

θ(s) =

∫ s

0
δ(x̃(τ)) dτ.

Since {δ(x̃(s)) > 0}, for s > 0 and as long as x̃(s) does not meet Z, the function θ is strictly
increasing and can be inverted. Let x(t) = x̃(θ−1(t)). It is de�ned on an interval [0, β[ and
satis�es for t > 0:

dx

dt
(t) =

dx̃

ds
(θ−1(t))

(
dθ

ds
(θ−1(t))

)−1

= f̃(x̃(θ−1(t)))
1

δ(x̃(θ−1(t))
= f̃(x(t))

1

δ(x(t))
= F (x(t)).

In the same way solutions of the DDS that enter or leave the singular locus, according to the
sign of δ and the direction of f̃(p), can be obtained by reparametrization of the trajectories of f̃ .

Remark. The singularities of an ordinary di�erential equation ẋ = v(x) are the stationnary
points p where v(p) = 0. They can be reached in in�nite time only, forward or backward. On
the contrary the points of a DDS that belong to Z are singularities that can be reached in �nite
time. The following simpli�cation of Example 3 illustrates this phenomenon.

Example 4 Consider in R2 {
ẋ = 0
2yẏ = −1

The set Γ(p) at a point p = (a, 0) in Z = {y = 0} is {0} × R and the only vector Γ(p)
⋂
TpZ is

the null one.

This system can be viewed as the equation with discontinuous right-hand side q̇ = F (q) where

the vector �eld F is de�ned by F (x, y) =
−1

2y

∂

∂y
if y ̸= 0 and F (x, 0) = 0.

The trajectory issued from a point (x0, y0) outside of Z reaches Z in �nite time and then

remains at the point (x0, 0).

5.2 An important nongeneric case

It is the case where despite the fact that Z is locally a codimension one submanifold, the sign
of δ is the same on both sides of Z. This situation arises typically when locally Z = Z1 is a
codimension one submanifold but δ(x) = detA(x) is the square of some function. Consider for
instance in R2:

(NG)

(
1 0
0 y2

)(
ẋ
ẏ

)
=

(
a(x, y)
b(x, y)

)
which is nothing but a generalization of Exemple 2.

We consider in the present subsection an open and connected subset V of Rn such that,
locally in V

⋂
Z1, the sign of δ is the same on both sides of Z1. Since the singular locus splits

the state space into domains where the sign of δ does not change, this remains true as long as
Z1 does not meet another part of Z.
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The vector �eld f̃ may point towards one of the two domains delimited by V
⋂
Z1 or may be

parallel to Z1. The set of this last kind of points is closed and splits V
⋂
Z1 into domains where

f̃ point towards the same side.
It holds for such a setting:

Proposition 5 The sets Γ(p) and Γf (p) are empty at all points p ∈ V
⋂
Z1 where f̃(p) does not

vanish.

If f̃(p) is not parallel to Z1 then there exists a trajectory of the DDS that crosses Z1 at p.

Proof. Since Γ(p) is always included in Γf (p) it is enough to prove that Γf (p) is empty.

Let u stand for the unitary vector f̃(p)

∥f̃(p)∥ and recall that

F (x)

∥F (x)∥
=

f̃(x)∥∥∥f̃(x)∥∥∥ −−−→
x→p

u for x ∈ V
⋂

Z1 \ Z.

There exists r > 0 such that

∥∥∥∥ f̃(x)

∥f̃(x)∥ − u

∥∥∥∥ < 1
2 , for all x in B(p, r). If moreover x /∈ Z it holds

∥F (x)− ∥F (x)∥u∥ < 1
2 ∥F (x)∥ and:

∥F (x)− ∥F (x)∥u∥2 = ∥F (x)∥2 − 2 ∥F (x)∥ ⟨F (x), u⟩+ ∥F (x)∥2 < 1

4
∥F (x)∥2 ,

which entails ⟨F (x), u⟩ > 7
8 ∥F (x)∥

2. But lim
x 7→p

∥F (x)∥ = +∞ because f̃(p) ̸= 0, and �nally for

any M > 0 there exists r > 0 such that ⟨F (x), u⟩ > M for all x ∈ B(p, r) \ Z. This shows that
the set Γf (p) is included in the half-space {ξ; ⟨ξ, u⟩ > M} for any M > 0, hence that it is
empty.

If f̃(p) is not parallel to Z it is clear that by reparametrization we can obtain a solution
that reaches p in �nite time, say at t = 0, and another one starting from p at t = 0 that leaves
Z in �nite time. The concatenation of these two solutions provides an absolutely continuous
trajectory through p.

