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SWEEPOUTS OF CLOSED RIEMANNIAN MANIFOLDS

ALEXANDER NABUTOVSKY, REGINA ROTMAN, AND STÉPHANE SABOURAU

Abstract. We show that for every closed Riemannian manifold there exists a continuous family
of 1-cycles (defined as finite collections of disjoint closed curves) parametrized by a sphere and
sweeping out the whole manifold so that the lengths of all connected closed curves are bounded
in terms of the volume (or the diameter) and the dimension n of the manifold, when n ≥ 3.
An alternative form of this result involves a modification of Gromov’s definition of waist of
sweepouts, where the space of parameters can be any finite polyhedron (and not necessarily
a pseudomanifold). We demonstrate that the so-defined polyhedral 1-dimensional waist of a
closed Riemannian manifold is equal to its filling radius up to at most a constant factor. We
also establish upper bounds for the polyhedral 1-waist of some homology classes in terms of
the volume or the diameter of the ambient manifold. In addition, we provide generalizations
of these results for sweepouts by polyhedra of higher dimension using the homological filling
functions. Finally, we demonstrate that the filling radius and the hypersphericity of a closed
Riemannian manifold can be arbitrarily far apart.

1. Introduction

One can define a p-slicing of an n-dimensional manifold (or a pseudomanifold) N as a col-
lection of inverse images h−1(t) of points under a “nice” mapping h : Nn → Tn−p to a lower
dimensional (pseudo)manifold, where t runs over Tn−p. Here, the “niceness” of h must imply
that all h−1(t) are subpolyhedra of Nn of dimension ≤ p. (Note, however, that even for a nice
map h, the fibers h−1(t) need not automatically form a continuous family of subpolyhedra under
any reasonable choice of topology.) One can define a p-sweepout of M as the image of a slicing
of a (pseudo)manifold N under a topologically nontrivial continuous map ϕ : N → M . Here,
one possible meaning of “topologically nontrivial” is that the image under ϕ of the fundamental
homology class of N with Z or Z2 coefficients is the fundamental homology class of M . Ob-
viously, a slicing is a sweepout (corresponding to the identity map of M), but not vice versa.
More generally, one can define a p-sweepout of a k-dimensional homology class a of M from a
continuous map ϕ : N →M with ϕ∗([N ]) = a. Given two maps h : N → Tn−p and ϕ : N →M
such that ϕ∗([N ]) = [M ] (respectively, ϕ∗([N ]) represents a prescribed lower dimensional class
a of M), taking the supremum over t ∈ N of the p-volumes of the fibers h−1(t), then taking the
infimum over all maps h : N → Tn−p and ϕ : N →M as above, one arrives to the definition of
the p-waist of M (respectively, of a homology class a of M). This definition was introduced by
Gromov; see [12, §15] and [11, §6].

Among other things we analyze a version of this concept when the space Tn−p is not required
to be a pseudomanifold, but can be an arbitrary finite polyhedron. Consider a p-sweepout of M
(or, more generally, of a homology class a of M with coefficients in G = Z or Z2) whose fibers
h−1(t) are p-dimensional cycles that continuously depend on t. We can regard ϕ(h−1(t)) as p-
cycles of M . (If h−1(t) is empty, then the 1-cycle is, by definition, zero.) Therefore, the maps h :
N → Tn−p and ϕ : N →M induce a continuous map from the pseudomanifold Tn−p to the space
Zp(M ;G) of p-cycles of M with coefficients in G. This map sends the fundamental homology
class of Tn−p to an (n − p)-dimensional homology class of Zp(M ;G). If this homology class is
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nontrivial, we can take the minimax value of the p-volume over p-cycles, where the supremum is
taken over the space of all cycles in a sweepout, and the infimum over all sweepouts h : N → Tn−p

and ϕ : N → M corresponding to the considered homology class of Zp(M ;G). The resulting
quantities (called the widths of M) were studied in many important papers. Properties of
widths were crucial for a recent progress in geometric analysis including proofs of the Willmore
conjecture by F. Marques and A. Neves, and the Yau conjecture by A. Song. If Tn−p = Sn−p,
then the construction gives rise to an (n − p)-dimensional homotopy class of Zp(M ;G). As
πn−p(Zp(M ;G)) is isomorphic to Hn(M ;G) (see [2]), we obtain a corresponding homology class
of M . Looking at Almgren’s proof in [2], it is easy to see that this is the same homology class
that was used in the definition of the p-sweepout.

There are many different versions of p-waists in the literature that are referred to as width,
waist, diastole, etc. One can consider all sweepouts, or only slicings, consider different notions
of “topologically nontrivial”, or impose different restrictions on the spaces of parameters param-
eterizing sweepouts. Also, one can measure the size of the fibers h−1(t) not as their volume,
but using a different functional, such as the diameter. For example, if we consider only slicings
(so ϕ is the identity map) by arbitrary not necessarily polyhedral fibers h−1(t) and measure
their size using the diameter, we obtain the notion of Urysohn width. It was first proven by
L. Guth, that if the codimension p equals 1, then the Urysohn width of a closed Riemannian
manifold M can be majorized in terms of only the volume and the dimension of M ; see [14],
[18], [23], [21], [27] for this and related results. In this paper, we will consider the case, when
Tn−p is a pseudomanifold as in Gromov’s definition, but the functional of interest is the maximal
p-volume of a connected component of the fiber h−1(t) (instead of the p-volume of the whole
h−1(t)). Also, we are going to do this in the most interesting case, when Tn−p = Sn−p, and for
maps h : N → Tn−p such that h−1(t) is a continuous family of p-cycles. Thus, the resulting
notion could be regarded as a version of the widths of M (for a different functional).

There is a number of papers with interesting and important upper and lower bounds for
various versions of waists/widths. Here are some of them for the most studied situation when
we take the min-max of the volume over all slicings of a Riemannian manifold (slicing waists).

Upper bounds. The first bound in this direction applies to closed Riemannian surfaces and
involves only the area and the genus of the surface; see [3]. In higher dimension, a similar bound
in terms of the volume holds for closed Riemannian n-manifold M with nonnegative Ricci
curvature, which leads to the existence of a closed minimal hypersurface (with a singular set of
Hausdorff dimension at most n − 8) whose (n − 1)-volume is bounded in terms of the volume
of M ; see [5], [26]. Further estimates for closed Riemannian manifolds with Ricci curvature
bounded below can be found in [5]. For closed 3-manifolds M3 with positive Ricci curvature,
the bound in terms of the volume holds for the min-max length of the fibers of the maps from M
to the plane; ; see [19]. Without any curvature condition, these results fail; see [24] and [23] for
counterexamples.

Lower bounds. A lower bound for slicing waists of the form constn FillRad(Mn) can be found
in Appendix 1 of [11, §6], where FillRad is the filling radius; see Definition 3.1. In a different
direction the exact lower bound for the volume of fibers of maps between round spheres of
different dimensions is the content of Gromov’s famous waist theorem; see [10]. There are many
generalizations for other spaces; see [17] for a highly nontrivial generalization of Gromov’s waist
theorem for cubes and [1] for a survey on the subject.

1.1. Homology 1-waist bounds. In this paper, we consider two different notions of sweepout
and waist similar but somewhat different to those introduced by Gromov in [11, §6]; see Defini-
tions 1.1 and 1.10. With these notions, universal upper bounds on the waist of one-parameter
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families of one-cycles sweeping out essential surfaces of closed Riemannian manifolds were ob-
tained in [26]. Our first theorem extends this result to the waist of multi-parameters families of
one-cycles sweeping out any closed Riemannian manifold.

Before stating the precise result, we need to introduce the following notion of p-waist.

Definition 1.1. Let M be a closed n-manifold. A polyhedral p-sweepout of M is a family

ϕ[h−1(t)] ⊆M

with t ∈ T , where h : N → T is a continuous map from a closed n-pseudomanifold N to a
finite (n−p)-dimensional polyhedron T such that all fibers h−1(t) are p-subpolyhedra of N , and
ϕ : N →M is a continuous degree one map. That is,

ϕ∗([N ]) = [M ] ∈ Hn(M)

where the homology coefficients are in Z if M is orientable, and in Z2 otherwise. Define the
homology p-waist of a closed Riemannian manifold M as

Wp(M) = inf
ϕ, h

sup
t∈T

volp(ϕ|h−1(t)) (1.1)

where the infimum is taken over all n-pseudomanifolds N , all simplicial (n − p)-complexes T ,
and all maps ϕ : N → M and h : N → T defining a polyhedral p-sweepout of M . Here, the
notation volp(ϕ|h−1(t)) stands for the volume of the map ϕ restricted to the fiber h−1(t) ⊆ N ,
and not merely the volume of its image (which might be smaller). If such sweepouts do not
exist, we let Wp(M) = 0. When p = 1, we simply write W(M) = W1(M).

The only difference between this definition and Gromov’s is that we do not require that T is
a pseudomanifold. This distinction can be illustrated by the following example.

