Alain Rakotomamonjy
email: tomamonjy<a.rakotomamonjy@criteo.com>.

Maxime Vono
email: maximevono<m.vono@criteo.com>

Hamlet Jesse Medina Ruiz

Liva Ralaivola

Personalised Federated Learning On Heterogeneous Feature Spaces

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Federated learning (FL) is a machine learning paradigm where models are trained from multiple isolated data sets owned by individual agents (coined clients), without requiring to move raw data into a central server, nor even share them in any way [START_REF] Peter Kairouz | Advances and Open Problems in Federated Learning[END_REF]. This framework has lately gained a strong traction from both industry and academic research. Indeed, it avoids the communication costs entailed by data transfer, allows all clients to benefit from participating to the learning cohort, and finally, it fulfills first-order confidentiality guarantees, which can be further enhanced by resorting to socalled privacy-enhancing technologies such as differential privacy [START_REF] Dwork | The Algorithmic Foundations of Differential Privacy[END_REF] or secure multi-party com-putation [START_REF] Bonawitz | Practical Secure Aggregation for Privacy-Preserving Machine Learning[END_REF]. As core properties, FL ensures data ownership, and structurally incorporates the principle of data exchange minimisation by only transmitting the required updates of the models being learnt. Depending on the data partitioning and target applications, numerous FL approaches have been proposed, such as horizontal FL [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] and vertical FL [START_REF] Hardy | Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[END_REF][START_REF] Yang | Federated Machine Learning: Concept and Applications[END_REF]. The latter paradigm considers that clients hold disjoint subsets of features corresponding to the same users while the former assumes that clients have data samples from different users. Recently, horizontal FL works have focused on personalised FL to tackle statistical heterogeneity by using local models to fit clientspecific data (Hanzely and Richtárik, 2020;[START_REF] Jiang | Improving federated learning personalization via model agnostic meta learning[END_REF][START_REF] Khodak | Adaptive gradient-based meta-learning methods[END_REF][START_REF] Ziying Tan | Towards Personalized Federated Learning[END_REF].

Existing horizontal personalised FL works assume that the raw data on all clients share the same structure and are defined in a common feature space. Yet, in practice, data collected by clients may use differing structures. For instance, clients may not collect exactly the same information, some features may be missing or not stored, or some might have been transformed (e.g. via normalisation, scaling, or linear combinations). To address the key issue of implementing FL when the clients' feature spaces are heterogeneous, in the sense that they have different dimensionalites or that the semantics of given vector coordinates are different, we introduce the first -to the best of our knowledge -personalised FL framework dedicated to this learning situation.

Proposed Approach. The framework and algorithm described in this paper rest on the idea that before performing efficient FL training, a key step is to map the raw data into a common subspace. This is a prior necessary step before FL since it allows to define a relevant aggregation scheme on the central server for model parameters (e.g. via weighted averaging) as the latter become comparable. Thus, we map clients' raw data into a common low-dimensional latent space, via local and learnable feature embedding functions.

In order to ease subsequent learning steps, data related to the same semantic information (e.g. label) have to be embedded in the same region of the latent space. To ensure this property, we align clients' embedded feature distributions via a latent anchor distribution that is shared across clients. The learning of this anchor distribution is per-formed in a federated manner i.e. by updating it locally on each client before aggregation on the central server. More precisely, each client updates her local version of the anchor distribution by aligning it, i.e. making it closer, to the embedded feature distribution. Then, the central server aims at finding the mean element, i.e. barycenter, of these local anchor distributions [START_REF] Banerjee | Clustering with Bregman Divergences[END_REF][START_REF] Veldhuis | The centroid of the symmetrical Kullback-Leibler distance[END_REF]. Once this distribution alignment mechanism (based on local embedding functions and anchor distribution) is defined, it can be seamlessly integrated into a personalised FL framework; the personalisation part aiming at tackling residual statistical heterogeneity. In this paper, without loss of generality, we have embedded this alignment framework into a personalised FL approach similar to the one proposed in [START_REF] Collins | Exploiting Shared Representations for Personalized Federated Learning[END_REF].

Related Ideas. Ideas that we have built on for solving the task of FL from heterogeneous feature spaces have been partially explored in related literature. From the theoretical standpoint, works on the Gromov-Wasserstein distance or variants seek at comparing distributions from incomparable spaces in a (non-FL) centralised manner [START_REF] Mokhtar Z Alaya | Theoretical guarantees for bridging metric measure embedding and optimal transport[END_REF][START_REF] Bunne | Learning Generative Models across Incomparable Spaces[END_REF][START_REF] Mémoli | Gromov-Wasserstein distances and the metric approach to object matching[END_REF]. Other methodological works on autoencoders [START_REF] Xu | Learning Autoencoders with Relational Regularization[END_REF], word embeddings [START_REF] Alvarez | Gromov-Wasserstein Alignment of Word Embedding Spaces[END_REF][START_REF] Alvarez-Melis | Towards Optimal Transport with Global Invariances[END_REF] or FL under high statistical heterogeneity [START_REF] Luo | No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data[END_REF][START_REF] Makhija | Architecture Agnostic Federated Learning for Neural Networks[END_REF][START_REF] Hong | Efficient Split-Mix Federated Learning for On-Demand and In-Situ Customization[END_REF] use similar ideas of distribution alignment for calibrating feature extractors and classifiers. A detailed literature review and comparison with the proposed methodology is postponed to Section 2.

Contributions. In order to help the reader better grasp the differences of our approach with respect to the existing literature, we spell out our contributions:

1. We are the first to formalise the problem of personalised horizontal FL on heterogeneous clients' feature spaces. In contrast to existing approaches, the proposed general framework, coined FLIC, allows each client to leverage other clients' data even though they do not have the same raw representation.

2. We introduce a distribution alignment framework and an algorithm that learns the feature embedding functions along with the latent anchor distribution in a local and global federated manner, respectively. We also show how those essential algorithmic pieces are integrated into a personalised FL algorithm, easing adoption by practitioners.

3. We provide algorithmic and theoretical support to the proposed methodology. In particular, we show that for an insightful simpler learning scenario, FLIC is able to recover the true latent subspace underlying the FL problem.

4. Experimental analyses on toy data sets and real-world problems illustrate the accuracy of our theory and show that FLIC provides better performance than competing FL approaches.

Conventions and Notations. The Euclidean norm on R d is • , we use |S| to denote the cardinality of the set S and N * = N \ {0}. For n ∈ N * , we refer to {1, . . . , n} with the notation [n]. We denote by N(m, Σ) the Gaussian distribution with mean vector m and covariance matrix Σ and use the notation X ∼ ν to denote that the random variable X has been drawn from the probability distribution ν. We define the Wasserstein distance of order 2 for any probability measures µ, ν on R d with finite 2-moment by

W 2 (µ, ν) = (inf ζ∈T (µ,ν) R d ×R d θ -θ 2 dζ(θ, θ)) 1/2
, where T (µ, ν) is the set of transference plans of µ and ν.

Proposed Methodology

Problem Formulation. We are considering a centralised and horizontal FL framework involving b ∈ N * clients and a central entity [START_REF] Peter Kairouz | Advances and Open Problems in Federated Learning[END_REF][START_REF] Yang | Federated Machine Learning: Concept and Applications[END_REF]. Under this paradigm, the central entity orchestrates the collaborative solving of a common machine learning problem by the b clients; without requiring raw data exchanges. For the sake of simplicity, we consider the setting where all clients want to solve a multi-class classification task with C ∈ N * classes. In Appendix, we also highlight how regression tasks could be encompassed in the proposed framework. The b clients are assumed to possess local data sets

{D i } i∈[b] such that, for any i ∈ [b], D i = {(x (j) i , y (j) i)} j∈[ni] where x (j) i
stands for a feature vector, y

(j) i is a label and n i = |D i |. A core assump- tion of FL is that the local data sets {D i } i∈[b] are statis- tically heterogeneous i.e. for any i ∈ [b] and j ∈ [n i], (x (j) i , y (j) i) i.i.d.
∼ ν i where ν i is a local probability measure defined on an appropriate measurable space. Existing horizontal FL approaches typically assume that the raw input features of the clients are defined on a common subspace so that their marginal distributions admit the same support.

In contrast, we suppose here that these features live in heterogeneous spaces. Our main goal is to cope with this new type of heterogeneity in horizontal FL. More precisely, for any i ∈ [b] and j ∈ [n i], we assume that x

(j) i ∈ X i ⊆ R ki such that {X i } i∈[b]
are not part of a common ground metric. This setting is challenging since standard FL approaches [START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF][START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] and even personalised FL ones [START_REF] Collins | Exploiting Shared Representations for Personalized Federated Learning[END_REF][START_REF] Hanzely | Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques[END_REF] cannot be applied directly. In addition, we also assume a specific type of prior probability shift where, for any i ∈ [b] and j ∈ [n i], y

(j) i ∈ Y i ⊆ [C].
For instance, a client might only see digits 1 and 7 from the 1 < l a t e x i t s h a 1 _ b a s e 6 4 = " + 6 [START_REF] Deng | The MNIST Database of Handwritten Digit Images for Machine Learning Research[END_REF], USPS [START_REF] Hull | A database for handwritten text recognition research[END_REF] and SVHN [START_REF] Netzer | Reading Digits in Natural Images with Unsupervised Feature Learning[END_REF]. The circles with digits inside stand for a group of samples, of a given class, owned by a client and the size of the circles indicates their probability mass. In the subspace Φ, {µi} i∈[b] (and their level sets) refer to some learnable reference measures to which we seek to align the transformed version ν φ i of νi. Personalised FL then occurs in the space Φ and aims at learning local models {θi} i∈ [b] for each clients as well as {φi, µi} i∈ [b] .

