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Abstract

We develop a mathematical model that describes concentration dy-
namics of PrPC and PrPSc prion proteins at the neuron scale and includes
the effect of the Unfolded Protein Response (UPR). We first introduce a
single neuron model taking the UPR mechanism into account. We inves-
tigate it and propose a stability study among which a bifurcation analysis
with respect to three of its parameters. Then, we generalize it to two neu-
rons showing PrPSc proteins interaction. Stability results are given when
neurons exhibit identical parameters but interact differently (strong, weak
or no interaction).

Keywords: Prion, Unfolded Protein Response, Delay Differential Equation,
Hopf bifurcation, prion Modeling, Neurodegenerative Model
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1 Introduction

Prions are proteins capable of existing in multiple shapes (or conformations).
The normal form, denoted PrPc (for Prion Protein Cellular), is a cell surface
protein mainly expressed by neurons [32]. However, PrPc can change its confor-
mation to become a misfolded PrPSc (for Prion Proteins Scrapie) pathological
element for mammals. They are responsible for the so called prion-diseases,
also known as Transmissible Spongiform Encephalopathies, among which one
can include the Creutzfeldt-Jakob disease in humans or the Bovine Spongiform
Encephalopathy in cattle [29, 32]. In prion diseases, an initial seed of PrPSc,
either inherited, infectious (acquired) or sporadic (spontaneous) [28], converts
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PrPC and produces de novo PrPSc that aggregate extra-cellularly and spread
the process. In fact, PrPSc become templating interfaces, inducing the misfold-
ing of PrPc. This mechanism is known as propagated protein misfolding [44]. It
is thought to be at stake in the pathogenesis of prion-diseases but also of a larger
group of neuro-degenerative disorders commonly labeled as Protein Misfolding
Disorders (PMDs) including Parkinson’s or Alzheimer’s diseases [18, 16].

Actually PMDs share a common hallmark: some specific proteins1 misfold,
aggregate, replicate and propagate in a prion-like mechanism [18, 40, 41]. In this
paradigm, pathogenic proteins, generally assembled in oligomers or aggregates,
act as corruptive templates that trigger the misfolding of otherwise normally
folded proteins [28, 41, 44].

The Unfolded Protein Response (UPR) is another biological phenomenon
that seems to be involved in PMDs [18, 20, 21, 16, 39]. UPR is a cellular mech-
anism that aims to recover protein homeostasis in a reaction to Endoplasmic
Reticulum (ER) stress [39, 20]. The link between misfolded proteins involved in
PMDs, ER stress and UPR is still not clear : underlying mechanisms and conse-
quences are the subject of current research (for review see e.g. [18, 39, 20, 21]).
Nonetheless, studies seem to agree on the fact that accumulation2 of abnor-
mally folded proteins triggers ER stress that subsequently activate the UPR
[27, 39, 20, 38, 33].

In the context of prion-diseases, knowledge becomes clearer as some studies
performed on mice highlight links between PrPSc aggregates, ER stress and
UPR mechanism [19, 45, 27, 26, 43, 38, 33]. For instance, some works seem
to indicate that UPR downregulates PrPSc through secreted chaperones acting
over the extracellular proteostasis [15, 16]. Other studies, investigating the
role of UPR upon neurodegeneration in prion diseases, indicate that a high
concentration of PrPSc triggers ER stress. This activates the UPR and results
in a transient global shutdown of protein synthesis [27, 26, 43, 38, 33]. The
latter studies, which will constitute the basis of our biological assumptions, lead
us to suggest that UPR indirectly downregulates PrPSc : by preventing global
protein translation, UPR activation shuts down the production of PrPc which
ultimately hampers the production of PrPSc.

It appears that, as the influence and effects of UPR on prion diseases are
still unclear, mathematical models may provide valuable insights. Actually,
they have already been used to investigate different issues in prion diseases and
PMDs (for reviews see [36, 10]). They focus on some aspects of the disease such
as the propagated misfolding mechanism and the aggregate size distribution
[24, 31, 17, 13, 30, 9, 8, 11], the spatio-temporal progression of misfolded proteins
(see e.g [1, 6, 7, 48, 4, 3] in Alzheimer’s disease or [42, 25] in prion-diseases) or
the strain diversity of prions [23]. However, to the best of our knowledge, there
is no existing model describing PrPSc production in the framework of neuronal
UPR.

The few existing mathematical approaches of UPR lie in the framework of
gene regulatory networks and focus neither on neurons nor on prion proteins.
They deal with the concentration dynamics of unfolded and/or misfolded pro-
teins through different biological pathways of UPR [34, 12, 49, 47, 46]. Closer
to our work here, Trusina et al. [47, 46] developed a model describing regula-

1characteristic of the disease : amyloid-beta and tau in Alzheimer’s disease, α-synuclein in
Parkinson’s disease and prion proteins in Prion-related diseases

2intra or extra cellularly depending on the disease
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tion of unfolded proteins inside the cell when submitted to a manageable3 ER
stress. They incorporated the main UPR-pathways acting over unfolded pro-
teins concentrations among which we find translation attenuation, a mechanism
analogous to the translation shutdown we wish to take into account. In order to
proceed to mathematical analysis and qualitative investigations, we only focus,
in our study, on the latter mechanism and integrate it into a simple model of
prion production.

Here, we propose a mathematical modeling that describes PrPc and PrPSc

concentrations at the neuron scale and incorporates the role of UPR through
an induced shutdown of global protein synthesis. Based on recent studies
[27, 26, 43, 38, 33], we model the effect UPR with a negative feedback mechanism
reflecting a global translation attenuation. To do so, we suppose that a high
concentration of misfolded PrPSc around neurons triggers ER stress and UPR
activation. This shuts down global protein translation thus reducing cellular
PrPc synthesis and as well as PrPSc production. For simplicity, we neglect the
influence of UPR-induced secreted chaperones over aggregation and templating
(whose effect is likely to be less important compared to global translation shut-
down) and thus do not take into account the PrPSc downregulation through
secreted chaperones.

Our mathematical approach is based on previous studies dedicated to delay
differential equations and bifurcation analysis [22, 5, 2, 14]. In 2 we introduce our
new model. We give some of its properties and study the asymptotic stability of
its steady states. In 3, we extend our system to two neurons whose associated
scrapie prion concentrations can interact. We finally discuss and conclude this
work in 4.

2 Model of prion production at the neuron scale

Before studying a complete model with several billions of neurons, let start by
investigating the process in the environment of a single cell. This section is then
dedicated to the UPR acting on one neuron only.

2.1 The model

Our model, illustrated in 1, consists in describing the concentration dynamics
of PrPc and PrPSc proteins produced by a single neuron. We note x and y the
concentrations of PrPc and PrPSc respectively. They are ruled, for t > 0, by
the following system,

dx

dt
(t) = KA(t)− µx(t)− dx(t)y(t),

dy

dt
(t) = dx(t)y(t)− αy(t),

where K > 0 represents the PrPc production rate of the neuron and d > 0
characterizes the strength of the interaction between PrPc and PrPSc. The term
dx(t)y(t) stands for the concentration of newly produced PrPSc. Parameter
µ > 0 describes the metabolic loss rate of PrPc and α > 0 the rate at which

3i.e. that does not induce the apoptosis of the cell
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cell surface extra-cellularneuron

Figure 1: Neuron scale prion production model with Unfolded Protein Response
(UPR) mechanism. A first compartment, structured by the biological process-
ing time a ∈ [0, T ], describes the evolution of the neuron activity denoted by u.
After a fixed time T , u(t, T ) mediates the PrPc production rate K. Concentra-
tion of PrPc proteins x(t) decreases metabolically at a rate µ. PrPc proteins are
also converted into PrPSc at a rate d. PrPSc proteins are mainly lost through
diffusion represented by the rate α. The feedback loop, standing for the UPR,
is represented by a dashed line and depends on the PrPSc concentration y(t)
through a Hill function βn(·). This is a negative feedback loop regulating the
input of the neuron biological activity variable u.

PrPSc proteins are lost metabolically or through diffusion. Finally, A(t) models
the protein synthesis activity of the neuron at time t and is given by

A(t) = u(t, T ),

where T > 0 is the biological processes duration. It represents the time taken
by all biological processes linked with UPR to induce the global translation
shutdown. We assume that u(t, a) describes the biological activity of the neuron
at time t and after a biological processing time a ∈ [0, T ]. It is ruled by the
following equation:

∂u

∂t
(t, a) +

∂u

∂a
(t, a) = 0, t > 0, 0 < a < T. (1)

Since PrPSc around the neuron downregulate PrPc production. We model this
negative feedback through a decreasing Hill function. The influence of PrPSc

concentration over the neuron activity is then given by the input boundary
condition of u as :

u(t, 0) =
1

1 + (y(t)/yc)
n := βn (y(t)) , for all t ≥ 0,

where n > 0 is the UPR sensitivity to an overload of PrPSc. Parameter yc > 0
is the threshold density of PrPSc over which the neuron (and its surrounding
astrocytes) turn off global translation and thus PrPc production.