Example 1.2. Let M be a Riemannian 2-sphere that looks like a “thin” 2-dimensional three-
legged starfish. We can choose T as a tripod, that is, the union of three closed intervals inter-
secting at a common endpoint, and polyhedral 1-sweepout of M by 1-cycles, most of which are
very short closed curves running around individual tentacles. Only one of them, namely, the
inverse image of the center of the tripod looks like the θ-graph with two vertices and three edges
connecting these vertices. (Each pair of these three edges forms a closed curve around one of the
tentacles that appears as the limit of closed curve above inner points of the corresponding leg
of tripod T .) Note that this polyhedral sweepout would not be allowed in Gromov’s definition.
Also, note that if one would consider the inverse images of a point of T as a function from T to
the space of currents on the 2-sphere, this function will not be continuous. Indeed, the inverse
image of the center of the tripod will be the θ-graph that consists of thee arcs. When we ap-
proach the center along each ray, the inverse images of points will consist of two arcs, and will
converge to a subset of the θ-graph that consists of two (out of three) arcs. Note, that this type
of discontinuity would be impossible if h were a map to a manifold (e.g., a sphere) such that for
each t, the fiber h−1(t) is a cycle.

With this notion of waist, we can prove the following homology 1-sweepout estimates.

Theorem 1.3. Let M be a closed n-manifold. Then every Riemannian metric on M satisfies

FillRad(M) ≥ cn W(M)

vol(M) ≥ c′n W(M)n

diam(M) ≥ c′′n W(M)

for some explicit positive constants cn, c′n and c′′n depending only on n.
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Here, FillRad(M) is the filling radius introduced by Gromov in [6]; see Definition 3.1 below.

Gromov proved that FillRad(Mn) ≤ const(n) vol(M)
1
n . Later, it was established in [21] that

one can take const(n) = n. Also, M. Katz proved that FillRad(M) ≤ 1
3diam(M); see [16]. Thus,

the last two inequalities follow from the first one. This result is geometrically appealing, and
can be used to demonstrate that FillRad(M) is equal to W(M) up to at most a constant factor
(see Theorem 1.13), thus leading to some geometric intuition about FillRad(M).

The classical approach to obtain lower bounds on the filling radius is to argue by contradiction
and construct a retraction, one simplex at a time, from a pseudomanifold P bounding M onto
its boundary. However, such a construction is not always possible in general. A different path
was taken in [25], where a retraction from a different filling Q was constructed by considering
all the simplices lying in the 2-skeleton of Q at the same time (and not only one at a time)
and by proceeding by induction on the dimension of the higher-dimensional skeleta of Q from
there, using a topological assumption on the manifold. In the proof of Theorem 1.3, where the
manifold M is arbitrary, we take yet a different approach. In particular, our construction does
not proceed by induction on the skeleta of the filling. Instead, we construct a pseudomanifold N
homologuous to M and a map N → M non-homologuous to the identity map by considering
all simplices of the filling at the same time without arguing by induction in order to derive a
contradiction.

It would be interesting to know whether the one-cycle sweepout estimates of Theorem 1.3
hold for sweepouts made of pairwise disjoint one-cycles, that is, when the maps ϕ : N → M
in Definition 1.1 are required to be diffeomorphisms. In the case of surfaces, this would yield a
positive answer to Bers’ pants decomposition problem, which may or may not be true.

1.2. Sweepouts and geometric measure theory. From the point of view of geometric mea-
sure theory, one would prefer a situation where

• all inverse images h−1(t) are 1-cycles on N (or, more precisely, finite collections of piece-
wise smooth closed curves on N so that their images ϕ(h−1(t)) are 1-cycles on M);
• T = Sn−1;
• the map Sn−1 → Z1(M ;G) with G = Z if M is orientable, and G = Z2 otherwise,

that sends every t ∈ T to ϕ(h−1(t)) is continuous with respect to the flat topology on
Z1(M ;G).

To achieve this goal in the case when h−1(t) is already a 1-cycle for each t, we can first
replace the map h : N → T with a continuous map h̄ : N → Sn−p obtained as the composition
of h : N → T with a finite-to-one continuous map T → Sn−p. In this case, the p-sweepouts are
parameterized by Sn−p and the p-waist of M can be defined by minimizing the maximal volume
of the map ϕ restricted to the connected components of the fibers of h̄. (Note that we cannot
hope to have a control over the cardinality of the inverse images of the many-to-one map to the
sphere. Therefore, the best we can hope for is to control the volume (length) of the individual
connected components.) That is,

W̄p(M) = inf
ϕ, h̄

sup
t∈Sn−p

max
C ⊆ h̄−1(t)

volp(ϕ|C) (1.2)

where the infimum is taken over all maps ϕ : N → M and h̄ : N → Sn−p as above and the
maximum is taken over all connected components C of h̄−1(t).

Note that, vice versa, given a PL-map h̄ : N → Sn−p, one can define the space Tn−p of
connected components of all inverse images h̄−1(t) for every t ∈ Sn−p. This gives rise to a map
h : N → Tn−p sending every point x ∈ N to its connected component in h̄−1(h̄(x)). There
exists a map ψ : Tn−p → Sn−p that sends each point of t ∈ Tn−p to the corresponding value of t
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under h such that h̄ = ψ ◦ h. Obviously, the fibers of h in N are connected and coincide with
the connected components of the fibers of h̄. As we will see below, the map that sends each
point t ∈ T to the 1-cycle ϕ(h̄−1(t)) need not be continuous, so one will need some extra care
in constructing the finite-to-one map ψ : Tn−p → Sn−p to ensure the continuity of this map.

As pointed out before, the first step is to alter h : N → Tn−1 so that all h−1(t) become
1-cycles. To illustrate our approach consider the following example

Example 1.4. Consider the three-legged starfish 2-sphere M = N mapped to the tripod T as
described in Example 1.2. The inverse image of the centre c of the tripod is a collection of three
arcs connecting two points on the sphere (a θ-graph), which is not a cycle. The inverse images
of the points on each ray of the tripod are closed curves hugging the legs of the sphere. As a
point on a ray of the tripod approaches the center, its inverse image approaches the union of two
of the three arcs forming the θ-graph. Replace the three arcs in the inverse image of c by pairs
of arcs with the same endpoints as the original arc, running very close to the original arc. Each
pair forms a digon bounding a thin disk. The boundary of each disk can be contracted to a point
inside the disk via concentric simple loops. This contraction corresponds to a map of each thin
disk to a small interval such that the curves during the contracting homotopy are inverse images
of the points of the small interval. Combining these three homotopies, we obtain a map of three
thin disks to a small tripod. The inverse image of the center of this small tripod is a collection of
six arcs. Now, note that these six arcs can be grouped into three pairs of arcs so that each pair
forms a simple closed curve “hugging” one of three long legs of the three-legged star-fish. Each
of these three simple closed curves can be also contracted to a point via concentric simple loops
along the corresponding long leg of the three-legged starfish. Combining these three contracting
homotopies, we obtain a map of the 2-sphere minus the three thin disks to another tripod. (This
map will be very close to the original map of the whole 2-sphere to the tripod). The inverse
image of the centre of the tripod under this new map is the same collection of six arcs (or, three
petals). We can glue these two tripods into one hexapod by identifying their centers and define
a map from the 2-sphere to the hexapod by combining the two maps defined on the union of the
three thin disks and its complement to the tripods forming the hexapod. The maximal length
of a fiber is (almost) twice the maximal length of a fiber in the original map to a tripod and
every fiber now is a 1-cycle. (Observe that an elaboration of this idea can be used to enhance
Theorem 1.3 by demanding that all fibers h−1(t) are 1-cycles, if desired. This will follow from
an argument used to prove our next theorem below.)

(b)(a)

Figure 1. Sweeping out a three-legged sphere

In this construction, the inverse images of the points of the hexapod do not form a continuous
family of 1-cycles. We observe exactly the same discontinuity near the center of the hexapod as
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the discontinuity near the center of the tripod for the original map. Of course, this discontinuity
disappears once we take a composition of the map to the hexapod H with an appropriate
continuous finite-to-one map H → S1. Here is a description of such a finite-to-one map that will
be used below. First, consider the following map from the hexapod to the interval [0, 1] where
the center of the hexapod is mapped to 1

2 , each ray of the first tripod is (linearly) mapped to

[1
2 , 1], and each ray of the second (small) tripod is mapped to [0, 1

2 ]. Now, the inverse images
of both endpoints of [0, 1] are finite collections of points, while the inverse image of each point
of (0, 1) \ {1

2} is a collection of three simple loops. It is easy to see that the inverse images
form a continuous family of 1-cycles (for the flat topology). Regarding these 1-cycles as points
in Z1(M ;G), we see that both endpoints of [0, 1] are mapped to the zero cycle, and our map can
be factorized through S1 = [0, 1]/{0, 1}. One can easily check the continuity of the corresponding
map of S1 to the space of 1-cycles on the three-legged starfish.

Now, we are going to give an example illustrating that not every finite-to one map from the
hexapod to S1 yields a continuous map to the space of 1-cycles. Consider a map that sends all
vertices of degree 1 of the hexapod H to a point a ∈ S1, the degree 6 vertex of H to another
point b ∈ S1, and every edge of H to the same arc of S1 connecting a and b. The points of S1

not in the image of the map H → S1 correspond to the zero 1-cycle, and so is a. However, the
image of b is the 1-cycle formed of six arcs on the three-legged star-fish. Hence, a discontinuity
at b.