F x I Y d b E x X G c T Y B C 5 w S e M a u s x U = " > A A A B 7 X i c d V D L S g M x F M 3 U V 6 2 v q k s 3 w S K 4 K k k p f e y K b l x W s L X Q D i W T Z t r Y T D I k G a E M / Q c 3 L h R x 6 / + 4 8 2 / M t B V U 9 M C F w z n 3 c u 8 9 Q S y 4 s Q h 9 e L m 1 9 Y 3 N r f x 2 Y W d 3 b / + g e H j U N S r R l H W o E k r 3 A m K Y 4 J J 1 L L e C 9 W L N S B Q I d h t M L z P / 9 p 5 p w 5 W 8 s b O Y + R E Z S x 5 y S q y T u o N 4 w o e V Y b G E y g g h j D H M C K 7 X k C P N Z q O C G x B n l k M J r N A e F t 8 H I 0 W T i E l L B T G m j 1 F s / Z R o y 6 l g 8 8 I g M S w m d E r G r O + o J B E z f r q 4 d g 7 P n D K C o d K u p I U L 9 f t E S i J j Z l H g O i N i J + a 3 l 4 l / e f 3 E h g 0 / 5 T J O L J N 0 u S h M B L Q K Z q / D E d e M W j F z h F D N 3 a 2 Q T o g m 1 L q A C i 6 E r 0 / h / 6 R b K e N a u X p d L b U u V n H k w Q k 4 B e c A g z p o g S v Q B h 1 A w R 1 4 A E / g 2 V P e o / f i v S 5 b c 9 5 q 5 h j 8 g P f 2 C Y y u j y M = < / l a t e x i t > 2 < l a t e x i t s h a 1 _ b a s e 6 4 = " d c H 3 f C 1 N / Y t Y o b L f g B A 0 x Y S j Q m s = " > A A A B 7 X i c d V D L S g M x F M 3 4 r P V V d e k m W A R X Q 1 I 7 t c u i G 5 c V 7 A P a o W T S t I 3 N J E O S E c r Q f 3 D j Q h G 3 / o 8 7 / 8 b 0 I a j o g Q u H c + 7 l 3 n u i R H B j E f r w V l b X 1 j c 2 c 1 v 5 7 Z 3 d v f 3 C w W H T q F R T 1 q B K K N 2 O i G G C S 9 a w 3 A r W T j Q j c S R Y K x p f z f z W P d O G K 3 l r J w k L Y z K U f M A p s U 5 q d p M R 7 5 3 3 C k X k o 0 p Q x l W I / A D h K g 4 c K Q U Y o R L E P p q j C J a o 9 w r v 3 b 6 i a c y k p Y I Y 0 8 E o s W F G t O V U s G m + m x q W E D o m Q 9 Z x V J K Y m T C b X z u F p 0 7 p w 4 H S r q S F c / X 7 R E Z i Y y Z x 5 D p j Y k f m t z c T / / I 6 q R 1 U w 4 z L J L V M 0 s W i Q S q g V X D 2 O u x z z a g V E 0 c I 1 d z d C u m I a E K t C y j v Q v j 6 F P 5 P m i U f V / z y T b l Y u 1 z G k Q P H 4 A S c A Q w u Q A 1 c g z p o A A
L A v N 7 2 R A I 1 1 m 3 k w h + 3 X 5 l p A H k = " > A A A B + 3 i c d V D L S g M x F M 3 U V 6 2 v W p d u g k W o m y E z t t r u i m 5 c V r A P a O u Q S d M 2 N J M Z k o x Y h v k V N y 4 U c e u P u P N v T B + C i h 6 4 c D j n X u 6 9 x 4 8 4 U x q h D y u z s r q 2 v p H d z G 1 t 7 + z u 5 f c L L R X G k t A m C X k o O z 5 W l D N B m 5 p p T j u R p D j w O W 3 7 k 8 u Z 3 7 6 j U r F Q 3 O h p R P s B H g k 2 Z A R r I 3 n 5 Q k / E X t K L x s x z 0 t u k 5 J y k X r 6 I 7 F o N l c s V i O w K c l 2 3 a g g 6 d a s 1 B z o 2 m q M I l m h 4 + f f e I C R x Q I U m H C v V d V C k + w m W m h F O 0 1 w v V j T C Z I J H t G u o w A F V / W R + e w q P j T K A w 1 C a E h r O 1 e 8 T C Q 6 U m g a + 6 Q y w H q v f 3 k z 8 y + v G e l j t J 0 x E s a a C L B Y N Y w 5 1 C G d B w A G T l G g + N Q Q T y c y t k I y x x E S b u H I m h K 9 P 4 f + k 5 d r O m V 2 + L h f r F 8 s 4 s u A Q H I E S c M A 5 q I M r 0 A B N Q M A 9 e A B P 4 N l K r U f r x X p d t G a s 5 c w B + A H r 7 R P J T J R M < / l a t e x i t > ⌫ (1)
MNIST data set while another one only has access to USPS digits 1, 2 and 9, see Figure 1.

Methodology. To address the feature space heterogeneity issue, we propose to map clients' features into a fixeddimension common subspace Φ ⊆ R k by resorting to local embedding functions {φ i :

X i → Φ} i∈[b]
1 . Our proposal for learning those local functions is illustrated in Figure 1. In order to preserve some semantical information (such as the class associated to a feature vector) on the original data distribution, we seek at learning the functions {φ i } i∈ [b] such that they are aligned with (i.e. close to) some learnable latent anchor distribution that is shared across all clients. This anchor distribution must be seen an universal "calibrator" for clients that avoids similar semantical information from different client being scattered across the subspace Φ, impeding then a proper subsequent federated learning procedure of the classification model. As depicted in [START_REF] Kollias | Distribution Matching for Heterogeneous Multi-Task Learning: a Large-scale Face Study[END_REF][START_REF] Michael Tschannen | On Mutual Information Maximization for Representation Learning[END_REF][START_REF] Xu | Learning Autoencoders with Relational Regularization[END_REF]Zhou et al., 2021). In the literature, several approaches have been considered to align probability distributions ranging from mutual information maximisation [START_REF] Michael Tschannen | On Mutual Information Maximization for Representation Learning[END_REF], maximum mean discrepancy (Zellinger et al., 2017) to the usage of other probability distances such as Wasserstein or Kullback-Leibler ones [START_REF] Shen | Wasserstein Distance Guided Representation Learning for Domain Adaptation[END_REF].

Once data from the heterogeneous spaces are embedded in the same latent subspace Φ, we can deploy a federated learning methodology for training from this novel representation space. At this step, we need to choose which of standard FL approaches, e.g. FedAvg (McMahan et al., 2017), or personalised one are more appropriate. Since the proposed distribution alignment training procedure via the use of an anchor distribution might not be perfect, some statistical heterogeneity may still appear in the common latent subspace Φ. Therefore, we aim at solving a personalised FL problem where each client has a local model tailored to her specific data distribution in Φ [START_REF] Ziying Tan | Towards Personalized Federated Learning[END_REF]. By considering an empirical risk minimisation formulation, the resulting data-fitting term we want to minimise writes

f (θ 1:b , φ 1:b) = b i=1 ω i f i (θ i , φ i) , (1)
where φ i is the aforementioned local embedding function,

θ i ∈ R di
f i (θ i , φ i) = 1 n i ni j=1 y (j) i , g (i) θi φ i x (j) i . (2)
In the local objective function defined in (2), (•, •) stands for a classification loss function between the true label y (j) i and the predicted one g

(i) θi [φ i (x (j) i)] where g (i)
θi is the local model that admits a personalised architecture parameterised by θ i and taking as input an embedded feature vector φ i (x

(j) i) ∈ Φ.
Objective Function. At this stage, we are able to integrate the FL paradigm and the local embedding function learning into a global objective function we want to optimise, see (1). Remember that we want to learn the parameters {θ i } i∈[b] of personalised FL models, in conjuction with some local embedding functions {φ i } i∈ [b] and shared anchor distributions {µ c }. In particular, the latter have to be aligned with class-conditional distributions {ν (c) φi }. We propose to perform this alignement via a Wasserstein regularisation term leading to consider a regularised version of the empirical risk minimisation problem defined in (1), namely

θ 1:b , φ 1:b , µ 1:C = arg min θ 1:b ,φ 1:b ,µ 1:C b i=1 F i (θ i , φ i , µ 1:C) ,
where for any i ∈ [b],

F i (θ i , φ i , µ 1:C) = ω i f i (θ i , φ i) + λ 1 ω i c∈Yi W 2 2 µ c , ν (c) φi + λ 2 ω i c∈Yi 1 J J j=1 c, g (i) θi Z (j) c , (3)
where

{Z (j) c ; j ∈ [J]} c∈[C]
stand for samples drawn from {µ c } c∈[C] , and λ 1 , λ 2 > 0 are regularisation parameters. The second term in (3) aims at aligning the conditional probability measures of the transformed features. The third one is an optional term aspiring to calibrate the reference measures with the classifier in cases where two or more classes are still ambiguous after mapping onto the common feature space; it has also some benefits to tackle covariate shift in standard FL [START_REF] Luo | No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data[END_REF].

Design Choices and Justifications. In the sequel, we consider the Gaussian anchor measures µ c = N(v c , Σ c) where v c ∈ R k and c ∈ [C]. Note that, under this choice, the samples {Z

(j) c ; j ∈ [J]} c∈[C] can be written Z (j) c = v c +L c ξ (j) c where ξ (j) c ∼ N(0 k , I k) and L c ∈ R k×k is such that Σ c = L c L c
by exploiting the positive semi-definite property of Σ c . Invertibility of L c is ensured by adding a diagonal matrix εI k with small positive diagonal elements. One of the key advantages of this Gaussian assumption is that, under mild assumptions, it guarantees the existence of a transport map T (i) such that T (i) # (ν i) = µ, owing to Brenier's theorem [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] as a mixture of Gaussians admits a density with respect to the Lebesgue measure. Hence, in our case, learning the local embedding functions boils down to approximating this transport map by φ i . In addition, sampling from a Gaussian probability distribution can be performed efficiently [START_REF] Gilavert | Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems Using MCMC[END_REF][START_REF] Parker | Sampling Gaussian Distributions in Krylov Spaces with Conjugate Gradients[END_REF][START_REF] Vono | High-dimensional Gaussian sampling: A review and a unifying approach based on a stochastic proximal point algorithm[END_REF], even in high dimension. We also consider approximating the conditional probability measures {ν

(c) φi ; c ∈ Y i } i∈[b] by using Gaussian measures {ν (c) φi = N(m(c) i , Σ(c) i); c ∈ Y i } i∈[b] such that for any i ∈ [b] and c ∈ [C],
m(c) i and Σ(c) i stand for empirical mean vector and covariance matrix. The relevance of this approximation is detailed in Appendix S1.2. These two Gaussian choices (for the anchor distribution and the class-conditional distributions) allow us to have a closed-form expression for the Wasserstein distance of order 2 which appears in (3), see e.g. [START_REF] Dowson | The Fréchet distance between multivariate normal distributions[END_REF]; [START_REF] Gelbrich | On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces[END_REF]. More precisely, we have for any

i ∈ [b] and c ∈ [C], W 2 2 µ c , ν (c) φi = v c -m (c) i 2 + B 2 Σ c , Σ (c) i , (4)
where B(•, •) denotes the Bures distance between two positive definite matrices [START_REF] Bhatia | On the Bures-Wasserstein distance between positive definite matrices[END_REF]. In addition to yield the closed-form expression (4), the choice of the Wasserstein distance is motivated by two other important properties. First, it is always finite no matter how degenerate the Gaussian distributions are, contrary to other divergences such as the Kullback-Leibler one (Vilnis and Mc-Callum, 2015). Being able to output a meaningful distance value when supports of distribution do not overlap is a key benefit of the Wasserstein distance, since when initialising φ i , we do not have any guarantee on such overlapping (see illustration given in Figure S4). Second, its minimisation can be handled using efficient algorithms proposed in the optimal transport literature [START_REF] Muzellec | Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions[END_REF].