In this framework, we use the method of characteristics to obtain the system
of equations ruling our model :

dx

dt
= Kβn(y(t− T ))− µx(t)− dx(t)y(t),

dy

dt
= dx(t)y(t)− αy(t),

for t > 0. (2)
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System 2 may be interpreted as follows: a high concentration of PrPSc proteins
results, a biological time T later, in a decrease of PrPc (term Kβ(y(t − T )))
that consequently reduces the PrPSc production (term dx(t)y(t)). The amount
of PrPSc surrounding the neuron decreases and misfolded protein homeostasis
around the neuron is restored. Note that in this paradigm, we omit the notion
of neuronal death and assume that the UPR is able to cope with the overload
of PrPSc proteins.

The initial condition u(0, ·) of the biological activity variable has been cho-
sen in order to guarantee the well-posedness of system 2 (provided that initial
conditions (x0, y0(·)) are defined on R×C ([−T, 0],R)). More precisely, we chose
u(0, a) = βn (y0(−a)) for all a ∈ [0, T ].

2.2 Model properties, steady states and characteristic equa-
tion

We state and prove some properties ensuring the well-posedness of our model
as well as a result about existence of steady states.

For every non negative initial conditions (x0, y0(·)) ∈ R × C ([−T, 0],R),
system 2 admits a unique non negative solution (x, y) ∈ C

(
[0,+∞) ,R2

)
such

that

x(t) ≤ max

{
x(0),

K

µ

}
and x(t)+y(t) ≤ max

{
x(0) + y(0),

K

min(µ, α)

}
, for all t ≥ 0.

(3)
Moreover, either there exists t̄ ≥ 0 such that x(t̄) ≤ K/µ and then x(t) ≤ K/µ
for all t ≥ t̄, or lim

t→+∞
x(t) = K/µ. Existence, uniqueness and positiveness

of solutions can be proved by standard methods (e.g. see the theorems 3.1 and
3.4 of [37]), the rest of the proof consisting in a simple application of [2] (Proof
of Proposition 3.1.) and the fact that x(t) satisfies the differential inequality
x′(t) ≤ K − µx(t).

Positive invariance and attractivity of [0 , K/µ]× R+ results from equation
3.

Now, we focus on steady-states (x∗, y∗) of system 2 characterized by the fol-
lowing Proposition. The system 2 always admits a trivial equilibrium (K/µ, 0).
There exists a unique endemic steady state (α/d, ȳ) with ȳ satisfying 5 if and
only if

R0 :=
Kd

µα
> 1. (4)

If condition 4 holds, ȳ is a continuously differentiable function of each model
parameters. In particular, ȳ is decreasing with respect to µ > 0 and α > 0 and
increasing with respect to yc and verifies

0 < ȳ <
µ

d
(R0 − 1) , with lim

α→dK/µ
ȳ = 0 and lim

α→0
ȳ = +∞.

Furthermore, if α = 0 then any solution (x, y) has the limit lim
t→+∞

(x(t), y(t)) =

(0,+∞). A steady state (x∗, y∗) of system 2 satisfies :

Kβn(y
∗) = µx∗ + dx∗y∗,

(dx∗ − α)y∗ = 0.
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We easily see that a trivial steady-state (x∗, y∗) = (K/µ, 0) always exists. An
endemic steady state (x∗, y∗) = (x̄, ȳ) with x̄, ȳ > 0 would verify x̄ = α/d and

F (ȳ) :=
dK

µα
βn(ȳ) = 1 +

d

µ
ȳ. (5)

Noticing that F is decreasing, F (0) = dK/µα = R0 and that limy→+∞ F (y) =
0, we obtain that the endemic steady state (x̄, ȳ) exists if and only if condition
4 holds. Moreover, if R0 > 1, we have

dȳ

dµ
=

1
K
α β

′
n(ȳ)− 1

,
dȳ

dα
=

K
α2 βn(ȳ)

K
α β

′
n(ȳ)− 1

and

dȳ

dyc
=
nK

ycα

(
ȳ

yc

)n
βn(ȳ)

2

(
1 +

nK

ycα

(
ȳ

yc

)n−1

βn(ȳ)
2

)−1

,

with

β′
n(y) = − n

yc

(
y

yc

)n−1

βn(y)
2, for all y ∈ R+.

From these formulas and the implicit function theorem, we establish that ȳ is a
continuously differentiable function of each model parameters. Especially, it is
decreasing with respect to µ > 0, α > 0 and increasing function of yc.
Finally, assume that α = 0. The system 2 implies that y′(t) = dx(t)y(t) ≥ 0
from which we know that y is non-decreasing. By contradiction, assume that
y is bounded and admits a positive limit. Then lim

t→+∞
y′(t) = 0. So it implies

that lim
t→+∞

x(t) = 0. As t 7→ x′(t) is uniformly continuous on (t0,+∞), t0 > 0

large enough, we obtain that lim
t→+∞

x′(t) = 0. Taking the limit as t goes to

infinity in the first equation of 2 leads to a contradiction. We thus obtained that
lim

t→+∞
y(t) = +∞. Now, we associate this result, the continuity and boundedness

of x as well as the first equation of 2 to claim that there exists t̃ ≥ 0 such that x
is non-increasing on

[
t̃,+∞

)
. We conclude that x goes to 0 as t goes to infinity.

The result is thus proven when α = 0.

2.3 Asymptotic stability of steady states

We linearise system 2 about any steady state (x∗, y∗) and obtain

du

dt
= − (µ+ dy∗)u(t)− dx∗v(t) +Kβ′

n(y
∗)v(t− T ),

dv

dt
= dy∗u(t)− (α− dx∗)v(t),

from which we deduce, the associated characteristic equation∣∣∣∣λ+ µ+ dy∗ dx∗ −Kβ′
n(y

∗)e−λT

−dy∗ λ+ α− dx∗

∣∣∣∣ = 0. (6)

In the next section, we focus on the roots of this equation to determine the local
asymptotic stability of the steady state (x∗, y∗) under consideration.
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2.3.1 Disease free equilibrium

Let us start with the disease free equilibrium. The endemic one follows in the
next subsection. The trivial-steady state (disease free equilibrium) is locally
asymptotically stable if and only if R0 ≤ 1. It is then destabilized through a
transcritical bifurcation when R0 = 1 (i.e. dK = µα) and unstable otherwise.
For the trivial steady-state, the characteristic equation 6 reads

(λ+ µ)

(
λ+ α− dK

µ

)
= 0, λ ∈ C.

Thus, we have two eigenvalues −µ < 0 and
dK

µ
− α = α (R0 − 1), from which

we can easily conclude local asymptotic stability when R0 < 1 and instability
when R0 > 1. Now consider the case R0 = 1. If we suppose that for all t ≥ 0
x(t) ≥ K/µ, then from system 2 we have x′(t) ≤ 0 and y′(t) ≥ 0, for all t ≥ 0.
Since y is bounded and its only possible limit is 0, we get a contradiction. We
conclude from Lemma 2.2 the existence of t̄ ≥ 0 such that x(t) < K/µ for all
t ≥ t̄. The second equation of system 2 implies that y′(t) ≤ (dK/µ−α)y(t) = 0.
We deduce that y is non-increasing with limt→+∞ y(t) = 0 and then the function
z : t 7→ Kβn(y(t−T ))/(µ+dy(t)) is non-decreasing whose limit when t→ +∞ is
given byK/µ. Using the first equation of 2 and the fact that z is non-decreasing,
we observe that the function x can only change monotonicity when it intersects
the curve of z coming from its left and by being non-increasing before this
intersection and non-decreasing after. We conclude that there exists t̃ ≥ t̄ such
that for all t ≥ t̃, x(t) ≤ z(t). Otherwise, x(t) > z(t) for all t ≥ t̄. This means
that the function x is non-increasing on [t̄,+∞), which is absurd. Then, we
have x non-decreasing on [t̃,+∞). We deduce that limt→+∞ x(t) = K/µ. We
proved that if R0 = 1, the trivial steady state is globally asymptotically stable.
The biological interpretation of Proposition 2.3.1 is that if the production term
dK is smaller than the product of degradation term of the two prion species
µα, as one would expect, the trivial steady state is locally asymptotically stable
otherwise it is unstable.

If R0 ≤ 1 then the trivial steady state

(
K

µ
, 0

)
is globally asymptotically

stable. The global asymptotic stability in the case R0 = 1 has already been
proved above. For the case R0 < 1, we adapt the method used in [2] (Theorem
5.1).

Define the set G as

G =

[
0,
K

µ

]
× R+.

For (x, y) ∈ G, we define the Lyapunov candidate V such that

V (x, y) =
1

2
y2.

Note that V does not depend on x.
Let us denote V̇ : G→ R+, the Lie derivative of V along solutions of system

2. It follows that for all (x, y) ∈ G :

V̇ (x, y) = y.
dy

dt
= dxy2 − αy2 =

(
d

α
x− 1

)
αy2.