An elaboration of the ideas involved in Example 1.4 can be combined with our construction
in the proof of Theorem 1.6 to turn the family h−1(t) of 1-cycles, into a continuous family of
1-cycles parameterized by Sn−1 in the general case. This leads us to introduce the following
definition. (We refer to [20] for a general background in geometric measure theory, including
the notions of currents and varifolds.)

Definition 1.5. Let M be a closed Riemannian n-manifold. Define

W′
1(M) = inf

Ξ
sup

u∈Sn−1

max
C ⊆ Ξu

length(ϕ|C). (1.3)

In this expression, the infimum is taken over the families Ξ of 1-cycles (more precisely, of finite
collections of closed curves) parameterized by Sn−1 on a closed n-pseudomanifold N , which
are continuous both in the flat topology of the 1-cycle space and in the weak topology of the 1-
varifold space, and whose image under a degree-one map ϕ : N →M represents the fundamental
class [M ] via the Almgren isomorphism πn−1(Z1(N ;G)) ' Hn(M ;G), see [2]. Furthermore, the
maximum is taken over the connected components C of Ξu, where u ∈ Sn−1.

Note that since Ξ is continuous with respect to the weak topology of varifolds, the length of
the image of Ξu varies continuously. Clearly, W′

1(M) ≥W1(M).

There is a non-equivalent but equally adequate and more geometric way to define Ξ. Consider
the space Γ of piecewise smooth paths on M endowed with the Lipschitz distance topology. A
finite collection of piecewise smooth closed curves can be parameterized by k-tuples of paths of Γ
whose endpoints match to form a 1-cycle. The distance between two such collections of closed
curves can be defined as the infimum of the Lipschitz distance between their parametrizations
as k-tuples of paths of Γ. (Here, the integer k must be the same for both collections of curves
and we take the infimum over all k.) Formally, we also identify two collections of curves that
differ by a union of closed curves reduced to finitely many points. We can modify the definition
of W′

1(M) by taking the infimum over all families Ξ of finite collections of piecewise smooth
closed curves which represent the fundamental class of M under the Almgren isomorphism.

Our estimates (and their proofs) are valid for both choices of Ξ in the definition of W′
1(M).

The following theorem extends the estimates of Theorem 1.3.
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Theorem 1.6. Let M be a closed n-manifold. Then every Riemannian metric on M satisfies

vol(M) ≥ cn W′
1(M)n

diam(M) ≥ c′n W′
1(M)

for some explicit positive constants cn and c′n depending only on n.

We will also show that if n ≥ 3, then this theorem can be somewhat improved by changing the
definition of W′

1(M). In the current definition, we are taking the infimum of the maximal length
of the ϕ-images of the connected components of a 1-cycle. We can instead take the infimum
of the maximal length of the connected components of its image under ϕ. Here is the formal
definition of this new invariant

W′′
1(M) = inf

Λ
sup

u∈Sn−1

max
C ⊆ Λu

length(C), (1.4)

where the infimum is taken over all families Λ of 1-cycles (more precisely, finite collections of
closed curves) parametrized by Sn−1 on M (not N as before!), that are continuous in either of
the two topologies from the definition of W′′

1(M) and correspond to the fundamental homology
class of M under the Almgren isomorphism.

In addition, one can require that 1-cycle family Λ arises from a slicing of N as in Definition 1.5.
More precisely, one can assume that the 1-cycle family Λ is given by the image of the inverse
images h−1(u) of a continuous map h : N → Sn−1 defined on a closed n-pseudomanifold N
under a degree one map ϕ : N →M such that the fibers h−1(u) with u ∈ Sn−1 define a family
of 1-cycles on N continuous with respect to both topologies involved in Definition 1.5.

So defined invariant W′′
1(M) has a very natural geometric meaning: It measures the maximal

length of a connected component in an optimal sweepout of M by 1-cycles, where the sweepouts
are parametrized by the sphere of codimension one.

The following estimates also hold for this invariant.

Theorem 1.7. Let M be a closed n-manifold, n ≥ 3. Then every Riemannian metric on M
satisfies

vol(M) ≥ cn W′′
1(M)n

diam(M) ≥ c′n W′′
1(M)

for some explicit positive constants cn and c′n depending only on n.

As a further comment on the definition of W′
1(M), we consider the following example.

Example 1.8. Let M = N = (S2, can) and ϕ : S2 → S2 be the identity map. Consider a
very fine triangulation of M . Let us construct a map h : M → [0, 1] as follows. The inverse
image of 0 under h is the (finite) collection of the centers of the 2-simplices of the triangulation.
When t grows from 0 to 1, the preimage h−1(t) is a collection of concentric triangles connecting
the center of each simplex to its boundary. When t = 1, the inverse image of t is the 1-
skeleton of the triangulation. Thus, the fiber h−1(t) is a 1-cycle, except at t = 1. Still, the
map [0, 1) → Z1(M ;Z) taking t ∈ [0, 1) to h−1(t) extends by continuity at t = 1 by sending 1
to the zero 1-cycle. The map S1 → Z1(M ;Z) thus-defined is continuous in the flat topology
of 1-cycles (albeit not in the weak topology of 1-varifolds) and induces the fundamental class
of M under the Almgren isomorphism. Furthermore, the length of the connected components of
this family of 1-cycles can be arbitrarily small. This example would tend to show that W′

1(M)
is trivial. Let us recall however that the map S1 → Z1(M ;Z) is not continuous in the weak
topology of 1-varifolds and that the 1-cycle at t = 1 is not of the form ϕ(h−1(t)) for t = 1,
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as we changed its value for continuity reasons. Thus, this 1-cycle family does not occur in the
definition of W′

1(M). Actually, we will show in Theorem 1.13 that W′
1(M) is always positive.

Remark 1.9. Below, we will consider some generalizations and extensions of Theorem 1.3. It
will be clear that they also hold true for the analogs of W′

1(M) and W′′
1(M). We leave the

(rather obvious) details to the reader.

1.3. Sweeping out lower-dimensional strata. In the previous theorems, we consider (n−1)-
parameter families of polyhedral 1-chains sweeping out the whole manifold M . One may wonder
whether one can extract (k−1)-parameter families of polyhedral 1-chains sweeping out nontrivial
k-dimensional homology classes of M or more generally essential k-complexes of M so that
these 1-chain sweepouts satisfy the same upper bounds as the (full) 1-sweepout of Theorem 1.3.
Though examples can be found in [25], the existence of such sweepouts may not hold in general.
In our next result, we give topological conditions which ensure the existence of such sweepouts.
The existence of these sweepouts does not follow directly from the proof of Theorem 1.3 and
requires some new ideas. In particular, we will need to change our main definition and make
various changes in the proof of Theorem 1.3.

First, let us introduce a more general notion of sweepout leading to a different notion of waist.

Definition 1.10. Let Φ : M → K be a continuous map from a closed manifold M to a CW-
complex K. A Φ-homotopy (p, k)-sweepout of M is a family

ϕ[h−1(t)] ⊆M

with t ∈ T , where h : X → T is a continuous map from a finite simplicial (k+p)-complex X to a
finite simplicial k-complex T such that all fibers h−1(t) are p-subpolyhedra of X, and ϕ : X →M
is a continuous map whose composition Φ ◦ ϕ : X → K is not homotopic to a map

X
h→ T → K

which factors out through h. Define the Φ-homotopy (p, k)-waist of a closed Riemannian mani-
fold M as

Wp,k(M,Φ) = inf
ϕ, h

sup
t∈T

volp(ϕ|h−1(t))

where the infimum is taken over all maps ϕ : X → M and h : X → T defining a Φ-homotopy
(p, k)-sweepout of M . If such sweepouts do not exist, we let Wp,k(M,Φ) = 0.

We will be especially interested in the case where p = 1. As in (1.2), we can assume that
the homotopy (p, k)-sweepouts are parameterized by the sphere Sk and that the Φ-homotopy
(1, k)-waist of M is defined by minimizing the maximal length of the map ϕ restricted to the
connected components of the fibers of h̄ : X → Sk.

Sweepout estimates also hold with this notion of waist when p = 1.

Theorem 1.11. Fix k ≤ n− 1. Let M be a closed n-manifold and Φ : M → K be a continuous
map to a CW-complex K with πi(K) = 0 for every i ≥ k + 1. Suppose that Φ∗([M ]) 6= 0 ∈
Hn(K;G) for some homology coefficient group G. Then every Riemannian metric on M satisfies

vol(M) ≥ cn W1,k(M,Φ)n

diam(M) ≥ c′n W1,k(M,Φ)

for some explicit positive constants cn and c′n depending only on n.

The following example illustrates the theorem.
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Example 1.12. The main examples arise when K is the Eilenberg-Maclane space K(G,m),
where G is an abelian group and n = qm. Assume that the map Φ : M → K represents
a nonzero cohomology class c ∈ Hm(M ;G) such that the q-th cup power of c is nonzero in
Hn(M ;G). Assume also that the map h : X → M defined on a closed k-pseudomanifold X
represents a homology class a ∈ Hk(M ;G) dual to a nonzero multiple of the l-th cup power of c,
where k = lm, in the sense that 〈cl, a〉 6= 0. In this case, the map Φ ◦h : X → K does not factor
through a (k − 1)-dimensional complex T since it induces a nontrivial homomorphism between
the k-dimensional homology groups of X and K. Thus, Theorem 1.11 yields curvature-free
upper bounds for the homotopy (1, k)-waist of some lower-dimensional homology classes of M .