■

6 Application to the models of [18]

The paper [18] mainly deals with equations in R2 of the form:

ϕ(x, y)

(
0 1
−1 0

)(
ẋ
ẏ

)
=

(
a1(x, y)
a2(x, y)

)
,

where the function ϕ and the vector �eld de�ned by a1 and a2 are smooth. In other words it is
the particular case where the �eld of matrices A is:

A(x, y) =

(
0 ϕ(x, y)

−ϕ(x, y) 0

)
.

We can set f = −a2 and g = a1 to obtain the form

(E)

{
ϕ(x, y)ẋ = f(x, y)
ϕ(x, y)ẏ = g(x, y)
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In this setting the notion of genericity has a di�erent meaning: as well as in [18] we will say that
the system is generic if ϕ is a Morse function (see for instance [12] for this notion).

Let p be a point in Z. Up to a change of coordinates we can assume that p is the point (0, 0)
and that ϕ being a Morse function has locally one of the three following forms:

1. ϕ(x, y) = yψ(x, y) with ψ(x, 0) ̸= 0. In other words the singular locus is the line {y = 0}.
It is possible to divide f and g by ψ and, writing f for f/ψ and g for g/ψ, we get the
equation:

(E1)

{
yẋ = f(x, y)
yẏ = g(x, y)

2. ϕ(x, y) = (x2 + y2)ψ(x, y) with ψ(0, 0) ̸= 0. Similarly we get the model:

(E2)

{
(x2 + y2)ẋ = f(x, y)
(x2 + y2)ẏ = g(x, y)

3. ϕ(x, y) = (x2 − y2)ψ(x, y) with ψ(0, 0) ̸= 0. Thanks to a second change of variable we can
write ϕ(x, y) = xyψ(x, y) and obtain:

(E3)

{
xyẋ = f(x, y)
xyẏ = g(x, y)

Notice that the singular locus is (locally) a line in the �rst case, an isolated point in the
second one and the union of two intersecting lines in the third one. For general 2-dimensional
DDSs the last two cases are not generic. Moreover the singular locus is in the three cases equal
to Z2. It is however possible to compute the trajectories by replacing δ by y (resp. by x2 + y2,
by xy) in the reparametrization.

Let v be the vector �eld de�ned by v(x, y) = (f(x, y), g(x, y))T . Its trajectories are denoted
by x̃(s) for s in some interval (−α, β).

1. First case. Let F be de�ned by 1
yv outside of Z as for general DDSs, let p∈ Z and let us

assume that v(p) points outside of Z. With the same kind of computations as in Section
5 we get a trajectory that enters Z if v(p) points to {y < 0} and a trajectory that leaves
Z if v(p) points to {y > 0}.

Z = {y = 0} •
p

Figure 5: First case, v(p) ̸= 0

It is clear that a formula similar to Formula (3) holds and that as well as in Section 4.2
or Example 3 trajectories may live in Z. However the direction of the vector �eld induced
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Z = {y = 0} •
p

• •• •

Figure 6: First case. v(p) = 0

in Z depends on the di�erential of the vector �eld v and cannot be made more precise in
general.

It may happen that v(p) be parallel to Z. We will only discuss here the case where this
happens at an isolated point, because it would not be generic that v be parallel to Z at
all points of a segment of Z. Consider a trajectory x̃ of v that veri�es x̃(0) = p. Except
for s = 0 the point x̃(s) does not belong to Z and can be reparametrized into solutions to
(E1) on (−α, 0] and [0, β) for some α, β > 0. The solution x(t) of (E1) obtained in this
way may remain in one of the half-planes {y < 0} and {y > 0} or cross the singular locus.

2. Second case. Let us assume that v does not vanish at (0, 0), let θ(s) =

∫ s

0
∥x̃(τ)∥2 dτ , and

let x(t) = x̃(θ−1(t)). Then x(t) is a trajectory through the singular point (0, 0). Notice that
the set Γ(0, 0) is empty. This is due to the fact that the vector �eld v does not vanish at
(0, 0) and is divided by x2+y2 > 0. The trajectory through the point (0, 0) is consequently
a generalized solution, not a classical one.

Z = {(0, 0)}

•
p v(p)

Figure 7: Second case. v(p) ̸= 0

Though it is not generic the case where v(0, 0) = 0 is of interest. We assume of course
that v(x, y) cannot be divided by x2 + y2, it is for example the case if the real parts of the
eigenvalues of DV (0, 0) are both negative. The eigenvalues are then both smaller than −b
for some b > 0 and there exists a neighborhood W of (0, 0) such that any trajectory x̃ of
v starting in W satis�es ∥x̃(s)∥ ≤ ∥x̃(0)∥ e−bs.

