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The solutions to Degenerate Dynamical Systems of the form A(x) ẋ = f (x) are studied by considering the equation as a dierential inclusion. The set Z = {det(A(x)) = 0}, called the singular set, is assumed to have empty interior.

The reasons leading us to the denition of the sets used for the dierential inclusion are exposed in detail.

.

It is shown that generalized solutions may enter, leave, or remain in the singular locus.

Introduction

The aim of the present paper is to investigate the solutions of degenerate dynamical systems, also called singular dierential equations, of the form:

A(x) ẋ = f (x), (1) 
where x ∈ R n , f is a smooth vector eld on R n , and A: R n -→ M(n; R) is a eld of square matrices, smoothly depending on x. From now on, degenerate dynamical systems are referred to as DDSs.

The singular locus of (E), denoted by Z, is the set of points where the determinant of A vanishes:

Z = {x ∈ R n ; det(A(x)) = 0}.
Assumption. All along the paper the set Z is assumed to be non empty but with empty interior.

We are particularly interested in the problem of the existence of solutions lying in Z and to the extension in Z of classical solutions ending in the singular locus. Our motivation comes from a discussion with one of the authors of the papers [START_REF] Saavedra | Degenerate dynamical systems[END_REF] and [START_REF] De Micheli | Quantum degenerate systems[END_REF], where some equations of the previous kind coming from physics are analyzed. In a rst step, and contrary to [START_REF] Saavedra | Degenerate dynamical systems[END_REF], we do not assume any regularity on the set Z and we allow f to vanish on Z, even if in some cases 1 this setting is not related to a physical model. Actually, we are interested in dening general notions of solutions to these systems that remain valid in all situations and we only assume that everything is smooth and that the interior of Z is empty.

There is an important literature about the kind of equations we consider here, under dierent names, in particular Dierential-Algebraic Equations (DAE) and Implicit Dierential Equations.

Dierential-Algebraic Equations are actually partially dierent to the one we consider here because it is generally assumed in the literature about DAEs that the matrix A is either constant, hence singular everywhere, or is singular of constant rank on an open subset of R n (see for example the pioneer book [START_REF] Campbell | Singular systems of dierential equations[END_REF]). The same kind of assumption is made in the nonlinear case, as explained in the book [START_REF] Kunkel | Mehrmann Dierential-Algebraic Equations[END_REF] where an important bibliography about DAEs can be found. Let us quote [START_REF] Dai | Singular Control Systems[END_REF], [START_REF] Rabier | A geometric treatment of implicit dierential-algebraic equations[END_REF], [START_REF] Rabier | Rheinboldt A general existence and uniqueness theory for implicit dierentialalgebraic equations[END_REF], [START_REF] Rabier | On impasse points of quasilinear dierential-algebraic equations[END_REF], [START_REF]Shcheglova Nonlinear Dierential Algebraic Equations[END_REF]. Dierential-Algebraic Equations can also be controlled, see [START_REF] Dai | Singular Control Systems[END_REF] or [START_REF] Ayala | Jouan Singular linear systems on Lie groups[END_REF] on Lie groups.

The paper [START_REF] Reissig | On singularities of autonomous implicit ordinary dierential equations[END_REF] deals with equations of the form (1) at singular points, but with a point of view close to the one of DAE.

The geometric approach of Implicit Dierential Equations goes back to Poincaré. An elementary account can be found in [START_REF] Arnold | Chapitres supplémentaires de la théorie des équations diérentielles, traduction française[END_REF] and more complete overview in [START_REF] Remizov | Multidimensional Poincaré Construction and Singularities of lifted elds for implicit dierential equations[END_REF].

The point of view of the present paper is dierent: it considers generalized solutions to (E) dened as trajectories of a dierential inclusion. Assuming that a closed and convex set Γ(x) has been assigned to each point x ∈ R n in a way that will be made clear later, we can use the following classical denition of solutions to a dierential inclusion: Denition 1 A solution to (E) is an absolutely continuous function x(t) from an interval I of R to R n that satises ẋ(t) ∈ Γ(x(t))

for almost every t ∈ I.

Outside the singular locus the equation simply reads ẋ = A(x) -1 f (x), and every solution to (E) must be a trajectory of the vector eld F (x) = A(x) -1 f (x). Consequently all possible denitions of Γ must imply Γ(x) = {A(x) -1 f (x)} whenever x / ∈ Z.

In a rst approach (Section 2) the sets Γ are dened by imitating Filippov's solutions to dierential equations with discontinuous right-hand side. However, in Filippov's book [START_REF] Filippov | Dierential equations with discontinuous right-hand side[END_REF] (see also [START_REF] Filippov | Dierential equations with discontinuous right-hand sides[END_REF]) the vector eld that denes the equation is assumed to be bounded (similarly in the literature about dierential inclusions, for instance in [START_REF] Smirnov | Introduction to the Theory of Dierential Inclusions[END_REF] and [START_REF]Kisielewicz Dierential inclusions and optimal control[END_REF], the sets Γ(x) are assumed to be bounded). This assumption cannot be made herein since A(x) -1 f (x) is generally unbounded in the neighborhood of a singular point. Though the Filippov-like denition works well in some simple cases (Examples 1-3 of Section 2.1) this lack of boundedness causes drawbacks that are examined in Section 4.2 and leads to a new denition, dierent from Filippov's one (Denition 4 in Section 4.2). Section 4.2 is preceded by a detailed analysis of generic DDSs, which is the key to understanding the meaning of the possible denitions of the sets Γ (Section 3). It is in particular shown that generically the singular set Z is the disjoint union of the codimension r 2 submanifolds Z r where the rank of A is n -r, and then in Section 4.1, that at a generic point p belonging to the stratum Z 1 of a generic system the Filippov-like set Γ f (p) is equal to R n . This is due to the variation of the kernel of A(x) as the point x moves within Z 1 . A consequence is that according to the Filippov-like denition, all absolutely continuous curves lying inside Z 1 are generalized solutions to (E).