1.4. Intrinsic geometric interpretation of the filling radius. The filling radius of a closed
Riemannian manifold M is defined in an extrinsic way from the Kuratowski embedding of M
into L∞(M); see Definition 3.1. A different (more intrinsic) interpretation of the filling radius
can be deduced from the filling radius estimates of Theorems 3.3, 4.7, 4.10, and Proposition 6.2.
More specifically, we show that the filling radius of a closed Riemannian manifold is roughly
equal to its homology 1-waist.

Theorem 1.13. There exist two explicit constant cn and Cn depending only on n such that
every closed Riemannian n-manifold M satisfies

cn W(M) ≤ FillRad(M) ≤ Cn W(M).

We can take Cn = 1
2 . The same assertion holds for W′

1(M) and, if n ≥ 3, also for W′′
1(M)

instead of W(M).

Remark 1.14. Since W(M) ≤ W′
1(M) ≤ W′′

1(M), the upper bound for FillRad(M) in terms
of W(M) immediately implies the same upper bounds in terms of W′

1(M) and W′′
1(M). The

previous theorem implies the following alternative (and also imprecise up to a constant factor)
geometric interpretation of the filling radius when n ≥ 3. Up to at most a dimensional fac-
tor c(n), the filling radius of a closed Riemannian n-manifold M is equal to the maximal length
of a connected component in an “optimal” sweepout of M by a continuous family of closed
curves. Here, “optimal” means that the sweepout (nearly) realizes the infimum of the minimal
length. When n = 2, this is still true, but for a somewhat less geometrically intuitive definition
of “connected components of a sweepout” stemming from the definition of W′

1(M). (In this
case, one looks at the images of connected components of a slicing of N under a degree one map
ϕ : N →M .)

As shown in Proposition 7.2, the hypersphericity of a closed orientable Riemannian manifold is
roughly bounded by its filling radius (and so by its Urysohn width). For Riemannian 2-spheres,
these Riemannian invariants are roughly the same; see Section 7. Still, there are examples of
manifolds where the hypersphericity and the Urysohn width can be arbitrarily far apart; see [13].
Applying the filling radius estimates of Theorem 1.13 to these examples, we can strengthen this
result by showing that the same occurs between the hypersphericity and the filling radius.

Theorem 1.15. There exists a sequence (gi) of Riemannian metrics on S4 with arbitrarily small
hypersphericity and filling radius bounded away from zero.

It would be interesting to determine whether we can replace W(M) with the Urysohn width
in Theorem 1.13 or whether the filling radius can be arbitrarily far apart from the Urysohn
width as in Theorem 1.15.

1.5. Homology p-waist bounds. The bounds in Theorem 1.3 about homology 1-waist can be
extended to homology p-waist using the notion of homological filling function defined below.
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Definition 1.16. The k-homological filling function of a closed Riemannian n-manifold M is a
function FHk : [0,∞)→ [0,∞] defined as

FHk(v) = sup
volk(Σk0)≤v

inf{volk+1(Σk+1) | ∂Σk+1 = Σk
0}

where the supremum is taken over all closed k-pseudomanifolds Σk
0 in M of volume at most v and

the infimum is taken over all compact pseudomanifolds Σk+1 in M with boundary ∂Σk+1 = Σk
0.

By convention, inf ∅ =∞. This means that if the k-th homology group of M is nontrivial, then
FHk(v) =∞ for all v greater than some v0. This threshold value v0 can, however, be arbitrarily

large in comparison with, say, vol(M)
k
n . For example, consider M = S1 × S2 endowed with the

product metric, where S1 has a very large length L, but the area of S2 is just 1
L . Although

H1(M) is nontrivial, FH1(v) will be finite for all v < L.
Observe that the homological filling function FHk is nondecreasing and that FHk(v) ≤ αk vk+1

for every v small enough, where αk is some constant depending only on k involved in the
isoperimetric inequality. It will be convenient to introduce FHk(v) = FHk(2(k + 1)v). Also, we
define FHk(∞) = FHk(∞) =∞.

The notion of homological filling function was considered in [22] to bound the least area of a
(possibly singular) minimal surface and, more generally, the least mass of a nontrivial stationary
integral k-varifold in a closed Riemannian manifold whose first k−1 homology groups are trivial.
The homological filling functions can be estimated by taking a simplicial approximation and
minimizing the volume of a filling using a elementary linear algebra argument in connection with
systems of linear equations with integer coefficients given by the boundary operator; see [22] for
more details. Strictly speaking the definition of homological filling functions in [22] was stated
in terms of singular chains and not pseudomanifolds, but this leads to the same notion after
desingularization.

The following result provides an extension of Theorem 1.3 to higher dimensional homology
waists; see (1.1).

Theorem 1.17. Let M be a closed Riemannian n-manifold. Then, for every positive integer p,

Wp(M) <
1

2n−p+1

(
n+1
p

)−1
FHp−1 ◦ · · · ◦ FH1(Cn vol(M)

1
n )

Wp(M) <
1

2n−p+1

(
n+1
p

)−1
FHp−1 ◦ · · · ◦ FH1(C ′n diam(M))

for some explicit positive constants Cn and C ′n depending only on n.

The constants involved in the filling functions can be improved by following Remark 8.4.
Note, that if all homology groups Hi(M) for i ∈ {1, . . . , p − 1} vanish, then the right-hand
sides in both inequalities are always finite. However, if at least one of these homology groups is
nontrivial, it is possible that one or both right-hand sides are∞, and the inequality(ies) become
trivial.

Acknowledgment. This research has been partially supported by NSERC Discovery Grants
RGPIN-2017-06068 and RGPIN-2018-04523 of the first two authors. The third author would
like to thank the Fields Institute and the Department of Mathematics at the University of
Toronto for their hospitality where a large part of this work was done.

2. Natural sweepouts of the standard cubical simplex

In this section, we describe natural p-sweepouts of the standard cubical simplex defined as
the fibers of a map from the cube to a complex of codimension p. The reason we consider the
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standard cubical simplex instead of the standard simplex is because it is simpler to describe the
natural sweepouts in this case. Similar constructions hold for the standard simplex.

Let us start by describing a decomposition of the standard cube. The case when p = 1 is
considered in Sections 3, 4, 5, 6 and 7, while the general case is considered in Section 8. At first
reading, one can assume that p = 1.

Definition 2.1. Let Cn+1 = [−1, 1]n+1 be the standard cubical (n+ 1)-simplex. Fix an integer

p ≥ 1. The p-skeleton (Cn+1)(p) of Cn+1 is formed of the points of Cn+1 all of whose coordinates
except possibly p of them are equal to ±1. That is,

(Cn+1)(p) = {x ∈ Cn+1 | there exist i1, . . . , in−p+1 ∈ {1, . . . , n+1} distinct such that xik = ±1}.

The cubical (n − p)-complex Zn−p ⊆ Cn+1 dual to (Cn+1)(p) is formed of the points of Cn+1

with at least p+ 1 zero coordinates; see Figure 2.(c) and Figure 6.(c). That is,

Zn−p = {x ∈ Cn+1 | there exist i1, . . . , ip+1 ∈ {1, . . . , n+ 1} distinct such that xik = 0}.

Fix ε ∈ (0, 1). The space

Xn+1
1,ε = {x ∈ Cn+1 | there exist i1, . . . , in−p+1 ∈ {1, . . . , n+ 1} distinct such that |xik | ≥ ε}

formed of the points of Cn+1 with at most p coordinate less than ε in absolute value is a tubular
neighborhood of (Cn+1)(p). Similarly, the space

Xn+1
2,ε = {x ∈ Cn+1 | there exist i1, . . . , ip+1 ∈ {1, . . . , n+ 1} distinct such that |xik | ≤ ε}

formed of the points of Cn+1 with a least p + 1 coordinates bounded by ε in absolute value
is a tubular neighborhood of Zn−p. Both spaces Xn+1

1,ε and Xn+1
2,ε are endowed with a cubical

structure, where the cubical simplices are bounded by the hyperplanes xi = ±ε and xi = ±1.
The cubical complexes Xn+1

1,ε and Xn+1
2,ε cover the cube Cn+1 and intersect along a cubical

n-complex

Y n
ε = Xn+1

1,ε ∩X
n+1
2,ε

which decomposes into a disjoint union

Y n
ε = tn+1

k=p+1{x ∈ C
n+1 | there exist i1, · · · , ik ∈ {1, . . . , n+ 1} distinct such that

|xi1 | ≤ ε, · · · , |xip | ≤ ε
|xip+1 | = · · · = |xik | = ε

|xi| > ε for every i 6= i1, · · · , ik}
(2.1)

of cubical (n+ p+ 1− k)-complexes with p+ 1 ≤ k ≤ n+ 1.
Strictly speaking, the complexes Xn+1

i,ε , Y n
ε and Zn−p depend also on p. In order not to burden

the notations, we keep the dependence on p of these complexes and the following constructions
implicit.

Let us define a natural p-sweepout of the standard cube.