Related Work. As pointed out in Section 1, several existing works can be related to the proposed methodology.

Loosely speaking, we can divide these related approaches into three categories namely (i) heterogeneous-architecture personalised FL, (ii) vertical FL and (iii) federated transfer learning.

Compared to traditional horizontal personalised FL (PFL) approaches, so-called heterogeneous-architecture ones are mostly motivated by local heterogeneity regarding resource capabilities of clients e.g. computation and storage [START_REF] Collins | Exploiting Shared Representations for Personalized Federated Learning[END_REF][START_REF] Diao | HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients[END_REF][START_REF] Hong | Efficient Split-Mix Federated Learning for On-Demand and In-Situ Customization[END_REF][START_REF] Makhija | Architecture Agnostic Federated Learning for Neural Networks[END_REF][START_REF] Shamsian | Personalized Federated Learning using Hypernetworks[END_REF][START_REF] Luo | No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data[END_REF]. Nevertheless, they never consider features defined on heterogeneous subspaces, which is our main motivation. In vertical federated learning (VFL), clients hold disjoint subsets of features. However, a restrictive assumption is that a large number of users are common across the clients [START_REF] Angelou | Asymmetric private set intersection with applications to contact tracing and private vertical federated machine learning[END_REF][START_REF] Hardy | Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[END_REF][START_REF] Romanini | PyVertical: A Vertical Federated Learning Framework for Multi-headed SplitNN[END_REF][START_REF] Yang | Federated Machine Learning: Concept and Applications[END_REF]. In addition, up to our knowledge, no vertical personalised FL approach has been proposed so far, which is restrictive if clients have different business objectives and/or tasks. Finally, some works have focused on adapting standard tranfer learning approaches with heterogeneous feature domains under the FL paradigm. These federated transfer learning (FTL) approaches [START_REF] Gao | Privacy-preserving Heterogeneous Federated Transfer Learning[END_REF][START_REF] Liu | A Secure Federated Transfer Learning Framework[END_REF][START_REF] Mori | Continual Horizontal Federated Learning for Heterogeneous Data[END_REF][START_REF] Sharma | Secure and Efficient Federated Transfer Learning[END_REF] stand for FL variants of heterogeneous-feature transfer learning where there are b source clients and 1 target client with a target domain. However, these methods do not consider the same setting as ours and assume that clients share a common subset of features. We compare the most relevant approaches among the previous ones in Table 1.

Algorithm

As detailed in Equation (3 2021)). Table 2 details how these methods can be embedded into the proposed methodology.

Algorithm

Local model Local weights

FedAvg-FT g (i) θi = g θi θ i L2GD g (i) θi = g θi θ i = ωα + (1 -ω)β i FedRep g (i) θi = g (i) βi • g α θ i = [α, β i]
In Algorithm 1, we detail the pseudo-code associated to a specific instance of the proposed methodology when FedRep is resorted to learn model parameters

{θ i = [α, β i]} i∈[b]
under the FL paradigm. In this setting, α stand for the shared weights associated to the first layers of a neural network architecture and β i for local ones aiming at performing personalised classification. Besides these two learnable parameters, the algorithm also learns the local embedding functions φ 1:b and the anchor distribution µ 1:C .

In practice, at a given epoch t of the algorithm, a subset A t+1 ⊆ [b] of clients are selected to participate to the training process. Those clients receive the current latent anchor distribution µ (t)

1:C and the current shared representation α (t) . Then, each client locally updates φ i , β i and her local ver-sions of α (t) and µ

(t,m) i , •) to denote a (stochastic) gradient descent step on the func- tion F (t,m) i = F i (β (t,m) i , φ (t,m) i , α (t) , µ (t)
1:C) with respect to a subset of parameters in (θ i , φ i , µ 1:C). This subset is specified in the second argument of DescStep. An explicit version of Algorithm 1 is provided in Appendix, see Algorithm S2.

Note that we take into account key inherent challenges to federated learning namely partial participation and communication bottleneck. Indeed, we cope with the client/server upload communication issue by allowing each client to perform multiple steps (here M ∈ N *) so that communication is only required every M local steps. This allows us to consider updating global parameters, locally, via only one stochastic gradient descent step and hence avoiding the client drift phenomenon [START_REF] Sai | SCAFFOLD: Stochastic controlled averaging for federated learning[END_REF].

Averaging Anchor Distributions. In this paragraph, we provide algorithmic details regarding steps 14 and 20 in Algorithm 1. For any c ∈ [C], the anchor distribution µ c involves two learnable parameters namely the mean vector v c and the covariance matrix Σ c . Regarding the former, step 14 stands for a (stochastic) gradient descent step aiming to obtain a local version of v c denoted by v

(t+1) i,c
and step 20 boils down to compute v

(t+1) c = (b/|A t+1 |) i∈At+1 ω i v (t+1) i,c
. To enforce the positive

Algorithm 1 FLIC Require: initialisation α (0) , µ (0) 1:C , φ (0,0) 1:b , β (0,0) 1:b . 1: for t = 0 to T -1 do 2:
Sample a set of A t+1 of active clients.

3:

for i ∈ A t+1 do 4:
The central server sends α (t) and µ for m = 0 to M -1 do 7:

φ (t,m+1) i ← DescStep F (t,m) i , φ (t,m) i . 8: β (t,m+1) i ← DescStep F (t,m) i , β (t,m) i . 9:
end for 10:

φ (t+1,0) i = φ (t,M) i . 11: β (t+1,0) i = β (t,M) i . 12: // Update global parameters 13: α (t+1) i ← DescStep F (t,M) i , α (t) . 14: µ (t+1) i,1:C ← DescStep F (t,M) i , µ (
α (t+1) = b |At+1| i∈At+1 w i α (t+1) i 20: µ (t+1) 1:C ← WassersteinBarycenter({µ (t+1) i,1:C }) 21: end for Ensure: parameters α (T) , µ (T) 1:C , φ (T,0) 1:b , β (T,0) 1:b .
semi-definite constraint of the covariance matrix, we rewrite it as Σ c = L c L c where L c ∈ R k×k and optimise in step 14 with respect to the factor L c instead of Σ c . We can handle the gradient computation of the Bures distance in step 14 using the work of [START_REF] Muzellec | Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions[END_REF]; and obtain a local factor L (t+1) i,c at iteration t. In step 20, we compute L

(t+1) c = (b/|A t+1 |) i∈At+1 ω i L (t+1) i,c and set Σ (t+1) c = L (t+1) c [L (t+1) c
] . When λ 2 = 0 in (3), these mean vector and covariance matrix updates exactly boil down to perform one stochastic (because of partial participation) gradient descent step to solve the Wasserstein barycenter problem arg min

µc b i=1 ω i W 2 2 (µ c , ν (c) φi).

Non-Asymptotic Convergence Guarantees in a Simplified Setting

Deriving non-asymptotic convergence bounds for Algorithm 1 in the general case is challenging since the considered C-class classification problem leads to jointly solving personalised FL and federated Wasserstein barycenter problems. Regarding the latter, obtaining non-asymptotic convergence results is still an active research area in the centralised learning framework [START_REF] Altschuler | Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent[END_REF].

As such, we propose to analyse a simpler regression frame- work where the anchor distribution is known beforehand and not learnt under the FL paradigm.

More precisely, we assume that x

(j) i ∼ N(m i , Σ i) with m i ∈ R ki and Σ i ∈ R ki×ki for i ∈ [b], j ∈ [n i].
In addition, we consider that the continuous scalar labels are generated via the oracle model y

(j) i = (A β i) φ i (x (j) i)
where A ∈ R k×d , β i ∈ R d and φ i (•) are ground-truth parameters and feature transformation function, respectively. We make the following assumptions on the ground truth.

H1. (i) For any

i ∈ [b], j ∈ [n i], embedded features φ i (x (j) i) are distributed according to N(0 k , I k). (ii) Ground-truth model parameters satisfy β i 2 = √ d for i ∈ [b]
{β i } i∈At+1 span R d . (iv) In (2), (•, •) is the 2 norm, ω i = 1/b, θ i = [A, β i] and g (i) θi (x) = (Aβ i) x for x ∈ R k .
Under H1-(i), Delon et al. (2022, Theorem 4.1) show that φ i can be expressed as a non-unique affine map with closed-form expression. To recover the true latent distribution µ = N(0 k , I k), we propose to estimate φi by leveraging this closed-form mapping between N(m i , Σ i) and µ. Because of the non-unicity of φ i , we show in Theorem 1 that we can only recover it up to a matrix multiplication. Interestingly, Theorem 1 shows that the global representation A (T) learnt via FedRep (see Algorithm S3 in Appendix) is able to correct this feature mapping indetermination. Associated convergence behavior is illustrated in Figure 2 on a toy example whose details are postponed to Appendix S2.

Theorem 1. Assume H1. Then, for any

x i ∈ R ki , we have φi (x i) = Qφ i (x i) where Q ∈ R k×k is of the form diag k (±1).
Under additional technical assumptions detailed in Appendix S2, we have for any t ∈ {0, . . . , T -1} and with high probability, where κ ∈ (0, 1) is detailed explicitly in Theorem S3 and dist denotes the principal angle distance.

dist(A (t+1) , QA) ≤ (1 -κ) (t+1)/2 dist(A (0) , QA) ,

Numerical Experiments

In this section, we aim at illustrating how our algorithm FLIC, when using FedRep as FL approach, works in practice and showcasing its numerical performances. We consider several toy problems with different characteristics of heterogeneity; as well as experiments on real data namely a digit classification problem from images of different sizes and an object classification problem from either images or text captioning on clients.