7



But given that (x, y) ∈ G, we have x ≤ K/µ and consequently

V̇ ≤
(
dK

µα
− 1

)
αy2(t) = (R0 − 1)αy2(t),

hence V̇ (x, y) ≤ 0, ifR0 < 1. Moreover, let us define the set S =
{
(x, y) ∈ G

∣∣∣V̇ (x, y) = 0
}
.

Let (x, y) ∈ S, then we have

(dx− α) y2 = 0,

but 0 ≤ x ≤ K/µ and given that R0 < 1 we also know that K/µ < α/d.
Consequently it is necessary that y(·) = 0. Hence S = [0,K/µ]×{0}. From the
LaSalle’s invariance theorem, we conclude that the set S is attractive in G.

Furthermore, for every solution t 7→ (x(t), y(t)) of 2 lying in S, it follows
that x is governed by dx

dt (t) = K − µx(t), for all t ≥ 0. Hence

x(t) = x(0)e−µt +
K

µ

(
1− e−µt

)
, for all t ≥ 0.

All in all, we obtain that every solution t 7→ (x(t), y(t)) of 2 lying in S, is such
that :

(x(t), y(t)) −→
t→+∞

(
K

µ
, 0

)
.

We conclude that every solution (x, y) of 2 reaching G (i.e. x(t) ≤ K/µ)
for t large enough (such solution remains in G from 2.2) converges to (K/µ, 0).
Now, let (x, y) be a solution of 2 such that x(t) > K/µ for all t ≥ 0. Then from
2.2 we know that x converges to K/µ as t goes to infinity. Thus, we need to
check that y goes to 0 at infinity in order to conclude about the global stability.
In this situation, x is a strictly decreasing and continuous function such that
x(t) −→

t→+∞
K/µ. Hence, lim

t→∞
x′(t) = 0 and taking the limit as t → +∞ in the

first equation of system 2 we obtain :

1 +
d

µ
lim
t→∞

y(t) = lim
t→∞

βn(y(t− T )),

from which we obtain that y(t) goes to 0 as t→ +∞.
In conclusion, all solutions of system 2 tends to (K/µ, 0) if R0 ≤ 1 and we

obtained the global stability of (K/µ, 0).

2.3.2 Endemic steady state

The characteristic equation of system 2 linearised about its endemic steady state
(x̄, ȳ) = (α/d, ȳ), reads

λ2 + aλ+ b+ ce−Tλ = 0, λ ∈ C, (7)

with

a =
dK

α
βn(ȳ) = µ+ dȳ,

b = α

(
dK

α
βn(ȳ)− µ

)
= α(a− µ),

c = −Kβ′
n(ȳ)

(
dK

α
βn(ȳ)− µ

)
= −Kβ′

n(ȳ)(a− µ).
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The parameters a, b and c do not depend on the delay T . The characteristic
equation 7 has been studied in details [22, 5, 14]. In this paper, we use their
methods and results to establish a stability result about the endemic steady
state and to perform a bifurcation analysis with respect to three parameters.

First, we notice that 0 is not a root of the characteristic equation 7, given
that a > 0, b > 0 and c > 0. Then we state the following proposition about
absolute stability that is stability independent of the delay [37] of the endemic
steady steady state. If

b > c and a2 − 2b > −2
√
b2 − c2, (8)

then the endemic steady state (α/d, ȳ) is locally asymptotically stable for all
T ≥ 0, that is Re(λ) < 0 for every root λ ∈ C of equation 7 and all T ≥ 0.

We apply directly Proposition 4.9 of [37] and Chapter 3.3 of [22].
Now, we state and prove a lemma about the local asymptotic stability of the

co-existence equilibrium that legitimates the subsequent bifurcation analysis.
If

T = 0 or yc → +∞,

then the co-existence steady state (α/d, ȳ) is locally asymptotically stable.
The local asymptotic stability when T = 0 simply results from the fact

that a, b, c > 0.
Then, consider ȳ, a, b and c as functions of yc > 0. We remind that we

necessarily have R0 = dK/αµ > 1 for the existence of the co-existence steady
state. Given that ȳ is bounded, we have lim

yc→+∞
ȳ
yc

= 0 from which follows

that lim
yc→+∞

βn(ȳ) = 1 and lim
yc→+∞

a = µR0 > 0, lim
yc→+∞

b = αµ (R0 − 1) > 0,

lim
yc→+∞

c = 0. So, when yc → +∞, the characteristic equation would thus read

λ2 + µR0λ+ αµ (R0 − 1) = 0, λ ∈ C.

If this equation admits some roots, given that R0 > 1, they would always have
negative real parts. All in all, the proposition is proven.

Given that α 7→ (x̄, ȳ) is continuous and tends to (0,+∞) as α → 0, and
lim

t→+∞
(x(t), y(t)) = (0,+∞) for α = 0, we claim that the steady state (x̄, ȳ) is

locally asymptotically stable for α > 0 small enough. This was also confirmed
by the numerical simulations.

Let ψ ∈ P be a varying parameter, the other parameters are assumed to be
fixed. The set P gathers all possible values for the chosen parameter ψ.

If ψ is varied continuously, the only way for roots of 7 with positive real
parts to appear is through the imaginary axis. We easily verify that roots with
positive real parts cannot appear in the right half complex plane. Starting from
parameters verifying 2.3.2, we vary ψ and see if a Hopf bifurcation occurs using
the methods in [5, 14]. Given that λ = 0 is not a root of 7, we look for purely
imaginary solutions λ = iω(ψ), with ω(ψ) > 0. We assume, implicitely, that ω
is a continuously differentiable function of ψ. This property has to be verified
a posteriori. Hence ω := ω(ψ) verifies

cos(Tω) =
ω2 − 2b

c
,

sin(Tω) =
aω

c
.

(9)
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Summing the square of the right-hand sides, we obtain

ω4 − (2b− a2)ω2 + b2 − c2 = 0, (10)

which also reads Q(ω2) = 0, with the polynomial Q defined by

Q(X) = X2 − SX + P, (11)

with
S = −(a2 − 2b) = 2b− a2 and P = b2 − c2,

the sum and the product of its roots. The discriminant of Q is

∆ = (a2 − 2b)2 − 4(b2 − c2) = a4 − 4ba2 + 4c2.

Let us define the sets

I1 =
{
ψ
∣∣b(ψ) < c(ψ) or

[
2b(ψ) > a(ψ)2 and b(ψ) = c(ψ)

]}
,

and

I2 =
{
ψ
∣∣∣b(ψ) > c(ψ) and a(ψ)2 − 2b(ψ) ≤ −2

√
b(ψ)2 − c(ψ)2

}
,

and remind that ∆(ψ) = a(ψ)4 − 4b(ψ)a(ψ)2 + 4c(ψ)2 > 0 for ψ ∈ I1 ∪ I2.
We emphasize that I1 and I2 may possibly consist in multiple sub-intervals of
different lengths. The previous study of the polynomial Q enables us to state
the following proposition (adapted from Lemma 1 of [14] and part 3.3 of [22]).
(i) If ψ ∈ I1, i.e.

b(ψ) < c(ψ) or
[
2b(ψ) > a(ψ)2 and b(ψ) = c(ψ)

]
, (12)

then equation 10 has a single positive real root ω+(ψ) such that

ω+(ψ)
2 =

1

2

[
2b(ψ)− a(ψ)2 +

√
∆(ψ)

]
. (13)

(ii) If ψ ∈ I2, i.e.

b(ψ) > c(ψ) and a(ψ)2 − 2b(ψ) ≤ −2
√
b(ψ)2 − c(ψ)2, (14)

then equation 10 has, on top of ω+(ψ), a second positive real root ω−(ψ) such
that

ω−(ψ)
2 =

1

2

[
2b(ψ)− a(ψ)2 −

√
∆(ψ)

]
. (15)

(iii) Otherwise, if ψ /∈ I1 and ψ /∈ I2, then there are no positive real roots of 10.
Hence it follows that, if I1 = ∅ and I2 = ∅ then there are no positive real roots
of 10, and no Hopf bifurcation can occur. Thanks to the latter proposition, we
know that the set

I = I1 ∪ I2,

actually gathers the values of ψ for which equation 10 has, at least one positive
real root and for which Hopf bifurcation might occur.

It is thus valuable to find sufficient conditions (in terms of model parameters)
under which the set I exists. This will enable us to clarify the conditions under
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which stability switches are likely to happen. Hence, we first make a remark
that renders aforementioned conditions over a, b and c clearer. Then we look for
conditions in terms of model parameters under which 12 or 14 hold. Condition
b < c is equivalent to

Kd2

α
< (µ+ dȳ)

2 n

yc

(
ȳ

yc

)n−1

. (16)

If parameters verify

µ+ dyc <
Kd

2α
< 2nµ, (17)

then I1 ̸= ∅ and I2 = ∅. From simple arguments, the first condition dK/2α <
2nµ implies that

0 <
(µ
d

)2
+

(
2µ

d
− K

nα

)
yc + y2c ,

from which it follows that

Kd2

α
< (µ+ dyc)

2 n

yc
.

