Nicolas Gutehrlé 
email: nicolas.gutehrle@univ-fcomte.fr
  
Antoine Doucet 
email: antoine.doucet@univ-lr.fr
  
Adam Jatowt 
email: adam.jatowt@uibk.ac.at
  
Archive TimeLine Summarization (ATLS): Conceptual Framework for Timeline Generation over Historical Document Collections

Archive collections are nowadays mostly available through search engines interfaces, which allow a user to retrieve documents by issuing queries. The study of these collections may be, however, impaired by some aspects of search engines, such as the overwhelming number of documents returned or the lack of contextual knowledge provided. New methods that could work independently or in combination with search engines are then required to access these collections. In this position paper, we propose to extend TimeLine Summarization (TLS) methods on archive collections to assist in their studies. We provide an overview of existing TLS methods and we describe a conceptual framework for an Archive TimeLine Summarization (ATLS) system, which aims to generate informative, readable and interpretable timelines.

Introduction 1.Exploring archives

In the recent years, archives and libraries across the world have frequently conducted digitization campaigns of their collections. This first opened access to thousands of historical documents to a wider public, but also propelled the emergence of new research fields such as Digital Humanities and Digital History. These collections are usually accessible through search engines, which return documents relevant to a query specified by the user. Unfortunately, standard search engines are not fully suited to assist users in exploring historical collections such as news archives where temporal aspects of documents play a key role. Firstly, search engines return documents by their relevance to the query, typically without considering the chronological or causal relations between them, which may prevent the user from understanding the interrelations between events. Furthermore when exploring such documents, the user might lack the contextual knowledge to understand the events that are mentioned in them. This is especially true when exploring news archives coming from distant pasts or exploring longitudinal collections, i.e. which span over a long time frame such as decades or centuries. Search engines do not seem to consider the importance of an event mention for a given query, thus less important events might be returned by the system, especially for broad queries. Improved search engines are then required to study such collections.

Augmenting search engines with timelines

One promising method to improve the output of search engines operating over archival collection is TimeLine Summarization (TLS). TLS consists in summarizing multiple documents by generating a timeline where important events detected in the dataset are associated with a time unit such as a day. TLS is a subfield of the Multi-Document Summarization (MDS) task and has been studied extensively in the NLP community: for instance, [START_REF] Swan | Automatic generation of overview timelines[END_REF] generate clusters of Named Entities and noun chunks that best describe major news topics covered in a subset of the TDT-2 dataset [START_REF] Allan | On-line new event detection and tracking[END_REF], which contains text transcripts of broadcast news spanning from January 1, 1998, to June 30, 1998, in English;[START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF] generate timelines by detecting events that are the most relevant to a user query. They apply their methodology on a dataset of newswire texts in English covering the 2004-2011 period provided by the AFP French news agency; [START_REF] Duan | Discovering typical histories of entities by multitimeline summarization[END_REF] extend these methods to summarize the common history of similar entities such as Japanese Cities or French scientists. Examples of timelines generated by such methods are shown in Figure 1.

Hence, TLS could serve as a distant reading tool and as a first step in exploring a dataset by providing an overview of its key events. Moreover, TLS could be combined with search engines and used as an interface to search results returned by issuing queries over large datasets, as suggested in [START_REF] Swan | Automatic generation of overview timelines[END_REF]; [START_REF] Alonso | Proceedings of the Second International Conference on Design of Experimental Search & Information REtrieval Systems[END_REF]. From there, the user could zoom into the documents in order to proceed to close reading. Furthermore, these summaries would be presented in chronological order, thus preserving the link between events, and could also be contextualized by adding data from external knowledge bases as in [START_REF] Ceroni | Bridging temporal context gaps using time-aware re-contextualization[END_REF].