Baselines. Since the problem we are addressing is novel, there exists no FL competitor that can serve as a baseline beyond local learning. However, we propose to modify the methodology proposed in [START_REF] Makhija | Architecture Agnostic Federated Learning for Neural Networks[END_REF] to make it applicable to clients with heterogeneous feature spaces. This latter approach can handle local representation models with different architectures and the key idea, coined Representation Alignement Dataset (RAD), is to calibrate those models by matching the latent representation of some fixed data inputs shared by the server to all clients. In our case, we can not use the same RAD accross all clients due to the different dimensionality of the local models. A simple alternative that we consider in our experiments is to build a RAD given the largest dimension space among all clients and then prune it to obtain a lower-dimensional RAD suitable to each client. We refer to the corresponding algorithm as FedHeNN.

We are going to consider the same architecture networks for all baselines. As Makhija et al. (2022) considers all but the last layer of the network as the representation learning module, for a fair comparison, we also assume the same for our approach. Hence, in our case, the last layer is the classifier layer and the alignment with the latent reference distribution applies on the penultimate layer. This model is referred to as FLIC-Class, in which all weights are thus local (α is empty and β i refers to the last layer). In addi- S5. The caption has been embedded into a 768dimensional vector using a pre-trained Bert embedding and the image into a 512-dimensional ones using a pre-trained ResNet model. We further generated some heterogeneity by randomly pruning 10% of these features on each client. Again, we assume that a client hosts either some image embeddings or text embeddings. For all simulations, we assume prior probability shift e.g each client will have access to data of only specific classes.

Experimental Setting. For the experimental analysis, we use the codebase of [START_REF] Collins | Exploiting Shared Representations for Personalized Federated Learning[END_REF] with some modifications to meet our setting. For all experiments, we consider T = 50 communication rounds for all algorithms; and at each round, a client participation rate of r = 0.1. The number of local epochs for training has been set to M = 10. As optimisers, we have used an Adam optimiser with a learning rate of 0.001 for all problems and approaches. Further details are given in Appendix S3.3. For each component of the latent anchor distribution, we consider a Gaussian with learnable mean vectors and fixed Identity covariance matrix. As such, the Wasserstein barycenter computation boils down to simply average the mean of client updates and for computing the third term in Equation (3), we just sample from the Gaussian distribution. Accuracies are computed as the average accuracy over all clients after the last epoch in which all local models are trained.

Results on Toy Data Sets. Figure 3 depicts the performance, averaged over 5 runs, of the different algorithms with respect to the number of clients and when only 3 classes are present in each client. For both data sets, we can note that for the noisy feature setting, FLIC improves on FedHeNN of about 3% of accuracy across the setting and performs better than local learning. For the linear mapping setting, FLIC achieves better than other approaches with a gain of performance of about 4% while the gap tends to decrease as the number of clients increases. Interestingly, FLIC-HL performs slightly better than FLIC-Class showing the benefit of using a shared representation layer α.

Results on Digits and TextCaps Data Sets. Performance, averaged over 3 runs, of all algorithms on the real-word problems are reported in Table 3. For the Digits data set problem, we first remark that in all situations, FL algorithms performs a bit better than local learning. In addition, both variants of FLIC achieve better accuracy than competitors. Difference in performance in favor our FLIC reaches 3% for the most difficult problem. For the TextCaps data set, gains in performance of FLIC-HL reach about 4% across settings. While FedHeNN and FLIC algorithms follow the same underlying principle (alignment of representation in a latent space), we believe that our framework benefits from the use of the latent anchor distributions, avoiding the need of sampling from the original space. Instead, FedHeNN may fail as the sampling strategy of their RAD approach suffers from the curse of dimensionality and does not properly lead to a successful feature alignment.

Additional Experiments in Appendix. Due to the limited number of pages, additional experiments are postponed to the Appendix. In particular, we investigate the impact of pre-training the local embedding functions for a fixed reference distribution as in Section 4, before running the proposed algorithm detailed in Algorithm 1. The main message is that pre-training helps in enhancing performance but may lead to overfitting if too many epochs are considered. We also analyse the impact of client participation rate at each communication round reaching the conclusion that our model is robust to participation rate.

CONCLUSION

We have introduced a new framework for personalised FL when clients have heterogeneous feature spaces. We proposed a novel FL algorithm involving two key components: (i) a local feature embedding function; and (ii) a latent anchor distribution which allows to match similar semantical information from each client. Experiments on relevant data sets have shown that FLIC achieves better performances than competing approaches. Finally, we provided theoretical support to the proposed methodology, notably via a non-asymptotic convergence result.

SUPPLEMENTARY MATERIAL

(R d × R d , B(R d × R d)) such that for all measurable set A of R d , ζ(A × R d) = µ(A) and ζ(R d × A) = ν(A).
We denote by T (µ, ν) the set of transference plans of µ and ν. In addition, we say that a couple of R d -random variables (X, Y) is a coupling of µ and ν if there exists ζ ∈ T (µ, ν) such that (X, Y) are distributed according to ζ. We denote by P 1 (R d) the set of probability measures with finite 1-moment: for all µ ∈ P 1 (R d), R d x dµ(x) < ∞. We denote by P 2 (R d) the set of probability measures with finite 2-moment: for all

µ ∈ P 2 (R d), R d x 2 dµ(x) < ∞.
We define the squared Wasserstein distance of order 2 associated with • for any probability measures µ, ν ∈ P 2 (R d) by

W 2 2 (µ, ν) = inf ζ∈T (µ,ν) R d ×R d
xy 2 dζ(x, y) .

By Villani (2008, Theorem 4.1), for all µ, ν probability measures on R d , there exists a transference plan ζ ∈ T (µ, ν) such that for any coupling (X, Y) distributed according to ζ , W 2 (µ, ν) = E[xy 2] 1/2 . This kind of transference plan (respectively coupling) will be called an optimal transference plan (respectively optimal coupling) associated with W 2 . By Villani (2008, Theorem 6.16), P 2 (R d) equipped with the Wasserstein distance W 2 is a complete separable metric space. For the sake of simplicity, with little abuse, we shall use the same notations for a probability distribution and its associated probability density function. For n ≥ 1, we refer to the set of integers between 1 and n with the notation Outline. This supplementary material aims at providing the interested reader with a further understanding of the statements pointed out in the main paper. More precisely, in Appendix S1, we support the proposed methodology FLIC with algorithmic and theoretical details. In Appendix S2, we prove the main results stated in the main paper. Finally, in Appendix S3, we provide further experimental design choices and show complementary numerical results.

S1. Algorithmic and Theoretical Insights

In this section, we highlight alternative but limited ways to cope with feature space heterogeneity; and justify the usage, in the objective function (3) of the main paper, of Wasserstein distances with empirical probability distributions instead of true ones. In addition, we detail the general steps depicted Algorithm 1.

S1.1. Some Limited but Common Alternatives to Cope with Feature Space Heterogeneity

Depending on the nature of the spaces {X i } i∈[b] , the feature transformation functions {φ i } i∈[b] can be either known beforehand or more difficult to find. As an example, if for any i ∈ [b], X i ⊆ X , then we can set mask functions as feature transformation functions in order to only consider features that are shared across all the clients. Besides, we could consider multimodal embedding models to perform feature transformation on each client [START_REF] Duquenne | Multimodal and Multilingual Embeddings for Large-Scale Speech Mining[END_REF]. For instance, if clients own either pre-processed images or text of titles, descriptions and tags, then we can use the Contrastive Language-Image Pre-Training (CLIP) model as feature transformation function [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF]. These two examples lead to the solving of a classical (personalised) FL problem which can be performed using existing state-of-the-art approaches. However, when the feature transformation functions cannot be easily found beforehand, solving the FL problem at stake becomes more challenging and has never been addressed in the federated learning literature so far, up to the authors' knowledge.

S1.2. Use of Wasserstein Losses Involving Empirical Probability Distributions

Since the true probability distributions {ν

(c) φi ; c ∈ Y i } i∈[b]
are unknown a priori, we propose in the main paper to estimate the latter using {ν

(c) φi ; c ∈ Y i } i∈[b] and to replace W 2 2 µ c , ν (c) φi by W 2 2 µ c , ν (
(c) i → ∞, n (c) i W 2 2 µ c , ν(c) φi -W 2 2 µ c , ν (c) φi in distribution ----------→ Z (c) i ,
where

Z (c) i ∼ N(0, s (c) i) and s (c) i = 4(m (c) i -v c) Σ (c) i (m (c) i -v c) + 2Tr(Σ (c) i Σ c) -4 k j=1 κ 1/2 j r j Σ -1/2 c Σ (c) i Σ 1/2 c r j , with {κ j , r j } j∈[k]

S1.3. Detailed Pseudo-Code for Algorithm 1

In Algorithm S2, we provide algorithmic support to Algorithm 1 in the main paper by detailing how to perform each step. Note that we use the decomposition Σ = LL to enfore the positive semi-definite constraint for the covariance matrix Σ.

Algorithm S2 Detailed version of FLIC when using FedRep

Require: initialisation α (0) , µ (0)

1:C = [Σ (0) 1:C , v (0) 1:C] with Σ (0) c = L (0) c [L (0) c] , φ (0,0) 1:b , β (0,0) 1:b and step-size η ≤ η for some η > 0. 1: for t = 0 to T -1 do 2:
Sample a set of A t+1 of active clients.