Let θ(s) =
∫ s
0 ∥x̃(τ)∥2 dτ ≤ ∥x̃(0)∥

∫ s
0 e

−2bτ dτ . Then θ(s) has a limit smaller than
1
2b ∥x̃(0)∥ as s 7→ +∞, which shows that the trajectory x(t) = x̃(θ−1(t)) reaches the point
(0, 0) in �nite time.
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Z = {(0, 0)}

v(p) = 0
•

Figure 8: Case 2. Opposite eigenvalues

The set Γ(0, 0) = Γf (0, 0) is here equal to R2 and the trajectories that reach the origin in
�nite time can be extended to the constant solution, which is again a generalized solution.

The time reverse system is clearly not deterministic since a steady state solution equal to
(0, 0) may leave this point at any time.

Let us have a look to the case where the real parts of the eigenvalues of DV (0, 0) have
di�erent signs. It is clear that here Γ(0, 0) = R2 and that the steady state solution (0, 0) is
available on any time interval. On the other hand only two trajectories of v enter the point
(0, 0), in in�nite time of course, and two other ones leaves this point. Finally there exist
generalized solutions that enter the singular locus in �nite time, may remain at (0, 0) for
any duration and then leave the singular locus at any time. The DDS is not deterministic.

3. Third case. The singular locus splits locally R2 in four domains de�ned by the signs of x
and y. We assume that v(0, 0) does not vanish and is neither parallel to {x = 0} nor to
{y = 0}.

x

y

Z = {xy = 0}

•
p

v(p)

•

•

•

• •

Figure 9: Case 3. v(p) points outside of Z

Consequently any point p of Z \ (0, 0), that is any point of the form (x, 0), x ̸= 0 or
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(0, y), y ̸= 0, is a point of the �rst kind where v(p) points outside of Z. This means that
there are two trajectories that both enter or both leave the singular locus at p in �nite
time. There are also trajectories in Z that may go to the origin, or leave it, or that can be
constant.

To �nish, let us consider the following nongeneric case:

(E4)

{
y2ẋ = f(x, y)
y2ẏ = g(x, y)

It has the interest to provide trajectories that cross the singular locus, at least at all points
p = (x, 0) where v(p) does not have the direction of the singular locus Z = {y = 0}.

7 A detailed example

Let in R3:

(E)

1 0 x
0 1 y
0 0 z

ẋẏ
ż

 =

ϕ(x, y, z)ψ(x, y, z)
1 + z

 .

The data of this system are Z = Z1 = {z = 0} because δ(x, y, z) = z, and:

Ã(x, y, z) =

z 0 −x
0 z −y
0 0 1

 and f̃(x, y, z) =

zϕ(x, y, z)− x(1 + z)
zψ(x, y, z)− y(1 + z)

1 + z

 .

At points where z ̸= 0 the vector �eld F is :

F (x, y, z) = ξ(x, y, z) +
1

z

−x
−y
1

 where ξ(x, y, z) =

ϕ(x, y, z)− x
ψ(x, y, z)− y

1

 .

Let us �x a point p = (x0, y0, 0) in Z and let u = (a, b, 0)T be a vector in TpZ. To simplify the
notation we write F (β, z) (resp. ξ(β, z)) for F ((x0, y0, z)+βu) (resp. ξ((x0, y0, z)+βu)). Then:

1
2 (F (β, z) + F (−β,−z)) = 1

2(ξ(β, z) + ξ(−β,−z)) + 1
2z

−x0 − βa
−y0 − βb

1

+ 1
−2z

−x0 + βa
−y0 + βb

1


= 1

2(ξ(β, z) + ξ(−β,−z))− β
z u.

Since β
z takes all real values in any neighborhood of p and since the vector u ∈ TpZ is arbitrary,

this implies that Γf (p) contains the a�ne space ξ(p) + TpZ.

For β = 0 the vector �eld F takes the value F (0, z) = ξ(0, z) + 1
z

−x0
−y0
1

 and taking into

account its value for −z we obtain that ξ(p) + R

−x0
−y0
1

 is also included in Z.
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The conclusion is that Γf (p) is equal to R3 at all points p ∈ Z. This means that according
to the Filippov-like de�nition all almost continuous curves in Z would be generalized solutions
to (E).

Let us now apply De�nition 4: the variations of F around p are restricted to the points

(x0, y0, z) and it is immediate that Γ(p) = ξ(p) + R

−x0
−y0
1

. The intersection of this set with

TpZ provides the vector �eld

v(x, y) =

ϕ(x, y, 0)ψ(x, y, 0)
0

 within Z.

Unlike the sets Γf , the sets Γ provide an unique vector �eld in Z, hence well-de�ned trajec-
tories.
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