Search engines augmented with timelines would be especially useful in a Digital Humanities (DH) context such as for facilitating the study of historical datasets, as they would provide necessary context to understand past events and to structure the event landscape. They could also help the user understand the history of a particular entity such as a person or a location, or even a group of such entities through providing a bird's-eye view of the relevant data. A good example of such search engine augmented with TLS is the Conta-me Histórias (Tell me stories) platform 1 , where the user can query news articles from the Portuguese web archive. The user-friendly interface allows a distant reading of the documents returned by the query through a timeline that summarizes them, but also allows close reading by preserving the link to the original documents. To the best of our knowledge, works on applying TLS methods to structure archives of historical documents, or more broadly in the Digital Humanities field, are quite scarce.

Challenges of applying TLS to archives

Unfortunately, several aspects of such archives make the application of TLS methods not straightforward: first, these datasets are often processed with Optical Character Recognition (OCR). Previous studies have shown that downstream tasks such as Named Entity Recognition (NER), Event Detection (ED) [START_REF] Boros | Assessing the impact of OCR noise on multilingual event detection over digitised documents[END_REF], Topic Modelling (TM) [START_REF] Mutuvi | Evaluating the Impact of OCR Errors on Topic Modeling[END_REF] or Named Entity Linking (NEL) [START_REF] Elvys | Impact of OCR Quality on Named Entity Linking[END_REF] are impacted by the quality of the OCR output.

1 https://contamehistorias.pt/arquivopt To our knowledge, there is no study on the impact of OCR on TLS, but we can assume it will be similar. Furthermore, archive collections may also differ from contemporary data because of their temporal context: orthographic rules may differ, places might have changed names [START_REF] Smith | Disambiguating geographic names in a historical digital library[END_REF] or concepts may have acquired another meaning. Most existing annotated resources necessary for NLP components such as NER or ED are created on contemporary data. Historical documents archives are thus harder to process because of this lack of suitable annotated resources.

Most TLS methods generate timelines through statistical analysis of the input dataset. They also often require that the input corpus contains documents of a similar type and similar content. However, an archive collection may be heterogeneous and contain documents of different authors, genres, topics and periods. It may also be fragmentary and not as complete as a contemporary dataset. Finally, although the timelines generated by TLS systems are often easy to read, the process that created them is often not made explicit. If timelines must assist the study of historical datasets by highlighting important events, they must be interpretable and explain why these events are deemed important.

In this position paper, we propose to extend Time-Line Summarization (TLS) methods to assist in the studies of archive collections. We first present an overview of existing TLS methods. We then describe a conceptual framework for an Archive Time-Line Summarization (ATLS) system, which aims to generate informative, readable and interpretable timelines, before suggesting several methods to implement it.

This paper is organized as follows: in Section 2 we present an overview of existing TimeLine Summarization methods. In Section 3 and 4, we respectively describe our conceptual framework and discuss some of its potential applications. Finally, we present our conclusion in Section 5, alongside possibilities for future works.

Related Work

TimeLine Summarization

Most TLS methods generate timelines by applying the two following steps: the Date Selection step which identifies and ranks the key dates in the documents, and the Date Summarization step which generates a summary of an event occurring at a specific date by picking important sentences in the documents published on that date. To identify important dates in the dataset, Gholipour Ghalandari and Ifrim (2020) select the most frequent date mentions, Tran et al. (2015b) [START_REF] Mihalcea | TextRank: Bringing order into text[END_REF] whereas [START_REF] Martschat | A temporally sensitive submodularity framework for timeline summarization[END_REF] adapt methods from the Multi-Document Summarization (MDS) field. TLS has been generally extractive, i.e. the summary is created by copying textual elements (e.g., sentences or paragraphs) from the input data (Tran et al., 2015a). Other works are abstractive, i.e. the summary is a completely new text generated by the system [START_REF] Steen | Abstractive timeline summarization[END_REF].

TLS methods in general tend to be applied to summarize datasets describing large events, such as the Egyptian protests or the Syrian War (Tran et al., 2015b;[START_REF] Martschat | A temporally sensitive submodularity framework for timeline summarization[END_REF]. These methods require that the dataset covers a constrained period of time and is homogeneous, i.e. that the documents cover the same topic. Standard TLS methods are thus not suited to summarize heterogeneous or longitudinal datasets. Some works such as [START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF]; [START_REF] Kessler | Finding salient dates for building thematic timelines[END_REF]; Chieu and Lee (2004); Pasquali et al. ( 2019) can be described as Query-based TimeLine Summarization (QTLS), as they apply TLS on documents related to a user query such as documents returned by a search engine.