3:

for i ∈ A t+1 do 4:
The central server sends α (t) and µ Sample a fresh batch

I (i,m) t+1 of n i samples with n i ∈ [n i]. 8: Sample Z (j,t,m) c ∼ µ (t) c for j ∈ I (i,m) t+1 and c ∈ Y i via Z (j,t,m) c = v (t) c + L (t) c ξ (t,m) i where ξ (t,m) i ∼ N(0 k , I k). 9: φ (t,m+1) i = φ (t,m) i -η ni |I (i,m) t+1 | j∈I (i,m) t+1 ∇ φ i y (j) i , g (i)
[α (t) ,β

(t,m) i] φ (t,m) i x (j) i -ηλ1 c∈Y i ∇ φ i W 2 2 µ (t) c , ν (c) φ (t,m) i . 10: β (t,m+1) i ← β (t,m) i -η ni |I (i,m) t+1 | j∈I (i,m) t+1    ∇ β i y (j) i , g (i)
[α (t) ,β

(t,m) i] φ (t,m) i x (j) i -ηλ2 c∈Y i ∇ β i y (j) i , g (i)
[α (t) ,β

(t,m) i] Z (j,t,m) c    . 11:
end for 12:

φ (t+1,0) i = φ (t,M) i . 13: β (t+1,0) i = β (t,M) i . 14:
// Update global parameters

15: α (t+1) i ← α (t) -η ni |I (i,M) t+1 | j∈I (i,M) t+1    ∇α y (j) i , g (i)
[α (t) ,β

(t,M) i] φ (t,M) i x (j) i -ηλ2 c∈Y i ∇α y (j) i , g (i)
[α (t) ,β

(t,M) i] Z (j,t,M) c    . 16: for c = 1 to C do 17: Update m(c,t) i , Σ(c,t) i using φ (t,M) i . 18: v (t+1) i,c = v (t) c -ηλ1∇v c v (t) c - m(c,t) i 2 -ηλ2 c∈Y i ni |I (i,m) t+1 | j∈I (i,m) t+1 ∇v c y (j) i , g (i)
[α (t) ,β

(t,M) i] Z (j,t,M) c . 19: L (t+1) i,c = L (t) c -ηλ1∇L c B 2 L (t) c [L (t) c] , Σ(c,t) i -ηλ2 c∈Y i ni |I (i,m) t+1 | j∈I (i,m) t+1 ∇L c y (j) i , g (i)
[α (t) ,β

(t,M) i] Z (j,
α (t+1) = b |At+1| i∈At+1 w i α (t+1) i . 26: for c = 1 to C do 27: v (t+1) c = (b/|A t+1 |) i∈At+1 ω i v (t+1) i,c . 28: L (t+1) c = (b/|A t+1 |) i∈At+1 ω i L (t+1) i,c and set Σ (t+1) c = L (t+1) c [L (t+1) c
] .

29:

end for 30: end for Ensure: parameters α (T) , µ

(T) 1:C , φ (T,0) 1:b , β (T,0) 1:b .

S1.4. Additional Algorithmic Insights

Scalability. When the number of classes C is large, both local computation and communication costs are increased. In this setting, we propose to partition all the classes into C meta C meta-classes and consider reference measures {µ c } c∈[Cmeta] associated to these meta-classes. As an example, if we are considering a dataset made of features associated to animals, the meta-class refers to an animal (e.g. a dog) and the class refers to a specific breed (e.g. golden retriever).

Privacy Consideration. As other standard (personalised) FL algorithms, FLIC satisfies first-order privacy guarantees by not allowing raw data exchanges but rather exchanges of local Gaussian statistics. Note that FLIC stands for a post-hoc approach and can be combined with other privacy/confidentiality techniques such as differential privacy [START_REF] Dwork | The Algorithmic Foundations of Differential Privacy[END_REF], secure aggregation via secure multi-party computation [START_REF] Chen | The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning[END_REF] or trusted execution environments [START_REF] Mo | PPFL: Privacy-Preserving Federated Learning with Trusted Execution Environments[END_REF].

Inference on New Clients. When a client who has not participated to the training procedure appears, there is no need to re-launch a potentially costly federated learning procedure. Instead, the server sends the shared parameters {α (T) , µ (T) 1:C } to the new client and the latter only needs to learn the local parameters {φ i , β i }.

S2. Proof of Theorem 1

This section aims at proving Theorem 1 in the main paper. To this end, we first provide in Appendix S2.1 a closed-form expression for the estimated embedded features based on the features embedded by the oracle. Then, in Appendix S2.3, we show technical lemmata that will be used in Appendix S2.2 to show Theorem 1.

To prove our results, we consider the following set of assumptions.

H1. (i) For any

i ∈ [b], j ∈ [n i], ground-truth embedded features φ i (x (j) i) are distributed according to N(0 k , I k). (ii) Ground-truth model parameters satisfy β i 2 = √ d for i ∈ [b]
and A has orthonormal columns. (iii) For any t ∈ {0, . . . , T -1}, |A t+1 | = rb with 1 ≤ rb ≤ b, and if we select rb clients, their ground-truth head parameters

{β i } i∈At+1 span R d . (iv) In (2) in the main paper, (•, •) is the 2 norm, ω i = 1/b, θ i = [A, β i] and g (i) θi (x) = (Aβ i) x for x ∈ R k .

S2.1. Estimation of the Feature Transformation Functions

As in Section 4 in the main paper, we assume that x

(j) i ∼ N(m i , Σ i) with m i ∈ R ki and Σ i ∈ R ki×ki for i ∈ [b], j ∈ [n i].
In addition, we consider that the continuous scalar labels are generated via the oracle model y

(j) i = (A β i) φ i (x (j) i) where A ∈ R k×d , β i ∈ R d and φ i (•)
are ground-truth parameters and feature transformation function, respectively. Under H1-(i), the oracle feature transformation functions Delon et al. (2022, Theorem 4.1), there exist closedform expressions for {φ i } i∈ [b] , which can be shown to stand for solutions of a Gromov-Wasserstein problem restricted to Gaussian transport plans. More precisely, these oracle feature transformation stand for affine maps and are of the form, for any i ∈ [b],

{φ i } i∈[b] are assumed to map k i -dimensional Gaussian distributions N(m i , Σ i) to a common k-dimension Gaussian N(0 k , I k). As shown in
φ i x (j) i = Ĩ(i,) k (D (k) i) -1/2 0 k,ki-k x (j) i -m i ,
where

Ĩ(i,) k = diag k (±1) is a k-dimensional diagonal matrix with diagonal elements in {-1, 1}, Σ i = P i D i P i is the diagonalisation of Σ i and D (k) i
stands for the restriction of D i to the first k components. In the sequel, we assume that all oracle feature transformation functions share the same randomness, that is

Ĩ(i,) k = Ĩ k = diag k (±1).
For the sake of simplicity, we assume that we know the true latent distribution of φ i (x

i) and as such consider a prefixed reference latent distribution that equals the latter, that is µ = N(0 k , I k). Since we know from Delon et al. (2022, Theorem 4.1) that there exist mappings between Gaussian distributions with supports associated to different metric spaces, we propose an estimate for the ground-truth feature transformation functions defined by for any

i ∈ [b], φi x (j) i = Ĩk (D (k) i) -1/2 0 k,ki-k x (j) i -m i , where Ĩk = diag k (±1). By noting that Ĩk = Q Ĩ k , where Q ∈ R k×k is a diagonal matrix of the form diag k (±1), it follows that φi x (j) i = Qφ i x (j) i . (S1)
In Appendix S2.2, the equation (S1) will allow us to relate the ground-truth labels y

(j) i = (A β i) φ i (x (j) i) with estimated predictions ŷ(j) i = (A (T) β (T) i) φi (x (j)
i) via Algorithm S3 starting from the same embedded features.

S2.2. Proof of Theorem 1

Algorithm S3 FLIC-FedRep for linear regression and Gaussian features Require: step size η, number of outer iterations T , participation rate r ∈ (0, 1), diagonalizations Σ i = P i D i P i sorting eigenvalues in decreasing order. 1: // Estimation of embedded features

2: For each client i ∈ [b], set φi x (j) i = Ĩk (D (k) i) -1/2 0 k,ki-k x (j) i -m i . 3: // Initialisation A (0) 4: Each client i ∈ [b] sends Z i = (1/n i) ni j=1 (y (j) i) 2 φi x (j) i [φi x (j) i
] to the central server.

β (t+1) i = arg min βi ni j=1 y (j) i -β i [A (t)] φi x (j) i 2 .
13: // Update global parameters 14:

A (t+1) i = A (t) -η∇ A ni j=1 y (j) i -[β (t+1) i] A φi x (j) i 2 . 15:
where

F (t) is defined in (S12), A (t) is defined in (S3) and B (t)
At is defined in (S2).

Proof. The proof follows from the same steps as in [START_REF] Collins | Exploiting Shared Representations for Personalized Federated Learning[END_REF] Proof of Lemma 1) using (S2).

Under H1, we have the following non-asymptotic convergence result.

Theorem S3. Assume H1. Then, for any

x i ∈ R ki , we have φi (x i) = Qφ i (x i) where Q ∈ R k×k is of the form diag k (±1). Define E 0 = dist(A (0) , QA). Assume that n ≥ c(d 3 log(rb))/E 2 0 + d 2 k/(E 2 0 rb
) for some absolute constant c > 0. Then, for any t ∈ {0, . . . , T -1}, η ≤ 1/(4σ 2 max,) and with high probability at least 1e -110ke -110d 2 log(rb) , we have

dist(A (t+1) , QA) ≤ (1 -κ) (t+1)/2 dist(A (0) , QA) ,
where A (t) is computed via Algorithm S3, dist denotes the principal angle distance and κ ∈ (0, 1) is defined as

κ = 1 -ηE 0 σ2 min, /2.
Proof. The proof follows first by plugging Lemma S3, Lemma S8 and Lemma S9 into Lemma S2. Then, we use the same technical arguments and steps as in Collins et al. (2021, Proof of Lemma 6).

S2.3. Technical Lemmata

In this section, we provide a set of useful technical lemmata to prove our main result in Appendix S2.2.

