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We develop a mathematical model that describes concentration dynamics of PrP C and PrP Sc prion proteins at the neuron scale and includes the effect of the Unfolded Protein Response (UPR). We first introduce a single neuron model taking the UPR mechanism into account. We investigate it and propose a stability study among which a bifurcation analysis with respect to three of its parameters. Then, we generalize it to two neurons showing PrP Sc proteins interaction. Stability results are given when neurons exhibit identical parameters but interact differently (strong, weak or no interaction).

Introduction

Prions are proteins capable of existing in multiple shapes (or conformations). The normal form, denoted PrP c (for Prion Protein Cellular), is a cell surface protein mainly expressed by neurons [START_REF] Roucou | Cellular prion protein neuroprotective function: implications in prion diseases[END_REF]. However, PrP c can change its conformation to become a misfolded PrP Sc (for Prion Proteins Scrapie) pathological element for mammals. They are responsible for the so called prion-diseases, also known as Transmissible Spongiform Encephalopathies, among which one can include the Creutzfeldt-Jakob disease in humans or the Bovine Spongiform Encephalopathy in cattle [START_REF] Stanley B Prusiner | Prion Protein Biology[END_REF][START_REF] Roucou | Cellular prion protein neuroprotective function: implications in prion diseases[END_REF]. In prion diseases, an initial seed of PrP Sc , either inherited, infectious (acquired) or sporadic (spontaneous) [28], converts PrP C and produces de novo PrP Sc that aggregate extra-cellularly and spread the process. In fact, PrP Sc become templating interfaces, inducing the misfolding of PrP c . This mechanism is known as propagated protein misfolding [START_REF] Torrent | High-Pressure Response of Amyloid Folds[END_REF]. It is thought to be at stake in the pathogenesis of prion-diseases but also of a larger group of neuro-degenerative disorders commonly labeled as Protein Misfolding Disorders (PMDs) including Parkinson's or Alzheimer's diseases [START_REF] Hetz | Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases[END_REF][START_REF] Joseph | Regulating extracellular proteostasis capacity through the unfolded protein response[END_REF].

Actually PMDs share a common hallmark: some specific proteins1 misfold, aggregate, replicate and propagate in a prion-like mechanism [START_REF] Hetz | Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases[END_REF][START_REF] Soto | Unfolding the role of protein misfolding in neurodegenerative diseases[END_REF][START_REF] Soto | Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases[END_REF]. In this paradigm, pathogenic proteins, generally assembled in oligomers or aggregates, act as corruptive templates that trigger the misfolding of otherwise normally folded proteins [28,[START_REF] Soto | Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases[END_REF][START_REF] Torrent | High-Pressure Response of Amyloid Folds[END_REF].

The Unfolded Protein Response (UPR) is another biological phenomenon that seems to be involved in PMDs [START_REF] Hetz | Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases[END_REF][START_REF] Hetz | ER stress and the unfolded protein response in neurodegeneration[END_REF][START_REF] Hetz | Mechanisms, regulation and functions of the unfolded protein response[END_REF][START_REF] Joseph | Regulating extracellular proteostasis capacity through the unfolded protein response[END_REF][START_REF] Smith | The unfolded protein response: mechanisms and therapy of neurodegeneration[END_REF]. UPR is a cellular mechanism that aims to recover protein homeostasis in a reaction to Endoplasmic Reticulum (ER) stress [START_REF] Smith | The unfolded protein response: mechanisms and therapy of neurodegeneration[END_REF][START_REF] Hetz | ER stress and the unfolded protein response in neurodegeneration[END_REF]. The link between misfolded proteins involved in PMDs, ER stress and UPR is still not clear : underlying mechanisms and consequences are the subject of current research (for review see e.g. [START_REF] Hetz | Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases[END_REF][START_REF] Smith | The unfolded protein response: mechanisms and therapy of neurodegeneration[END_REF][START_REF] Hetz | ER stress and the unfolded protein response in neurodegeneration[END_REF][START_REF] Hetz | Mechanisms, regulation and functions of the unfolded protein response[END_REF]). Nonetheless, studies seem to agree on the fact that accumulation2 of abnormally folded proteins triggers ER stress that subsequently activate the UPR [START_REF] Moreno | Sustained translational repression by eIF2α-P mediates prion neurodegeneration[END_REF][START_REF] Smith | The unfolded protein response: mechanisms and therapy of neurodegeneration[END_REF][START_REF] Hetz | ER stress and the unfolded protein response in neurodegeneration[END_REF][START_REF] Smith | Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration[END_REF][START_REF] Schneider | The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases[END_REF].

In the context of prion-diseases, knowledge becomes clearer as some studies performed on mice highlight links between PrP Sc aggregates, ER stress and UPR mechanism [START_REF] Hetz | Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein[END_REF][START_REF] Torres | Prion Protein Misfolding Affects Calcium Homeostasis and Sensitizes Cells to Endoplasmic Reticulum Stress[END_REF][START_REF] Moreno | Sustained translational repression by eIF2α-P mediates prion neurodegeneration[END_REF][START_REF] Moreno | Oral Treatment Targeting the Unfolded Protein Response Prevents Neurodegeneration and Clinical Disease in Prion-Infected Mice[END_REF][START_REF] Tanaka | Enhanced phosphorylation of PERK in primary cultured neurons as an autonomous neuronal response to prion infection[END_REF][START_REF] Smith | Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration[END_REF][START_REF] Schneider | The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases[END_REF]. For instance, some works seem to indicate that UPR downregulates PrP Sc through secreted chaperones acting over the extracellular proteostasis [START_REF] Joseph C Genereux | Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis[END_REF][START_REF] Joseph | Regulating extracellular proteostasis capacity through the unfolded protein response[END_REF]. Other studies, investigating the role of UPR upon neurodegeneration in prion diseases, indicate that a high concentration of PrP Sc triggers ER stress. This activates the UPR and results in a transient global shutdown of protein synthesis [START_REF] Moreno | Sustained translational repression by eIF2α-P mediates prion neurodegeneration[END_REF][START_REF] Moreno | Oral Treatment Targeting the Unfolded Protein Response Prevents Neurodegeneration and Clinical Disease in Prion-Infected Mice[END_REF][START_REF] Tanaka | Enhanced phosphorylation of PERK in primary cultured neurons as an autonomous neuronal response to prion infection[END_REF][START_REF] Smith | Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration[END_REF][START_REF] Schneider | The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases[END_REF]. The latter studies, which will constitute the basis of our biological assumptions, lead us to suggest that UPR indirectly downregulates PrP Sc : by preventing global protein translation, UPR activation shuts down the production of PrP c which ultimately hampers the production of PrP Sc .

It appears that, as the influence and effects of UPR on prion diseases are still unclear, mathematical models may provide valuable insights. Actually, they have already been used to investigate different issues in prion diseases and PMDs (for reviews see [START_REF] Sindi | Mathematical Modeling of Prion Disease[END_REF][START_REF] Carbonell | Mathematical Modeling of Protein Misfolding Mechanisms in Neurological Diseases: A Historical Overview[END_REF]). They focus on some aspects of the disease such as the propagated misfolding mechanism and the aggregate size distribution [START_REF] Masel | Quantifying the kinetic parameters of prion replication[END_REF][START_REF] Pöschel | Kinetics of Prion Growth[END_REF][START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF][START_REF] Engler | Analysis of a model for the dynamics of prions II[END_REF][START_REF] Prüss | Analysis of a model for the dynamics of prions[END_REF][START_REF] Calvez | Size distribution dependence of prion aggregates infectivity[END_REF][START_REF] Calvez | Prion dynamics with size dependency-strain phenomena[END_REF][START_REF] Chyba | An alternative model to prion fragmentation based on the detailed balance between PrP sc and suPrP[END_REF], the spatio-temporal progression of misfolded proteins (see e.g [START_REF] Achdou | A qualitative model for aggregation and diffusion of β-amyloid in Alzheimer's disease[END_REF][START_REF] Bertsch | Alzheimer's disease: a mathematical model for onset and progression[END_REF][START_REF] Bertsch | Microscopic and macroscopic models for the onset and progression of Alzheimer's disease[END_REF][START_REF] Weickenmeier | Multiphysics of Prionlike Diseases: Progression and Atrophy[END_REF][START_REF] Andrade-Restrepo | Modeling the spatial propagation of Aβ oligomers in Alzheimer's Disease[END_REF][START_REF] Andrade-Restrepo | A reaction-diffusion model of spatial propagation of A β oligomers in early stage Alzheimer's disease[END_REF] in Alzheimer's disease or [START_REF] Stumpf | Mapping the parameters of prion-induced neuropathology[END_REF][START_REF] Matthäus | Diffusion versus network models as descriptions for the spread of prion diseases in the brain[END_REF] in prion-diseases) or the strain diversity of prions [START_REF] Lemarre | Generalizing a mathematical model of prion aggregation allows strain coexistence and co-stability by including a novel misfolded species[END_REF]. However, to the best of our knowledge, there is no existing model describing PrP Sc production in the framework of neuronal UPR.