It was therefore necessary to modify the denition of the sets Γ in order to reduce their dimension at generic points of Z 1 while preserving the results obtained in the simple cases. This brings us to Denition 4 according to which the set Γ at a generic point of Z 1 is a dimension 1 ane space. Moreover the trace of these sets on the tangent space of Z 1 provides a smooth vector eld (in an open and dense subset of Z 1 , there are singularities). The gap between the Filippov-like sets and the ones of Denition 4 and its consequences are exhibited in a generic example postponed to Section 7.

Section 5 is devoted to the computation of the solutions to (E) outside of Z by reparametrization of the trajectories of a vector eld f that has the double interest to be dened and smooth everywhere, including Z, and to be colinear with F outside the singular locus. It is also shown that in many cases the solutions thus obtained can be extended to solutions inside Z.

These results are adapted in Section 6 to the particular and motivating case of [START_REF] Saavedra | Degenerate dynamical systems[END_REF] that deals with systems in R 2 of the form

(S) ϕ(x, y) 0 1 -1 0 ẋ ẏ = a 1 (x, y) a 2 (x, y) .
Assuming that ϕ is generic, hence a Morse function, we study the behaviour of (S) in the three generic cases.

In conclusion the DDSs under consideration behave very dierently from the classical ones for various reasons, the main ones being:

1. It may exist trajectories that enter the singularities in nite time.

2. They may be extended to trajectories that live in Z.

3. The DDSs are not always deterministic and even if a system is deterministic the time reversed one need not be.

Notations. The set R n is endowed with the Euclidean norm denoted by ∥.∥. The inner product is denoted by ⟨., .⟩. The points of R n are denoted by x, sometimes by p or q, and their coordinates by (x 1 , x 2 , . . . , x n ). In low dimension examples the coordinates are often (x, y) or (x, y, z).

The convex hull of a subset S of R n is denoted by co S and the closure of the convex hull of S by co S.

The open set R n \ Z is denoted by Ω.

The vector eld F is dened outside of Z by

F (x) = A(x) -1 f (x).
2 Basic settings

The Filippov-like denition

Denition 2 At all points x ∈ R n the set Γ f (x) is dened by

Γ f (x) = r>0 co {F (x) = A(x) -1 f (x); x ∈ B(x, r) \ Z}.
where B(x, r) stands for the open ball of radius r centered at x.

This denition is equivalent to Filippov's one in the case where the Lebesgue mesure of the set of discontinuities vanishes. The sets Γ f (x) are closed and convex and it could be proved that at least one solution exists for any initial condition if the vector eld A(x) -1 f (x) were bounded (see [START_REF] Filippov | Dierential equations with discontinuous right-hand side[END_REF]). This existence statement also holds for bounded dierential inclusions (see [START_REF] Smirnov | Introduction to the Theory of Dierential Inclusions[END_REF]).

Unfortunately the existence of solutions is not guaranteed for unbounded equations as shown by the following example.

y Z = {y = 0} Figure 1: Example 1 Example 1 Consider in R 2 y 2 ẋ = 1 ẏ = 0
The vector eld F is here

1 y 2 ∂ ∂x
and is everywhere parallel to the singular locus Z = {y = 0}. A possible solution starting from p = (x, 0) ∈ Z (or ending to p) would consequently remain in Z but 1 y 2 ∂ ∂x tends to innity in only one direction, so that this solution should have innite velocity.

Actually Γ f (p) = ∅ at all p ∈ Z because co {A(q) -1 f (q); q ∈ B(p, r)

\ Z} = 1 r 2 , +∞ × {0}
for r > 0.

The conclusion is that no solution exists for an initial point in Z. It should be noticed that there is no solutions to this equation starting from Z for any denition of solution we know.

According to the geometry of the equation the behaviour may be completely dierent, for instance some solutions may cross the singular locus (Example 2 ) or remain in that last (Example 3 ).

Example 2 Consider in

R 2 ẋ = 0 3y 2 ẏ = 1
It is clear that the function (x 0 , t 1 3 ) is a solution through the point (x 0 , 0) for any x 0 , and that it is unique for this initial state at t = 0.

The vector eld F is here equal to

1 3y 2 ∂ ∂y
and the set Γ f (x, 0) is empty at all points (x, 0) ∈ Z. It is not in contradiction with the denition of solutions since it is sucient that the dierential inclusion be satised for almost all t. On the other hand the emptiness of the sets Γ f at the points of Z implies that there are no other solutions than the exhibited ones.

Z = {y = 0} • p
Z = {y = 0} • p Figure 3: S - Example 3 Consider in R 2 (S -) ẋ = 1 2y ẏ = -1 Again Z = {y = 0}. It is clear that x(t) = x 0 + t -t 0 , y(t) = ± -(t -t 0 ) is solution on (-∞, t 0 ] and ends in Z.
Thanks to Denition 2 we can obtain solutions that remain in Z. Indeed Γ f (x, 0) = {1} × R and each of these sets contains the vector (1, 0) which is tangent to Z. This denes a constant vector eld in Z, the solutions of which are t -→ (t + a, 0), where a ∈ R, on any time interval.

In conclusion all solution curves starting from a point (x 0 , y 0 ) outside of Z reach the singular locus at a nite time t 0 and at a point (a, 0). They extend into t -→ (a + t -t 0 , 0) on [t 0 , +∞).

We can also consider the similar system

(S + ) ẋ = 1 2y ẏ = 1
As previously the solutions t -→ (a+t-t 0 , 0) exist in the singular locus but starting from any point (a, 0) ∈ Z at a time t 0 three trajectories are available: the two curves t -→ (a + t -t 0 , ± √ t -t 0 )

that escape from Z and the solution t -→ (a + t -t 0 , 0) that remains in Z. This shows that the equation (S + ) is not deterministic. It is clear that the time-reversed system of (S -) is neither deterministic, although (S -) is.