QTLS generally consists in the two following steps: Event Detection and Event Ranking. To detect events, Chieu and Lee ( 2004) select any sentence where the terms of the query appear, [START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF] cluster by a common date every sentence returned by the query and [START_REF] Pasquali | Interactive system for automatically generating temporal narratives[END_REF] detect peaks of date occurrences in the time span covered by the documents. Other works train a classifier to detect important events [START_REF] Chasin | Event and temporal information extraction towards timelines of wikipedia articles[END_REF] or rank events by their importance with a Learningto-Rank model [START_REF] Ge | Bring you to the past: Automatic generation of topically relevant event chronicles[END_REF]. However, these classifiers need training data, which are difficult to create since defining what is important is a subjective matter. This can lead to disappointing results as shown in [START_REF] Chasin | Event and temporal information extraction towards timelines of wikipedia articles[END_REF]. To determine the importance of events, [START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF] first score them according to their relevancy and saliency to the query, then rerank them to ensure a diverse timeline. [START_REF] Leong | Query based event extraction along a timeline[END_REF] rank the importance of a sentence according to their "interest" and "burstiness", then remove duplicate sentences to ensure diversity. [START_REF] Pasquali | Interactive system for automatically generating temporal narratives[END_REF] use the keyword extractor YAKE! [START_REF] Campos | Yake! collection-independent automatic keyword extractor[END_REF] to weight the terms in the event description. Duplicate event descriptions are detected with the Levenshtein similarity measure and removed. Those methods finally select the top most important events to generate the timeline.

In order to generalize the application of TLS, [START_REF] Yu | Multi-TimeLine summarization (MTLS): Improving timeline summarization by generating multiple summaries[END_REF] propose a Multiple TimeLine Summarization (MTLS) system, which generates a timeline for each story found in the dataset. To do so, it first detects events mentioned in the dataset and measures their saliency and consistency. An event linking step determines the link between these events in order to generate each timeline. Similarly, [START_REF] Duan | Comparative timeline summarization via dynamic affinity-preserving random walk[END_REF] propose the Comparative Time-Line Summarization (CTLS) task, which generates a comparative timeline highlighting the contrast between two timestamped timeline documents (e.g. biographies, historical sections, ...) by computing local and global importance of events.

There are few datasets for the TLS task such as 17 Timelines (T17) [START_REF] Giang Binh Tran | Leveraging learning to rank in an optimization framework for timeline summarization[END_REF], CRISIS (Tran et al., 2015a), ENTITIES [START_REF] Gholipour | Examining the state-of-the-art in news timeline summarization[END_REF], CovidTLS [START_REF] Moreno | Summarize Dates First: A Paradigm Shift in Timeline Summarization[END_REF] or TLS-Covid19 [START_REF] Pasquali | Tls-covid19: A new annotated corpus for timeline summarization[END_REF] which are constructed from contemporary news articles. However, datasets are often lacking in most projects. It is then necessary to create a dataset from scratch as in [START_REF] Minard | SemEval-2015 task 4: TimeLine: Cross-document event ordering[END_REF]; [START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF]; [START_REF] Ge | Bring you to the past: Automatic generation of topically relevant event chronicles[END_REF]; [START_REF] Bedi | Event timeline generation from history textbooks[END_REF] or extend existing ones as in [START_REF] Yu | Multi-TimeLine summarization (MTLS): Improving timeline summarization by generating multiple summaries[END_REF].