Moreover, the second condition µ+dyc < dK/2α added to simple considerations
about equation 5 ensures that ȳ > yc. All in all, if condition 17 holds, we have

Kd2

α
< (µ+ dyc)

2 n

yc
< (µ+ dȳ)

2 n

yc

(
ȳ

yc

)n−1

.

From 2.3.2, we thus know that b < c and we have I1 ̸= ∅ and I2 = ∅. Refor-
mulations of condition 17 lead to the following corollary.

(i) Let the varying parameter be α = ψ. If parameters (different from α)
verify

µ+ dyc < 2nµ,

then I ̸= ∅ and [
Kd

4nµ
;

Kd

2(µ+ dyc)

]
⊂ I1 ⊂ I.

(ii) If yc = ψ, and parameters (different from yc) verify

µ <
Kd

2α
< 2nµ,

then I ̸= ∅ and [
0 ;

K

2α
− µ

d

]
⊂ I1 ⊂ I.

(iii) If T = ψ, and parameters verify condition 17 then I = R∗
+ with I2 = ∅

and I1 = I.

Simple but long computations lead to these results. We only underline that (iii)
is easily obtained by noticing that a, b and c are independent from T . In fact,
variations of ψ = T do not modify the values of ȳ, a, b and c.

11



2.3.2 does not give precise information on the changes in stability but still
provides with sufficient conditions ensuring the existence of an interval I in
which these stability switches could occur. In fact, 2.3.2 should not be consid-
ered in the context of the previously established stability of the endemic steady
state when α→ 0 or yc → +∞. They should rather be considered as preliminary
results for the existence of an interval on which a Hopf bifurcation with respect
to the three parameters is possible. In the following, we assume that I ̸= ∅
and vary ψ first starting from a value (possibly outside the interval I) where the
endemic steady state is locally asymptotically stable and then through I where
stability switches could occur.

We continue our bifurcation analysis and introduce, for all ψ ∈ I, the variable
Θ±(ψ) ∈ [0, 2π] such that:

cos(Θ±(ψ)) =
ω±(ψ)

2 − b

c
,

sin(Θ±(ψ)) =
aω±(ψ)

c
,

(18)

where the signs have to be adapted according to where ω+ or ω− are defined.
Given that ω± ≥ 0, we always have sin(Θ±(ψ)) ≥ 0. Consequently, Θ±(ψ) ∈
[0, π] for all ψ ∈ I. Hence, we obtain for all ψ ∈ I :

Θ+(ψ) = arccos

(
ω+(ψ)

2 − b

c

)
, (19)

and, for ψ ∈ I2 :

Θ−(ψ) = arccos

(
ω−(ψ)

2 − b

c

)
. (20)

Then, we define the functions z± such that for all ψ ∈ I and k ∈ N

z±(ψ, k) = T − Θ±(ψ) + 2kπ

ω±(ψ)
,

where the sign has to be adapted accordingly. One could have thought to follow
the work of [5] and use arctan functions to define Θ+ and Θ−. However, the
signs involved in system 18 led us to use the arccos function instead. We get
the following Theorem, adapted from Theorem 2.1 and 3.1 of [5]. Assume that
the parameters (different from ψ) are fixed such that I ̸= ∅. The characteristic
equation 7 admits a pair of simple conjugate purely imaginary roots ±iω+(ψ

∗
+)

in ψ∗
+ ∈ I, with

ω+(ψ
∗) =

√
1

2

[
2b(ψ∗

+)− a(ψ∗
+)

2 +
√
∆(ψ∗

+)
]
, (21)

if and only if there exists k ∈ N such that z+(ψ
∗
+, k) = 0 with

z+(ψ, k) = T − 1

ω+(ψ)

[
arccos

(
ω+(ψ)

2 − b

c

)
+ 2kπ

]
for all (ψ, k) ∈ I × N.

(22)
Moreover, if I2 ̸= ∅ then the characteristic equation 7 admits a second pair of
simple conjugate purely imaginary roots ±iω−(ψ

∗
−) in ψ

∗
− ∈ I2, with

ω−(ψ
∗
−) =

√
1

2

[
2b(ψ∗

−)− a(ψ∗
−)

2 −
√
∆(ψ∗

−)
]
, (23)

12



if and only if there exists k ∈ N such that z−(ψ
∗
−, k) = 0 with

z−(ψ, k) = T − 1

ω−(ψ)

[
arccos

(
ω−(ψ)

2 − b

c

)
+ 2kπ

]
for all (ψ, k) ∈ I2 × N.

(24)
Furthermore, when a boundary value ψ∗ ∈ I exists and is reached due to a
variation of ψ, its associated pair of simple conjugate purely imaginary roots
cross the imaginary axis - possibly inducing a stability switch - from left to right
if δ(ψ∗) > 0 and from right to left if δ(ψ∗) < 0 where

δ(ψ∗) = sign

{
d(Reλ)

dψ
(ψ∗)

}
.

For given parameter values under which I ̸= ∅, a stability switch is possible
only if there exists k ∈ N such that z+(·, k) or z−(·, k) vanish at least one time.
When the parameter ψ varies from a value ψ0 such that (α/d, ȳ) is stable, a
Hopf bifurcation must occur at the first boundary value ψ∗

h such that

ψ∗
h = min {ψ∗ | there exists k ∈ N such that z+(ψ

∗, k) = 0 or z−(ψ
∗, k) = 0} ,

if the transversality condition d(Reλ)
dψ (ψ∗

h) ̸= 0 holds. Explicit form of d(Reλ)
dψ

is obtained by differentiating the characteristic equation 7 following the branch
of roots λ(ψ) defined such that λ(ψ∗) = iω∗ with ω∗ = ω+(ψ

∗) or ω∗ = ω−(ψ
∗)

depending on the situation under consideration. After some computations, when
ψ∗ = T ∗, one gets:

d(Reλ)

dT
(T ∗) =

(a2 − 2b)ω∗2 + 2ω∗4(
−T ∗ω∗2 + a+ b

)2
+ (2 + aT ∗)

2
ω∗2

.

Inserting the expression of ω±(T
∗) into this expression always gives d(Reλ)

dT (T ∗) >

0 when ω∗ = ω+(T
∗) and d(Reλ)

dT (T ∗) < 0 when ω∗ = ω−(T
∗) (as noticed in [22]).

It ensures us that if a purely imaginary root λ(T ∗) (= iω+(T
∗) or iω−(T

∗)) ex-
ists, it is necessarily simple.

If ψ∗ ̸= T ∗ (e.g. ψ∗ = α∗ or ψ∗ = yc
∗), we have :

d(Reλ)

dψ
(ψ∗) =

(
−ω∗2

c
dc
dψ (ψ

∗) + b
c
dc
dψ (ψ

∗)− db
dψ (ψ

∗)
) (

−Tω∗2 + a+ Tb
)

(
−Tω∗2 + a+ Tb

)2
+ (2 + Ta)

2
ω∗2

+
ω∗2(2 + Ta)

(
a
c

dc
dψ (ψ

∗)− da
dψ (ψ

∗)
)

(
−Tω∗2 + a+ Tb

)2
+ (2 + Ta)

2
ω∗2

.

When ψ = T , we use 2.3.2 and the previous remarks to obtain a more precise
and concise result. Assume that model parameters different from T are fixed
and such that I ̸= ∅. If T is increased starting from 0, then the system undergoes
a Hopf bifurcation at T = T ∗

h with

T ∗
h =

1

ω+
arccos

(
ω2
+ − b

c

)
, (25)

where ω+ =
√

1
2

[
2b− a2 +

√
a4 − 4ba2 + 4c2

]
. First, due to 2.3.2, we know

that the co-existence steady state is locally asymptotically stable when T = 0.

13



Then, if I ̸= ∅ then I = R+ (since a, b and c are independent from T ). If they
are defined, both z+(·, k) and z−(·, k) cross the horizontal axis (as increasing
functions of T ) and thus stability switches must occur at these crossings labeled
T ∗. Moreover, a Hopf bifurcation could happen at the smallest value T ∗

h of
these delays. This smallest delay correspond either (as z+ and z− are decreasing
functions of k ∈ N) to a zero of z+(·, 0) or z−(·, 0), if defined. If I2 = ∅ then only
z+(·, 0) is well defined, thus T ∗

h is the zero of this function and we consequently
obtain the expression 25. If I2 ̸= ∅, then z+(·, 0) and z−(·, 0) are defined, thus
T ∗
h corresponds to the smallest zero of these two functions which is the zero of

z+(·, 0), as ω+ > ω− and ω 7→ 1
ω arccos

(
ω2−b
c

)
is decreasing on its interval of

definition. All in all, regardless the situation, the first, i.e. the smallest, delay
at which a stability switch occurs T ∗

h corresponds to the zero of T 7→ z+(T, 0)
and is given by equation 25. Finally, we conclude that a Hopf bifurcation occurs

at T = T ∗
h since the transversality condition d(Reλ)

dT (T ∗
h ) ̸= 0 is always verified.