The few existing mathematical approaches of UPR lie in the framework of gene regulatory networks and focus neither on neurons nor on prion proteins. They deal with the concentration dynamics of unfolded and/or misfolded proteins through different biological pathways of UPR [START_REF] Schnell | A Model of the Unfolded Protein Response: Pancreatic β-Cell as a Case Study[END_REF][START_REF] Cook | Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death[END_REF][START_REF] Wiseman | An Adaptable Standard for Protein Export from the Endoplasmic Reticulum[END_REF][START_REF] Trusina | Rationalizing translation attenuation in the network architecture of the unfolded protein response[END_REF][START_REF] Trusina | The unfolded protein response and translation attenuation: a approach[END_REF]. Closer to our work here, Trusina et al. [START_REF] Trusina | Rationalizing translation attenuation in the network architecture of the unfolded protein response[END_REF][START_REF] Trusina | The unfolded protein response and translation attenuation: a approach[END_REF] developed a model describing regula-tion of unfolded proteins inside the cell when submitted to a manageable3 ER stress. They incorporated the main UPR-pathways acting over unfolded proteins concentrations among which we find translation attenuation, a mechanism analogous to the translation shutdown we wish to take into account. In order to proceed to mathematical analysis and qualitative investigations, we only focus, in our study, on the latter mechanism and integrate it into a simple model of prion production.

Here, we propose a mathematical modeling that describes PrP c and PrP Sc concentrations at the neuron scale and incorporates the role of UPR through an induced shutdown of global protein synthesis. Based on recent studies [START_REF] Moreno | Sustained translational repression by eIF2α-P mediates prion neurodegeneration[END_REF][START_REF] Moreno | Oral Treatment Targeting the Unfolded Protein Response Prevents Neurodegeneration and Clinical Disease in Prion-Infected Mice[END_REF][START_REF] Tanaka | Enhanced phosphorylation of PERK in primary cultured neurons as an autonomous neuronal response to prion infection[END_REF][START_REF] Smith | Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration[END_REF][START_REF] Schneider | The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases[END_REF], we model the effect UPR with a negative feedback mechanism reflecting a global translation attenuation. To do so, we suppose that a high concentration of misfolded PrP Sc around neurons triggers ER stress and UPR activation. This shuts down global protein translation thus reducing cellular PrP c synthesis and as well as PrP Sc production. For simplicity, we neglect the influence of UPR-induced secreted chaperones over aggregation and templating (whose effect is likely to be less important compared to global translation shutdown) and thus do not take into account the PrP Sc downregulation through secreted chaperones.

Our mathematical approach is based on previous studies dedicated to delay differential equations and bifurcation analysis [START_REF] Kuang | Delay differential equations: with applications in population dynamics[END_REF][START_REF] Beretta | Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters[END_REF][START_REF] Adimy | Modelling and Asymptotic Stability of a Growth Factor-Dependent Stem Cells Dynamics Model with Distributed Delay[END_REF][START_REF] Fan | HOPF BIFURCA-TION OF DELAY DIFFERENTIAL EQUATIONS WITH DELAY DE-PENDENT PARAMETERS[END_REF]. In 2 we introduce our new model. We give some of its properties and study the asymptotic stability of its steady states. In 3, we extend our system to two neurons whose associated scrapie prion concentrations can interact. We finally discuss and conclude this work in 4.

Model of prion production at the neuron scale

Before studying a complete model with several billions of neurons, let start by investigating the process in the environment of a single cell. This section is then dedicated to the UPR acting on one neuron only.

The model

Our model, illustrated in 1, consists in describing the concentration dynamics of PrP c and PrP Sc proteins produced by a single neuron. We note x and y the concentrations of PrP c and PrP Sc respectively. They are ruled, for t > 0, by the following system,

dx dt (t) = KA(t) -µx(t) -dx(t)y(t), dy dt (t) = dx(t)y(t) -αy(t),
where K > 0 represents the PrP c production rate of the neuron and d > 0 characterizes the strength of the interaction between PrP c and PrP Sc After a fixed time T , u(t, T ) mediates the PrP c production rate K. Concentration of PrP c proteins x(t) decreases metabolically at a rate µ. PrP c proteins are also converted into PrP Sc at a rate d. PrP Sc proteins are mainly lost through diffusion represented by the rate α. The feedback loop, standing for the UPR, is represented by a dashed line and depends on the PrP Sc concentration y(t) through a Hill function β n (•). This is a negative feedback loop regulating the input of the neuron biological activity variable u.

PrP Sc proteins are lost metabolically or through diffusion. Finally, A(t) models the protein synthesis activity of the neuron at time t and is given by

A(t) = u(t, T ),
where T > 0 is the biological processes duration. It represents the time taken by all biological processes linked with UPR to induce the global translation shutdown. We assume that u(t, a) describes the biological activity of the neuron at time t and after a biological processing time a ∈ [0, T ]. It is ruled by the following equation:

∂u ∂t (t, a) + ∂u ∂a (t, a) = 0, t > 0, 0 < a < T. (1) 
Since PrP Sc around the neuron downregulate PrP c production. We model this negative feedback through a decreasing Hill function. The influence of PrP Sc concentration over the neuron activity is then given by the input boundary condition of u as :

u(t, 0) = 1 1 + (y(t)/y c ) n := β n (y(t)) , for all t ≥ 0,
where n > 0 is the UPR sensitivity to an overload of PrP Sc . Parameter y c > 0 is the threshold density of PrP Sc over which the neuron (and its surrounding astrocytes) turn off global translation and thus PrP c production.

In this framework, we use the method of characteristics to obtain the system of equations ruling our model :

dx dt = Kβ n (y(t -T )) -µx(t) -dx(t)y(t), dy dt = dx(t)y(t) -αy(t), for t > 0. ( 2 
)
System 2 may be interpreted as follows: a high concentration of PrP Sc proteins results, a biological time T later, in a decrease of PrP c (term Kβ(y(t -T ))) that consequently reduces the PrP Sc production (term dx(t)y(t)). The amount of PrP Sc surrounding the neuron decreases and misfolded protein homeostasis around the neuron is restored. Note that in this paradigm, we omit the notion of neuronal death and assume that the UPR is able to cope with the overload of PrP Sc proteins.

The initial condition u(0, •) of the biological activity variable has been chosen in order to guarantee the well-posedness of system 2 (provided that initial conditions (x 0 , y 0 (•)) are defined on R×C ([-T, 0], R)). More precisely, we chose u(0, a) = β n (y 0 (-a)) for all a ∈ [0, T ].

Model properties, steady states and characteristic equation

We state and prove some properties ensuring the well-posedness of our model as well as a result about existence of steady states. For every non negative initial conditions (x 0 , y 0 (•)) ∈ R × C ([-T, 0], R), system 2 admits a unique non negative solution (x, y) ∈ C [0, +∞) , R 2 such that

x(t) ≤ max x(0), K µ and x(t)+y(t) ≤ max x(0) + y(0), K min(µ, α)
, for all t ≥ 0.

(3) Moreover, either there exists t ≥ 0 such that x( t) ≤ K/µ and then x(t) ≤ K/µ for all t ≥ t, or lim t→+∞ x(t) = K/µ.

Existence, uniqueness and positiveness of solutions can be proved by standard methods (e.g. see the theorems 3.1 and 3.4 of [START_REF] Smith | An Introduction to Delay Differential Equations with Applications to the Life Sciences[END_REF]), the rest of the proof consisting in a simple application of [START_REF] Adimy | Modelling and Asymptotic Stability of a Growth Factor-Dependent Stem Cells Dynamics Model with Distributed Delay[END_REF] (Proof of Proposition 3.1.) and the fact that x(t) satisfies the differential inequality x ′ (t) ≤ K -µx(t).

Positive invariance and attractivity of [0 , K/µ] × R + results from equation 3.

Now, we focus on steady-states (x * , y * ) of system 2 characterized by the following Proposition. The system 2 always admits a trivial equilibrium (K/µ, 0). There exists a unique endemic steady state (α/d, ȳ) with ȳ satisfying 5 if and only if

R 0 := Kd µα > 1. (4) 
If condition 4 holds, ȳ is a continuously differentiable function of each model parameters. In particular, ȳ is decreasing with respect to µ > 0 and α > 0 and increasing with respect to y c and verifies Furthermore, if α = 0 then any solution (x, y) has the limit lim t→+∞ (x(t), y(t)) = (0, +∞). A steady state (x * , y * ) of system 2 satisfies :

0 < ȳ < µ d (R 0 - 1 
Kβ n (y * ) = µx * + dx * y * , (dx * -α)y * = 0.
We easily see that a trivial steady-state (x * , y * ) = (K/µ, 0) always exists. An endemic steady state (x * , y * ) = (x, ȳ) with x, ȳ > 0 would verify x = α/d and

F (ȳ) := dK µα β n (ȳ) = 1 + d µ ȳ. ( 5 
)
Noticing that F is decreasing, F (0) = dK/µα = R 0 and that lim y→+∞ F (y) = 0, we obtain that the endemic steady state (x, ȳ) exists if and only if condition 4 holds. Moreover, if R 0 > 1, we have

dȳ dµ = 1 K α β ′ n (ȳ) -1 , dȳ dα = K α 2 β n (ȳ) K α β ′ n (ȳ) -1 and dȳ dy c = nK y c α ȳ y c n β n (ȳ) 2 1 + nK y c α ȳ y c n-1 β n (ȳ) 2 -1 , with β ′ n (y) = - n y c y y c n-1 β n (y) 2 , for all y ∈ R + .
From these formulas and the implicit function theorem, we establish that ȳ is a continuously differentiable function of each model parameters. Especially, it is decreasing with respect to µ > 0, α > 0 and increasing function of y c . Finally, assume that α = 0. The system 2 implies that y ′ (t) = dx(t)y(t) ≥ 0 from which we know that y is non-decreasing. By contradiction, assume that y is bounded and admits a positive limit. Then lim t→+∞ y ′ (t) = 0. So it implies that lim t→+∞ x(t) = 0. As t → x ′ (t) is uniformly continuous on (t 0 , +∞), t 0 > 0 large enough, we obtain that lim t→+∞

x ′ (t) = 0. Taking the limit as t goes to infinity in the first equation of 2 leads to a contradiction. We thus obtained that lim t→+∞ y(t) = +∞. Now, we associate this result, the continuity and boundedness of x as well as the first equation of 2 to claim that there exists t ≥ 0 such that x is non-increasing on t, +∞ . We conclude that x goes to 0 as t goes to infinity. The result is thus proven when α = 0.