Due to this lack of datasets, evaluating TLS systems is a difficult task. The date selection step can be evaluated with the F1-measure [START_REF] Moreno | Summarize Dates First: A Paradigm Shift in Timeline Summarization[END_REF][START_REF] Gholipour | Examining the state-of-the-art in news timeline summarization[END_REF] or with the Mean Average Precision (MAP) metric [START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF]. The date summary is often evaluated with one of the ROUGE metrics [START_REF] Lin | ROUGE: A package for automatic evaluation of summaries[END_REF] to compare a ground-truth timeline and a generated one [START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF][START_REF] Duan | Comparative timeline summarization via dynamic affinity-preserving random walk[END_REF][START_REF] Yu | Multi-TimeLine summarization (MTLS): Improving timeline summarization by generating multiple summaries[END_REF][START_REF] Gholipour | Examining the state-of-the-art in news timeline summarization[END_REF]. Methods relying on event detection such as [START_REF] Ge | Bring you to the past: Automatic generation of topically relevant event chronicles[END_REF]; [START_REF] Minard | SemEval-2015 task 4: TimeLine: Cross-document event ordering[END_REF]; [START_REF] Bedi | Event timeline generation from history textbooks[END_REF] often evaluate their system in terms of Precision, Recall and F1-measure. However, most projects often lack datasets and must then resort to human evaluation as in [START_REF] Duan | Discovering typical histories of entities by multitimeline summarization[END_REF]; [START_REF] Swan | Automatic generation of overview timelines[END_REF]; Tran et al. (2015a).

TLS Variants

We present below formal definitions of several existing TLS variants: 

Framework

In this section, we present a conceptual framework for an Archive TimeLine Summarization (ATLS) which addresses the challenges raised by archive collections such as the sparsity of data, OCR problems, context shifts and linguistic changes over time in order to generate timelines based on these datasets. We first provide a definition of ATLS and describe the type of dataset expected before presenting the framework and discussing how to evaluate its output.

Overview

The framework consists of the two key steps: Timeline Generation and Timeline Presentation. The first step extracts textual elements describing an event and attributes them an importance score.

The second one generates the timeline by filtering events and selecting their description.

The processing stages of the framework are shown in Figure 2. The first step has to run only once over the processed dataset, since it aims to detect the elements composing the timeline to be generated. In contrast, the second step can be run multiple times to update the timeline.

Problem Definition

We define ATLS as follows:

Input: A longitudinal dataset of timestamped documents D = {d 1 , d 2 , ..., d |D| } taken from an archival collection, either standalone or returned by a query Q = {w 1 , w 2 , ..., w k }. The period of time covered by D is usually much longer than the one typically used in TLS.

Output: A timeline T generated from D as a sequence of time-summary pairs p i = (t i , s i ), where s i summarizes important events happening at time t i .

We compare the key characteristics of TLS and ATLS in Tab. 1.

Expected Dataset

The framework takes as input a longitudinal dataset composed of timestamped documents, such as news articles from a historical newspaper collection. This dataset can be standalone or made of documents returned by a search engine for a given query Q. The dataset could be in raw format or have been pre-processed. We would suggest at least the two following pre-processing steps: first, we recommend to clean the dataset if it has been processed with OCR, either manually or semiautomatically, since the OCR quality will impact further steps [START_REF] Tuyet | Survey of Post-OCR processing approaches[END_REF]. Secondly, we recommend to detect temporal expressions, as they are a good indicator of event mentions. Temporal expressions are either explicit (e.g. February 17, 1995) or implicit (e.g. yesterday, next month).

One can use tools such as HeidelTime [START_REF] Strötgen | HeidelTime: High quality rule-based extraction and normalization of temporal expressions[END_REF] or SUTime (Chang and Manning, The input dataset could be pre-processed further by applying NLP components such as Name Entity Recognition (NER), Topic Modelling (TM), Event Extraction (EE), Relation Extraction (RE), Keyword Extraction (KE), or Keyword Generation (KG). Such annotations could be used to index the dataset and allow the user to query documents about a specific Named Entity or topic, as in the impresso2 or the NewsEye3 platforms.

Timeline Generation

In this section, we present the first main step of the framework, which extracts mentions of events and attributes them an importance score.