In 2a, 2c and 2d we present stability diagrams obtained when ψ = T , α or
yc. These diagrams give us insights in the dynamics of the system in the pa-
rameter space. Boundaries (indicated by continuous or dashed lines) separate
the parameter space into regions of different dynamics.
Notice that 2a and 2c are similar as they both display stability boundaries in
the (T, α) plane.
In 2b we illustrate - through an arbitrary example of two model trajectories
- the Hopf bifurcation that occurs as ψ = T increased from 0: increasing the
parameter T from a value where the endemic steady state is stable destabi-
lizes it through a Hopf bifurcation when T reaches the first boundary value T ∗

(≃ 4.13 days in our example).
2d presents stability boundaries in the (T, yc) when ψ = yc is the varying param-
eter. In such situation, when T is set to a fixed value, decreasing the parameter
yc from infinity triggers a Hopf bifurcation when yc reaches the first boundary
value yc

∗.
From a biological point of view, the Hopf bifurcation study is important in the
following sense. Our goal is to understand the start and stop mechanism of UPR
which may possibly lead the neuron to show an oscillatory stress state. In other
words, a neuron may leave and enter stress conditions periodically depending
on its environment. If such a phenomenon occurs, this oscillatory behavior may
propagate eventually to the other neurons, and some synchronicity could appear
from this group. This last point will be the subject of a future work. We prove
here that not only such an oscillatory behavior is possible, but we are also able
to determine which parameters need to change to get it. From the study above,
we manage to prove for instance that increasing the protein formation process
duration T (which could happen for weak of damaged cells), may lead to oscilla-
tions in protein productions. We show that other parameters are involved such
as the loss of diffusion term α or the threshold density yc of PrP

Sc implying it
stress condition.

We used the function dde23 [35] from MATLAB© for numerical simulations.
We underline that asymptotic solutions turned out to be independent from
initial conditions and densities. We thus arbitrarily decided to compute each
trajectories showed in 2b with an initial condition corresponding to 50% of the
associated steady state specified by parameter values.
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Figure 2: (a), (c), (d): Stability diagrams in the (α, T ) plane with T = ψ
((a)) or α = ψ ((c)) as the varying parameter and in the (yc, T ) plane with
ψ = yc as the varying parameter ((d)). Boundary parameters (ψ∗ = T ∗ in (a),

ψ∗ = α∗ in (c) and ψ∗ = yc
∗ in (d)) are specified by continuous (d(Reλ)

dψ (ψ∗) > 0)

or dashed (d(Reλ)
dψ (ψ∗) < 0) lines. For clarity, we only plotted the two first

boundaries (k = 0 and k = 1) in the (T, α) plane, the three first boundaries
(k = 1, 2, 3) in the (T, yc) plane and indicated in green the area where the
endemic equilibrium is stable. The situation in (d) being complex, we decide not
to highlight the stability area of the endemic equilibrium for clarity. The values
of the parameters used to obtain these plots are specified in 1, we underline
that parameter values ensure that we always have R0 > 1 in each figure. (b):
Illustration through an arbitrary example of two trajectories before (T1 in red)
and after (T2 in blue) the Hopf bifurcation. For all the figures, we chose the
range for ψ (i.e. T , α or yc) so that stability switches could appear with I ̸= ∅
(i.e. b(ψ) < c(ψ) when a stability switch occurs).
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Table 1: Values of parameters used in 2. Orders of magnitude are consistent
with the values used in [17, 23].

Parameters Values Units
T variable days
µ 5 days−1

α variable (2a, and 2c ) or 0.04 (2b and
2d)

days−1

K 1500 (Fibrils per volume unit).days−1

yc 130 (2a, 2b and 2c) or variable (2d) Fibrils per volume unit
d 0.1 (Fibrils per volume unit)−1.days−1

n 10 (2a, 2b and 2c) or 250 (2d) -

3 Model of prion production with 2 neurons

In this section we generalize the previous modeling and describe prion produc-
tion and dynamic at the scale of two neurons. We first describe the model, then
proceed to the stability analysis of the steady states.

3.1 The model

Figure 3: Two neurons’ prion production model. This model generalizes the
one presented in 1. Interactions between prion species are introduced through
the coupling constant κ ∈ [0, 1] in the PrPSc production terms of the neurons:
dx1κα2x2 and dx2κα1x1.

The model illustrated in 3 describes the dynamics of PrPC protein concen-
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trations associated to neuron 1 and neuron 2 - x1 and x2 - as well as the PrPSc

concentrations in the close vicinity of neuron 1 and neuron 2 - y1 and y2. This
model is governed, for t ≥ 0, by the following system:

dx1
dt

= K1βn(y1(t− T1))− µ1x1(t)− dx1(t) (y1(t) + κα2y2(t)) ,

dx2
dt

= K2βn(y2(t− T2))− µ2x2(t)− dx2(t) (y2(t) + κα1y1(t)) ,

dy1
dt

= dx1(t) (y1(t) + κα2y2(t))− α1y1(t),

dy2
dt

= dx2(t) (y2(t) + κα1y1(t))− α2y2(t).

(26)

The parameters K1,K2, µ1, µ2, α1, α2, T1, T2, d, yc, n and variables u1, u2
have the same meanings as in 2. Variables u1 and u2 - associated to biologi-
cal processes duration T1 and T2 - are both ruled by an equation identical to
1. Parameters characterizing the UPR mechanism - threshold concentration yc
and sensivity n - are assumed to be identical for the two neurons. The UPR
feedback function βn is thus also identical for the two neurons.
We underline that neuron’s proteins concentrations - (x1, y1) for neuron 1 and
(x2, y2) for neuron 2 - are ruled by a system similar to 2 except that the in-
teractions between PrPSc concentrations of the two neurons are now taken into
account. Actually, we consider that diffusion enables the PrPSc proteins of one
neuron to migrate near the other neuron and become templates for the gen-
eration of new PrPSc proteins. We decide to include these interactions in the
PrPSc production terms: dx1κα2y2 (resp. dx2κα1y1) models the production of
PrPSc proteins by neuron 1 (resp. 2) generated from the interaction between
PrPSc proteins associated to neuron 2 (resp. 1) and PrPc proteins of neuron 1
(resp. 2). Moreover we wish to grasp two properties: (i) isotropic and spatial
properties of diffusion and (ii) possibly different interactions between PrPc and
PrPSc originating from different neurons compared to the situation where PrPc

and PrPSc come from the same neuron. Hence, we assume that the quantity
of PrPSc that interacts - from one neuron to the other - decays with a factor
0 < κ ≤ 1. The parameter κ thus stands for a coupling constant between
neurons that gathers both migration efficiency (induced by diffusion) and the
ability for proteins originating from different neurons to interact.

The well-posedness of system 26 (existence, unicity and positivity of solu-
tions) can be easily verified thanks to well-known theorems [37] (a result similar
to 2.2 holds).

3.2 Steady states

Let (x∗1, x
∗
2, y

∗
1 , y

∗
2) ∈ R4

+ be a steady state of 26, it verifies

0 = K1βn(y
∗
1)− µ1x

∗
1 − dx∗1 (y

∗
1 + κα2y

∗
2) , (27)

0 = K2βn(y
∗
2)− µ2x

∗
2 − dx∗2 (y

∗
2 + κα1 y

∗
1) , (28)

0 = dx∗1 (y
∗
1 + κα2 y

∗
2)− α1 y

∗
1 , (29)

0 = dx∗2 (y
∗
2 + κα1 y

∗
1)− α2y

∗
2 . (30)
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Then, summing 27 with 29 and 28 with 30 we obtain

K1βn(y
∗
1)− µ1x

∗
1 − α1y

∗
1 = 0 and K2βn(y

∗
2)− µ2x

∗
2 − α2y

∗
2 = 0,

which also reads, for i, j ∈ {1, 2} and i ̸= j :

x∗i = Gi(y
∗
i ), (31)

with

Gi(y) =
1

µi
(Kiβn(y)− αiy) , for all y ≥ 0. (32)

The function Gi is decreasing on R+ and non negative on [0, ŷi] with

Gi(0) =
Ki

µ1
and Gi(ŷi) = 0.

Now, inserting expression 31 into 29 and 30 leads to

y∗1 = y∗2H2(y
∗
2), (33)

y∗2 = y∗1H1(y
∗
1), (34)

where the function Hi for i, j ∈ {1, 2}, i ̸= j is defined as :

Hi(y) =
1

καj

(
αi

dGi(y)
− 1

)
, for all y ∈ [0, ŷi) .

Inserting expression 33 and 34 into each other leads to

y∗1H1(y
∗
1)H2 (y

∗
1H1(y

∗
1)) = y∗1 , (35)

y∗2H2(y
∗
2)H1 (y

∗
2H2(y

∗
2)) = y∗2 . (36)

Before going further, we underline that the function Hi (for i, j ∈ {1, 2},
i ̸= j) is increasing on [0, ŷi) and such that

Hi(0) :=
1

καj

(
R−1

0i − 1
)
and lim

y→ŷi
Hi(y) = +∞, (37)

where we define for further simplicity

R01 :=
dK1

µ1α1
and R02 :=

dK2

µ2α2
.