Notations. We begin by defining some notations that will be used in the sequel. For any t ∈ {0, . . . , T -1}, we define

Z (t+1) = B (t+1) At+1 [A (t)] Q -B At+1 [A] . (S4)
In addition, let

G (t) =     G (t) 11 • • • G (t) 1d G (t) d1 • • • G (t) dd     , C (t) =     C (t) 11 • • • C (t) 1d C (t) d1 • • • C (t) dd     , D (t) =     D (t) 11 • • • D (t) 1d D (t) d1 • • • D (t) dd     ,
where for p, q ∈ [d],

G (t) pq = 1 n i∈At+1 n j=1 e i φ i (x (j) i) Qa (t) p [a (t) q] Qφ i (x (j) i)e i , (S5)
C (t) pq = 1 n i∈At+1 n j=1 e i φ i (x (j) i) Qa (t) p [a q] Qφ i (x (j) i)e i , (S6)
D (t) pq = a (t) p , a q I rb , (S7) with a (t)
p ∈ R k standing for the p-th column of A (t) ∈ R k×d ; and a p ∈ R k standing for the p-th column of A ∈ R k×d . Finally, we define for any i ∈ A t+1 ,

Π i = 1 n n j=1 φ i (x (j) i)[φ i (x (j) i)] , (S8) (G (t)) i = [A (t)] QΠ i QA (t) , (S9) (C (t)) i = [A (t)] QΠ i QA , (S10) (D (t)) i = [A (t)] QA . (S11)
Using these notations, we also define β = [(β 1) , . . . , (β d)] ∈ R rb d and

F (t) = [([G (t)] -1 (G (t) D (t) -C (t)) β) 1 , . . . , ([G (t)] -1 (G (t) D (t) -C (t)) β) d] . (S12)
Technical results. To prove our main result in Theorem S3, we begin by providing a first upper bound on the quantity of interest namely dist A (t+1) , QA . This is the purpose of the next lemma. Lemma S2. For any t ∈ {0, . . . , T -1} and η > 0, we have

dist A (t+1) , QA ≤ C 1 + C 2 , ,
where

C 1 = [A ⊥] QA (t) I d - η rb [B (t+1) At+1] B (t+1) At+1 2 R (t+1) -1 2 , (S13
)

C 2 = η rb 1 n [A ⊥] (QA (t+1)) † A (t+1) Z (t+1) Q -Z (t+1) B (t+1) At+1 2 R (t+1) -1 2 , (S14
)
where

A (t) is defined in (S3), B (t)
At is defined in (S2), Z (t) is defined in (S4) and R (t) comes from the QR factorisation of Ā(t) , see step 20 in Algorithm S3.

Proof. The proof follows from the same steps as in Collins et al. (2021, Proof of Lemma 6) and by noting that dist(A (t) , QA) = dist(QA (t) , A) for t ∈ {0, . . . , T -1}.

We now have to control the terms C 1 and C 2 . For the sake of clarity, we split technical results aiming to upper bound of C 1 and C 2 in two different paragraphs.

Control of C 1 . Lemma S3. Assume H1. Let δ d = cd 3/2 log(rb)/n 1/2 for some absolute constant c > 0. Then, for any t ∈ {0, . . . , T -1}, with probability at least 1e -111k 2 log(rb) , we have for δ d ≤ 1/2 and η ≤ 1/(4σ 2 max,)

C 1 ≤ ≤ 1 -η 1 -dist A (0) , QA σ2 min, + 2η δ d 1 -δ d σ2 max dist A (t) , QA R (t+1) -1 2 ,
where σ2 min , σ2 max are defined in (S15)-(S16), C 1 is defined in (S13), A (t) is defined in (S3) and R (t) comes from the QR factorisation of Ā(t) , see step 20 in Algorithm S3.

Proof. Using Cauchy-Schwarz inequality, we have

C 1 ≤ (A ⊥) QA (t) 2 I d - η rb [B (t+1) At+1] B (t+1) At+1 2 R (t+1) -1 2 = dist A (t) , QA I d - η rb [B (t+1) At+1] B (t+1) At+1 2 R (t+1) -1 2 .
Define the following minimum and maximum singular values:

σ2 min, = min A⊆[b],|A|= rb σ min 1 rb B A (S15) σ2 max, = min A⊆[b],|A|= rb σ max 1 rb B A . (S16)
Using Collins et al. (2021, Proof of Lemma 6, equations (67)-(68)), we have for δ d ≤ 1/2 where δ d is defined in Lemma S4 and η ≤ 1/(4σ 2 max,),

I d - η rb [B (t+1) At+1] B (t+1) At+1 2 ≤ 1 -η 1 -dist A (0) , QA σ2 min, + 2η δ d 1 -δ d σ2 max, ,
with probability at least 1e -111k 2 log(rb) The proof is concluded by combining the two previous bounds.

Control of C 2 . We begin by showing four intermediary results gathered in the next four lemmata.

Lemma S4. Assume H1. Let δ d = cd 3/2 log(rb)/n 1/2 for some absolute constant c > 0. Then, for any t ∈ {0, . . . , T -1}, with probability at least 1e -111k 3 log(rb) , we have

[G (t)] -1 2 ≤ 1 1 -δ d ,
where G (t) is defined in (S5).

Proof. The proof stands as a straightforward extension of Collins et al. (2021, Proof of Lemma 2) by noting that the random variable Qφ i (x

(j) i) = φi (x (j)
i) is sub-Gaussian under H1-(i); and as such is omitted.

Lemma S5. Assume H1. Let δ d = cd 3/2 log(rb)/n 1/2 for some absolute constant c > 0. Then, for any t ∈ {0, . . . , T -1}, with probability at least 1e -111k 2 log(rb) , we have

(G (t) D (t) -C (t))B At 2 ≤ δ d B At 2 dist A (t) , QA ,
where t) is defined in (S6) and A (t) in (S3).

G (t) is defined in (S5), D (t) is defined in (S7), C (
Proof. Without loss of generality and to ease notation, we remove the superscript (t) in the proof and re-index the indexes of clients in A t+1 . Let H = GD -C. From (S8), (S9), (S10) and (S11), it follows, for any i ∈ [rb], that

H i = G i D i -C i = A QΠ i Q(AA -I k)QA .
Hence, by using the definition of H, we have

(GD -C)β 2 2 = rb i=1 H i β i 2 2 ≤ rb i=1 H i 2 2 β i 2 ≤ d rb B 2 2 rb i=1 H i 2 2 ,
where the last inequality follows almost surely from H1-(iii). As in Collins et al. (2021, Proof of Lemma 3), we then define for any j ∈ [n], the vectors

u (j) i = 1 √ n [A] (AA -I k)Qφ i (x (j) i) , v (j) i = 1 √ n A Qφ i (x (j) i) .
Let S d-1 denotes the d-dimensional unit spheres. Then, by Vershynin (2018, Corollary 4.2.13), we can define N d , the 1/4-net over S d-1 such that |N d | ≤ 9 d . Therefore, by using Vershynin (2018, Equation (4.13)), we have

H i 2 2 ≤ 2 max z,y∈N d n j=1 z, u (j) i v (j) i , y . Since φ i (x (j)
i) is a standard Gaussian vector, it is sub-Gaussian and therefore z, u

(j) i and v (j) i , y are sub-Gaussian with norms 1 √ n [A] (AA -I k)Q 2 = (1/ √ n)dist(A, QA) and (1/ √ n), respectively.
In addition, we have

E z, u (j) i v (j) i , y = 1 n E z 1 √ n [A] (AA -I k)Qφ i (x (j) i)[φ i (x (j) i)] QAy = 1 n z 1 √ n [A] (AA -I k)Ay = 0,
where we have used the fact that E[φ i (x

(j) i)[φ i (x (j) i)]] = 1, Q 2 = I k and (AA -I k)A = 0.
The rest of the proof is concluded by using the Bernstein inequality by following directly the steps detailed in Collins et al. (2021, Proof of Lemma 3, see equations (35) to (39)).

Lemma S6. Assume H1. Let δ d = cd 3/2 log(rb)/n 1/2 for some absolute constant c > 0. Then, for any t ∈ [T], with probability at least 1e -111k 2 log(rb) , we have

F (t) F ≤ δ d 1 -δ d B At 2 dist A (t) , QA ,
where F (t) is defined in (S12) and A (t) in (S3).

Proof. By the Cauchy-Schwarz inequality, we have

F (t) F = [G (t)] -1 (G (t) D (t) -C (t))B At 2 ≤ δ d B At 2 ≤ [G (t)] -1 2 (G (t) D (t) -C (t))B At 2 ≤ δ d B At 2 .
The proof is concluded by combining the upper bounds given in Lemma S4 and Lemma S5.

Lemma S7. Assume H1 and let δ d = cd √ k/ rb n for some absolute positive constant c. For any t ∈ [T] and whenever δ d ≤ d, we have with probability at least 1e -110ke -110d 2 log(rb) 1 rb

1 n Q(A (t)) † A (t) Z (t) Q -Z (t) B (t) At 2 ≤ δ d dist A (t) , QA ,
where

B (t)
At is defined in (S2) and Z (t) is defined in (S4).

Proof. Let t ∈ [T]. Note that we have

1 n Q(A (t)) † A (t) Z (t) Q -Z (t) B (t) At = 1 n i∈At m j=1 Qφ i (x (j) i), z (t) i Qφ i (x (j) i) β (t) i -z (t) i β (t) i
.

Let S k-1 and S

1 n Q(A (t)) † A (t) Z (t) Q -Z (t) B (t) At 2 2 = 2 max u∈N d ,v∈N k u   1 n i∈At m j=1 Qφ i (x (j) i), z (t) i Qφ i (x (j) i) β (t) i -z (t) i β (t) i   v = 2 max u∈N d ,v∈N k 1 n i∈At m j=1 Qφ i (x (j) i), z (t) i u, Qφ i (x (j) i) β (t) i , v -u, z (t) i β (t) i , v . (S17)
In order to control (S17) using Bernstein inequality as in Lemma S5, we need to characterise, in particular, the sub-Gaussianity of u, z , respectively. From Lemma S1, we have [β

(t) i] = (β i) (A) A (t) -(z (t) i) which leads to z (t) i 2 = QA (t) (A (t)) QA β i -QA (t) f (t) i -A β i 2 2 = (QA (t) (A (t)) Q -I d)A β i -QA (t) f (t) i 2 2 ≤ 2 (QA (t) (A (t)) Q -I d)A 2 2 β i 2 + 2 f (t) i 2 ≤ 2d dist 2 (A (t) , QA) + 2 f (t) i 2 .
Using (S12) and the Cauchy-Schwarz inequality, we have) where the last inequality follows from H1-(ii).

f (t) i 2 = [G i,(t)] -1 (G i,(t) D i,(t) -C i,(t))β i ≤ [G i,(t)] -1 2 2 G i,(t) D i,(t) -C i,(t) 2 2 β i 2 ≤ d [G i,(t)] -1 2 2 G i,(t) D i,(t) -C i,(t) 2 2 , (S18
Using Lemma S4 and Lemma S5 and similarly to Collins et al. (2021, Equation (45)), it follows for any i ∈ A t that t) , QA) , with probability at least 1e 110d 2 log(rb) .

z (t) i 2 2 ≤ 4d dist(A (
Similarly, using Lemma S1 and (S18), we have with probability at least 1e 110d 2 log(rb) and for any i ∈ A t , that

β (t) i 2 ≤ 2 [A (t)] QA β i 2 + 2 f (t) i 2 ≤ 4d .
Besides, note we have

E Qφ i (x (j) i), z (t) i u, Qφ i (x (j) i) β (t) i , v = u, z (t) i β (t) i , v .
The proof is then concluded by applying the Bernstein inequality following the same steps as in the final steps of Collins et al. (2021, Proof of Lemma 5).