Event Detection

Although events can be defined in many ways, a commonly accepted definition is "something that is happening or that is holding true in a given circumstance", as stated in the TimeML guidelines [START_REF] Saurí | Timeml annotation guidelines version 1[END_REF]. Events can be detected in multiple ways: one could detect them through statistical analysis of the corpus. For instance, Chieu and Lee (2004) measure the occurrences of similar sentences associated with the same date, whereas [START_REF] Pasquali | Interactive system for automatically generating temporal narratives[END_REF] measure the occurrences of articles in atomic time intervals to later aggregate them and determine the bursty time periods. These statistical methods are especially suited for homogeneous datasets, but may not work as well on heterogeneous or fragmentary datasets. One could also train a Learning-to-Rank model on summaries created by experts in order to detect important sentences as in [START_REF] Giang Binh Tran | Leveraging learning to rank in an optimization framework for timeline summarization[END_REF]. This would, however, require training data which tend to be scarce, even when for contemporary data.

Alternatively, one could use an Event Detection model to detect and annotate events in the dataset as in [START_REF] Chasin | Event and temporal information extraction towards timelines of wikipedia articles[END_REF]. Event Detection is another task in the NLP community that has been extensively studied, and some previous works such as [START_REF] Nhu Khoa Nguyen | Impact analysis of document digitization on event extraction[END_REF] have already applied these methods in humanities contexts. However, we need to keep in mind that training such a model requires annotated resources that are often lacking, especially for historical data, and that the OCR quality of documents impacts the output of these models.

Finally, we could select as event any sentence containing at least a time expression, either explicit or implicit as in [START_REF] Duan | History-driven entity categorization[END_REF]; [START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF]. This selection could be made even finer by taking sentences that also contain a Named Entity as in [START_REF] Abujabal | Important events in the past, present, and future[END_REF]; [START_REF] Bedi | Event timeline generation from history textbooks[END_REF]. One can then apply algorithms such as Affinity Propagation [START_REF] Frey | Clustering by passing messages between data points[END_REF] or Chinese Whispers [START_REF] Biemann | Chinese whispers -an efficient graph clustering algorithm and its application to natural language processing problems[END_REF] to gather sentences describing the same event as in [START_REF] Rusu | Unsupervised techniques for extracting and clustering complex events in news[END_REF]; [START_REF] Yu | Multi-TimeLine summarization (MTLS): Improving timeline summarization by generating multiple summaries[END_REF]; [START_REF] Steen | Abstractive timeline summarization[END_REF].

Regardless of the method used to detect them, events should all be associated with time. These could be the time expressions occurring with the event mentions, or the Document Creation Date (DCD) if no time expressions are present. Alternatively, approaches for estimating the focus time of text [START_REF] Jatowt | Generic method for detecting focus time of documents[END_REF], in absence of any temporal expressions can be applied to associate eventrelated sentences with particular points of time.

Event Importance Estimation

As mentioned in Section 2, the importance of an event can be measured in a supervised or semisupervised manner with a classifier [START_REF] Chasin | Event and temporal information extraction towards timelines of wikipedia articles[END_REF][START_REF] Ge | Bring you to the past: Automatic generation of topically relevant event chronicles[END_REF]. This method, however, requires training data that are difficult to obtain or produce. Furthermore, the process leading a classifier to a prediction is generally not explained. Since the goal of this framework is to assist in the study of longitudinal datasets, it is necessary that the process of generating a timeline is interpretable. Thus, we would suggest to measure the importance score in an unsupervised manner by extracting features from the dataset as in [START_REF] Nguyen | Ranking multidocument event descriptions for building thematic timelines[END_REF][START_REF] Leong | Query based event extraction along a timeline[END_REF][START_REF] Campos | Yake! collection-independent automatic keyword extractor[END_REF]. Some of the features that we think could help measure this importance score are listed below, with suggestions on how to compute them:

Redundancy: The more frequently an event is mentioned, the more important it should be.