Asymptotic stability of steady states

We linearise system 2 about any steady state (x * , y * ) and obtain

du dt = -(µ + dy * )u(t) -dx * v(t) + Kβ ′ n (y * )v(t -T ), dv dt = dy * u(t) -(α -dx * )v(t),
from which we deduce, the associated characteristic equation

λ + µ + dy * dx * -Kβ ′ n (y * )e -λT -dy * λ + α -dx * = 0. (6) 
In the next section, we focus on the roots of this equation to determine the local asymptotic stability of the steady state (x * , y * ) under consideration.

Disease free equilibrium

Let us start with the disease free equilibrium. The endemic one follows in the next subsection. The trivial-steady state (disease free equilibrium) is locally asymptotically stable if and only if R 0 ≤ 1. It is then destabilized through a transcritical bifurcation when R 0 = 1 (i.e. dK = µα) and unstable otherwise.

For the trivial steady-state, the characteristic equation 6 reads

(λ + µ) λ + α - dK µ = 0, λ ∈ C.
Thus, we have two eigenvalues -µ < 0 and dK µ -α = α (R 0 -1), from which we can easily conclude local asymptotic stability when R 0 < 1 and instability when R 0 > 1. Now consider the case R 0 = 1. If we suppose that for all t ≥ 0 x(t) ≥ K/µ, then from system 2 we have x ′ (t) ≤ 0 and y ′ (t) ≥ 0, for all t ≥ 0. Since y is bounded and its only possible limit is 0, we get a contradiction. We conclude from Lemma 2.2 the existence of t ≥ 0 such that x(t) < K/µ for all t ≥ t. The second equation of system 2 implies that y ′ (t) ≤ (dK/µ -α)y(t) = 0. We deduce that y is non-increasing with lim t→+∞ y(t) = 0 and then the function z : t → Kβ n (y(t-T ))/(µ+dy(t)) is non-decreasing whose limit when t → +∞ is given by K/µ. Using the first equation of 2 and the fact that z is non-decreasing, we observe that the function x can only change monotonicity when it intersects the curve of z coming from its left and by being non-increasing before this intersection and non-decreasing after. We conclude that there exists t ≥ t such that for all t ≥ t, x(t) ≤ z(t). Otherwise, x(t) > z(t) for all t ≥ t. This means that the function x is non-increasing on [ t, +∞), which is absurd. Then, we have x non-decreasing on [ t, +∞). We deduce that lim t→+∞ x(t) = K/µ. We proved that if R 0 = 1, the trivial steady state is globally asymptotically stable.

The biological interpretation of Proposition 2.3.1 is that if the production term dK is smaller than the product of degradation term of the two prion species µα, as one would expect, the trivial steady state is locally asymptotically stable otherwise it is unstable.

If R 0 ≤ 1 then the trivial steady state K µ , 0 is globally asymptotically stable.

The global asymptotic stability in the case R 0 = 1 has already been proved above. For the case R 0 < 1, we adapt the method used in [START_REF] Adimy | Modelling and Asymptotic Stability of a Growth Factor-Dependent Stem Cells Dynamics Model with Distributed Delay[END_REF] (Theorem 5.1).

Define the set G as

G = 0, K µ × R + .
For (x, y) ∈ G, we define the Lyapunov candidate V such that

V (x, y) = 1 2 y 2 .
Note that V does not depend on x.

Let us denote V : G → R + , the Lie derivative of V along solutions of system 2. It follows that for all (x, y) ∈ G :

V (x, y) = y. dy dt = dxy 2 -αy 2 = d α x -1 αy 2 .
But given that (x, y) ∈ G, we have x ≤ K/µ and consequently

V ≤ dK µα -1 αy 2 (t) = (R 0 -1) αy 2 (t), hence V (x, y) ≤ 0, if R 0 < 1. Moreover, let us define the set S = (x, y) ∈ G V (x, y) = 0 .
Let (x, y) ∈ S, then we have

(dx -α) y 2 = 0, but 0 ≤ x ≤ K/µ and given that R 0 < 1 we also know that K/µ < α/d. Consequently it is necessary that y(•) = 0. Hence S = [0, K/µ] × {0}.
From the LaSalle's invariance theorem, we conclude that the set S is attractive in G. Furthermore, for every solution t → (x(t), y(t)) of 2 lying in S, it follows that x is governed by dx dt (t) = K -µx(t), for all t ≥ 0. Hence

x(t) = x(0)e -µt + K µ 1 -e -µt , for all t ≥ 0.
All in all, we obtain that every solution t → (x(t), y(t)) of 2 lying in S, is such that :

(x(t), y(t)) -→ t→+∞ K µ , 0 .
We conclude that every solution (x, y) of 2 reaching G (i.e. x(t) ≤ K/µ) for t large enough (such solution remains in G from 2.2) converges to (K/µ, 0). Now, let (x, y) be a solution of 2 such that x(t) > K/µ for all t ≥ 0. Then from 2.2 we know that x converges to K/µ as t goes to infinity. Thus, we need to check that y goes to 0 at infinity in order to conclude about the global stability. In this situation, x is a strictly decreasing and continuous function such that x(t) -→ t→+∞ K/µ. Hence, lim t→∞ x ′ (t) = 0 and taking the limit as t → +∞ in the first equation of system 2 we obtain :

1 + d µ lim t→∞ y(t) = lim t→∞ β n (y(t -T )),
from which we obtain that y(t) goes to 0 as t → +∞.

In conclusion, all solutions of system 2 tends to (K/µ, 0) if R 0 ≤ 1 and we obtained the global stability of (K/µ, 0).

Endemic steady state

The characteristic equation of system 2 linearised about its endemic steady state (x, ȳ) = (α/d, ȳ), reads

λ 2 + aλ + b + ce -T λ = 0, λ ∈ C, (7) 
with

a = dK α β n (ȳ) = µ + dȳ, b = α dK α β n (ȳ) -µ = α(a -µ), c = -Kβ ′ n (ȳ) dK α β n (ȳ) -µ = -Kβ ′ n (ȳ)(a -µ).
The parameters a, b and c do not depend on the delay T . The characteristic equation 7 has been studied in details [START_REF] Kuang | Delay differential equations: with applications in population dynamics[END_REF][START_REF] Beretta | Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters[END_REF][START_REF] Fan | HOPF BIFURCA-TION OF DELAY DIFFERENTIAL EQUATIONS WITH DELAY DE-PENDENT PARAMETERS[END_REF]. In this paper, we use their methods and results to establish a stability result about the endemic steady state and to perform a bifurcation analysis with respect to three parameters. First, we notice that 0 is not a root of the characteristic equation 7, given that a > 0, b > 0 and c > 0. Then we state the following proposition about absolute stability that is stability independent of the delay [START_REF] Smith | An Introduction to Delay Differential Equations with Applications to the Life Sciences[END_REF] of the endemic steady steady state.

If b > c and a 2 -2b > -2 b 2 -c 2 , (8) 
then the endemic steady state (α/d, ȳ) is locally asymptotically stable for all T ≥ 0, that is Re(λ) < 0 for every root λ ∈ C of equation 7 and all T ≥ 0. We apply directly Proposition 4.9 of [START_REF] Smith | An Introduction to Delay Differential Equations with Applications to the Life Sciences[END_REF] and Chapter 3.3 of [START_REF] Kuang | Delay differential equations: with applications in population dynamics[END_REF]. Now, we state and prove a lemma about the local asymptotic stability of the co-existence equilibrium that legitimates the subsequent bifurcation analysis.

If T = 0 or y c → +∞, then the co-existence steady state (α/d, ȳ) is locally asymptotically stable. The local asymptotic stability when T = 0 simply results from the fact that a, b, c > 0.

Then, consider ȳ, a, b and c as functions of y c > 0. We remind that we necessarily have R 0 = dK/αµ > 1 for the existence of the co-existence steady state. Given that ȳ is bounded, we have lim 

λ 2 + µR 0 λ + αµ (R 0 -1) = 0, λ ∈ C.
If this equation admits some roots, given that R 0 > 1, they would always have negative real parts. All in all, the proposition is proven.

Given that α → (x, ȳ) is continuous and tends to (0, +∞) as α → 0, and lim t→+∞ (x(t), y(t)) = (0, +∞) for α = 0, we claim that the steady state (x, ȳ) is locally asymptotically stable for α > 0 small enough. This was also confirmed by the numerical simulations.

Let ψ ∈ P be a varying parameter, the other parameters are assumed to be fixed. The set P gathers all possible values for the chosen parameter ψ.