Definition 2.2. Let λε : [−1, 1]→ [−1, 1] be the odd piecewise linear function defined by

λε(t) =


t−ε
1−ε if t ∈ [ε, 1]

0 if t ∈ [−ε, ε]
t+ε
1−ε if t ∈ [−1,−ε]

keeping −1, 0, 1 fixed and sending [−ε, ε] to {0}.
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Consider the map θε : Y n
ε → Zn−p defined by

θε(x1, · · · , xn+1) = (λε(x1), · · · , λε(xn+1)). (2.2)

By definition, every point of Y n
ε has at least p + 1 coordinates bounded by ε in absolute value

which are sent to 0 by λε. This shows that the map θε takes values in Zn−p. The preimage
of z ∈ Zn−p under θε can be determined as follows. Denote by zi1 , . . . , zik all the zero coordinates
of z. Note that k ≥ p+ 1. By construction,

θ−1
ε (z) = {x ∈ Y n

ε | |xis1 | ≤ ε, · · · , |xisp | ≤ ε for s1, . . . , sp ∈ {1, . . . , k} distinct

|xis | = ε for every s 6= s1, . . . , sp in {1, . . . , k}
xj = λ−1

ε (zj) for every j 6= i1, . . . , ik}.

Since θ−1
ε (z) lies in Y n

ε , all the coordinates xi1 , . . . , xik of x ∈ θ−1
ε (z) are equal to ±ε, except

possibly p of them. Thus, the preimage θ−1
ε (z) is a cubical p-complex isomorphic to the p-skeleton

of the k-cube. See Figure 2 for a description of the sweepout of Y n
ε .

Z
1

Z
1

Sweeping out each small

square on M by contracting 

the boundary

Sliced boundary of the tubular 

neighborhood of 

(a) (b) (c)

(d) (e)

Subdividing filling P together
with M into small cubes

Constructing the map from N to T

M

P

Figure 2. Sweeping out 2-dimensional N

The other map Θ we need to define will be used only on Cn. For this reason, we carry our
construction on Cn and not on Cn+1. The subsets Y n−1

ε with ε ∈ (0, 1) foliate Cn \ ((Cn)(p) ∪
Zn−p−1). More precisely, they are the level sets of the composition of the continuous map

Θ : Cn \ ((Cn)(p) ∪ Zn−p−1) −→ Zn−p−1 × (0, 1)
x 7−→ (θε(x), ε)

where ε is given by x ∈ Y n−1
ε , with the projection Zn−p−1× (0, 1)→ (0, 1). Thus, the map Θ is

given by θε on each subset Y n−1
ε .

Define the simplicial (n− 1)-complex

Ẑn−p = Cone(Zn−p−1) = Zn−p−1 × [0, 1]/Zn−p−1 × {1}
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where Zn−p−1 × {1} is collapsed to a point ?.
The map Θ extends to a continuous map still denoted by

Θ : Cn → Ẑn−p (2.3)

where Θ(x) = (θ0(x), 0) for every x ∈ Zn−p−1 = Y n−1
0 and Θ(x) = ? for every x ∈ (Cn)(p).

The fibers of Θ define a natural p-sweepout of the n-cube which is invariant by the group of
symmetries of Cn.

Remark 2.3. Loosely speaking, when n = 3 and p = 1, the boundary of the neighborhood of
the dual to the 1 skeleton of the 3-cube varies with ε from two extremes where it collapses to
the 1-skeleton of the 3-cube or its dual Z1. Deforming the slicing of Y 2

ε as ε varies induces a
natural sweepout of the 3-cube; see Figure 3.(b).

We will slice each cube of dimension 3 in M in the following way.

We will begin by slicing each square in the 2−skeleton by contracting its

boundary to the point. We will then consider the dual to the 1−skeleton 

4C
4CThe filling P of M is subdivided into small cubes 

(a)

(b)

M

P

and slicing its boundary. Continuously deforming this neighborhood

until the boundary merges with the boundary of the cube, and also 

whole cube.
squeezing it onto the 1−skeleton will induce the slicing of the 

of dimension 4. 

Figure 3. Filling and sweeping-out 3-dimensional M

Finally, let us define some deformations on the standard cube.

Definition 2.4. Let µε : [−1, 1]→ [−1, 1] be the odd piecewise linear function defined by

µε(t) =


1 if t ∈ [ε, 1]
t
ε if t ∈ [−ε, ε]
−1 if t ∈ [−1,−ε]

sending [ε, 1] to {1} and [−1,−ε] to {−1}.
Consider the map ρε : Xn+1

1,ε → (Cn+1)(p) defined by

ρε(x) = (µε(x1), · · · , µε(xn+1)). (2.4)

By definition, every point of Xn+1
1,ε has at least n−p coordinates bounded below by ε in absolute

value, which are sent to ±1 by µε. This shows that the map ρε takes values in (Cn+1)(p). Observe
also that the map ρε fixes the vertices of Cn+1 and sends every edge of Cn+1 to itself. We will
refer to ρε as the “retraction” of Xn+1

1,ε onto (Cn+1)(p). Note that the “retraction” ρε extends to
a degree one map

ρ̄ε : Cn+1 → Cn+1. (2.5)
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Dual to 2−skeleton of C
4

One can decompose the boundary of the 
tubular neighborhood of Z   into 8 pieces.
Each piece corresponds to one segment of
Z   . It has a form of I     I  . It can be naturally
sliced into     I   .3

3

1

1 x

(a) (b)

Figure 4. Sweeping out the 4-cube; p=2

In the following sections, we will fix ε = 1
2 and drop the subscripts. For instance, we will

write Y n for Y n
ε , Xn+1

i for Xn+1
i,ε , θ for θε and ρ̄ for ρ̄ε.

We conclude this section with the following result.

Proposition 2.5. The cubical n-complex Y n
ε is an n-pseudomanifold with boundary lying in ∂Cn+1.

First recall the general definition of a pseudomanifold.

Definition 2.6. An n-pseudomanifold with boundary is a simplicial n-complex P such that

• every simplex of P is a face of some n-simplex of P ;
• every (n− 1)-simplex of P is the face of at most two n-simplices of P ;
• given two n-simplices of P , there exists a sequence of n-simplices of P with two consec-

utive n-simplices having an (n− 1)-face in common that starts at one of them and ends
at the other.

The boundary ∂P of an n-pseudomanifold P is the simplicial (n − 1)-subcomplex of P formed
of the (n− 1)-simplices of P which are the faces of exactly one n-simplex of P .

Proof. The cubical n-complex Y n
ε decomposes into a union of cubical n-simplices of two kinds

[−ε, ε]p × {±ε} × [ε, 1]n−p and [−ε, ε]p × {±ε} × [−1,−ε]n−p

up to factor permutations; see (2.1). The boundary of the first kind of cubical n-simplices is a
union of (n− 1)-faces of the following three forms

[−ε, ε]p−1×{±ε}×{±ε}×[ε, 1]n−p, [−ε, ε]p×{±ε}×{ε}×[ε, 1]n−p−1, [−ε, ε]p×{±ε}×{1}×[ε, 1]n−p−1

up to factor permutations. The same holds for the boundary of the second kind of cubical n-
simplices. The (n−1)-faces involved in these unions have exactly two components of the form of
a singleton {±ε} or {±1}, with at most one singleton of the form {±1}. The (n− 1)-faces with
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the union of six intersecting planes. 
We will consider each 4−cube  C   of P. The dual of its 1−skeleton is 4

(a)

v1

v
5

2v

v
3

v4 

v6

v
7

v
8

Next we will describe how to construct the map from N to M.
Each vertex v    will be mapped to the closest point v   on M.
Edges will be mapped to minimal geodesic segments that 
connect the corresponding vertices.  This map determines
the map on the boundary of each 2−face, which in turn
determines the map from N to M, as all of the "parallel"
curves depicted above will be mapped to the same curve.

i i
~

4 

v1

v4 

v
3

2v

v1 2v

2Z

I IX(    )X XEach piece is of the form of I   I .

v
3

v4 

(b)

(c)

one) corresponds to one of the edges of Z    of one
of the 3−cubes in the boundary of C   . The second

edges of Z    of another 3−cube, the one that 

1

1

shares the face with the cube above. In our figure

This particular piece will be sweeped out by the 

it is the face with the vertices     ,      ,     ,     .

curves that are parallel to the boundary of this face.

The boundary of the tubular neighborhood

It is depicted on the left.

of Z 2

consists of 24 pieces, each of which corresponds
to a "quarter" of one of the 6 planes that form

One of the edges (the red

edge (the green one) corresponds to one of the

,

Figure 5. Sweeping out the 4-cube; dim M = 3

no singleton of the form {±1} appear in the boundary decomposition of exactly two cubical n-
simplices. For instance, [−ε, ε]p−1×{ε}×{−ε}×[ε, 1]n−p appears in the boundary decomposition
of [−ε, ε]p × {−ε} × [ε, 1]n−p and [−ε, ε]p−1 × {ε} × [−ε, ε]× [ε, 1]n−p. (Recall that every point
in an open n-face of Y n

ε has exactly p + 1 coordinates bounded by ε in absolute value.) The
(n−1)-faces with exactly one singleton of the form {±1} lie in ∂Cn+1 and appear in the boundary
decomposition of exactly one cubical n-simplex. For instance, [−ε, ε]p × {ε} × {1} × [ε, 1]n−p−1

appears in the boundary decomposition of [−ε, ε]p × {ε} × [ε, 1]n−p. Furthermore, each k-face
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of Y n
ε lies in a cubical n-simplex of Y n

ε . Also, it is not difficult to see that given two cubical n-
simplices of Y n

ε , there exists a sequence of cubical n-simplices of Y n
ε with two consecutive cubical

n-simplices having one (n−1)-face in common. This shows that Y n
ε is a cubical n-pseudomanifold

with boundary lying in ∂Cn+1. �

3. Filling radius and homology 1-waist

We establish a lower bound on the filling radius of a closed Riemannian manifold in terms of
its homology 1-waist and derive Theorem 1.3.