One can then simply count the occurrences of events, or as an alternative, assign them importance weights by calculating their TF-IDF scores over all the time units. However, as the data might be fragmentary in archive datasets, this feature should rather not be used alone;

Contemporary references: an event may be important at a given time if other events occurring around the same period of time refer to it. Thus, to evaluate this feature, we could count how often an event is referred to from the descriptions of other events in a given short period of time around that event;

Retrospective references: Similarly, an event is likely to be important if documents keep mentioning it some time after it occurred. To assess this kind of across-time reference to the event, one could count how often (and perhaps for how long) an event is mentioned by other events that occurred after a given period of time. Other solutions may rely on computing random walks over graphs composed of timestamped events and/or entities to measure the amount of signal propagation from the past towards "the recent times" [START_REF] Jatowt | Predicting importance of historical persons using wikipedia[END_REF];

Causality: an event is likely to be important if it is the cause of other events that occurred after it. To evaluate the causality of an event, one could use date reference graphs as in Tran et al. (2015b), which measure the frequency of references, the topical influence and temporal influence between two events to determine a causal link. It is also possible to use Causal Relation Extraction (CRE) methods as presented by Gao et al. for example. However, the CRE task is far from solved and may require much more dataset pre-processing; Common sense: some events are clearly more important than other, e.g. the birth of a child or marrying a partner are usually more important events in a family history than repainting a house. To represent that kind of common sense knowledge and compute this feature, it may be necessary to create a dataset of events that are deemed important to train a 1-class classifier (1CC) as in [START_REF] Duan | History-driven entity categorization[END_REF] or a Learning-to-Rank model as in [START_REF] Ge | Bring you to the past: Automatic generation of topically relevant event chronicles[END_REF].

Note that while important events can be collected from historical textbooks or historyrelated content, gathering unimportant events may be less easy and more problematic; hence the solution could be to rely on a 1CC task.

Using these features, a straightforward formula to calculate the importance of an event could be:

α • F 1 + β • F 2 + γ • F 3 + δ • F 4 + ϵ • F 5
where F 1, F 2, F 3, F 4, F 5 are the scaled values of the features described above and α, β, γ, δ, ϵ are hyper-parameters of which value is defined by the user or document archive custodians. Similarly to event detection, the user could be asked to select any of these features to compute this score.

Some periods may contain much more documents than others. For instance, fewer documents may be available during a war time because of censorship or paper restriction. This lack of documents may lead to events that are far more or far less mentioned than others, and bias frequencybased features such as redundancy, contemporary and retrospective references. Thus, these features should be normalized before being incorporated.

Furthermore, we suggest these features since they are easy to compute, but we also acknowledge that they may not be sufficient to measure the importance of an event from the perspective of an expert such as a historian. Because the formula to compute the importance score is modular, one could incorporate more features in collaboration with experts.

Timeline Presentation

In this section, we describe the second main step of the framework, which generates the timeline from events scored in the previous step. We present sets of filters to select which events should appear on the timeline and how they should be presented. We also describe an optional step of timeline augmentation using external data.

Event Filtering

A dataset may contain hundreds or thousands of mentioned events. It is necessary to select those that will be added to the timeline. To do so, we can use filters such as described below. The weight of these filters could be changed on the user interface, thus allowing users to instantly update the timeline.

Top N : top N most important events are retained;

Importance Threshold (IT ): only events of which the importance score is superior to a pre-fixed threshold IT are taken. Individual thresholds for the features described in Section 3.4 that make up the importance score can also be set; Topical Diversity Threshold (T opDT ):

removes redundant event mentions and ensures the timeline is topically diverse. Topical diversity can be simply measured using Maximal Marginal Relevance (MMR) [START_REF] Goldstein | Summarization: (1) using MMR for Diversity-Based Reranking and (2) Evaluating Summaries[END_REF] or the n-gram blocking metric as in [START_REF] Liu | Fine-tune BERT for extractive summarization[END_REF];

Temporal Diversity Threshold (T empDT ) : ensures every time unit on the generated timeline is evenly represented by setting a minimum and maximum number of events that can appear at each time unit.

Event Description Selection

There are multiple ways to represent an event on a timeline. One could select a sentence that describes the event. If this sentence is too long, one could use sentence compression methods [START_REF] Filippova | Dependency tree based sentence compression[END_REF] to only keep its most important part.