If ψ is varied continuously, the only way for roots of 7 with positive real parts to appear is through the imaginary axis. We easily verify that roots with positive real parts cannot appear in the right half complex plane. Starting from parameters verifying 2.3.2, we vary ψ and see if a Hopf bifurcation occurs using the methods in [START_REF] Beretta | Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters[END_REF][START_REF] Fan | HOPF BIFURCA-TION OF DELAY DIFFERENTIAL EQUATIONS WITH DELAY DE-PENDENT PARAMETERS[END_REF]. Given that λ = 0 is not a root of 7, we look for purely imaginary solutions λ = iω(ψ), with ω(ψ) > 0. We assume, implicitely, that ω is a continuously differentiable function of ψ. This property has to be verified a posteriori.

Hence ω := ω(ψ) verifies cos(T ω) = ω 2 -2b c , sin(T ω) = aω c . (9) 
Summing the square of the right-hand sides, we obtain

ω 4 -(2b -a 2 )ω 2 + b 2 -c 2 = 0, (10) 
which also reads Q(ω 2 ) = 0, with the polynomial Q defined by

Q(X) = X 2 -SX + P, (11) 
with

S = -(a 2 -2b) = 2b -a 2 and P = b 2 -c 2 ,
the sum and the product of its roots. The discriminant of

Q is ∆ = (a 2 -2b) 2 -4(b 2 -c 2 ) = a 4 -4ba 2 + 4c 2 .
Let us define the sets

I 1 = ψ b(ψ) < c(ψ) or 2b(ψ) > a(ψ) 2 and b(ψ) = c(ψ) ,
and

I 2 = ψ b(ψ) > c(ψ) and a(ψ) 2 -2b(ψ) ≤ -2 b(ψ) 2 -c(ψ) 2 ,
and remind that ∆

(ψ) = a(ψ) 4 -4b(ψ)a(ψ) 2 + 4c(ψ) 2 > 0 for ψ ∈ I 1 ∪ I 2 .
We emphasize that I 1 and I 2 may possibly consist in multiple sub-intervals of different lengths. The previous study of the polynomial Q enables us to state the following proposition (adapted from Lemma 1 of [START_REF] Fan | HOPF BIFURCA-TION OF DELAY DIFFERENTIAL EQUATIONS WITH DELAY DE-PENDENT PARAMETERS[END_REF] and part 3.3 of [START_REF] Kuang | Delay differential equations: with applications in population dynamics[END_REF]).

(i) If ψ ∈ I 1 , i.e. b(ψ) < c(ψ) or 2b(ψ) > a(ψ) 2 and b(ψ) = c(ψ) , (12) 
then equation 10 has a single positive real root ω + (ψ) such that

ω + (ψ) 2 = 1 2 2b(ψ) -a(ψ) 2 + ∆(ψ) . ( 13 
) (ii) If ψ ∈ I 2 , i.e. b(ψ) > c(ψ) and a(ψ) 2 -2b(ψ) ≤ -2 b(ψ) 2 -c(ψ) 2 , (14) 
then equation 10 has, on top of ω + (ψ), a second positive real root ω

-(ψ) such that ω -(ψ) 2 = 1 2 2b(ψ) -a(ψ) 2 -∆(ψ) . (15) 
(iii) Otherwise, if ψ / ∈ I 1 and ψ / ∈ I 2 , then there are no positive real roots of 10. Hence it follows that, if I 1 = ∅ and I 2 = ∅ then there are no positive real roots of 10, and no Hopf bifurcation can occur. Thanks to the latter proposition, we know that the set

I = I 1 ∪ I 2 ,
actually gathers the values of ψ for which equation 10 has, at least one positive real root and for which Hopf bifurcation might occur.

It is thus valuable to find sufficient conditions (in terms of model parameters) under which the set I exists. This will enable us to clarify the conditions under which stability switches are likely to happen. Hence, we first make a remark that renders aforementioned conditions over a, b and c clearer. Then we look for conditions in terms of model parameters under which 12 or 14 hold. Condition b < c is equivalent to

Kd 2 α < (µ + dȳ) 2 n y c ȳ y c n-1 . ( 16 
)
If parameters verify

µ + dy c < Kd 2α < 2nµ, (17) 
then I 1 ̸ = ∅ and I 2 = ∅. From simple arguments, the first condition dK/2α < 2nµ implies that

0 < µ d 2 + 2µ d - K nα y c + y 2 c ,
from which it follows that

Kd 2 α < (µ + dy c ) 2 n y c .
Moreover, the second condition µ+dy c < dK/2α added to simple considerations about equation 5 ensures that ȳ > y c . All in all, if condition 17 holds, we have Simple but long computations lead to these results. We only underline that (iii) is easily obtained by noticing that a, b and c are independent from T . In fact, variations of ψ = T do not modify the values of ȳ, a, b and c.

Kd 2 α < (µ + dy c ) 2 n y c < (µ + dȳ) 2 n y c ȳ y c n-1 .
2.3.2 does not give precise information on the changes in stability but still provides with sufficient conditions ensuring the existence of an interval I in which these stability switches could occur. In fact, 2.3.2 should not be considered in the context of the previously established stability of the endemic steady state when α → 0 or y c → +∞. They should rather be considered as preliminary results for the existence of an interval on which a Hopf bifurcation with respect to the three parameters is possible. In the following, we assume that I ̸ = ∅ and vary ψ first starting from a value (possibly outside the interval I) where the endemic steady state is locally asymptotically stable and then through I where stability switches could occur.

We continue our bifurcation analysis and introduce, for all ψ ∈ I, the variable Θ ± (ψ) ∈ [0, 2π] such that:

cos(Θ ± (ψ)) = ω ± (ψ) 2 -b c , sin(Θ ± (ψ)) = aω ± (ψ) c , (18) 
where the signs have to be adapted according to where ω + or ω -are defined.

Given that ω ± ≥ 0, we always have sin(Θ ± (ψ)) ≥ 0. Consequently, Θ ± (ψ) ∈ [0, π] for all ψ ∈ I. Hence, we obtain for all ψ ∈ I :

Θ + (ψ) = arccos ω + (ψ) 2 -b c , (19) 
and, for ψ ∈ I 2 :

Θ -(ψ) = arccos ω -(ψ) 2 -b c . (20) 
Then, we define the functions z ± such that for all ψ ∈ I and k ∈ N

z ± (ψ, k) = T - Θ ± (ψ) + 2kπ ω ± (ψ) ,
where the sign has to be adapted accordingly. One could have thought to follow the work of [START_REF] Beretta | Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters[END_REF] and use arctan functions to define Θ + and Θ -. However, the signs involved in system 18 led us to use the arccos function instead. We get the following Theorem, adapted from Theorem 2.1 and 3.1 of [START_REF] Beretta | Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters[END_REF]. Assume that the parameters (different from ψ) are fixed such that I ̸ = ∅. The characteristic equation 7 admits a pair of simple conjugate purely imaginary roots ±iω

+ (ψ * + ) in ψ * + ∈ I, with ω + (ψ * ) = 1 2 2b(ψ * + ) -a(ψ * + ) 2 + ∆(ψ * + ) , (21) 
if and only if there exists k ∈ N such that z + (ψ * + , k) = 0 with 

z + (ψ, k) = T - 1 ω + (ψ) arccos ω + (ψ) 2 -b c + 2kπ for all (ψ, k) ∈ I × N. (22 
ω -(ψ * -) = 1 2 2b(ψ * -) -a(ψ * -) 2 -∆(ψ * -) , (23) 
if and only if there exists k ∈ N such that z -(ψ * -, k) = 0 with

z -(ψ, k) = T - 1 ω -(ψ) arccos ω -(ψ) 2 -b c + 2kπ for all (ψ, k) ∈ I 2 × N.
(24) Furthermore, when a boundary value ψ * ∈ I exists and is reached due to a variation of ψ, its associated pair of simple conjugate purely imaginary roots cross the imaginary axis -possibly inducing a stability switch -from left to right if δ(ψ * ) > 0 and from right to left if δ(ψ * ) < 0 where

δ(ψ * ) = sign d(Reλ) dψ (ψ * ) .
For given parameter values under which I ̸ = ∅, a stability switch is possible only if there exists k ∈ N such that z + (•, k) or z -(•, k) vanish at least one time. When the parameter ψ varies from a value ψ 0 such that (α/d, ȳ) is stable, a Hopf bifurcation must occur at the first boundary value ψ * h such that

ψ * h = min {ψ * | there exists k ∈ N such that z + (ψ * , k) = 0 or z -(ψ * , k) = 0 } , if the transversality condition d(Reλ) dψ (ψ * h ) ̸ = 0 holds. Explicit form of d(Reλ)
dψ is obtained by differentiating the characteristic equation 7 following the branch of roots λ(ψ) defined such that λ(ψ * ) = iω * with ω * = ω + (ψ * ) or ω * = ω -(ψ * ) depending on the situation under consideration. After some computations, when ψ * = T * , one gets:

d(Reλ) dT (T * ) = (a 2 -2b)ω * 2 + 2ω * 4 -T * ω * 2 + a + b 2 + (2 + aT * ) 2 ω * 2 .
Inserting the expression of ω ± (T * ) into this expression always gives d(Reλ) dT (T * ) > 0 when ω * = ω + (T * ) and d (Reλ) dT (T * ) < 0 when ω * = ω -(T * ) (as noticed in [START_REF] Kuang | Delay differential equations: with applications in population dynamics[END_REF]). It ensures us that if a purely imaginary root λ(T * ) (= iω + (T * ) or iω -(T * )) exists, it is necessarily simple.