Z = {y = 0} • p Figure 4: S +
These three examples show that the Fillippov's like denition may provide acceptable solutions in simple cases. However, we will see in Section 4 that the sets Γ f are generically too big.

Before looking at what generic systems are, let us turn our attention to other possible denitions of the sets Γ.

Other possible denitions

In this subsection two other denitions are proposed and analyzed. Denition 3 1. The naive denition: at all points x ∈ R n the set Γ(x) is equal to

E(x) = {ξ ∈ R n ; A(x)ξ = f (x)}.
2. The set of limit values: at all points x ∈ R n the set Γ(x) is the smallest closed and convex set A(x) containing the limits of all sequences (F (p k )) k≥1 , where p k / ∈ Z and lim

k →+∞ p k = x.
It is clear that in both cases the set Γ(x) is reduced to

{F (x) = A(x) -1 f (x)} whenever x / ∈ Z.
On the other hand E(x) is an ane subspace of R n as soon as it is not empty, it is therefore closed and convex. However, let x ∈ Z; then

E(x) ̸ = ∅ ⇐⇒ f (x) ∈ Im(A(x)) which not generic since rank (A(x)) < n.
The insuciency of the naive denition is well illustrated by Example 3: the set E(x, 0) is empty at all points (x, 0) belonging to Z and the solutions that remain in Z are lost if

Γ(x, 0) = E(x, 0).
It is possible to state a notion of solutions that encompasses as well the ones obtained by the Filippov-like denition than the naive ones by setting:

Γ(x) = r>0 co {ξ; ∃x ∈ B(x, r) such that A(x)ξ = f (x)},
but these sets are bigger than the Filippov-like ones and suer the same defect analyzed in the next section.

The sets A(x) have the interest to be often easier to compute than the sets Γ f (x), and to be included in both Γ f (x) and E(x). Indeed let (p k ) k≥1 be a sequence in Ω that tends to a point x in Z and such that the sequence F (p k ) tends to a limit ξ. Then:

1. The vector ξ belongs to Γ f (x), and since this set is closed and convex, it contains A(x).

The equality

A(p k )F (p k ) = f (p k ) holds for all k, hence A(x)ξ = f (x) and ξ ∈ E(x).
Though the sets A(x) are included in the sets Γ f (x) there are many examples where they are not equal. It is easy to prove that these sets would be equal if the vector eld F were bounded (it is shown in [START_REF] Filippov | Dierential equations with discontinuous right-hand side[END_REF]), but it is not the case in the present more general setting, and as well as the sets E(x) the sets A(x) are not big enough in many cases. In Example 3 again, the set A(x) is empty if x ∈ Z since ∥F (x)∥ → +∞ as x approaches Z.

A universal vector eld

. Let A be a n × n square matrix. We denote by A the transpose of its cofactor matrix. It satises A A = AA = det(A)I n , and

A -1 = 1 det(A) A if det(A) ̸ = 0.
In what follows we consider the smooth vector eld f dened by f (x) = A(x)f (x) and we denote by δ(x) the determinant of A(x).

This vector eld has the interest to be always dened and smooth on R n (everywhere). Moreover the vector elds F and f are colinear outside of Z since for x / ∈ Z:

F (x) = A -1 (x)f (x) = 1 det(A(x)) A(x)f (x) = 1 δ(x) f (x). Proposition 1 Let p ∈ Z. If rank A(p) = n -1, then f (p) ∈ ImA(p) ⇐⇒ f (p) = 0. If rank A(p) < n -1, then f (p) = 0. Moreover f (p) ̸ = 0 =⇒ E(p) = A(p) = ∅
Proof. It holds for any square matrix A:

ker A = ImA if rank A = n -1, and A = 0 if rank A < n -1. The two rst assertions are proved. Next f (p) ̸ = 0 may happen only if rank A(p) = n -1 and f (p) / ∈ ImA(p). But this last condition implies E(p) = ∅ and also A(p) = ∅ since A(p) is included in E(p). ■ Remarks. 1. Let Z 1 be the set of points x ∈ Z where the rank of A(x) is n -1. The set of points of Z 1
where f does not vanish is open and we will see in the next section that it is generically dense.

2. On the other hand f vanishes on Z \ Z 1 . This case cannot be neglected because there exist generically points where rank (A) < n -1 as soon as n ≥ 4, this is the subject of the next section.

Genericity

The systems A(x) ẋ = f (x) considered in this paper are completely determined by the mapping:

x -→ Φ(x) = (A(x), f (x)) from R n to M n (R) × R n ,
where M n (R) stands for the set of real n × n matrices. More generally we denote by M n×m (R) the set of real n × m matrices and

M n (R) × R n can be identied with M n×(n+1) (R).
In what follows we will say that a property of degenerate dynamical systems is generic if the set of smooth mappings from R n to M n (R) × R n for which this property is satised is open and dense in the C 2 Whitney topology (see [START_REF] Golubitsky | Stable mappings and their singularities[END_REF] and [START_REF] Hirsch | Dierential topology[END_REF]). The proof of the next theorem uses several times the product of coranks theorem, that states: let L r be the set of elements of M n×m (R) of corank r. It is a submanifold of M n×m (R) of codimension (n -q + r)(m -q + r) where q = min{n, m} (see [START_REF] Golubitsky | Stable mappings and their singularities[END_REF]).

Theorem 1 Let Z r be the set of points where the rank of A(x) is n -r and let R be the largest integer such that R 2 ≤ n. The following properties are generic:

1. For 1 ≤ r ≤ R the set Z r is a codimension r 2 submanifold of R n and the singular locus Z is the disjoint union of these submanifolds.

The submanifold

Z r+1 is included in the closure Z r of Z r for r = 1, . . . , R -1.

The mapping

x -→ δ(x) = det(A(x))
is a submersion at all points x ∈ Z 1 .