As mentioned earlier, an event might be represented by a cluster of sentences. The user can thus select one sentence among this cluster or generate a cloud of terms of all sentences contained in it, as in [START_REF] Duan | History-driven entity categorization[END_REF]. One could also use headlines if the target documents are articles as in Tran et al. (2015a); [START_REF] Pasquali | Interactive system for automatically generating temporal narratives[END_REF].

Finally, we could also use a Natural Language Generation (NLG) system as in [START_REF] Steen | Abstractive timeline summarization[END_REF], as these generated texts are often easier to understand than text extracted from the documents. However, abstractive methods such as these may suffer from inaccuracies or hallucinations, i.e. generate information that is not present in the original documents. Thus, abstractive methods might generate improper event descriptions and lose the connection with the original documents. On the other hand, a common drawback of purely extractive methods is that selected sentences may require some context or at least post-processing for users to be able to properly understand them (e.g. pronouns may need to be resolved or we need to add definitions or descriptions of some entities or events).

Timeline Augmentation

To properly understand them, some events may require contextual knowledge that is missing from the processed dataset. This can especially happen if the user is not a domain expert. Such contextual knowledge may be found in knowledge bases such as Wikidata or Wikipedia Year pages (see for example (Tran et al., 2015c)). Thus, timelines generated by an ATLS system could be augmented with contextual data provided by external knowledge bases as in [START_REF] Ceroni | Bridging temporal context gaps using time-aware re-contextualization[END_REF]. These augmented timelines could help in explaining a dataset by summarizing it and providing the user with the necessary knowledge to understand it. Unfortunately, most resources created by experts are not in a machinereadable format [START_REF] Gutehrlé | SpaceWars: A Web Interface for Exploring the Spatio-temporal Dimensions of WWI Newspaper Reporting[END_REF]. Hence, this step may require more effort.

Timeline Evaluation

As mentioned earlier, the evaluation of a TLS system is a difficult task because of the lack of evaluation datasets and the inherent subjectivity of the task. In order to evaluate the output, we would suggest to manually assess the produced timelines, either by following some evaluation criteria as in [START_REF] Duan | Discovering typical histories of entities by multitimeline summarization[END_REF], or by comparing them with resources created by experts such as timelines derived from history books as in [START_REF] Bedi | Event timeline generation from history textbooks[END_REF]. One could also use this framework to bootstrap an evaluation dataset specific to the given corpus, towards an automatic evaluation.

Discussion

In this section, we describe two hypothetical use cases comparing the application of TLS and ATLS systems, and compare in Table 1 the types of datasets and timelines both methods can process. Finally, we discuss potential extensions of ATLS.

Use cases

In the first hypothetical use case, a user has curated a homogeneous dataset of timestamped documents from Web archives. This dataset is made of news articles related to a story spanning over a year. It has been pre-processed to remove HTML tags and extract temporal expressions. To generate the timeline, the user applies the TLS method: important dates are first selected before generating a summary of events occurring at each date. The user can select the sentence mentioning the event, the headline of the article or apply abstractive methods to generate its description.

In the second hypothetical use case, a user has curated a heterogeneous corpus to study the economical life of a certain French region in the 20th century. This corpus is composed of periodicals, newspapers and magazines from different sources (parishes, libraries, etc.) published over a century and processed with OCR. This dataset has also been pre-processed: the documents have been first cleaned of OCR errors, then automatically annotated with Temporal Expression Extraction and Named Entity Recognition components. Furthermore, the dataset has been indexed so as to allow query-based searching. To generate the timeline, the user applies some of the ATLS approaches mentioned in this paper: events are first detected by clustering similar sentences that contain a temporal expression and a Named Entity. The importance of these events is then scored using the formula described in Section 3.4.2. The timeline is generated by setting high values to the topical and temporal diversity thresholds, and augmented with external data from Wikidata, so as to ensure a comprehensive and contextualized timeline. Similarly, the user can select from the user interface to use a cloud of terms or a sentence from the cluster to generate event descriptions.