Let us recall the notion of filling radius introduced by M. Gromov in [6] to established systolic
inequalities on essential manifolds.

Definition 3.1. Let M be a closed n-manifold with a Riemannian metric g. Denote by dg the
distance on M induced by the Riemannian metric g. The map

i : (M,dg) ↪→ (L∞(M), || · ||)
defined by i(x)(·) = dg(x, ·) is an embedding from the metric space (M,dg) into the Banach space
L∞(M) of bounded functions on M endowed with the sup-norm || · ||. This natural embedding,
also called the Kuratowski embedding, is an isometry between metric spaces. We will consider
M isometrically embedded into L∞(M).

The filling radius of M with a Riemannian metric g, denoted by FillRad(M), is the infimum
of the positive reals ν such that

(iν)∗([M ]) = 0 ∈ Hn(Uν(M))

where iν : M ↪→ Uν(M) is the inclusion into the ν-neighborhood of M in L∞(M), and [M ] ∈
Hn(M) is the fundamental class of M . Unless specified otherwise, the homology coefficients are
in Z if M is orientable, and in Z2 otherwise.

The filling radius of a Riemannian manifold satisfies the following fundamental bounds re-
spectively obtained by M. Gromov [6] and M. Katz [16] with an improvement in the constant
recently obtained in [21] .

Theorem 3.2 (see [6], [16], [21]). Let M be a closed Riemannian n-manifold. Then

FillRad(M) ≤ n vol(M)
1
n

FillRad(M) ≤ 1
3 diam(M)

where cn is an explicit constant depending only on n.

The homology 1-waist is related to the filling radius as follows.

Theorem 3.3. Let M be a closed n-manifold. Then every Riemannian metric on M satisfies

FillRad(M) ≥ cn W(M)

for cn = 1
(n+1) 2n+1 .

Proof. We will work with cubical complexes instead of simplicial complexes and rely on the
construction of Section 2. By definition of the filling radius, the fundamental class [M ] of M
vanishes in the ν-neighborhood Uν(M) of M in L∞(M), where ν > FillRad(M) is very close
to FillRad(M). Therefore, there exists a compact cubical (n + 1)-pseudomanifold P ⊆ Uν(M)
with boundary ∂P = M . (Recall that the finite chains defining the homology of a space can be
replaced with compact pseudomanifolds with or without boundary; see [15, p. 108–109]. This
explains why we can take a pseudomanifold for the chain P .) Subdivide P so that every cubical
(n+ 1)-simplex of P has at most one n-face in ∂P .
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Suppose that ν < 1
(n+1) 2n+1 W(M). The usual argument to obtain a contradiction and derive a

lower bound on the filling radius of M consists in constructing a retraction from P onto ∂P = M .
However, this may not be possible in our case. Instead, we will construct a continuous extension f̄
of the identity map on M to a cubical (n + 1)-complex containing an n-pseudomanifold N
homologuous to M taking the fundamental classes of M and N to different homology classes
in M . This will lead to a contradiction as wanted.

It will be convenient to think of P as an abstract compact cubical (n + 1)-pseudomanifold
related to M through a continuous map σ : P → Uν(M) whose restriction σ : ∂P → M to ∂P
satisfies

σ∗([∂P ]) = [M ] ∈ Hn(M) (3.1)

Deforming the map σ, we can assume that σ takes every edge of ∂P to a minimizing segment
of M . Denote by P k the k-skeleton of P . Subdividing P if necessary, we can further assume
that the images by σ of the cycles of the natural sweepout of the cubical simplices of ∂P are of
length less than ε < min{ 1

(n+1) 2n W(M)− 2ν, 1
2 inj(M)}; see Section 2 where p = 1.

We first define a map f : P 0 → M which agrees with σ on the vertices of ∂P , by sending
each vertex pi ∈ P 0 to a nearest point of σ(pi) in M ⊆ L∞(M), as we wish. Since the inclusion
i : M ↪→ Uν(M) is distance-preserving, every pair pi, pj of adjacent vertices of P satisfies

dM (f(pi), f(pj)) ≤ dL∞(f(pi), σ(pi)) + dL∞(σ(pi), σ(pj)) + dL∞(σ(pj), f(pj)) < δ

with δ = 2ν + ε < 1
(n+1) 2n W(M). We extend the map f to P 1 by taking the edges of P to

minimizing segments joining the images of their endpoints, as we wish. Observe that the map f
agrees with σ on the edges of ∂P . By construction, the lengths of the images of the edges of P 1

are less than δ.

Let Q ⊆ P be the neighborhood of P 1 in P composed of the pieces Xn+1
1 ⊆ Cn+1 corre-

sponding to the cubical (n + 1)-simplices of P ; see Section 2 where p = 1. Put together, the

“retractions” ρ : Xn+1
1 → (Cn+1)(1) defined in (2.4) with p = 1 give rise to a “retraction”

r : Q → P 1. Denote by f̄ : Q → M the composition of r : Q → P 1 with f : P 1 → M , that is,
f̄ = f ◦ r. Deform σ : ∂P → M into σ̄ : ∂P → M so that the restriction of σ̄ to each cubical
n-simplex of ∂P agrees with σ ◦ ρ̄, where ρ̄ is the extension of the “retraction” ρ defined in (2.5)
with p = 1. By construction, the map f̄ : Q→M agrees with σ̄ on ∂P ∩Q and can be extended
to a map

f̄ : Q ∪ ∂P →M (3.2)

which agrees with σ̄ on ∂P ; see Figure 6. Furthermore, the map f̄ takes every edge of P 1 to a
segment of length less than δ.

The cubical n-pseudomanifolds Y n ⊆ Cn+1 pasted together according to the assembling
pattern of the cubical (n + 1)-simplices Cn+1 of the pseudomanifold P , see Section 2 where
p = 1 (and Figure 7), form a compact cubical n-pseudomanifold N ′ ⊆ Q with boundary lying
in ∂P . The map θ : Y n → Zn−1 defined in (2.2) with p = 1 gives rise to a map h′ : N ′ → T ′

to the finite cubical (n − 1)-complex T ′ formed of the pieces Zn−1 ⊆ Cn+1, where Cn+1 is a
cubical (n+ 1)-simplex of P . More precisely, the restriction of h′ to the pieces Y n of N ′ is given
by θ. The cubical n-complexes Xn

i ⊆ Cn, where Cn is a cubical n-simplex of ∂P ' M , form a
compact cubical n-pseudomanifold N ′′i ⊆ ∂P with the same boundary as N ′. As previously, the
map Θ : Xn

2 → Zn−2× [0, 1
2 ] defined in (2.3) with p = 1 gives rise to a map h′′ : N ′′2 → T ′′ to the

finite cubical (n−1)-complex T ′′ formed of the pieces Zn−2× [0, 1
2 ] with Zn−2 ⊆ Cn, where Cn is

a cubical n-simplex of ∂P . Observe that Θ(x) = (θ(x), 1
2) for every x ∈ Y n ∩Xn

2 ' Y n−1 ⊆ Cn.
Thus, the two maps h′ and h′′ so-defined agree on the common boundary of N ′ and N ′′2 after
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corresponding vertices.

Figure 6. Mapping Q to M

identifying Zn−2 ⊆ Zn−1 ⊆ T ′ and Zn−2 = Zn−2×{1
2} ⊆ T

′′, where Zn−2 ⊆ Cn lies in ∂P . Put
together, these maps give rise to a continuous map

h : N → T

from the closed n-pseudomanifold N = N ′ ∪N ′′2 lying in Q∪ ∂P to the cubical (n− 1)-complex
T = T ′ ∪S T ′′ obtained by gluing T ′ and T ′′ along the cubical (n − 2)-complex S formed of
the pieces Zn−2 ⊆ Cn, where Cn is a cubical n-simplex of ∂P . (As a result of the inclusions
Zn−2 ⊆ Zn−1 ⊆ T ′ and Zn−2 = Zn−2 × {1

2} ⊆ T ′′, the complex S lies both in T ′ and in T ′′.)
See Figure 7 for a representation of N .