4. In each stratum Z r the set ZI r of points x where f (x) belongs to

Im(A(x)) is a submanifold of codimension r(r + 1) in R n , hence of codimension r in Z r . Proof. 1. For each r in {1, . . . , n} the set L r of elements of M n (R) of corank r is a submanifold of M n (R) of codimension r 2 .
Moreover the union of the L r for r = 1, . . . , n is closed. According to [START_REF] Golubitsky | Stable mappings and their singularities[END_REF] (Theorem 4.9, and Exercise 3 page 59) the set of smooth elds of matrices A(x) that are tranversal to all the L r is open and dense in C ∞ (R n , M n (R)) endowed with the C 2 Whitney topology 1 . The codimension of L r is r 2 and transversality means nonintersection if r 2 > n. If A -1 (L r ) is not empty transversality implies that it is a submanifold of R n of codimension r 2 . This proves the rst point. 2. Let us consider a generic mapping A from R n to M n (R) and a point p belonging to Z r with r ≥ 2. The rank of Λ = A(p) is n -r and there exists an invertible matrix P such that

P ΛP -1 = A Λ B Λ C Λ D Λ where A Λ ∈ M n-r (R) is invertible.
As in the proof of the product of coranks Theorem we consider

T = I 0 -C Λ A -1 Λ I so that T P ΛP -1 = A Λ B Λ 0 D Λ -C Λ A -1 Λ B Λ .
Let the matrix P be xed. The set Ω of matrices Q such that, with obvious notations,

A Q is invertible is open and the mapping Θ(Q) = D Q -C Q A -1 Q B Q is a submersion from this open subset of M n (R) onto M r (R). Clearly rank (Q) = n -r + rank (Θ(Q)) and for 0 ≤ s ≤ r we have L s Mn(R) = Θ -1 (L s
Mr(R) ) (with obvious notations again). Since the mapping A is generic we have A -⋔ p L r which implies that Θ • A is a submersion at p (see [START_REF] Golubitsky | Stable mappings and their singularities[END_REF], Lemma 4.3). Let V be an open neighborhood of p and 

W = V A -1 (Ω). Then Θ • A(W ) is a neighborhood of 0 in M r (R) that encounters L s Mr(R) for 0 ≤ s ≤ r. Consequently ∀s, 0 < s < r, V Z s ̸ = ∅.
(R) \   r≥2 L r   .
In particular det is a submersion in a neighborhood W of L 1 small enough for

L 1 = {det = 0} W .
Let us consider a generic mapping A from R n to M n (R) and a point p belonging to Z 1 . Since A -⋔ p L 1 and according to [START_REF] Golubitsky | Stable mappings and their singularities[END_REF] (Lemma 4.3) det •A is a submersion at p. In other words x -→ det(A(x)) is a submersion at p.

We can identify

M n (R) × R n with M n×(n+1) (R). The codimension of the subset L r 1 of elements of M n×(n+1) (R) of corank r is r(r + 1)
. Again the set of smooth mappings Φ that are tranversal to all the L r 1 is open and dense in the set C ∞ (R n , M n×(n+1) (R)) endowed with the C 2 Whitney topology.

Consider such a generic mapping Φ. Then Φ -1 (L r 1 ) is a submanifold of R n of codimension r(r + 1). At any point x in this submanifold the rank of A(x) is n -r or n -r -1. But the set of points x where this rank is

n -r is open in Φ -1 (L r 1 ) which proves that ZI r = Z r Φ -1 (L r 1 )
is a submanifold of R n of codimension r(r + 1).

■

Notice that generically the singular locus is equal to the codimension 1 submanifold

Z 1 if n = 2, 3. However the set ZI 1 of points of Z 1 where f (x) ∈ Im(A(x)) is generically not empty even if n = 2, 3: it is made of isolated points if n = 2 and it is a submanifold of dimension 1 if n = 3.
4 Analysis of the sets Γ

Critique of the Filippov-like denition

Let us consider a generic system and let p be a point in Z 1 . In order to determine the Filippovlike set Γ f (p), we rst compute f and δ in a neighborhood of p. For this purpose we consider a point x outside of Z and it orthogonal projection π(x) onto Z 1 (the points x are assumed to belong to a tubular neighborhood of Z 1 around p for the orthogonal projection to exist). Since δ = det(A) is a submersion on Z 1 its gradient does not vanish and is orthogonal to T q Z 1 at all points q ∈ Z 1 . In what follows - → a (x) stands for --→ gradδ(π(x)) and a(x) for ∥ - → a (x)∥. To begin with we have:

f (x) = f (π(x)) + D f (π(x)).(x -π(x)) + O(∥x -π(x)∥ 2 ),
where D f is the dierential of f . On the one hand x -π(x) is orthogonal to Z 1 at π(x) hence equal to α - → a (x) for some real number α. On the other hand there exists a unique unitary vector ξ in T p Z 1 such that π(x) -p = βξ + O(β 2 ). Consequently:

f (x) = f (p) + βD f (p).ξ + αD f (π(x)). - → a (x) + O(α 2 ) + O(β 2 ).
The variation of D f (π(x)). - → a (x) from D f (p). - → a (p) being of order β + α we obtain:

f (x) = f (p) + βD f (p).ξ + αD f (p). - → a + O(α 2 + β 2 ),
where - → a stands for - → a (p). In the same way:

δ(x) = δ(π(x)) + αDδ(π(x)). - → a (x) + α 2 D (2) δ(π(x)).( - → a (x), - → a (x)) + O(α 3 ) = 0 + α --→ gradδ(π(x)), - → a (x) + α 2 D (2) δ(π(x)).( - → a (x), - → a (x)) + O(α 3 ) = αa 2 (x) 1 + α a 2 (x) D (2) δ(π(x)).( - → a (x), - → a (x)) + O(α 2 ) = αa 2 (p) 1 + αD (2) δ(p).( - → u , - → u ) + O(α 2 + β 2 ) ,
where - → u stands for a(p) -1-→ a (p). Finally we get