We are now ready to control C 2 . Lemma S8. Assume H1 and let δ d = cd √ k/ rb n for some absolute positive constant c. For any t ∈ {0, . . . , T -1}, η > 0 and whenever δ d ≤ d, we have with probability at least 1e -110ke -110d 2 log(rb)

C 2 ≤ ηδ d dist A (t) , QA R (t+1) -1 2 ,
where C 2 is defined in (S14), A (t) is defined in (S3) and R (t) comes from the QR factorisation of Ā(t) , see step 20 in Algorithm S3.

Proof. Let t ∈ {0, . . . , T -1} and η > 0. Then, whenever δ d ≤ d, we have with probability at least 1e -110ke -110d 2 log(rb) , we have

C 2 = η rb 1 n [A ⊥] (QA (t+1)) † A (t+1) Z (t+1) Q -Z (t+1) B (t+1) At+1 2 R (t+1) -1 2 ≤ η rb 1 n (QA (t+1)) † A (t+1) Z (t+1) Q -Z (t+1) B (t+1) At+1 2 R (t+1) -1 2 ≤ ηδ d dist A (t) , QA R (t+1) -1 2 ,
where we used the Cauchy-Schwarz inequality in the second inequality and Lemma S7 for the last one.

Control of R (t+1) -1 2 . To finalise our proof, it remains to bound R (t+1) -1 2 . The associated result is depicted in the next lemma. Lemma S9. Define δd = δ d + δ d where δ d and δ d are defined in Lemma S4 and Lemma S5, respectively. Assume H1. Then, we have with probability at least 1e -110ke -110d 2 log(rb) ,

R (t+1) -1 2 ≤ 1 -4η δd (1 -δd) 2 σ2 max, - 1

S3.3. Models and Learning Parameters

For the toy problems and the TextCaps data set, as a local transformation functions we used a fully connected neural network with one input, one hidden layer and one output layers. The number of units in hidden layer has been fixed to 64 and the dimension of latent space as been fixed to 64. ReLU activation has been applied after the input and hidden layers.

For the digits dataset, we used a CNN model with 2 convolutional layers followed by a max-pooling layer and a sigmoid activation function. Once flattened, we have a one fully-connected layer and ReLU activation. The latent dimension is fixed to 64.

For all datasets, as for the local model g θi , in order to be consistent with competitors, we first considered a single layer linear model implementing the local classifier as well as a model with one input layer (linear units followed by a LeakyReLU activation funcion) denoting the shared representation layer and an output linear layer.

For training, all methods use Adam with a default learning rate of 0.001 and a batch size of 100. Other hyperparameters have been set as follows. Unless specified, the regularization strength λ 1 and λ 2 have been fixed to 0.001. Local sample batch size is set to 100 and the participation rate r to 0.1. For all experiments, we have set the number of communication round T to 50 and the number of local epochs to respectively 10 and 100 for the real-world and toy datasets. For FLIC, as in FedRep those local epochs is followed by one epoch for representation learning. We have trained the local embedding functions for 100 local epochs and a batch size of 10 for toy datasets and TextCaps and while of 100 for MNIST-USPS. Reported accuracies are computed after local training for all clients.

S3.4. Ablating Loss Curves

In order to gain some understanding on the learning mechanism that involves local and global training respectively due to the local embedding functions, the local classifier and the global representation learning, we propose to look at local loss curves across different clients.

Here, we have considered the linear mapping toy dataset as those used in the toy problem analysis. However, the learning parameters we have chosen are different from those we have used to produce the results so as to highlight some specific features. The number of epochs (communication rounds) is set to 100 with a client activation ration of 0.1. Those local epochs are shared for either training the local parameters or the global ones (note that in our reference Algorithm 1, the global parameter is updated only once for each client) Those latter are trained starting after the 20-th communication round and in this case, the local epochs are equally shared between local and global parameter updates. Note that because of the randomness in the client selection at each epoch, the total number of local epochs is different from client to client. We have evaluated three learning situations and plotted the loss curves for each client.

• the local embedding functions and the global models are kept fixed, and only the local classifier is trained. Examples of loss curves for 3 clients are presented in the left plot of Figure S1. For this learning situation, there is no shared global parameters that are trained locally. Hence, the loss curve is typical of those obtained by stochastic gradient descent with a smooth transition, at multiple of 100 local epochs, when a given client is retrained after a communication rounds.

• the local embedding functions are kept fixed, while the classifier and global parameters are updated using half of the • all the part (local embedding functions, global parameter and the classifier) of the models are trained. Note at first that the loss value for those curves (right plot in Figure S1) is larger than for the two first most left plots as the Wasserstein distance to the anchor distribution is now taken into account and tends to dominate the loss. The loss curves are globally decreasing with larger drops in loss at the beginning of local epochs.

S3

.5. On Importance of Alignment Pre-Training and Updates.

We have analyzed the impact of pretraining the local transformation functions and their updates during learning for fixed reference distribution. We have considered two learning situations : one in which they are updated during local training (as usual) and another one in they are kept fixed all along the training. We have chosen the setting with 100 users and have kept the same experimental settings as for the performance figure and made only varied the number of epochs considered for pretraining from 1 to 200. Results, averaged over 5 runs are shown in Figure S2. We remark that for the three datasets, increasing the number of epochs up to a certain number tends to increase performance, but overfitting may occur. The latter is mostly reflected in the toy linear mapping dataset for which 10 to 50 epochs is sufficient for good pretraining. Examples of how classes evolves during pretraining are illustrated in Figure 4, through t-sne projection. We also illustrate cases of how pretraining impact on the test set and may lead to overfitting as shown in the supplementary Figure S4.

S3.6. On the Impact of the Participation Rate

We have analyzed the effect of the participation rate of each client into our federated learning approach. Figure S3 reports the accuracies, averaged over 3 runs, of our approach for the toy datasets and the TextCaps problem with respect to the partication rate at each round. We can note that the proposed approach is rather robust to the participation rate but may rather suffer from overfitting due to overtraining of local models. On the left plot, performances, measured after the last communication round, for TextCaps is stable over participation rate while those performances tend to decrease for the toy problems. We associate these decrease to overfitting since when we report (see right plot) the best performance over communication rounds (and not the last one), they are stable for all problems. This suggests that number of local epochs may be dependent to the task on each client and the client participation rate.

 r u w A N 4 A s + e 8 h 6 9 F + 9 1 0 b r i L W e O w A 9 4 b 5 + P 2 I 8 k < / l a t e x i t > t e x i t s h a 1 _ b a s e 6 4 = " q I

Figure 1 .

 1 Figure 1. Illustration of part of the proposed methodology for b = 3 clients with heterogeneous digit images coming from three different data sets namely MNIST[START_REF] Deng | The MNIST Database of Handwritten Digit Images for Machine Learning Research[END_REF], USPS[START_REF] Hull | A database for handwritten text recognition research[END_REF] and SVHN[START_REF] Netzer | Reading Digits in Natural Images with Unsupervised Feature Learning[END_REF]. The circles with digits inside stand for a group of samples, of a given class, owned by a client and the size of the circles indicates their probability mass. In the subspace Φ, {µi} i∈[b] (and their level sets) refer to some learnable reference measures to which we seek to align the transformed version ν φ i of νi. Personalised FL then occurs in the space Φ and aims at learning local models {θi} i∈[b] for each clients as well as {φi, µi} i∈[b] .

 Figure 1, we propose to learn the feature embedding functions by aligning their probability distributions conditioned on the class c ∈ [C], denoted by ν (c) φi , via C learnable anchor measures {µ c } c∈[C]

 stands for a local model parameter and {ω i } i∈[b] are non-negative weights associated to each client such that b i=1 ω i = 1; and for any i ∈ [b],

), we perform personalisation under the FL paradigm by considering local model architectures {g (i) θi } i∈[b] and local weights θ 1:b . As an example, we could resort to federated averaging with finetuning (e.g. FedAvg-FT, see Collins et al. (2022)), model interpolation (e.g. L2GD, see Hanzely and Richtárik (2020); Hanzely et al. (2020)) or partially local models (e.g. FedRep, see Collins et al. (2021); Oh et al. (2022); Singhal et al. (

 . Afterwards, clients send back to the server an updated version of α (t) and µ (t) 1:C . Updated global parameters α (t+1) and µ (t+1) 1:C are then obtained by weighted averaging of client updates on appropriate manifolds. The use of the Wasserstein loss in (3) naturally leads to perform averaging of the local anchor distributions via a Wasserstein barycenter; algorithmic details are provided in the next paragraph. In Algorithm 1, we use for the sake of simplicity the notation DescStep(F

Figure 2 .

 2 Figure 2. Red dashed line indicates that the two embedded features φ i (x (j) i) and φi(x (j) i) come from the same initial raw feature x (j) i . On test data, mean prediction errors for both FedRep operating on φ i (x (j) i) and Algorithm S3 (referred to as FLIC-FedRep) are similar (≈ 4.98 × 10 -5).

 and A has orthonormal columns. (iii) For any t ∈ {0, . . . , T -1}, |A t+1 | = b with 1 ≤ b ≤ b, and if we select b clients, their ground-truth head parameters

Figure 3 .

 3 Figure 3. Performance of FLIC and competitors on the toy data sets with respect to the number of clients. (left) Gaussian classes in dimension k = 5 with added noisy feature. (right) Gaussian classes in dimension k = 30, transformed by a random map. Only 3 classes are present on each client among the 20 possible ones.

Figure 4 .

 4 Figure 4. . 2D t-sne projection of 5 classes partially shared by 3 clients for the toy LM dataset after learning the local transformation functions for (left) 10 epochs, (middle) 50 epochs, (right) 100 epochs. The three different markers represent the different clients. the marker represents the class-conditional mean of the reference distribution. We note that training set converges towards those means.