By construction, every fiber h−1(t) ⊆ N with t ∈ T agrees with a fiber of θ or Θ, and therefore
is isomorphic to the 1-skeleton of a cube of dimension at most n+ 1; see Figure 3. Thus, every
fiber h−1(t) has at most (n+1) 2n edges. Furthermore, every fiber of h is sent by f̄ to a (possibly
degenerate) cubical graph of length at most (n+1) 2n δ < W(M). By definition of the homology
1-waist, see Definition 1.1 where p = 1, the restriction f̄|N : N →M of f̄ to N is not of degree
one. That is,

f̄∗([N ]) 6= [M ] ∈ Hn(M). (3.3)

By construction, the pseudomanifolds N and ∂P are homologuous in Q ∪ ∂P . Specifically,
their difference as n-cycles bounds the pseudomanifold Q. This implies that

f̄∗([N ]) = f̄∗([∂P ]) = σ̄∗([∂P ]) (3.4)
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of the tubular neighborhood of the inner part of the dual complex to P  .1

This is a part of N. It consists of the subdivided manifold together with the boundary 

Figure 7. Cubical structure of the pseudomanifold N

since f̄ agrees with σ̄ on ∂P . Now, the map σ̄ is a deformation of σ. Therefore,

σ̄∗([∂P ]) = σ∗([∂P ]) = [M ] (3.5)

by (3.1). Thus, the relations (3.3), (3.4) and (3.5) lead to a contradiction. �

Remark 3.4. Working with simplicial complexes instead of cubical complexes yields a better
constant in Theorem 3.3, namely, cn = 1

(n+1)(n+2) . Still, we decided to work with cubical

complexes since the constructions of Section 2 are simpler to describe in this context.

Theorem 1.3 follows from Theorem 3.3 and Theorem 3.2.

4. Filling radius and modified homology 1-waist

The goal of this section is to present an extension of Theorem 3.3 where the filling radius is
bounded from below in terms of a modified homology 1-waist more suited for applications in
the calculus of variations from a geometric measure theory point of view.

As a preliminary, we are interested in triangulated compact n-pseudomanifolds M with or
without boundary such that every vertex is incident to at most κn edges for some very large
constants κn depending only on n. In this case, we say that M has κn-bounded local complexity,
or bounded local complexity.

For example, every smooth manifold can be triangulated with bounded local complexity.
This follows, for example, from H. Whitney’s proof of the existence of smooth triangulations
of manifolds. First, embed a manifold into a high-dimensional Euclidean space and consider
a subdivision of the Euclidean space into very small cubes. Making a generic shift of this
triangulation, one ensures that the manifold intersects each face of each cube transversely. If
the cubes are small enough, the intersections of the manifold with the cubes are very close to
the intersections with an n-plane and, therefore, can be subdivided in a locally bounded number
of simplices.

Gromov proved in [8, §55
7 .II’] that every triangulated closed n-pseudomanifold such that each

vertex is incident to at most κ simplices can be filled by a compact (n+ 1)-pseudomanifold such
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that each vertex is incident to at most f(κ, n) edges for some function f . In other words, a closed
pseudomanifold with locally bounded complexity is the boundary of a compact pseudomanifold
with boundary with locally bounded complexity.

The above discussion can be summarized by the following lemma.

Lemma 4.1. There exist positive integer numbers κ1 < κ2 < . . . such that

(1) every smooth compact n-manifold can be triangulated with κn-bounded local complexity;
(2) every closed n-pseudomanifold with κn-bounded local complexity bounds a compact (n+1)-

pseudomanifold with κn+1-bounded local complexity.

Remark 4.2. If a closed pseudomanifold P with bounded local complexity is contained in a
(small) metric ball B of a Banach space, we can assume that the filling of P with bounded local
complexity given by Lemma 4.1.(2) also lies in B after projection.

Remark 4.3. Bounded local complexity could also be defined for cubical structures instead
of simplicial structures. Since every simplex can be decomposed into cubes and every cubical
simplex can be decomposed into simplices, the two notions are equivalent. Namely, an n-
pseudomanifold M admits a triangulation with κn-bounded local simplicial complexity if and
only if it admits a cubical structure with κ′n-bounded local cubical complexity.

The following result implies that the filling with bounded local complexity given by Lemma 4.1.(2)
can be chosen arbitrarily close to any given filling.

Proposition 4.4. Let P be a compact (n+1)-pseudomanifold in a Banach space E, whose bound-
ary ∂P has κn-bounded local complexity. Then there exists a compact (n+1)-pseudomanifold P ′

in E with the same boundary as P such that P ′ has κn+1-bounded local complexity and is at
arbitrarily small Hausdorff distance to P .

Proof. First, we are going to sketch the general idea of the proof. We proceed in the follow-
ing way. We remove small neighbourhoods of all vertices, creating for each vertex p a “hole”
bounded by the pseudomanifold Lk(p), where Lk(p) denotes the link of p. Then we remove
small neighbourhoods of all edges e creating “holes” Lk(e)× e, and so on. At the end, each n-
simplex will be truncated to a certain polytope (called permutohedron). We can triangulate this
polytope into a certain fixed way. The resulting polyhedron will automatically have bounded
local complexity. Then we reconstruct a filling P ′ of ∂P starting from faces with the lowest
codimension and going up. At each stage, we fill each link by the bounded local complexity fill-
ing provided by Lemma 4.1. As all our surgeries can be done arbitrarily closely to the original
filling, our construction almost does not affect the distance from the filling P ′ to ∂P .

The actual proof goes as follows. Without loss of generality, we can assume that P is piecewise
linear and that its triangulation T is ε-fine (but still has bounded local complexity). Consider
the dual polyhedral decomposition P of the triangulation T of P . By definition, the dual poly-
hedral decomposition P is formed of the closed stars of the vertices of T in the first barycentric
subdivision T ′ of T .

Let ∆n−i be an (n − i)-face of T with i ∈ {0, . . . , n}. Since P is a compact (n + 1)-
pseudomanifold with boundary, the link Lk(∆n−i) of ∆n−i in T ′ is a compact i-pseudomanifold∗

with boundary if ∆n−i lies in ∂P and without boundary otherwise. Define also the closed i-
pseudomanifold

Lk+(∆n−i) = Lk(∆n−i) ∪ cone(∂Lk(∆n−i)) (4.1)

∗In the proof of Proposition 4.5, we relax the usual definition of a pseudomanifold to a finite disjoint union of
pseudomanifolds allowing a pseudomanifold to be non-connected.
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where cone(∂Lk(∆n−i)) is the cone over ∂Lk(∆n−i) arising from the center ω(∆n−i) of ∆n−i.
Note that Lk+(∆n−i) = Lk(∆n−i) if ∆n−i does not lie in ∂P , and that Lk+(∆n−i) ⊆ ∂P if
∆n−i lies in ∂P .

By construction,

Lk(∆n−i) =
⋃

∆n−i⊆∆n−i+1

cone(Lk+(∆n−i+1)) (4.2)

where the union is over all the (n− i+ 1)-simplices ∆n−i+1 of T containing ∆n−i and

cone(Lk+(∆n−i+1)) is the cone over Lk+(∆n−i+1) arising from ω(∆n−i+1).

Note that

cone(Lk({p})) = Star(p)

for every vertex p of T . Furthermore, Star(p) and Star(q) intersect each other if and only if p
and q are adjacent vertices of T . In this case,

Star(p) ∩ Star(q) = cone(Lk+([p, q])). (4.3)

Since the pseudomanifold P is formed of the stars Star(p), it can be reconstructed from the
augmented 1-dimensional links Lk+(∆n−1) and the centers of the faces of T by following the
pattern (4.2) and the relation (4.1). This has to be done iteratively for i equals 1 to n until
Lk({p}) and eventually cone(Lk({p})) are reconstructed. Observe that the boundary ∂P of P
is formed of the union of all the cones occurring in (4.1). That is,

∂P =
⋃

p vertex of T
cone(∂Lk({p}))

where the union is over all vertices p of T (lying in ∂P ).

Now, we want to construct a different filling P ′ with bounded local complexity following a
similar (re)-construction procedure. Specifically, we want to define a compact i-pseudomanifold
Φ(Lk(∆n−i)) with bounded local complexity lying at distance . ε from a vertex of T for every
(n− i)-face ∆n−i of T . Moreover, we require that ∂Φ(Lk(∆n−i)) = ∂Lk(∆n−i) whenever ∆n−i

lies in ∂P . For i = 1, let Φ(Lk(∆n−1)) = Lk(∆n−1). As a union of 1-pseudomanifolds, Lk(∆n−1)
has 2-bounded local complexity and lies at distance at most ε from ω(∆n−1).

Suppose that Φ(Lk(∆n−i)) is defined for every (n−i)-face ∆n−i of T . By similarity with (4.1),
define

Φ(Lk+(∆n−i)) = Φ(Lk(∆n−i)) ∪ cone(∂Φ(Lk(∆n−i))).

Recall that ∂Φ(Lk(∆n−i)) = ∂Lk(∆n−i) is empty if ∆n−i does not lie in ∂P and is contained
in ∂P otherwise. Thus, Φ(Lk+(∆n−i)) is a closed i-pseudomanifold with bounded local com-
plexity.

Now, define Φ(cone(Lk+(∆n−i))) as the polyhedral pseudomanifold filling of Φ(Lk+(∆n−i))
with bounded local complexity given by Lemma 4.1.(2). This filling lies within distance . ε
from a vertex of T ; see Remark 4.2. Finally, by similarity with (4.2), let

Φ(Lk(∆n−i−1)) =
⋃

∆n−i−1⊆∆n−i

Φ(cone(Lk+(∆n−i))).