1 δ(x) = 1 αa 2 1 -αD (2) δ(p).( - → u , - → u ) + O(α 2 + β 2 ) ,
and according to

F (x) = 1 δ(x)
f (x):

F (x) = 1 αa 2 f (p) + βD f (p).ξ + αD f (p). - → a -αD (2) δ(p).( - → u , - → u ) f (p) + O(α 2 + β 2 ) = 1 αa 2 f (p) + 1 a 2 D f (p). - → a -D (2) δ(p).( - → u , - → u ) f (p) + β α 1 a 2 D f (p).ξ + O(|α| + |β|). (2) 
Consider a point y outside of Z equal to -βξ -α - → a at rst order. Then

1 2 (F (x) + F (y)) = 1 a 2 D f (p). - → a -D (2) δ(p).( - → u , - → u ) f (p) + β α 1 a 2 D f (p).ξ + O(|α| + |β|).
Since the ratio β α can take any real value and ξ is an arbitrary unitary vector in T p Z there exists some vector v such that v + D f (p)(T p Z) be included in Γ f (p).

We can state:

Proposition 2 Let p be a point in the stratum Z 1 of a generic DDS. Then Γ f (p) contains an ane space whose direction is

R f (p) + D f (p)(T p Z 1 ).
It is shown in the next proposition that the dimension of D f (p)(T p Z 1 ) is generically equal to n -1. If moreover p belongs to Z 1 \ ZI 1 , then f (p) does not belong to the image of A(p), and according to Proposition 1 the vector eld f does not vanish at p. Consequently Γ f (p) = R n as soon as f (p) does not belong to D f (p)(T p Z 1 ).

Proposition 3 For a generic point p ∈ Z 1 \ ZI 1 of a generic system, the dimension of the set

D f (p)(T p Z) is n -1 and Γ f (p) = R n .
Sketch of the proof. Since rank A(p) = n-1 there exist coordinates such that

A(p) = 0 l(p) 0 ∆(p)
where ∆(p) is an invertible (n -1) × (n -1) matrix, and there exists a neighborhood V of p where A(x) = a(x) l(x) c(x) ∆(x) with ∆(x) invertible. Let ξ = α Λ be a nonzero vector, where α ∈ R and Λ ∈ R n-1 . For x ∈ V , A(x)ξ = 0 is not possible if α = 0 and we can assume that α = 1. Now A(x)ξ = 0 is equivalent to a(x) + l(x)Λ = 0 and c(x) + ∆(x)Λ = 0. The second equality implies Λ = -∆ -1 (x)c(x), and the rst one becomes a(x) -l(x)∆ -1 (x)c(x) = 0. If x belongs to Z 1 this equality must be satised, so that:

∀x ∈ Z 1 V, ker A(x) = RΦ(x) where Φ(x) = 1 -∆ -1 (x)c(x)
.

It is clear that the set of points of Z 1 V where the rank of DΦ(x) is n -1 is generically open and dense, and that we can assume without lost of generality that p belongs to this set. But for all x ∈ Z 1 the vector f (x) belongs to ker A(x) and there exists a function θ dened in Z 1 V such that f (x) = θ(x)Φ(x). To nish θ(p) ̸ = 0 because p / ∈ ZI 1 and the rank of the restriction of

D f (p) = Dθ(p)Φ(p) + θ(p)DΦ(p) to T p Z 1 is n -1.
Moreover the vector f (p) is generically not in the image of T p Z 1 by D f (p) and according to Formula (2) the set Γ f (p) is equal to R n . ■ Before trying to state a better denition of the sets Γ let us consider again a generic system and a point p in Z 1 \ ZI 1 . Since the vector eld f does not vanish at p, it holds for x in a neighborhood of p, but outside of Z:

F (x) ∥F (x)∥ = f (x) f (x) ---→ x→p f (p) f (p) 
.

It seems therefore natural that the set Γ(p) be a one-dimensional ane space of direction R f (p).

Our denition of the sets Γ

To overcome the drawbacks raised in the previous subsection we propose herein a construction of the sets Γ(p) that takes into account the vectors F (q) for q in the orthogonal complement to T p Z r only. In order to consider such orthogonal complements in nongeneric cases, it is necessary that the singular locus be locally stratied, which is always the case of generic DDSs according to Theorem 1, but not only see for instance Section 6. We keep otherwise the Filippov-like denition. This leads to: Denition 4 Let p be a point in Z.

1. If the set Z can be locally stratied around p in the disjoint union of the codimension k submanifolds Z k and p belongs to Z k 0 , let N p be the orthogonal complement to T p Z k 0 in R n . Then:

Γ(p) = r>0 co {F (x) = A(x) -1 f (x); x ∈ B(p, r) N p \ Z}.
2. The set Γ(p) is otherwise dened as the Filippov-like set:

Γ(p) = Γ f (p) = r>0 co {F (x) = A(x) -1 f (x); x ∈ B(p, r) \ Z}.
Remark. This denition makes use of the orthogonal complement to T p Z. Consequently it depends on the Euclidean structure, or more generally on the Riemannian structure, with which R n is endowed. Consider a generic system and a point p in Z 1 . The set N p is then the line generated by

- → a = --→
gradδ(p). Let x = p + α - → a be a point in this line. According to the computation of the previous section, but with π(x) = p, we get:

F (x) = 1 αa 2 f (p) + 1 a 2 D f (p). - → a -D (2) δ(p).( - → u , - → u ) f (p) + O(|α|) (3) 
The set Γ(p) is therefore equal to ξ + R f (p) where ξ stands for 1

a 2 D f (p).
-→ a . The vector ξ need not be orthogonal to f (p) and could be replaced by the vector ξ 0 of minimal norm in Γ(p) which is indeed orthogonal to f (p) so that:

Γ(p) = ξ 0 + R f (p)
where ξ 0 ⊥ f (p).

Remarks.