Extensions of ATLS systems

Timelines are usually represented linearly, where each time unit is of the same size (usually a day or a year). However, the optimal granularity of temporal units might vary when generating a timeline over a long period of time. For example, when referring to a distant past, humans tend to often de-scribe entire decades or years rather than discussing each day or month which is more common for the recent past. Furthermore, events mentioned in historical documents might not always be recorded with the same temporal precision (e.g., some events may have missing dates, the dates can be imprecise or difficult to be inferred). A possible solution would be to generate logarithmic timelines, where the granularity of the time unit changes over time, as suggested in [START_REF] Jatowt | Extracting collective expectations about the future from large text collections[END_REF].

If the documents in the datasets are annotated with Named Entities, one could generate entitybased timelines. This could help understand the history of a specific entity such as a person or a location as in [START_REF] Duan | History-driven entity categorization[END_REF]. This idea could be extended by generating aggregate timelines for multiple entities at the same time. These timelines could be agglomerative or contrastive and respectively show the similarities and differences between the history of multiple entities of the same type (e.g., cities in the same region or country, scientists of the same area). Similar to [START_REF] Duan | Comparative timeline summarization via dynamic affinity-preserving random walk[END_REF], such comparative timelines would allow to study the history of entities of the same or similar type, e.g. Berlin vs. Paris or even entities of different types, e.g. Paris and the writer Victor Hugo.

Conclusion

TimeLine Summarization can be a useful tool for getting an overview of historical collections as well as it can serve as a novel information access means to news article archives. In this position paper, we have presented an overview of existing TLS methods and described a conceptual framework for Archive TimeLine Summarization systems.

The implementation of the framework outlined in this paper will be the subject of our future work. We also intend to ask humanities scholars (historians, archivists, ...) to evaluate the quality of generated timelines and the effectiveness of our framework for the study of archive collections.

Figure 1 :

 1 Figure 1: Examples of generated timelines by Yu et al. (2021) (left) and Campos et al. (2018) (right), summarizing a set of documents about respectively Egyptian protests and the Syrian War. The left timeline outputs a summary on a day-to-day basis, whereas the right timeline lists events using uneven periods of time.

Figure 2 :

 2 Figure 2: Conceptual pipeline for building the ATLS system

  TLS: takes as input a standalone homogeneous dataset of timestamped documents D = {d 1 , d 2 , ..., d |D| } and generates a timeline T = {p 1 , p 2 , ..., p |T | } of time-summary pairs p

i = (t i , s i ), where s i summarizes important events happening at time t i ; QTLS: outputs a timeline T = {p 1 , p 2 , ..., p |T | } as a sequence of time-summary pairs p i = (t i , s i ) from a set of timestamped documents {d 1 , d 2 , ..., d |D| } based on a query Q = {w 1 , w 2 , ..., w k } where w i denotes a word belonging to the query; MTLS: takes as input a dataset of timestamped documents D = {d 1 , d 2 , ..., d |D| } that can be standalone or returned using a query Q = {w 1 , w 2 , ..., w k }, and outputs a set of timelines T = {T 1 , T 2 , ..., T m } for each story or topic detected in D, where each timeline T i is a sequence of time-summary pairs p i = (t i , s i ); CTLS: takes as input two datasets of timestamped documents D A = {d 1 , d 2 , ..., d |D A | } and D B = {d 1 , d 2 , ..., d |D B | } and outputs two timelines T A and T B made of contrasting events detected in D A and D B , each as a sequence of time-summary pairs p i = (t i , s i );

Table 1 :

 1 Comparison of TLS and ATLS tasks 

		TLS	ATLS
	Covered period	Shorter	Longer
	Input Data Size	Small / Medium	Large
	Documents type	Timestamped documents (e.g. news articles)
	Document Format	Usually born digital	Often digitized
	Data Integrity	Usually complete	Can be fragmentary
	Presence of noise	Less likely	Depends on OCR quality
	Semantic evolution	Less common	Possible (esp. over long time)
	Need for query-based filtering	Optional (depends on data size and heterogeneity)
	Need for contextualization	Less likely	More likely (esp. over long time)
	Need for interpretable output		Yes

https://impresso-project.ch/app/

https://www.newseye.eu/