If ψ * ̸ = T * (e.g. ψ * = α * or ψ * = y c * ), we have :

d(Reλ) dψ (ψ * ) = -ω * 2 c dc dψ (ψ * ) + b c dc dψ (ψ * ) -db dψ (ψ * ) -T ω * 2 + a + T b -T ω * 2 + a + T b 2 + (2 + T a) 2 ω * 2 + ω * 2 (2 + T a) a c dc dψ (ψ * ) -da dψ (ψ * ) -T ω * 2 + a + T b 2 + (2 + T a) 2 ω * 2 .
When ψ = T , we use 2.3.2 and the previous remarks to obtain a more precise and concise result. Assume that model parameters different from T are fixed and such that I ̸ = ∅. If T is increased starting from 0, then the system undergoes a Hopf bifurcation at T = T * h with

T * h = 1 ω + arccos ω 2 + -b c , (25) 
where

ω + = 1 2 2b -a 2 + √ a 4 -4ba 2 + 4c 2 .
First, due to 2.3.2, we know that the co-existence steady state is locally asymptotically stable when T = 0.

Then, if I ̸ = ∅ then I = R + (since a, b and c are independent from T ). If they are defined, both z + (•, k) and z -(•, k) cross the horizontal axis (as increasing functions of T ) and thus stability switches must occur at these crossings labeled T * . Moreover, a Hopf bifurcation could happen at the smallest value T * h of these delays. This smallest delay correspond either (as z + and z -are decreasing functions of k ∈ N) to a zero of z + (•, 0) or z -(•, 0), if defined. If I 2 = ∅ then only z + (•, 0) is well defined, thus T * h is the zero of this function and we consequently obtain the expression 25. If I 2 ̸ = ∅, then z + (•, 0) and z -(•, 0) are defined, thus T * h corresponds to the smallest zero of these two functions which is the zero of z + (•, 0), as ω + > ω -and ω → 1 ω arccos ω 2 -b c is decreasing on its interval of definition. All in all, regardless the situation, the first, i.e. the smallest, delay at which a stability switch occurs T * h corresponds to the zero of T → z + (T, 0) and is given by equation 25. Finally, we conclude that a Hopf bifurcation occurs at T = T * h since the transversality condition d(Reλ) dT (T * h ) ̸ = 0 is always verified. In 2a, 2c and 2d we present stability diagrams obtained when ψ = T , α or y c . These diagrams give us insights in the dynamics of the system in the parameter space. Boundaries (indicated by continuous or dashed lines) separate the parameter space into regions of different dynamics. Notice that 2a and 2c are similar as they both display stability boundaries in the (T, α) plane. In 2b we illustrate -through an arbitrary example of two model trajectories -the Hopf bifurcation that occurs as ψ = T increased from 0: increasing the parameter T from a value where the endemic steady state is stable destabilizes it through a Hopf bifurcation when T reaches the first boundary value T * (≃ 4.13 days in our example). 2d presents stability boundaries in the (T, y c ) when ψ = y c is the varying parameter. In such situation, when T is set to a fixed value, decreasing the parameter y c from infinity triggers a Hopf bifurcation when y c reaches the first boundary value y c * . From a biological point of view, the Hopf bifurcation study is important in the following sense. Our goal is to understand the start and stop mechanism of UPR which may possibly lead the neuron to show an oscillatory stress state. In other words, a neuron may leave and enter stress conditions periodically depending on its environment. If such a phenomenon occurs, this oscillatory behavior may propagate eventually to the other neurons, and some synchronicity could appear from this group. This last point will be the subject of a future work. We prove here that not only such an oscillatory behavior is possible, but we are also able to determine which parameters need to change to get it. From the study above, we manage to prove for instance that increasing the protein formation process duration T (which could happen for weak of damaged cells), may lead to oscillations in protein productions. We show that other parameters are involved such as the loss of diffusion term α or the threshold density y c of PrP Sc implying it stress condition.

We used the function dde23 [START_REF] Shampine | Solving DDEs in Matlab[END_REF] from MATLAB © for numerical simulations. We underline that asymptotic solutions turned out to be independent from initial conditions and densities. We thus arbitrarily decided to compute each trajectories showed in 2b with an initial condition corresponding to 50% of the associated steady state specified by parameter values. dψ (ψ * ) < 0) lines. For clarity, we only plotted the two first boundaries (k = 0 and k = 1) in the (T, α) plane, the three first boundaries (k = 1, 2, 3) in the (T, y c ) plane and indicated in green the area where the endemic equilibrium is stable. The situation in (d) being complex, we decide not to highlight the stability area of the endemic equilibrium for clarity. The values of the parameters used to obtain these plots are specified in 1, we underline that parameter values ensure that we always have R 0 > 1 in each figure . (b): Illustration through an arbitrary example of two trajectories before (T 1 in red) and after (T 2 in blue) the Hopf bifurcation. For all the figures, we chose the range for ψ (i.e. T , α or y c ) so that stability switches could appear with I ̸ = ∅ (i.e. b(ψ) < c(ψ) when a stability switch occurs). 

Model of prion production with 2 neurons

In this section we generalize the previous modeling and describe prion production and dynamic at the scale of two neurons. We first describe the model, then proceed to the stability analysis of the steady states. The model illustrated in 3 describes the dynamics of PrP C protein trations associated to neuron 1 and neuron 2 -x 1 and x 2 -as well as the PrP Sc concentrations in the close vicinity of neuron 1 and neuron 2 -y 1 and y 2 . This model is governed, for t ≥ 0, by the following system:

The model

dx 1 dt = K 1 β n (y 1 (t -T 1 )) -µ 1 x 1 (t) -dx 1 (t) (y 1 (t) + κα 2 y 2 (t)) , dx 2 dt = K 2 β n (y 2 (t -T 2 )) -µ 2 x 2 (t) -dx 2 (t) (y 2 (t) + κα 1 y 1 (t))
,

dy 1 dt = dx 1 (t) (y 1 (t) + κα 2 y 2 (t)) -α 1 y 1 (t), dy 2 dt = dx 2 (t) (y 2 (t) + κα 1 y 1 (t)) -α 2 y 2 (t). (26) 
The parameters d,y c , n and variables u 1 , u 2 have the same meanings as in 2. Variables u 1 and u 2 -associated to biological processes duration T 1 and T 2 -are both ruled by an equation identical to 1. Parameters characterizing the UPR mechanism -threshold concentration y c and sensivity n -are assumed to be identical for the two neurons. The UPR feedback function β n thus also identical for the two neurons. We underline that neuron's proteins concentrations -(x 1 , y 1 ) for neuron 1 and (x 2 , y 2 ) for neuron 2 -are ruled by a system similar to 2 except that the interactions between PrP Sc concentrations of the two neurons are now taken into account. Actually, we consider that diffusion enables the PrP Sc proteins of one neuron to migrate near the other neuron and become templates for the generation of new PrP Sc proteins. We decide to include these interactions in the PrP Sc production terms: dx 1 κα 2 y 2 (resp. dx 2 κα 1 y 1 ) models the production of PrP Sc proteins by neuron 1 (resp. 2) generated from the interaction between PrP Sc proteins associated to neuron 2 (resp. 1) and PrP c proteins of neuron 1 (resp. 2). Moreover we wish to grasp two properties: (i) isotropic and spatial properties of diffusion and (ii) possibly different interactions between PrP c and PrP Sc originating from different neurons compared to the situation where PrP c and PrP Sc come from the same neuron. Hence, we assume that the quantity of PrP Sc that interacts -from one neuron to the other -decays with a factor 0 < κ ≤ 1. The parameter κ thus stands for a coupling constant between neurons that gathers both migration efficiency (induced by diffusion) and the ability for proteins originating from different neurons to interact.

K 1 , K 2 , µ 1 , µ 2 , α 1 , α 2 , T 1 , T 2 ,
The well-posedness of system 26 (existence, unicity and positivity of solutions) can be easily verified thanks to well-known theorems [START_REF] Smith | An Introduction to Delay Differential Equations with Applications to the Life Sciences[END_REF] (a result similar to 2.2 holds).

Steady states

Let (x * 1 , x * 2 , y * 1 , y * 2 ) ∈ R 4 + be a steady state of 26, it verifies 0 = K 1 β n (y * 1 ) -µ 1 x * 1 -dx * 1 (y * 1 + κα 2 y * 2 ) , (27) 0 
= K 2 β n (y * 2 ) -µ 2 x * 2 -dx * 2 (y * 2 + κα 1 y * 1 ) , (28) 0 
= dx * 1 (y * 1 + κα 2 y * 2 ) -α 1 y * 1 , (29) 
0 = dx * 2 (y * 2 + κα 1 y * 1 ) -α 2 y * 2 . (30) 
co-existence equilibria (x 1 , x2 , ȳ1 , ȳ2 ). The three following Lemmas tackle this issue and unveil conditions about existence and uniqueness of the co-existence steady state (x 1 , x2 , ȳ1 , ȳ2 ). If R 01 > 1 and R 02 > 1 then there exists a unique co-existence equilibrium (x 1 , x2 , ȳ1 , ȳ2 ) ∈ R * + 4 verifying 31-33-34.

By definition of H 1 of H 2 , as H 1 (0), H 2 (0) < 0, there exist unique y1 , y2 > 0 such that H 1 (y 1 ) = 0 and H 2 (y 2 ) = 0. Moreover, as ȳ2 > 0 and ȳ1 > 0, we know from equations 33 and 34 that we are looking for an equilibria ȳ2 , solution of 38 in (y 2 , ŷ2 ). In addition, we notice that y → yH 2 (y) is positive and increasing on (y 2 , ŷ2 ) and such that y2 H 2 (y 2 ) = 0 and lim y→ŷ2 yH 2 (y) = +∞.