M 2

 2 [n]. The d-multidimensional Gaussian probability distribution with mean µ ∈ R d and covariance matrix Σ ∈ R d×d is denoted by N(µ, Σ). Given two matrices M, N ∈ R k×d , the principal angle distance between the subspaces spanned by the columns of M and N is given by dist(M, N) where M , N are orthonormal bases of Span(M) and Span(N), respectively. Similarly, M⊥ , N⊥ are orthonormal bases of orthogonal complements Span(M) ⊥ and Span(N) ⊥ , respectively. This principal angle distance is upper bounded by 1, seeJain et al. (2013, Definition 1).

i

 c) φi in the objective function (3) in the main paper. As shown in the following result, this assumption is theoretically grounded when the marginal distributions of the input features are Gaussian. Theorem S2. For any i ∈ [b] and c ∈ [C], let n denotes the subset of the local data set D i only involving observations associated to the label c. Besides, assume that ν (c) φi is Gaussian with mean vector m (c) i ∈ R k and full-rank covariance matrix Σ (c) i ∈ R k×k . Then, we have in the limiting case n

 standing for (eigenvalue, eigenvector) pairs of the symmetric covariance matrix Σ The proof follows from Rippl et al. (2016, Theorem 2.1) with the specific choices µ 1 = ν (c) φi , µ 2 = µ c and μ1 = ν(c) φi which are defined in Section 2 in the main paper.

5:

 The central server computes U DU ← rank-d SVD (1/b) b i=1 Z i . 6: The central server initialises A (0) = U . 7: for t = 0 to T -1 do 8: Sample a set of A t+1 of active clients such that |A t+1 | = rb . 9: for i ∈ A t+1 do 10:The central server sends A (t) to A t+1 .

/ 2 .

 2 Proof. The proof follows fromCollins et al. (2021, Proof of Lemma 6).

Figure S1 .

 S1 Figure S1. Evolution of the local loss curve of three different clients for three different learning situations. See text for details.

Figure S2 .

 S2 Figure S2. Impact of epochs used for pretraining φi on the model accuracy as well as updating those functions during the training. Results for three different datasets are reported. Plain and dashed curves are respectively related to local training with and without updates φi.

Figure S3 .Figure

 S3 Figure S3. Evolution of the performance of our FLIC-Class algorithm with respects to the participation rate of clients, using the same experimental setting as in Figure 3. (left) evaluating performance after last communication rounds, (right) best performance across communication rounds.

Figure S5 .

 S5 Figure S5. Examples of some TextCaps pairs of image/caption from the 4 classes we considered of (top-left) Food, (top-right) Bottle, (bottom-left) Book (bottom-right) Car. We can see how difficult some examples can be, especially from the caption point of view since few hint about the class is provided by the text.

1 Client 1 with 28 x 28 images Client 2 with 16 x 16 images Client 3 with 32 x 32 images

Table 1 .

 1 Related works. PFL refers to horizontal personalised FL, VFL to vertical FL and FTL to federated transfer learning.

	METHOD	TYPE	= FEATURE SPACES MULTI-PARTY NO SHARED ID NO SHARED FEATURE
	(ZHANG ET AL., 2021)	PFL	
	(DIAO ET AL., 2021)	PFL	
	(COLLINS ET AL., 2021)	PFL	
	(SHAMSIAN ET AL., 2021)	PFL	
	(HONG ET AL., 2022)	PFL	
	(MAKHIJA ET AL., 2022)	PFL	
	FLIC (THIS PAPER)	PFL	
	(HARDY ET AL., 2017)	VFL	
	(YANG ET AL., 2019)	VFL	
	(GAO ET AL., 2019)	FTL	
	(SHARMA ET AL., 2019)	FTL	
	(LIU ET AL., 2020)	FTL	
	(MORI ET AL., 2022)	FTL	

Table 2 .

 2 Current personalised FL techniques that can be embedded in the proposed framework. The parameters α, βi stand for model weights while ω ∈ [0, 1].

Table 3 .

 3 Performance over 3 runs of our FLIC model and the competitors on some real-data problems (Digits and TextCaps data set).

	Data sets (setting)	Local FedHeNN FLIC-Class FLIC-HL
	Digits (b = 100, 3 Classes/client)	97.49	97.45	97.83	97.70
	Digits (b = 100, 5 Classes/client)	96.16	96.15	96.46	96.31
	Digits (b = 200, 3 Classes/client)	93.33	93.40	94.50	94.51
	Digits (b = 200, 5 Classes/client)	86.50	87.22	90.66	90.63
	TextCaps (b = 100, 2 Classes/client)	84.19	83.99	89.14	89.68
	TextCaps (b = 100, 3 Classes/client)	76.04	75.39	81.27	81.50
	TextCaps* (b = 200, 2 Classes/client) 83.78	83.89	87.73	87.74
	TextCaps* (b = 200, 3 Classes/client) 74.95	74.77	79.08	78.49

 tion, we also have a model, coined FLIC-HL, which has an additional trainable global hidden layer, which α being the parameter of linear layer and β i the parameter of the classification layer. More details are provided in Appendix.The second problem we consider is a digit classification problem with the original MNIST and USPS data sets which are respectively of dimension 28 × 28 and 16 × 16 and we assume that a client hosts either a subset of MNIST or USPS dataset. Finally, the last classification problem is associated to a subset of the TextCaps data set[START_REF] Sidorov | Textcaps: a dataset for image captioning with reading comprehension[END_REF], which is an image captioning data set, that we convert into a 4-class classification problem, with about 12, 000 and 3, 000 examples for respectively training and testing, either based on the caption text or the image. Some examples of image/caption pairs as well as as more details on how the dataset has been obtained are shown in the Figure

Data Sets. We consider three different classification problems to assess the performances of our approach. First, we are considering a toy classification problem with C = 20 classes and where each class-conditional distribution is a Gaussian with random mean. Covariance matrices of all classes are the same and considered fixed. Using this toy data set, we are considering two sub-experiments. For the first one, named noisy features (and labelled toy NF in figures), we consider a 5-dimensional problem (k = 5) and for each client add some random spurious features which dimensionality goes up to 10. Hence, in this case k i ∈

[5, 15]

. For the second sub-experiment, denoted as linear mapping (and labelled toy LM in figures), we apply a Gaussian random linear mapping to the original data which are of dimension 30. The output dimension of the mapping is uniformly drawn from 5 to 30 leading to k i ∈

[5, 30]

.

Note that we could also have considered push-forward operators acting on the marginals associated to the clients' features, see[START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF]

Remark 2.5).

A (t+1) , R (t+1) ← QR Ā(t+1) . 21: end for Ensure: parameters A (T) , β Let B ∈ R b×d the matrix having local model parameters {β i } i∈ [b] as columns and denote by B At+1 ∈ R rb ×d its restriction to the row set defined by A t+1 where |A t+1 | = rb for some r ∈ (0, 1]. For the sake of simplicity, we assume in the sequel that all clients have the same number of data points that is for any i ∈ [b], n i = n. For random batches of samples {(x

, we define similarly to [START_REF] Collins | Exploiting Shared Representations for Personalized Federated Learning[END_REF]; [START_REF] Jain | Low-Rank Matrix Completion Using Alternating Minimization[END_REF], the random linear operator A : R rb ×d → R rb n for any

, where e i stands for the i-th standard vector of R rb . Using these notations, it follows from Algorithm S3 that for any t ∈ {0, . . . , T -1}, the model parameters θ

] are computed as follows:

)

where A (t+1) stands for a specific instance of A depending on the random subset of active clients available at each round and A † is the adjoint operator of A defined by

). The update in (S2) admits a closed-form expression as shown in the following lemma.

Lemma S1. For any t ∈ . . . 0, . . . , T -1, we have

S3. Experimental Details

S3.1. Reference Distribution for Regression

For regression problem, our goal is to map all samples for all clients into a common latent subspace, in which some structural information about regression problem is preserved. As such, in order to reproduce the idea of using a Gaussian mixture model as a anchor distribution, we propose to use an infinite number of Gaussian mixtures in which the distribution of x associated to a response y is going to be mapped on a unit-variance Gaussian distribution whose mean depends uniquely on y. Formally, we define the anchor distribution as

where m (y) is a vector of dimension d that is uniquely defined. In practice, we consider as m (y) = ya + (1y)b where a and b are two vectors in R d .

When training FLIC, this means that for a client i, we can compute W 2 2 µ y , ν

(y) φi based on the set of training samples {x, y}. In practice, if for a given batch of samples we have a single sample x, then the Wasserstein distance boils to φ i (x)m (y) 2 2 .

S3.2. Data Sets

We provide some details about the datasets we used for our numerical experiments For instance, with 100 clients and 2 classes per clients, this results in a problem with a total of about 16k samples with a minimal number of samples of 38 and a maximal one of 400. In order to get different dimensionality, we randomly append on each client dataset some Gaussian random noisy features with dimensionality varying from 1 to 10.

The second toy dataset, denoted as linear mapping, is a 20-class classification problem where each class-conditional distribution is Gaussian distribution of dimension 5, with random mean and random diagonal covariance matrix. As above, we generate 2000 samples per class and distribute and subsample them across clients in the similar way, leading to a total number of samples of about 15k. The dimensionality perturbation is modelled by a random (Gaussian)linear transformation that maps the original samples to a space which dimension goes up to 50.

S3.2.2. MNIST-USPS

We consider a digit classification problem with the original MNIST and USPS data sets which are respectively of dimension 28 × 28 and 16 × 16 and we assume that a client hosts either a subset of MNIST or USPS data set. We use the natural train/test split of those datasets and randomly share them accross clients.

S3.2.3. TEXTCAPS DATA SET

The TextCaps data set [START_REF] Sidorov | Textcaps: a dataset for image captioning with reading comprehension[END_REF] is an Image captioning dataset for which goal is to develop a model able to produce a text that captions the image. The dataset is composed of about 21k images and 110k captions and each image also comes with an object class. For our purpose, we have extracted pair of 14977 images and captions from the following four classes Bottle, Car, Food and Book. At each run, those pairs are separated in 80% train and 20% test sets. Examples from the TextCaps datasets are presented in Figure S5. Images and captions are represented by vectors by feeding them respectively to a pre-trained ResNet18 and a pretrained Bert, leading to vectors of size 512 and 768.

Each client holds either the image or the text representation of subset of examples and the associated vectors are randomly pruned of up to 10% coordinates. As such, all clients hold dataset with different dimensionality.