1. It is clear that a modication of the Euclidean structure would not change the direction of Γ(p), given by f (p), but would modify the vector ξ (or ξ 0 ). This must be taken into account if a change of coordinates is made.

2. The analysis and conclusions of Examples 1 to 3 are not modied while replacing the Filippov-like sets by the ones of Denition 4.

In order to understand the behaviour of the dynamics inside the singular set it is necessary to determine the elements of Γ(p) that belong to

T p Z 1 . Let v = 1 a 2 D f (p)( - → a ) + c f (p) be a vector in Γ(p). Then v ∈ T p Z 1 ⇐⇒ v ⊥ --→ gradδ(p) ⇐⇒ 1 a 2 D f (p). - → a + c f (p), - → a = 0
We have consequently two dierent cases:

1. If f (p) does not belong to T p Z 1 then there is an unique element in

T p Z 1 Γ(p), it is obtained for c = - D f (p). - → a , - → a a 2 f (p), - → a . 2. If f (p) belongs to T p Z 1 , in particular if f (p) = 0, the intersection T p Z 1 Γ(p) is empty except if D f (p). - → a ⊥ - → a . In this last case Γ(p) ⊂ T p Z 1 .
This value of c allows to dene a smooth vector eld in the open subset of Z 1 where f (p) does not belong to T p Z 1 . This vector eld is dened as:

v(p) = 1 a 2 D f (p). - → a - D f (p). - → a , - → a a 2 f (p), - → a f (p). (4) 
We can state:

Theorem 2 For a generic DDS holds:

1. At all points p ∈ Z 1 the set Γ(p) is 1

a 2 d f (p). - → a + R f (p).

2.

In the open subset of Z 1 where f (p) does not belong to T p Z 1 the intersection of Γ(p) with T p Z 1 is reduced to the smooth vector eld v dened by (4). 3. All trajectories of v are generalized solutions to the DDS. It appears in the proof of Proposition 3 that the dimension of Γ f (p) at a generic point p ∈ Z 1 depends on the variation of the direction of f (z), hence on the variation of ker A(z), when the point z moves in a neighborhood of p inside Z. This is conrmed by the following proposition.

Proposition 4 Let p be a point in the stratum Z 1 of a generic system such that f (p) ̸ = 0. If there exists a neighborhood W of p in Z 1 such that the kernel of A(z) does not depend on the

point z ∈ W , then Γ f (p) = Γ(p).
Proof. Since f is contained in the kernel of A at all points of Z 1 there exists a smooth function θ dened on W such that

∀z ∈ W, f (x) = θ(z) f (p).
The dierential of f applied to a vector ξ ∈ T p Z 1 is therefore D f (p).ξ = (Dθ(p).ξ) f (p) and is directed by f (p) for all ξ. Consequently Formula (2) becomes:

F (x) = 1 αa 2 f (p) + 1 a 2 D f (p). - → a -D (2) δ(p).( - → u , - → u ) f (p) + β α 1 a 2 (Dθ(p).ξ) f (p) + O(|α| + |β|).
From this it is clear that:

Γ f (p) = 1 a 2 D f (p). - → a + R f (p) = Γ(p).

■

An example that illustrates all the conclusions of this section is postponed to Section 7. In particular the dierence between the sets Γ and Γ f , and the dierence in the behaviour of the system inside Z that it implies, appear clearly.

Computation of the solutions by reparametrization

In this section we make use of the universal vector eld f to compute the solutions to (E) by reparametrization. Recall that

∀x ∈ R n f (x) = A(x)f (x), and f (x) = δ(x)F (x) outside of Z.
The vector eld f is smooth and has well-dened trajectories everywhere in R n .

Important remark. The singular locus Z splits the state space into domains where the sign of δ is constant.

It is assumed in what follows that Z 1 is a codimension 1 submanifold, which is in particular the case when the system is generic. Locally Z 1 splits the space in two disjoint open subsets and the sign of δ = det(A) is constant on each of these sets. In the generic case the sign of δ changes when crossing Z 1 but the case where it is the same on both sides is also of interest because it provides trajectories that cross the singular locus.

The generic case

Let p ∈ Z 1 and let us assume that f (p) does not vanish and points outside of Z toward a region where δ > 0. Let x(s) be the solution to d x ds = f ( x) that satises x(0) = p and let θ(s) be dened by

θ(s) = s 0 δ( x(τ )) dτ.
Since {δ( x(s)) > 0}, for s > 0 and as long as x(s) does not meet Z, the function θ is strictly increasing and can be inverted. Let x(t) = x(θ -1 (t)). It is dened on an interval [0, β[ and satises for t > 0:

dx dt (t) = d x ds (θ -1 (t)) dθ ds (θ -1 (t)) -1 = f ( x(θ -1 (t))) 1 δ( x(θ -1 (t)) = f (x(t)) 1 δ(x(t)) = F (x(t)).
In the same way solutions of the DDS that enter or leave the singular locus, according to the sign of δ and the direction of f (p), can be obtained by reparametrization of the trajectories of f . Remark. The singularities of an ordinary dierential equation ẋ = v(x) are the stationnary points p where v(p) = 0. They can be reached in innite time only, forward or backward. On the contrary the points of a DDS that belong to Z are singularities that can be reached in nite time. The following simplication of Example 3 illustrates this phenomenon.

Example 4 Consider in

R 2 ẋ = 0 2y ẏ = -1
The set Γ(p) at a point p = (a, 0) in Z = {y = 0} is {0} × R and the only vector Γ(p) T p Z is the null one.

This system can be viewed as the equation with discontinuous right-hand side q = F (q) where the vector eld F is dened by

F (x, y) = -1 2y ∂ ∂y if y ̸ = 0 and F (x, 0) = 0.
The trajectory issued from a point (x 0 , y 0 ) outside of Z reaches Z in nite time and then remains at the point (x 0 , 0).