Hence, there exist unique ỹ < ỹ ∈ (y 2 , ŷ2 ) such that ỹH 2 ( ỹ) = y1 and ỹH 2 (ỹ) = ŷ1 .

Consequently, H 1 (yH 2 (y)) < 0 and thus H(y) < 0 for all y ∈ (y 2 , ỹ). And, by product and composition of positive increasing functions, H is positive, increasing on ỹ, ỹ and such that H( ỹ) = 0 and lim y→ỹ H(y) = +∞. All in all, if R 01 > 1 and R 02 > 1 then there exists a unique solution ȳ2 ∈ ỹ, ỹ of equation 38 and 3.2 is proven. Then, we focus on the situation in which only one neuron has its R 0 greater than one.

If R 0i > 1 and R 0j < 1 with i, j ∈ {1, 2} and i ̸ = j, then there exists a unique co-existence equilibrium (x 1 , x2 , ȳ1 , ȳ2 ) ∈ R * + 4 verifying 31-33-34. For simplicity and without loss of generality, we assume that i = 2 and j = 1. By definition of H 2 , we know that H 2 (0) < 0 and from the increasing property of H 2 , we obtain that there exists a unique y2 ∈ (0, ŷ2 ) such that H 2 (y 2 ) = 0. Moreover from equations 33 and 34, since ȳ1 > 0, it is necessary that ȳ2 ∈ (y 2 , ŷ2 ). From equations 35 and 36, we are consequently looking for a solution ȳ2 ∈ (y 2 , ŷ2 ) of 38. By the increasing properties of H 1 and H 2 and by the positiveness of H 1 on its domain, we know that H is positive and increasing on (y 2 , ŷ2 ) and such that H(y 2 ) = 0 and lim y→ ŷ2

H(y) = +∞.
All in all, if R 02 > 1 and R 01 < 1, then there exists a unique solution ȳ2 ∈ (y 2 , ŷ2 ) to equation 38 and 3.2 is proven.

Assume that R 01 < 1 and R 02 < 1.

There exists another unique co-existence equilibrium (x 1 , x2 , ȳ1 , ȳ2 ) ∈ R * + 4 verifying 31-33-34 if and only if

κ 2 > 1 R 01 R 02 α 1 α 2 [1 -R 01 ] [1 -R 02 ] . (40) 
First we know from the definition of H 2 that there exists a unique ỹ ≤ ŷ2 such that ỹH 2 (ỹ) = ŷ1 .

Then conditions R 01 < 1 and R 02 < 1 implies the positiveness of H 1 , H 2 and y → H 1 (yH 2 (y)) on (0, ỹ). By operations, H is thus well defined and increasing on its domain (0, ỹ) and such that lim y→ỹ H(y) = +∞ and H(0

) = 1 κ 2 α 1 α 2 R -1 01 -1 R -1 02 -1 .
All things considered, when condition 39 holds, the co-existence equilibrium (x 

R 01 < 1, R 02 < 1 and κ 2 > 1 R 01 R 02 α 1 α 2 [1 -R 01 ] [1 -R 02 ] , (41) 
or (ii) there exists i ∈ {1, 2} such that R 0i > 1.

If we denote by

R 00 = κ 2 α 1 α 2 R 01 R 02 [1 -R 01 ] [1 -R 02 ] , (42) 
we can see that the existence of the co-existence equilibrium is equivalent to R 01 < 1, R 02 < 1 and R 00 > 1, or there exists i ∈ {1, 2} such that R 0i > 1. The main information here is that even if R 01 and R 02 of each neuron is less than 1, a large coupling constant κ between the two neurons allows R 00 of the coupling to be greater than 1. Finally, we state and prove a result concerning the continuous differentiability of the co-existence steady state with respect to the coupling parameter κ. Assume that there exists i ∈ {1, 2} such that R 0i > 1. The co-existence steady state (x 1 , x2 , ȳ1 , ȳ2 ) is a continuously differentiable function of κ on an open set U ⊂ R + with 0 ∈ U , if and only if

K i β ′ n ( ȳi ) -α i > 0 for i ∈ {1, 2} such that R 0i > 1.
The system composed of steady-state equations 27 -28 -29 -30 could also be written

F (κ, (x * 1 , x * 2 , y * 1 , y * 2 )) = 0 where F : R + × R 4 + → R. Let J F (κ, (x * 1 , x * 2 , y * 1 , y * 2 
)) be the jacobian determinant of F with respect to its second variable in R 4 + . In this framework, simple computations lead to :

J F (κ, (x * 1 , x * 2 , y * 1 , y * 2 )) = -(µ 1 + dy * 1 + dκα 2 y * 2 ) 0 K 1 β ′ n (y * 1 ) -dx * 1 -dx * 1 κα 2 0 -(µ 2 + dy * 2 + dκα 1 y * 1 ) -dx * 2 κα 1 K 2 β ′ n (y * 2 ) -dx * 2 d(y * 1 + κα 2 y * 2 ) 0 dx * 1 -α 1 dx * 1 κα 2 0 d(y * 2 + κα 1 y * 1 ) dx * 2 κα 1 dx * 2 -α 2 . ( 43 
)
Thus, we have at least two eigenvalues -µ 1 < 0 and -µ 2 < 0. Others possible eigenvalues verify

λ 2 + α 1 + α 2 -d K 1 µ 1 + K 2 µ 2 λ + α 1 - dK 1 µ 1 α 2 - dK 2 µ 2 - d 2 κ 2 K 1 K 2 α 1 α 2 µ 1 µ 2 = 0, λ ∈ C.
From the Routh-Hurwtiz criterion, it follows that this equation has roots with negative real parts if and only if

α 1 (1 -R 01 )+α 2 (1 -R 02 ) > 0 and α 1 - dK 1 µ 1 α 2 - dK 2 µ 2 - d 2 κ 2 K 1 K 2 α 1 α 2 µ 1 µ 2 > 0,
which is also equivalent to

α 1 (1 -R 01 ) + α 2 (1 -R 02 ) > 0 and 1 R 01 R 02 α 1 α 2 [1 -R 01 ] [1 -R 02 ] > κ 2 .
As κ 2 ≥ 0, the latter conditions is finally equivalent to condition 47.

Interchanging lines and columns and using 2 × 2 block matrices, the characteristic equation 46 reads

A 1 (λ) B 1 B 2 A 2 (λ) = 0, λ ∈ C, (48) 
with, for i, j ∈ {1, 2}, i ̸ = j :

A i (λ) = W i (λ) dx * i -K i β ′ n (y * i )e -λTi -dy * i -dκα j y * j λ + α i -dx * i and B i = dκα j x * i 0 1 0 -1 .
In order to obtain theoretical result, we decide to consider the symmetrical situation in which neurons are identical with T := T 1 = T 2 . In such situation, for any steady state (x * , x * , y * , y * ), the characteristic equation 48 reads:

A(λ) B B A(λ) = 0, λ ∈ C, where A(λ) := A 1 (λ) = A 2 (λ) and B := B 1 = B 2 .
Hence, in the symmetrical situation, the characteristic equation for the coexistence steady state (x, x, ȳ, ȳ) ∈ R * + 4 is a product of two second order polynomials :

det (A(λ) + B) det (A(λ) -B) = 0, λ ∈ C, (49) 
where, after simple computations using results of 3.2, we have

det (A(λ) + B) = λ 2 + [µR 0 (1 + κα)β n (ȳ)] λ -αµ [1 -R 0 (1 + κα)β n (ȳ)] + Kβ ′ n (ȳ)µ [1 -R 0 (1 + κα)β n (ȳ)] e -λT , (50) 
we thus numerically obtained the corresponding values of T * at which a Hopf bifurcation could occur. In 4, we present stability diagrams (4a and 4c) and illustrate the stability switch that could occur when R 0 > 1 and R 0 < 1 through two different plots (4b and 4d). These figures highlight the influence of the coupling between the two neurons over the stability of the co-existence steady state. The more important is the coupling, the smaller is the boundary value of T at which a stability switch occurs. As observed in stability diagrams, neuron coupling (κ > 0) actually promotes instability by lowering the value of the biological processes duration T * at which a stability switch occurs compared to the situation without coupling (κ = 0, single neuron).

Because of the lack of referenced biological values we chose model parameters values according to relevant order magnitudes following previous modelling works [START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF][START_REF] Lemarre | Generalizing a mathematical model of prion aggregation allows strain coexistence and co-stability by including a novel misfolded species[END_REF]. Yet, the threshold concentration y c was chosen arbitrarily. The value of the sensitivity coefficient n significantly influences the time complexity of simulations. Thus, we chose the value n = 10 as a compromise between a reasonable computational time complexity and reasonable sharpness of the UPR feedback function β n . Finally, the value of R 0 (either greater or lower than 1) was set by adjusting the value of α. 