We want to study existence and uniqueness of a possible co-existence steady
state of 26, (x̄1, x̄2, ȳ1, ȳ2) ∈ R∗

+
4, different from the trivial steady state (K1/µ1,K2/µ2, 0, 0)

(which always exists). We know that (x̄1, x̄2, ȳ1, ȳ2) verifies 36. It follows that
ȳ2 > 0 is solution of

H(ȳ2) = 1, (38)

where the function H is defined as

H(y) = H2(y)H1 (yH2(y)) ,

for all y ∈ (0, ŷ2) in the domain of H. Depending on parameter values, ȳ2
- solution of 38 - must lie in a given interval to ensure well-posedness of the
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co-existence equilibria (x̄1, x̄2, ȳ1, ȳ2). The three following Lemmas tackle this
issue and unveil conditions about existence and uniqueness of the co-existence
steady state (x̄1, x̄2, ȳ1, ȳ2). If R01 > 1 and R02 > 1 then there exists a
unique co-existence equilibrium (x̄1, x̄2, ȳ1, ȳ2) ∈ R∗

+
4 verifying 31-33-34. By

definition of H1 of H2, as H1(0), H2(0) < 0, there exist unique y̆1, y̆2 > 0 such
that H1(y̆1) = 0 and H2(y̆2) = 0. Moreover, as ȳ2 > 0 and ȳ1 > 0, we know
from equations 33 and 34 that we are looking for an equilibria ȳ2, solution of
38 in (y̆2, ŷ2). In addition, we notice that y 7→ yH2(y) is positive and increasing
on (y̆2, ŷ2) and such that

y̆2H2(y̆2) = 0 and lim
y→ŷ2

yH2(y) = +∞.

Hence, there exist unique ˜̃y < ỹ ∈ (y̆2, ŷ2) such that

˜̃yH2(˜̃y) = y̆1 and ỹH2(ỹ) = ŷ1.

Consequently, H1(yH2(y)) < 0 and thus H(y) < 0 for all y ∈ (y̆2, ỹ). And, by
product and composition of positive increasing functions, H is positive, increas-
ing on

[
˜̃y, ỹ
)
and such that H(˜̃y) = 0 and lim

y→ỹ
H(y) = +∞. All in all, if R01 > 1

and R02 > 1 then there exists a unique solution ȳ2 ∈
(
˜̃y, ỹ
)
of equation 38 and

3.2 is proven. Then, we focus on the situation in which only one neuron has
its R0 greater than one.

If R0i > 1 and R0j < 1 with i, j ∈ {1, 2} and i ̸= j, then there exists a
unique co-existence equilibrium (x̄1, x̄2, ȳ1, ȳ2) ∈ R∗

+
4 verifying 31-33-34. For

simplicity and without loss of generality, we assume that i = 2 and j = 1. By
definition of H2, we know that H2(0) < 0 and from the increasing property of
H2, we obtain that there exists a unique y̆2 ∈ (0, ŷ2) such that H2(y̆2) = 0.
Moreover from equations 33 and 34, since ȳ1 > 0, it is necessary that ȳ2 ∈
(y̆2, ŷ2). From equations 35 and 36, we are consequently looking for a solution
ȳ2 ∈ (y̆2, ŷ2) of 38. By the increasing properties of H1 and H2 and by the
positiveness of H1 on its domain, we know that H is positive and increasing on
(y̆2, ŷ2) and such that

H(y̆2) = 0 and lim
y→ŷ2

H(y) = +∞.

All in all, ifR02 > 1 andR01 < 1, then there exists a unique solution ȳ2 ∈ (y̆2, ŷ2)
to equation 38 and 3.2 is proven.

Assume that
R01 < 1 and R02 < 1. (39)

There exists another unique co-existence equilibrium (x̄1, x̄2, ȳ1, ȳ2) ∈ R∗
+
4 ver-

ifying 31-33-34 if and only if

κ2 >
1

R01R02α1α2
[1−R01] [1−R02] . (40)

First we know from the definition of H2 that there exists a unique ỹ ≤ ŷ2
such that

ỹH2(ỹ) = ŷ1.
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Then conditions R01 < 1 and R02 < 1 implies the positiveness of H1, H2 and
y 7→ H1 (yH2(y)) on (0, ỹ). By operations, H is thus well defined and increasing
on its domain (0, ỹ) and such that

lim
y→ỹ

H(y) = +∞ and H(0) =
1

κ2α1α2

[
R−1

01 − 1
] [
R−1

02 − 1
]
.

All things considered, when condition 39 holds, the co-existence equilibrium
(x̄1, x̄2, ȳ1, ȳ2) with ȳ2 > 0 verifiying equation 38 exists and is unique if and
only if condition 40 holds (i.e H(0) < 1). This concludes the proof.

We summarize the results in the following Theorem. The system 26 always

admits a trivial equilibrium

(
K1

µ1
,
K2

µ2
, 0, 0

)
. Moreover, there exists another

unique co-existence equilibrium (x̄1, x̄2, ȳ1, ȳ2) ∈ R∗
+
4 verifying equations 31-33-

34 if and only if

(i)

R01 < 1, R02 < 1 and κ2 >
1

R01R02α1α2
[1−R01] [1−R02] , (41)

or

(ii) there exists i ∈ {1, 2} such that R0i > 1.

If we denote by

R00 = κ2α1α2
R01R02

[1−R01] [1−R02]
, (42)

we can see that the existence of the co-existence equilibrium is equivalent to
R01 < 1, R02 < 1 and R00 > 1, or there exists i ∈ {1, 2} such that R0i > 1. The
main information here is that even if R01 and R02 of each neuron is less than 1,
a large coupling constant κ between the two neurons allows R00 of the coupling
to be greater than 1.

Finally, we state and prove a result concerning the continuous differentiabil-
ity of the co-existence steady state with respect to the coupling parameter κ.
Assume that there exists i ∈ {1, 2} such that R0i > 1. The co-existence steady
state (x̄1, x̄2, ȳ1, ȳ2) is a continuously differentiable function of κ on an open set
U ⊂ R+ with 0 ∈ U , if and only if

Kiβ
′
n(ȳi)− αi > 0 for i ∈ {1, 2} such that R0i > 1.

The system composed of steady-state equations 27 - 28 - 29 - 30 could
also be written F (κ, (x∗1, x

∗
2, y

∗
1 , y

∗
2)) = 0 where F : R+ × R4

+ → R. Let
JF (κ, (x∗1, x

∗
2, y

∗
1 , y

∗
2)) be the jacobian determinant of F with respect to its sec-

ond variable in R4
+. In this framework, simple computations lead to :

JF (κ, (x∗1, x
∗
2, y

∗
1 , y

∗
2)) =∣∣∣∣∣∣∣∣

−(µ1 + dy∗1 + dκα2y
∗
2) 0 K1β

′
n(y

∗
1)− dx∗1 −dx∗1κα2

0 −(µ2 + dy∗2 + dκα1y
∗
1) −dx∗2κα1 K2β

′
n(y

∗
2)− dx∗2

d(y∗1 + κα2y
∗
2) 0 dx∗1 − α1 dx∗1κα2

0 d(y∗2 + κα1y
∗
1) dx∗2κα1 dx∗2 − α2

∣∣∣∣∣∣∣∣ .
(43)
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For clarity, we note (x̄1κ, x̄2κ, ȳ1κ, ȳ2κ) the co-existence steady state of system
26 for κ ∈ [0, 1].

We want to apply the implicit function theorem at κ = 0 and thus need
to evaluate JF in the co-existence steady state obtained for the decorrelated
situation (κ = 0). However, in the decorrelated situation, since κ = 0, we
notice that (x̄1κ=0, ȳ1κ=0) and (x̄2κ=0, ȳ2κ=0) are steady states of neuron 1 and
2 independently. Consequently, depending on the values of R01 and R02 with
respect to 1, two different situations must be distinguished.

First, if R01 > 1 and R02 > 1 then condition 4 is satisfied for each neuron.
We thus know that x̄1κ=0 = α1/d and x̄2κ=0 = α2/d and that ȳ1κ=0 and
ȳ2κ=0 verify equations similar to equation 5. These expressions and a Laplace
expansion of 43 leads to

JF (0, (x̄1κ=0, x̄2κ=0, ȳ1κ=0, ȳ2κ=0)) = d2ȳ1κ=0ȳ2κ=0 [K1β
′
n(ȳ1κ=0)− α1] [K2β

′
n(ȳ2κ=0)− α2] .

This expression and the implicit function theorem enable us to conclude for the
situation in which R01 > 1 and R02 > 1.

Then, let i, j ∈ {1, 2}, i ̸= j and assume that R0i > 1 and R0j < 1. Without
loss of generality and for clarity, we assume that R01 > 1 and R02 < 1. In this
situation, we thus have x̄2κ=0 = K2/µ2, ȳ2κ=0 = 0, x̄1κ=0 = α1/d and ȳ1κ=0

verifies equation 5 (with parameters adapted to neuron 1). Hence, from these
expressions and with a Laplace expansion of 43 we obtain

JF (0, (x̄1κ=0, x̄2κ=0, ȳ1κ=0, ȳ2κ=0)) = dµ2α2 (R02 − 1) ȳ1κ=0 [K1β
′
n(ȳ1κ=0)− α1] .