An important nongeneric case

It is the case where despite the fact that Z is locally a codimension one submanifold, the sign of δ is the same on both sides of Z. This situation arises typically when locally Z = Z 1 is a codimension one submanifold but δ(x) = det A(x) is the square of some function. Consider for instance in R 2 :

(N G) 1 0 0 y 2 ẋ ẏ = a(x, y) b(x, y)
which is nothing but a generalization of Exemple 2.

We consider in the present subsection an open and connected subset V of R n such that, locally in V Z 1 , the sign of δ is the same on both sides of Z 1 . Since the singular locus splits the state space into domains where the sign of δ does not change, this remains true as long as Z 1 does not meet another part of Z.

The vector eld f may point towards one of the two domains delimited by V Z 1 or may be parallel to Z 1 . The set of this last kind of points is closed and splits V Z 1 into domains where f point towards the same side.

It holds for such a setting: 

F (x) ∥F (x)∥ = f (x) f (x) ---→ x→p u for x ∈ V Z 1 \ Z.
There exists r > 0 such that f (x)

∥ f (x)∥ -u < 1 2 , for all x in B(p, r). If moreover x / ∈ Z it holds ∥F (x) -∥F (x)∥ u∥ < 1
2 ∥F (x)∥ and:

∥F (x) -∥F (x)∥ u∥ 2 = ∥F (x)∥ 2 -2 ∥F (x)∥ ⟨F (x), u⟩ + ∥F (x)∥ 2 < 1 4 ∥F (x)∥ 2 ,
which entails ⟨F (x), u⟩ > 7 8 ∥F (x)∥ 2 . But lim x →p ∥F (x)∥ = +∞ because f (p) ̸ = 0, and nally for any M > 0 there exists r > 0 such that ⟨F (x), u⟩ > M for all x ∈ B(p, r) \ Z. This shows that the set Γ f (p) is included in the half-space {ξ; ⟨ξ, u⟩ > M } for any M > 0, hence that it is empty.

If f (p) is not parallel to Z it is clear that by reparametrization we can obtain a solution that reaches p in nite time, say at t = 0, and another one starting from p at t = 0 that leaves Z in nite time. The concatenation of these two solutions provides an absolutely continuous trajectory through p.

■

6 Application to the models of [START_REF] Saavedra | Degenerate dynamical systems[END_REF] The paper [START_REF] Saavedra | Degenerate dynamical systems[END_REF] mainly deals with equations in R 2 of the form:

ϕ(x, y) 0 1 -1 0 ẋ ẏ = a 1 (x, y) a 2 (x, y) ,
where the function ϕ and the vector eld dened by a 1 and a 2 are smooth. In other words it is the particular case where the eld of matrices A is:

A(x, y) = 0 ϕ(x, y) -ϕ(x, y) 0 .
We can set f = -a 2 and g = a 1 to obtain the form

(E) ϕ(x, y) ẋ = f (x, y) ϕ(x, y) ẏ = g(x, y)
In this setting the notion of genericity has a dierent meaning: as well as in [START_REF] Saavedra | Degenerate dynamical systems[END_REF] we will say that the system is generic if ϕ is a Morse function (see for instance [START_REF] Milnor | Morse Theory[END_REF] for this notion). Let p be a point in Z. Up to a change of coordinates we can assume that p is the point (0, 0) and that ϕ being a Morse function has locally one of the three following forms:

1. ϕ(x, y) = yψ(x, y) with ψ(x, 0) ̸ = 0. In other words the singular locus is the line {y = 0}.

It is possible to divide f and g by ψ and, writing f for f /ψ and g for g/ψ, we get the equation:

(E 1 ) y ẋ = f (x, y) y ẏ = g(x, y)
2. ϕ(x, y) = (x 2 + y 2 )ψ(x, y) with ψ(0, 0) ̸ = 0. Similarly we get the model:

(E 2 ) (x 2 + y 2 ) ẋ = f (x, y) (x 2 + y 2 ) ẏ = g(x, y)
3. ϕ(x, y) = (x 2 -y 2 )ψ(x, y) with ψ(0, 0) ̸ = 0. Thanks to a second change of variable we can write ϕ(x, y) = xyψ(x, y) and obtain:

(E 3 ) xy ẋ = f (x, y) xy ẏ = g(x, y)
Notice that the singular locus is (locally) a line in the rst case, an isolated point in the second one and the union of two intersecting lines in the third one. For general 2-dimensional DDSs the last two cases are not generic. Moreover the singular locus is in the three cases equal to Z 2 . It is however possible to compute the trajectories by replacing δ by y (resp. by x 2 + y 2 , by xy) in the reparametrization.

Let v be the vector eld dened by v(x, y) = (f (x, y), g(x, y)) T . Its trajectories are denoted by x(s) for s in some interval (-α, β).

1. First case. Let F be dened by 1 y v outside of Z as for general DDSs, let p∈ Z and let us assume that v(p) points outside of Z. With the same kind of computations as in Section 5 we get a trajectory that enters Z if v(p) points to {y < 0} and a trajectory that leaves Z if v(p) points to {y > 0}.

Z = {y = 0} • p Figure 5: First case, v(p) ̸ = 0
It is clear that a formula similar to Formula (3) holds and that as well as in Section 4.2 or Example 3 trajectories may live in Z. However the direction of the vector eld induced

Z = {y = 0} • p • • • • Figure 6: First case. v(p) = 0
in Z depends on the dierential of the vector eld v and cannot be made more precise in general.

It may happen that v(p) be parallel to Z. We will only discuss here the case where this happens at an isolated point, because it would not be generic that v be parallel to Z at all points of a segment of Z. Consider a trajectory x of v that veries x(0) = p. Except for s = 0 the point x(s) does not belong to Z and can be reparametrized into solutions to (E 1 ) on (-α, 0] and [0, β) for some α, β > 0. The solution x(t) of (E 1 ) obtained in this way may remain in one of the half-planes {y < 0} and {y > 0} or cross the singular locus.