Discussion and conclusion

The formalism we used to depict prion dynamics with two neurons can be easily generalized to describe prion dynamics in a system of N neurons. Doing so, we obtain a model similar to the one developed by Stumpf and Krakauer [START_REF] Stumpf | Mapping the parameters of prion-induced neuropathology[END_REF], except our approach incorporates the UPR feedback and do not assume preferential diffusion along axons. In this paradigm, each neuron i ∈ 1, N is modeled with its associated PrP c . We verify the coherence between the two models as κ → 0 and observe the effect of neuron coupling: the boundary value T * decreases with κ. Neuron coupling thus promote instability. In (c), that is R 0 < 1, if κ is small enough, the disease free equilibrium is the only steady state but also asymptotically stable. However, when coupling parameter κ is large enough, the disease steady state eventually appears and becomes also stable. This means that even with R 0 < 1, the coupling allows the disease to play a major role. For a given value of κ, then there is one or two steady states which can be stable (full line) or unstable (dashed line). When there are 2 unstable steady states, the solution is periodic and we indicate its maximum and minimum with red and blue lines, respectively. Values of other model parameters (specified in 2) are set to relevant orders of magnitudes. Parameters d, K i and µ i have the same meaning as before concerning neuron i ∈ 1, N . The parameter α i→j transcribes the diffusive property of PrP Sc to the neuron j ̸ = i. We still assume that interactions between PrP Sc from neuron i to PrP C of an other neuron j ̸ = i is modeled with a coupling factor 0 ≤ κ i,j < 1. We remind that these coupling constants should be viewed as damping coefficients characterizing both diffusion properties and difference of origin between prion species.

In conclusion, we developed a modeling approach of prion production at the scale of one (2) or two (3) neurons. Our approach incorporates the effect of the Unfolded Protein Response through a negative feedback describing the global translation shutdown induced by an overload of PrP Sc around a neuron.

We investigated existence, uniqueness and (local) stability of steady states associated to each of the two models presented in this paper. In these models, a bifurcation analysis with respect to the variation of three parameter (for the single neuron's prion model) or a continuity argument (for the two neuron's model) led to condition for autonomous oscillations of PrP Sc to appear. Stability diagrams and numerical simulations gave us insight in the stability of steady states as well as in the dynamics of solutions. In the case of two neurons, we established -both theoretically and numerically -an interesting result. Interactions between PrP Sc and PrP c originating from different neurons enable -if the coupling constant κ is greater than a minimum value -existence and uniqueness of a co-existence steady state (and possibly PrP Sc oscillations to appear) even when the R 0 associated to each single neuron4 is lower than one. Theoretical results and numerical simulations concerning the case of 2 identical neurons indicate that the value of κ dictates prion dynamics at the scale of two neurons and show that the co-existence steady state could be destabilizedinducing PrP Sc oscillations -when the biological processes duration T excesses a boundary value T * .

Even if, our models aim at describing PrP c and PrP Sc concentrations around neurons, future research may extend and/or modify our modeling approach to describe concentrations of different misfolded proteins involved in other Protein Misfolding Disorders, such as Aβ proteins in the context of Alzheimer's Disease.

Moreover, by considering the effect of a global translation shutdown at the neuron scale (through protein synthesis activity and biological activity variables), our model paves the way for future investigations into the effect of neuron synchronization in prion diseases. Actually, this work constitutes the building block of a future wider modeling approach in which neurons could interact through PrP Sc diffusion and possibly oscillates (depending on their environment and biological parameters) and then potentially see their protein synthesis activities become synchronized thus triggering detrimental outcomes.

To this aim, we will have to take several important physiological features of the neuronal network into account. Indeed, since prion proteins are anchored to the cell membrane, the PrP Sc formation follows the synaptic entanglement and thus do not propagate equally in all directions. Thus, some of the neurons not located in the neighborhood of a stressed one, could be impacted by its behavior and propagate the UPR mechanism in an unexpected heterogeneous way. Furthermore, similarly to a group of persons tied together and trying to figure out how to progress in a jungle, diffusion coefficient of PrP Sc proteins depends mainly on the on its size (called the polymer length). The longer the protein is, the less it diffuses. And thus, secondary nucleation could appear far from the source of the onset of the pathology in a group of neurons if polymers of small sizes are produced in a sufficient quantity. Then, the synchronicity could be described either through a local connection in standard but technical way, or through an unexpected non local heterogeneous way. This has to be clearly observed in vivo through image analysis, and described with new mathematical models and technical approaches. This is the object of our future but promising work.

Figure 1 :

 1 Figure 1: Neuron scale prion production model with Unfolded Protein Response (UPR) mechanism. A first compartment, structured by the biological processing time a ∈ [0, T ], describes the evolution of the neuron activity denoted by u.After a fixed time T , u(t, T ) mediates the PrP c production rate K. Concentration of PrP c proteins x(t) decreases metabolically at a rate µ. PrP c proteins are also converted into PrP Sc at a rate d. PrP Sc proteins are mainly lost through diffusion represented by the rate α. The feedback loop, standing for the UPR, is represented by a dashed line and depends on the PrP Sc concentration y(t) through a Hill function β n (•). This is a negative feedback loop regulating the input of the neuron biological activity variable u.

  yc→+∞ ȳ yc = 0 from which follows that lim yc→+∞ β n (ȳ) = 1 and lim yc→+∞ a = µR 0 > 0, lim yc→+∞ b = αµ (R 0 -1) > 0, lim yc→+∞ c = 0. So, when y c → +∞, the characteristic equation would thus read

From 2 . 3 . 2 ,

 232 we thus know that b < c and we have I 1 ̸ = ∅ and I 2 = ∅. Reformulations of condition 17 lead to the following corollary. (i) Let the varying parameter be α = ψ. If parameters (different from α) verify µ + dy c < 2nµ, then I ̸ = ∅ and Kd 4nµ ; Kd 2(µ + dy c ) ⊂ I 1 ⊂ I. (ii) If y c = ψ, and parameters (different from y c ) verify If T = ψ, and parameters verify condition 17 then I = R * + with I 2 = ∅ and I 1 = I.

  ) Moreover, if I 2 ̸ = ∅ then the characteristic equation 7 admits a second pair of simple conjugate purely imaginary roots ±iω -(ψ * -) in ψ * -∈ I 2 , with

Figure 2 :

 2 Figure 2: (a), (c), (d): Stability diagrams in the (α, T ) plane with T = ψ ((a)) or α = ψ ((c)) as the varying parameter and in the (y c , T ) plane with ψ = y c as the varying parameter ((d)). Boundary parameters (ψ * = T * in (a), ψ * = α * in (c) and ψ * = y c * in (d)) are specified by continuous ( d(Reλ) dψ (ψ * ) > 0) or dashed ( d(Reλ)dψ (ψ * ) < 0) lines. For clarity, we only plotted the two first boundaries (k = 0 and k = 1) in the (T, α) plane, the three first boundaries (k = 1, 2, 3) in the (T, y c ) plane and indicated in green the area where the endemic equilibrium is stable. The situation in (d) being complex, we decide not to highlight the stability area of the endemic equilibrium for clarity. The values of the parameters used to obtain these plots are specified in 1, we underline that parameter values ensure that we always have R 0 > 1 in each figure. (b): Illustration through an arbitrary example of two trajectories before (T 1 in red) and after (T 2 in blue) the Hopf bifurcation. For all the figures, we chose the range for ψ (i.e. T , α or y c ) so that stability switches could appear with I ̸ = ∅ (i.e. b(ψ) < c(ψ) when a stability switch occurs).

Figure 3 :

 3 Figure 3: Two neurons' prion production model. This model generalizes the one presented in 1. Interactions between prion species are introduced through the coupling constant κ ∈ [0, 1] in the PrP Sc production terms of the neurons: dx 1 κα 2 x 2 and dx 2 κα 1 x 1 .
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 4 Figure 4: (a), (c) : Stability diagrams in the (κ, T ) plane when neurons are strictly identical with R 0 > 1 (a) or R 0 < 1 (c). Full lines locate T * : the first crossing of the imaginary axis by the characteristic roots associated to the co-existence steady state. It corresponds to the first value of T (when increased from 0) that induces a stability switch through a Hopf bifurcation. Colored areas indicate stability regions for the trivial (blue) or co-existence (red) steady states.In (a), that is R 0 > 1, we also highlight by a dashed line the value of T * obtained for the model of a single neuron (presented in 2). We verify the coherence between the two models as κ → 0 and observe the effect of neuron coupling: the boundary value T * decreases with κ. Neuron coupling thus promote instability. In (c), that is R 0 < 1, if κ is small enough, the disease free equilibrium is the only steady state but also asymptotically stable. However, when coupling parameter κ is large enough, the disease steady state eventually appears and becomes also stable. This means that even with R 0 < 1, the coupling allows the disease to play a major role. (b): Example trajectories when R 0 > 1 illustrating the Hopf bifurcation that occurs when T crosses the boundary. Trajectories are colored according to their parameter values and correspond to the colored crosses of 4a. (d) Evolution of normalized PrP Sc steady state values y * /y c with respect to the coupling constant κ when R 0 < 1. For a given value of κ, then there is one or two steady states which can be stable (full line) or unstable (dashed line). When there are 2 unstable steady states, the solution is periodic and we indicate its maximum and minimum with red and blue lines, respectively. Values of other model parameters (specified in 2) are set to relevant orders of magnitudes.