Using the latter expression and the implicit function theorem, if R01 > 1
and R02 < 1, we conclude that (x̄1, x̄2, ȳ1, ȳ2) is continuous and differentiable
with respect to κ in an open set U ⊂ R∗

+
4 containing κ = 0 if and only if

K1β
′
n(ȳ1κ=0)− α1 ̸= 0.
Proof of 3.2 is thus completed.
When κ = 0, each neuron is expected to evolve independently from the other

and to have its own prion dynamics. 3.2 thus guarantees the coherence with
our previous modelling of a single neuron and ensures the well-posedness of our
model.

When neurons are identical (i.e. symmetrical situation), more precise theo-
retical results become simpler. 3.2 leads to the following corollary.

If neurons are identical with K := K1 = K2, µ := µ1 = µ2 and α := α1 =
α2, then system 26 admits a unique co-existence steady state (x̄1, x̄2, ȳ1, ȳ2) if
and only if

κ >
1−R0

αR0
with R0 := R01 = R02 =

dK

µα
. (44)

If 44 holds, we have

x̄ := x̄1 = x̄2 =
α

d(1 + κα)
,

and ȳ := ȳ1 = ȳ2 ∈ (0, ŷ) solution of

R0βn(ȳ) =
d

µ
ȳ +

1

1 + κα
, ȳ ∈ (0, ŷ) . (45)

If neurons are identical, the condition κ > (1−R0)/αR0 is in fact equivalent
to R00 := [καR0/(1 − R0)]

2 > 1. By symmetry we have x∗1 = x∗2 := x∗ and
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y∗1 = y∗2 := y∗. Hence, inserting the latter equality in equations 33 and 34 leads
to

y∗ = y∗h(y∗),

where h := H1 = H2 in the symmetrical situation under consideration here.
As x∗ > 0 and y∗ > 0, it is necessary that y∗ < K/α. Hence, existence and
uniqueness of a co-existence steady state y∗ ∈ [0, ŷ) relies on the solution of

1 = h(y) =
1

κα

(
αµ

d(Kβn(y)− αy)
− 1

)
, y ∈ [0, ŷ) ,

which corresponds to equation 45. Function h being increasing on [0, ŷ) and
such that lim

y→ŷ
h(y) = +∞, we consequently obtain existence and uniqueness

of the co-existence steady state (x∗, x∗, y∗, y∗) if and only if h(0) < 1. This
condition is also equivalent to 44. Finally, a trivial solving of equation 31 leads
to an explicit expression of x∗.

3.3 Linearised system, characteristic equation and asymp-
totic stability

System 26 linearised with the perturbations u1, u2, u3 and u4 about any steady
state (x∗1, x

∗
2, y

∗
1 , y

∗
2), reads

du1
dt

= K1β
′
n(y

∗
1)u3(t− T1)− (µ1 + dy∗1 + dκα2y

∗
2)u1(t)− dx∗1u3(t)− dκα2x

∗
1u4(t),

du2
dt

= K2β
′
n(y

∗
2)u4(t− T2)− (µ2 + dy∗2 + dκα1y

∗
1)u2(t)− dκα1x

∗
2u3(t)− dx∗2u4(t),

du3
dt

= (dy∗1 + dκα2y
∗
2)u1(t) + (dx∗1 − α1)u3(t) + dκα2x

∗
1u4(t),

du4
dt

= (dy∗2 + dκα1y
∗
1)u2(t) + dκα1x

∗
2u3(t) + (dx∗2 − α2)u4(t),

from which we deduce, the associated characteristic equation for λ ∈ C :∣∣∣∣∣∣∣∣
W1(λ) 0 dx∗1 −K1β

′
n(y

∗
1)e

−λT1 dκα2x
∗
1

0 W2(λ) dκα1x
∗
2 dx∗2 −K2β

′
n(y

∗
2)e

−λT2

−(dy∗1 + dκα2y
∗
2) 0 λ+ α1 − dx∗1 −dκα2x

∗
1

0 −(dy∗2 + dκα1y
∗
1) −dκα1x

∗
2 λ+ α2 − dx∗2

∣∣∣∣∣∣∣∣ = 0.

(46)
where we defined, for i, j ∈ {1, 2}, i ̸= j :

Wi(λ) = λ+ µi + dy∗i + dκαjy
∗
j .

The trivial steady state is the only steady state and locally asymptotically
stable if and only if

R01 < 1, R02 < 1, and 0 ≤ κ2 <
1

R01R02α1α2
[1−R01] [1−R02] . (47)

Otherwise, the trivial steady is unstable. Using the notation 42, we can see
that the condition 47 is equivalent to R0i < 1, for all i ∈ {0, 1, 2}. For the trivial
steady-state, the characteristic equation 46 reads

(λ+µ1)(λ+µ2)

[(
λ+ α1 −

dK1

µ1

)(
λ+ α2 −

dK2

µ2

)
− d2κ2K1K2α1

µ1µ2

]
= 0, λ ∈ C.
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Thus, we have at least two eigenvalues −µ1 < 0 and −µ2 < 0. Others possible
eigenvalues verify

λ2 +

(
α1 + α2 − d

(
K1

µ1
+
K2

µ2

))
λ

+

(
α1 −

dK1

µ1

)(
α2 −

dK2

µ2

)
− d2κ2K1K2α1α2

µ1µ2
= 0, λ ∈ C.

From the Routh-Hurwtiz criterion, it follows that this equation has roots with
negative real parts if and only if

α1 (1−R01)+α2 (1−R02) > 0 and

(
α1 −

dK1

µ1

)(
α2 −

dK2

µ2

)
−d

2κ2K1K2α1α2

µ1µ2
> 0,

which is also equivalent to

α1 (1−R01) + α2 (1−R02) > 0 and
1

R01R02α1α2
[1−R01] [1−R02] > κ2.

As κ2 ≥ 0, the latter conditions is finally equivalent to condition 47.
Interchanging lines and columns and using 2× 2 block matrices, the charac-

teristic equation 46 reads ∣∣∣∣A1(λ) B1

B2 A2(λ)

∣∣∣∣ = 0, λ ∈ C, (48)

with, for i, j ∈ {1, 2}, i ̸= j :

Ai(λ) =

(
Wi(λ) dx∗i −Kiβ

′
n(y

∗
i )e

−λTi

−dy∗i − dκαjy
∗
j λ+ αi − dx∗i

)
and Bi = dκαjx

∗
i

(
0 1
0 −1

)
.

In order to obtain theoretical result, we decide to consider the symmetrical
situation in which neurons are identical with T := T1 = T2. In such situation,
for any steady state (x∗, x∗, y∗, y∗), the characteristic equation 48 reads:∣∣∣∣A(λ) B

B A(λ)

∣∣∣∣ = 0, λ ∈ C,

where
A(λ) := A1(λ) = A2(λ) and B := B1 = B2.

Hence, in the symmetrical situation, the characteristic equation for the co-
existence steady state (x̄, x̄, ȳ, ȳ) ∈ R∗

+
4 is a product of two second order poly-

nomials :
det (A(λ) +B) det (A(λ)−B) = 0, λ ∈ C, (49)

where, after simple computations using results of 3.2, we have

det (A(λ) +B) = λ2 + [µR0(1 + κα)βn(ȳ)]λ− αµ [1−R0(1 + κα)βn(ȳ)]

+Kβ′
n(ȳ)µ [1−R0(1 + κα)βn(ȳ)] e

−λT ,

(50)
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and

det (A(λ)−B) = λ2 +

[
µR0(1 + κα)βn(ȳ) +

2κα2

1 + κα

]
λ

+ 2
κα2

1 + κα
µR0(1 + κα)βn(ȳ)−

α(1− κα)

1 + κα
µ [1−R0(1 + κα)βn(ȳ)]

+Kβ′
n(ȳ)µ [1−R0(1 + κα)βn(ȳ)] e

−λT .

(51)

Now, we state and prove some results about the local asymptotic stabil-
ity of the co-existence steady state in the situation of identical neurons (i.e.
symmetrical situation).

If

(i) neurons are identical with K := K1 = K2, α := α1 = α2 and µ := µ1 =
µ2,

(ii) κ >
1−R0

αR0
(condition equivalent to R00 > 1),

(iii) T1 = T2 = 0,

then the co-existence steady state (x̄, x̄, ȳ, ȳ) ∈ R∗
+
4 is locally asymptotically

stable. If T1 = T2 = 0, then the two terms 50 and 51 of the characteristic
equation 49 read (computations are not shown for clarity) for λ ∈ C:

det (A(λ) +B) = λ2+[µR0(1 + κα)βn(ȳ)]λ−(α−Kβ′
n(ȳ))µ [1−R0(1 + κα)βn(ȳ)] ,

and

det (A(λ)−B) = λ2 +

[
µR0(1 + κα)βn(ȳ) + 2

κα2

1 + κα

]
λ

+
κα2

1 + κα
[µR0(1 + κα)βn(ȳ) + µ]

−
(

α

1 + κα
−Kβ′

n(ȳ)

)
µ [1−R0(1 + κα)βn(ȳ)] .