2. Second case. Let us assume that v does not vanish at (0, 0), let θ(s) = s 0 ∥ x(τ )∥ 2 dτ , and let x(t) = x(θ -1 (t)). Then x(t) is a trajectory through the singular point (0, 0). Notice that the set Γ(0, 0) is empty. This is due to the fact that the vector eld v does not vanish at (0, 0) and is divided by x 2 + y 2 > 0. The trajectory through the point (0, 0) is consequently a generalized solution, not a classical one.

Z = {(0, 0)} • p v(p) Figure 7: Second case. v(p) ̸ = 0
Though it is not generic the case where v(0, 0) = 0 is of interest. We assume of course that v(x, y) cannot be divided by x 2 + y 2 , it is for example the case if the real parts of the eigenvalues of DV (0, 0) are both negative. The eigenvalues are then both smaller than -b for some b > 0 and there exists a neighborhood W of (0, 0) such that any trajectory x of v starting in W satises ∥ x(s)∥ ≤ ∥ x(0)∥ e -bs . Let θ(s) = s 0 ∥ x(τ )∥ 2 dτ ≤ ∥ x(0)∥ s 0 e -2bτ dτ . Then θ(s) has a limit smaller than 1 2b ∥ x(0)∥ as s → +∞, which shows that the trajectory x(t) = x(θ -1 (t)) reaches the point (0, 0) in nite time. The set Γ(0, 0) = Γ f (0, 0) is here equal to R 2 and the trajectories that reach the origin in nite time can be extended to the constant solution, which is again a generalized solution. The time reverse system is clearly not deterministic since a steady state solution equal to (0, 0) may leave this point at any time. Let us have a look to the case where the real parts of the eigenvalues of DV (0, 0) have dierent signs. It is clear that here Γ(0, 0) = R 2 and that the steady state solution (0, 0) is available on any time interval. On the other hand only two trajectories of v enter the point (0, 0), in innite time of course, and two other ones leaves this point. Finally there exist generalized solutions that enter the singular locus in nite time, may remain at (0, 0) for any duration and then leave the singular locus at any time. The DDS is not deterministic.

3. Third case. The singular locus splits locally R 2 in four domains dened by the signs of x and y. We assume that v(0, 0) does not vanish and is neither parallel to {x = 0} nor to {y = 0}. Consequently any point p of Z \ (0, 0), that is any point of the form (x, 0), x ̸ = 0 or (0, y), y ̸ = 0, is a point of the rst kind where v(p) points outside of Z. This means that there are two trajectories that both enter or both leave the singular locus at p in nite time. There are also trajectories in Z that may go to the origin, or leave it, or that can be constant.

To nish, let us consider the following nongeneric case:

(E 4 ) y 2 ẋ = f (x, y) y 2 ẏ = g(x, y)

It has the interest to provide trajectories that cross the singular locus, at least at all points p = (x, 0) where v(p) does not have the direction of the singular locus Z = {y = 0}.

A detailed example

Let in R 3 : At points where z ̸ = 0 the vector eld F is : Let us x a point p = (x 0 , y 0 , 0) in Z and let u = (a, b, 0) T be a vector in T p Z. To simplify the notation we write F (β, z) (resp. ξ(β, z)) for F ((x 0 , y 0 , z) + βu) (resp. ξ((x 0 , y 0 , z) + βu)). Then: Since β z takes all real values in any neighborhood of p and since the vector u ∈ T p Z is arbitrary, this implies that Γ f (p) contains the ane space ξ(p) + T p Z. The conclusion is that Γ f (p) is equal to R 3 at all points p ∈ Z. This means that according to the Filippov-like denition all almost continuous curves in Z would be generalized solutions to (E).

Let us now apply Denition 4: the variations of F around p are restricted to the points Unlike the sets Γ f , the sets Γ provide an unique vector eld in Z, hence well-dened trajectories.

Figure 2 :

 2 Figure 2: Example 2
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 8 Figure 8: Case 2. Opposite eigenvalues
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 9 Figure 9: Case 3. v(p) points outside of Z



  The data of this system are Z = Z 1 = {z = 0} because δ(x, y, z) = z, and: and f (x, y, z) =   zϕ(x, y, z) -x(1 + z) zψ(x, y, z) -y(1 + z)

F 1 

 1 (x, y, z) = ξ(x, y, z) where ξ(x, y, z) =   ϕ(x, y, z) -x ψ(x, y, z) -y 1   .

1 2 (

 2 F (β, z) + F (-β, -z)) = 1 2 (ξ(β, z) + ξ(-β, -z)) β, z) + ξ(-β, -z)) -β z u.

For β = 0 1  -x 0 -y 0 1 

 011 the vector eld F takes the value F (0, z) = ξ(0, z) and taking into account its value for -z we obtain that ξ(p) + R  is also included in Z.

(x 0 1 

 01 , y 0 , z) and it is immediate that Γ(p) = ξ(p) + R . The intersection of this set with T p Z provides the vector eld v(x, y)

  3. Consider now the determinant mapping, denoted bydet, from M n (R) to R. The dierential of det at Λ ∈ M n (R) applied to H is D det(Λ).H = Trace( ΛH)where Λ stands for the transpose of the matrix of cofactors of Λ. Consequently D det(Λ) ̸ = 0 if and only if rank (Λ) ≥ n -1. This shows that det is a submersion on M n

  Proposition 5 The sets Γ(p) and Γ f (p) are empty at all points p ∈ V Z 1 where f (p) does not vanish.If f (p) is not parallel to Z 1 then there exists a trajectory of the DDS that crosses Z 1 at p.Proof. SinceΓ(p) is always included in Γ f (p) it is enough to prove that Γ f (p) is empty.Let u stand for the unitary vector f (p) ∥ f (p)∥ and recall that

The Whitney topology is called the strong topology in[START_REF] Hirsch | Dierential topology[END_REF]. The references in this book are Thom transversality Theorem, the pararametric Theorem

2.7 and Exercise 15 p. 84