  Figure 4: (a), (c) : Stability diagrams in the (κ, T ) plane when neurons are strictly identical with R 0 > 1 (a) or R 0 < 1 (c). Full lines locate T * : the first crossing of the imaginary axis by the characteristic roots associated to the co-existence steady state. It corresponds to the first value of T (when increased from 0) that induces a stability switch through a Hopf bifurcation. Colored areas indicate stability regions for the trivial (blue) or co-existence (red) steady states.In (a), that is R 0 > 1, we also highlight by a dashed line the value of T * obtained for the model of a single neuron (presented in 2). We verify the coherence between the two models as κ → 0 and observe the effect of neuron coupling: the boundary value T * decreases with κ. Neuron coupling thus promote instability. In (c), that is R 0 < 1, if κ is small enough, the disease free equilibrium is the only steady state but also asymptotically stable. However, when coupling parameter κ is large enough, the disease steady state eventually appears and becomes also stable. This means that even with R 0 < 1, the coupling allows the disease to play a major role. (b): Example trajectories when R 0 > 1 illustrating the Hopf bifurcation that occurs when T crosses the boundary. Trajectories are colored according to their parameter values and correspond to the colored crosses of 4a. (d) Evolution of normalized PrP Sc steady state values y * /y c with respect to the coupling constant κ when R 0 < 1. For a given value of κ, then there is one or two steady states which can be stable (full line) or unstable (dashed line). When there are 2 unstable steady states, the solution is periodic and we indicate its maximum and minimum with red and blue lines, respectively. Values of other model parameters (specified in 2) are set to relevant orders of magnitudes.

Table 1 :

 1 Values of parameters used in 2. Orders of magnitude are consistent with the values used in[START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF][START_REF] Lemarre | Generalizing a mathematical model of prion aggregation allows strain coexistence and co-stability by including a novel misfolded species[END_REF].

	Parameters Values	Units
	T	variable	days
	µ	5	days -1
	α	variable (2a, and 2c ) or 0.04 (2b and	days -1
		2d)	
	K	1500	(Fibrils per volume unit).days -1
	yc	130 (2a, 2b and 2c) or variable (2d)	Fibrils per volume unit
	d	0.1	(Fibrils per volume unit) -1 .days -1
	n	10 (2a, 2b and 2c) or 250 (2d)	-

  1 , x2 , ȳ1 , ȳ2 ) with ȳ2 > 0 verifiying equation 38 exists and is unique if and only if condition 40 holds (i.e H(0) < 1). This concludes the proof.We summarize the results in the following Theorem. The system 26 always

	admits a trivial equilibrium	K 1 µ 1	,	K 2 µ 2	, 0, 0 . Moreover, there exists another
	unique co-existence equilibrium (x 1 , x2 , ȳ1 , ȳ2 ) ∈ R * +	4 verifying equations 31-33-
	34 if and only if				
	(i)				

Table 2 :

 2 Values of parameters used in 4. Orders of magnitude are consistent with the values used in[START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF][START_REF] Lemarre | Generalizing a mathematical model of prion aggregation allows strain coexistence and co-stability by including a novel misfolded species[END_REF].

	Parameters	Values	Units
	T	variable (4a and 4c) or 0.15 (4d)	days
	µ 1 = µ 2 = µ	20	days -1
	K 1 = K 2 = K	1500	(Fibrils per volume unit).days -1
	α 1 = α 2 = α	2.0833 (4a and 4b) or 4.6875 (4c and	days -1
		4d)	
	κ	variable (4a, 4c and 4d) or 0.2 (4b)	-
	yc	130	Fibrils per volume unit
	d	0.05	(Fibrils per volume unit) -1 .days -1
	n	10	-

  and PrP Sc concentrations x i and y i ruled bydx i dt = K i β n (y i (t -T 1 )) -µ i x i (t) -dx i

									
					 y i (t) +	κ i,j α j→i y j (t)  ,
								j̸ =i	
									
	dy i dt	= dx i (t)	 y i (t) +	j̸ =i	κ i,j α j→i y j (t)  -		j̸ =i	α i→j	 y 2 (t).

characteristic of the disease : amyloid-beta and tau in Alzheimer's disease, α-synuclein in Parkinson's disease and prion proteins in Prion-related diseases

intra or extra cellularly depending on the disease

i.e. that does not induce the apoptosis of the cell

characterizing existence and uniqueness of the endemic steady state

Then, summing 27 with 29 and 28 with 30 we obtain

which also reads, for i, j ∈ {1, 2} and i ̸ = j :

with

The function G i is decreasing on R + and non negative on [0, ŷi ] with

and G i ( ŷi ) = 0. Now, inserting expression 31 into 29 and 30 leads to

where the function H i for i, j ∈ {1, 2}, i ̸ = j is defined as :

-1 , for all y ∈ [0, ŷi ) .

Inserting expression 33 and 34 into each other leads to

Before going further, we underline that the function H i (for i, j ∈ {1, 2}, i ̸ = j) is increasing on [0, ŷi ) and such that

where we define for further simplicity

We want to study existence and uniqueness of a possible co-existence steady state of 26, (

where the function H is defined as

for all y ∈ (0, ŷ2 ) in the domain of H. Depending on parameter values, ȳ2 -solution of 38 -must lie in a given interval to ensure well-posedness of the For clarity, we note ( x1κ , x2κ , ȳ1κ , ȳ2κ ) the co-existence steady state of system 26 for κ ∈ [0, 1]. We want to apply the implicit function theorem at κ = 0 and thus need to evaluate J F in the co-existence steady state obtained for the decorrelated situation (κ = 0). However, in the decorrelated situation, since κ = 0, we notice that ( x1κ=0 , ȳ1κ=0 ) and ( x2κ=0 , ȳ2κ=0 ) are steady states of neuron 1 and 2 independently. Consequently, depending on the values of R 01 and R 02 with respect to 1, two different situations must be distinguished.

First, if R 01 > 1 and R 02 > 1 then condition 4 is satisfied for each neuron. We thus know that x1κ=0 = α 1 /d and x2κ=0 = α 2 /d and that ȳ1κ=0 and ȳ2κ=0 verify equations similar to equation 5. These expressions and a Laplace expansion of 43 leads to

This expression and the implicit function theorem enable us to conclude for the situation in which R 01 > 1 and R 02 > 1.

Then, let i, j ∈ {1, 2}, i ̸ = j and assume that R 0i > 1 and R 0j < 1. Without loss of generality and for clarity, we assume that R 01 > 1 and R 02 < 1. In this situation, we thus have x2κ=0 = K 2 /µ 2 , ȳ2κ=0 = 0, x1κ=0 = α 1 /d and ȳ1κ=0 verifies equation 5 (with parameters adapted to neuron 1). Hence, from these expressions and with a Laplace expansion of 43 we obtain

Using the latter expression and the implicit function theorem, if R 01 > 1 and R 02 < 1, we conclude that (x 1 , x2 , ȳ1 , ȳ2 ) is continuous and differentiable with respect to κ in an open set U ⊂ R * + 4 containing κ = 0 if and only if

Proof of 3.2 is thus completed. When κ = 0, each neuron is expected to evolve independently from the other and to have its own prion dynamics. 3.2 thus guarantees the coherence with our previous modelling of a single neuron and ensures the well-posedness of our model.

When neurons are identical (i.e. symmetrical situation), more precise theoretical results become simpler. 3.2 leads to the following corollary.

If neurons are identical with K := K 1 = K 2 , µ := µ 1 = µ 2 and α := α 1 = α 2 , then system 26 admits a unique co-existence steady state (x 1 , x2 , ȳ1 , ȳ2 ) if and only if

If 44 holds, we have

and ȳ := ȳ1 = ȳ2 ∈ (0, ŷ) solution of

If neurons are identical, the condition κ > 

from which we deduce, the associated characteristic equation for λ ∈ C :

(46) where we defined, for i, j ∈ {1, 2}, i ̸ = j :

The trivial steady state is the only steady state and locally asymptotically stable if and only if

Otherwise, the trivial steady is unstable.

Using the notation 42, we can see that the condition 47 is equivalent to R 0i < 1, for all i ∈ {0, 1, 2}. For the trivial steady-state, the characteristic equation 46 reads

Now, we state and prove some results about the local asymptotic stability of the co-existence steady state in the situation of identical neurons (i.e. symmetrical situation). If (i) neurons are identical with

then the co-existence steady state (x, x, ȳ, ȳ) ∈ R * + 4 is locally asymptotically stable.

If T 1 = T 2 = 0, then the two terms 50 and 51 of the characteristic equation 49 read (computations are not shown for clarity) for λ ∈ C:

From the results obtained in 3.2, from the positiveness of ȳ and from the decreasing shape of β n , we verify that 1 -R 0 (1 + κα)β n (ȳ) < 0 and thus obtain that each factors of the two latter polynomials are positive. Hence, we conclude using the Routh-Hurwitz criterion applied to the two latter polynomials. From 3.3, we use a continuity argument to obtain the following corollary. If conditions (i) and (ii) of 3.3 hold and T := T 1 = T 2 , then there exists a unique T * ∈ (0, +∞) such that the co-existence steady state (x, x, ȳ, ȳ) ∈ R * + 4 is locally asymptotically stable for all T < T * and unstable for T ≥ T * at the neighborhood of T * .

If T is increased from 0 to +∞ with fixed values of other model parameters, the system of two identical neurons can undergo a stability switch through a Hopf bifurcation when T reaches T * .

Similarly to what has been done for a single neuron, we used the method detailed in [START_REF] Fan | HOPF BIFURCA-TION OF DELAY DIFFERENTIAL EQUATIONS WITH DELAY DE-PENDENT PARAMETERS[END_REF] to determine theoretical conditions and expressions of the boundary delays at which stability switches could occur. For different values of κ ∈ [0, 1],