From the results obtained in 3.2, from the positiveness of ȳ and from the de-
creasing shape of βn, we verify that 1 − R0(1 + κα)βn(ȳ) < 0 and thus obtain
that each factors of the two latter polynomials are positive. Hence, we conclude
using the Routh-Hurwitz criterion applied to the two latter polynomials.

From 3.3, we use a continuity argument to obtain the following corollary.
If conditions (i) and (ii) of 3.3 hold and T := T1 = T2, then there exists a
unique T ∗ ∈ (0,+∞) such that the co-existence steady state (x̄, x̄, ȳ, ȳ) ∈ R∗

+
4

is locally asymptotically stable for all T < T ∗ and unstable for T ≥ T ∗ at the
neighborhood of T ∗.

If T is increased from 0 to +∞ with fixed values of other model parameters,
the system of two identical neurons can undergo a stability switch through a
Hopf bifurcation when T reaches T ∗.
Similarly to what has been done for a single neuron, we used the method detailed
in [14] to determine theoretical conditions and expressions of the boundary
delays at which stability switches could occur. For different values of κ ∈ [0, 1],
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we thus numerically obtained the corresponding values of T ∗ at which a Hopf
bifurcation could occur.
In 4, we present stability diagrams (4a and 4c) and illustrate the stability switch
that could occur when R0 > 1 and R0 < 1 through two different plots (4b
and 4d). These figures highlight the influence of the coupling between the two
neurons over the stability of the co-existence steady state. The more important
is the coupling, the smaller is the boundary value of T at which a stability
switch occurs. As observed in stability diagrams, neuron coupling (κ > 0)
actually promotes instability by lowering the value of the biological processes
duration T ∗ at which a stability switch occurs compared to the situation without
coupling (κ = 0, single neuron).

Because of the lack of referenced biological values we chose model parame-
ters values according to relevant order magnitudes following previous modelling
works [17, 23]. Yet, the threshold concentration yc was chosen arbitrarily. The
value of the sensitivity coefficient n significantly influences the time complexity
of simulations. Thus, we chose the value n = 10 as a compromise between a
reasonable computational time complexity and reasonable sharpness of the UPR
feedback function βn. Finally, the value of R0 (either greater or lower than 1)
was set by adjusting the value of α.

Table 2: Values of parameters used in 4. Orders of magnitude are consistent
with the values used in [17, 23].

Parameters Values Units
T variable (4a and 4c) or 0.15 (4d) days
µ1 = µ2 = µ 20 days−1

K1 = K2 = K 1500 (Fibrils per volume unit).days−1

α1 = α2 = α 2.0833 (4a and 4b) or 4.6875 (4c and
4d)

days−1

κ variable (4a, 4c and 4d) or 0.2 (4b) -
yc 130 Fibrils per volume unit
d 0.05 (Fibrils per volume unit)−1.days−1

n 10 -

4 Discussion and conclusion

The formalism we used to depict prion dynamics with two neurons can be easily
generalized to describe prion dynamics in a system of N neurons. Doing so, we
obtain a model similar to the one developed by Stumpf and Krakauer [42], except
our approach incorporates the UPR feedback and do not assume preferential
diffusion along axons.
In this paradigm, each neuron i ∈ J1, NK is modeled with its associated PrPc
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(a) (b)

(c) (d)

Figure 4: (a), (c) : Stability diagrams in the (κ, T ) plane when neurons are
strictly identical with R0 > 1 (a) or R0 < 1 (c). Full lines locate T ∗: the
first crossing of the imaginary axis by the characteristic roots associated to the
co-existence steady state. It corresponds to the first value of T (when increased
from 0) that induces a stability switch through a Hopf bifurcation. Colored
areas indicate stability regions for the trivial (blue) or co-existence (red) steady
states. In (a), that is R0 > 1, we also highlight by a dashed line the value
of T ∗ obtained for the model of a single neuron (presented in 2). We verify
the coherence between the two models as κ → 0 and observe the effect of
neuron coupling: the boundary value T ∗ decreases with κ. Neuron coupling
thus promote instability. In (c), that is R0 < 1, if κ is small enough, the
disease free equilibrium is the only steady state but also asymptotically stable.
However, when coupling parameter κ is large enough, the disease steady state
eventually appears and becomes also stable. This means that even with R0 < 1,
the coupling allows the disease to play a major role. (b): Example trajectories
when R0 > 1 illustrating the Hopf bifurcation that occurs when T crosses the
boundary. Trajectories are colored according to their parameter values and
correspond to the colored crosses of 4a. (d) Evolution of normalized PrPSc

steady state values y∗/yc with respect to the coupling constant κ when R0 < 1.
For a given value of κ, then there is one or two steady states which can be stable
(full line) or unstable (dashed line). When there are 2 unstable steady states,
the solution is periodic and we indicate its maximum and minimum with red
and blue lines, respectively. Values of other model parameters (specified in 2)
are set to relevant orders of magnitudes.
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and PrPSc concentrations xi and yi ruled by

dxi
dt

= Kiβn(yi(t− T1))− µixi(t)− dxi

yi(t) +∑
j ̸=i

κi,jαj→iyj(t)

 ,

dyi
dt

= dxi(t)

yi(t) +∑
j ̸=i

κi,jαj→iyj(t)

−

∑
j ̸=i

αi→j

 y2(t).

Parameters d,Ki and µi have the same meaning as before concerning neuron
i ∈ J1, NK. The parameter αi→j transcribes the diffusive property of PrPSc

to the neuron j ̸= i. We still assume that interactions between PrPSc from
neuron i to PrPC of an other neuron j ̸= i is modeled with a coupling factor
0 ≤ κi,j < 1. We remind that these coupling constants should be viewed as
damping coefficients characterizing both diffusion properties and difference of
origin between prion species.

In conclusion, we developed a modeling approach of prion production at the
scale of one (2) or two (3) neurons. Our approach incorporates the effect of the
Unfolded Protein Response through a negative feedback describing the global
translation shutdown induced by an overload of PrPSc around a neuron.

We investigated existence, uniqueness and (local) stability of steady states
associated to each of the two models presented in this paper. In these mod-
els, a bifurcation analysis with respect to the variation of three parameter (for
the single neuron’s prion model) or a continuity argument (for the two neu-
ron’s model) led to condition for autonomous oscillations of PrPSc to appear.
Stability diagrams and numerical simulations gave us insight in the stability of
steady states as well as in the dynamics of solutions. In the case of two neu-
rons, we established - both theoretically and numerically - an interesting result.
Interactions between PrPSc and PrPc originating from different neurons enable
- if the coupling constant κ is greater than a minimum value - existence and
uniqueness of a co-existence steady state (and possibly PrPSc oscillations to
appear) even when the R0 associated to each single neuron4 is lower than one.
Theoretical results and numerical simulations concerning the case of 2 identical
neurons indicate that the value of κ dictates prion dynamics at the scale of
two neurons and show that the co-existence steady state could be destabilized -
inducing PrPSc oscillations - when the biological processes duration T excesses
a boundary value T ∗.

Even if, our models aim at describing PrPc and PrPSc concentrations around
neurons, future research may extend and/or modify our modeling approach to
describe concentrations of different misfolded proteins involved in other Protein
Misfolding Disorders, such as Aβ proteins in the context of Alzheimer’s Disease.

Moreover, by considering the effect of a global translation shutdown at the
neuron scale (through protein synthesis activity and biological activity vari-
ables), our model paves the way for future investigations into the effect of
neuron synchronization in prion diseases. Actually, this work constitutes the
building block of a future wider modeling approach in which neurons could
interact through PrPSc diffusion and possibly oscillates (depending on their
environment and biological parameters) and then potentially see their protein
synthesis activities become synchronized thus triggering detrimental outcomes.

4characterizing existence and uniqueness of the endemic steady state
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To this aim, we will have to take several important physiological features of the
neuronal network into account. Indeed, since prion proteins are anchored to
the cell membrane, the PrPSc formation follows the synaptic entanglement and
thus do not propagate equally in all directions. Thus, some of the neurons not
located in the neighborhood of a stressed one, could be impacted by its behav-
ior and propagate the UPR mechanism in an unexpected heterogeneous way.
Furthermore, similarly to a group of persons tied together and trying to figure
out how to progress in a jungle, diffusion coefficient of PrPSc proteins depends
mainly on the on its size (called the polymer length). The longer the protein
is, the less it diffuses. And thus, secondary nucleation could appear far from
the source of the onset of the pathology in a group of neurons if polymers of
small sizes are produced in a sufficient quantity. Then, the synchronicity could
be described either through a local connection in standard but technical way,
or through an unexpected non local heterogeneous way. This has to be clearly
observed in vivo through image analysis, and described with new mathematical
models and technical approaches. This is the object of our future but promising
work.
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