Note that Φ(Lk(∆n−i−1)) also lies within distance . ε from a vertex of T .
As in (4.3), Φ(Star(p)) and Φ(Star(q)) intersect each other if and only if p and q are adjacent

vertices of T . In this case, their intersection

Φ(Star(p)) ∩ Φ(Star(q)) = Φ(cone(Lk+([p, q])))
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is a compact n-pseudomanifold. This implies that the union

P ′ =
⋃

p vertex of T
Φ(Star(p))

over all vertices of T is a compact (n+ 1)-pseudomanifold with bounded local complexity lying
at distance . ε from the vertex set of T and so from P . Furthermore,

∂P ′ =
⋃

p vertex of T
cone(∂Φ(Lk({p}))) =

⋃
p vertex of T

cone(∂Lk({p})) = ∂P

as required. �

This proposition has the following immediate corollary.

Proposition 4.5. Let M be a closed Riemannian n-manifold embedded into L∞(M) by the
Kuratowski embedding. Then, for every ε > 0, the manifold M bounds a compact (n + 1)-
pseudomanifold P with κn+1-bounded local complexity that is contained in the (FillRad(M)+ ε)-
neighbourhood of M .

Remark 4.6. Proposition 4.5 yields a control on the local complexity of the simplicial/cubical
structure of the filling, but it does not provide any control on the total number of n-simplices/cubical
n-simplices of the filling (which may be arbitrarily large).

Now, we can derive the following filling radius estimate extending Theorem 3.3. See (1.3) for
the definition of W′

1(M).

Theorem 4.7. Let M be a closed n-manifold. Then every Riemannian metric on M satisfies

FillRad(M) ≥ cn W′
1(M)

for cn = 1
22n−1(n+1)!κn

.

Proof. We argue by contradiction as in the proof of Theorem 3.3 using the same notations.
Suppose that there exists a continuous map σ : P → Uν(M) ⊆ L∞(M) defined on a compact
cubical (n+ 1)-pseudomanifold P with boundary such that the restriction σ : ∂P →M satisfies

σ∗([∂P ]) = [M ] ∈ Hn(M)

with ν < 1
8κ′n

W′
1(M), where κ′n is defined in terms of κn in (4.5).

From now on, we will consider a cubical structure of P with bounded local complexity given
by Proposition 4.5. As in the proof of Theorem 3.3, we construct a map f̄ : Q∪∂P →M where
Q is a neighborhood of P 1 in P which agrees with a deformation σ̄ of σ. Recall that the map f̄
takes every edge of P 1 to a segment of length less than δ = 2ν + ε < 1

4κ′n
W′

1(M). We also

construct a map h : N → T from a closed n-pseudomanifold N homologuous to ∂P in Q ∪ ∂P
to a cubical (n − 1)-complex T = T ′ ∪S T ′′ formed of (n − 1)-cubes glued together along their
(n− 2)-faces, where each fiber h−1(t) is isomorphic to the 1-skeleton of a cube of dimension at
most n+ 1. If M is orientable, the filling P is also orientable (modulo ∂P ) and so is the closed
pseudomanifold N .

Let Cn+1 be a cubical (n+ 1)-simplex of P . Denote by Isom(Cn+1) the (full) isometry group
of Cn+1. Recall that T ′ ∩ Cn+1 agrees with

Zn−1 = {t ∈ [−1, 1]n+1 | there exist i 6= j such that ti = tj = 0}.

A fundamental domain for the action of Isom(Cn+1) on T ′ ∩ Cn+1 = Zn−1 is given by

∆ = ∆n−1 = {t ∈ [−1, 1]n+1 | 0 ≤ t1 ≤ · · · ≤ tn−1 ≤ 1 and tn = tn+1 = 0}. (4.4)
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Its orbit gives rise to a natural triangulation of Zn−1 with

|Isom(Cn+1)|/|Stab(∆n−1)| = 2n+1(n+ 1)!/2 = 2n(n+ 1)!

copies of ∆n−1. The pieces Zn−2 × [0, 1] ⊆ Cn+1 composing T ′′ also lie in Zn−1 and the action
of Isom(Cn+1) ∩ Stab(Zn−2 × [0, 1]) on each of these pieces has ∆n−1 for fundamental domain
too. This gives rise to a triangulation of Zn−2 × [0, 1] with

|Isom(Cn+1) ∩ Stab(Zn−2 × [0, 1])|/|Stab(∆n−1)| = 2n−1n!

copies of ∆n−1, which is compatible with the triangulation of Zn−1. Denote by q′ : Zn−1 → ∆n−1

and by q′′ : Zn−2× [0, 1]→ ∆n−1 the quotient maps. Since T = T ′∪T ′′ is made of copies of Zn−1

and Zn−2 × [0, 1] glued together, there exists a surjective continuous map  : T → ∆n−1 whose
restriction to each copy of ZT agrees with the quotient maps q′ or q′′, where ZT = Zn−1 or
Zn−2 × [0, 1]. (It does not matter how the copies of ZT are isometrically identified as long as
Zn−2×{1} lies in T ′∩T ′′ since, at the end, we take the quotient by the isometry group of Zn−1

or Zn−2.) Note that the restriction of every fiber of  : T → ∆ to any copy of ZT coincides with
an orbit of the isometry group of Zn−1 or Zn−2. By construction, the complex T is tiled with
copies ∆i of ∆ such that |∆i

: ∆i → ∆ is a diffeomorphism. Denote by TT the corresponding
triangulation of T .

Since the map h : N → T is a submersion away from the inverse image of the (n−2)-skeleton
of TT , the composition

~ : N
h→ T

→ ∆

is a submersion over the interior ∆̊ of ∆. Moreover, every fiber of ~ over ∆̊ is composed of
exactly 2n(n + 1)! |P | + 2n−1n! |∂P | disjoint simple loops, where |P | is the number of cubical
(n + 1)-simplices of P and |∂P | is the number of cubical n-simplices of ∂P . Furthermore, the
image under f̄|N : N →M of each of these loops is of length at most 4δ.

Suppose that M is orientable. Fix an orientation on N and ∆. Since ~ : N → ∆ is a
submersion away from the inverse image of ∂∆, we can define in a unique way an orientation
on the fibers ~−1(x), with x ∈ ∆̊, so that ~∗ω∆ ∧ ω~−1(x) is positive, where ω∆ is a positive

volume form on ∆ and ω~−1(x) is a volume form on ~−1(x) defining its orientation. If M is
nonorientable, we only consider unoriented cycles and there is no need to define an orientation
on the fibers of ~.

The family of 1-cycles Ξx = ~−1(x) ⊆ N with x ∈ ∆̊ extends by continuity to a family of
1-cycles parameterized by ∆ as follows. Specifically, we want to define Ξx0 for x0 ∈ ∂∆. Fix
t0 ∈ −1(x0). For a small enough neighborhood U of t0 in T , the points of −1(x) ∩ U converge

to t0 as x ∈ ∆̊ goes to x0. Moreover, the cardinality kt0 of −1(x) ∩ U is bounded by 2n(n+ 1)!
times the number of pieces ZT of T containing t0. Since each of these pieces lies in a cube Cn+1

corresponding to a cubical (n + 1)-simplex of P or a cubical n-simplex of ∂P , it follows from
the κn-bounded local complexity of P that

kt0 = |−1(x) ∩ U| ≤ κ′n := 2n(n+ 1)!κn. (4.5)

Furthermore, we have the following claim.

Claim 4.8. Suppose that t0 /∈ Zn−2×{0}. For x ∈ ∆̊ close enough to x0, the points of −1(x)∩ U
can be partitioned into pairs {ti, t̄i} whose inverse images h−1(ti) and h−1(t̄i) converge to h−1(t0)
with opposite orientations as x goes to x0.

Proof. By symmetry, without loss of generality, we can assume that t0 lies in (the boundary of)
a copy of ∆ ⊆ Cn+1; see (4.4). Let us examine three mutually disjoint cases.
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Case 1. Suppose that (t0)n−1 = 1 and 0 < (t0)1 < · · · < (t0)n−2 < 1. Thus, t0 lies in an
open (n − 2)-face F of ∂∆. Since P and ∂P are cubical pseudomanifolds (with and without
boundary) and t0 /∈ Zn−2 × {0}, there are exactly two pieces ZT and Z̄T of T containing the
(n− 2)-face F of ∂∆ with ∆ ⊆ ZT . Denote by ∆̄ ⊆ Z̄T the symmetric of ∆ with respect to F .
The set −1(x) ∩ U is formed of exactly two points t ∈ ∆ and t̄ ∈ ∆̄ symmetric with respect
to F . By symmetry, the loops h−1(t) and h−1(t̄) have opposite orientation at the limit when x
goes to x0.

Case 2. Suppose that (t0)1 = 0 (so Case 1 is not satisfied). Denote by σ the symmetry of Cn+1

with respect to the hyperplane {t1 = 0} of Cn+1. The set −1(x) ∩ U ∩ Cn+1 decomposes into
two subsets Σ+ ⊆ {t1 > 0} and Σ− ⊆ {t1 < 0} symmetric with respect to σ. By symmetry, the
loops h−1(t) and σ(h−1(t)) have opposite orientation at the limit when x goes to x0.

Case 3. Suppose that (t0)1 > 0 and that Case 1 is not satisfied. As t0 ∈ ∂∆n−1, there
exist disjoint subsets I1, . . . , Ik ⊆ {1, . . . , n − 1} with |Ii| ≥ 2 such that (t0)p = (t0)q for every
p, q ∈ Ii. The isotropy subgroup of t0 for the action of Isom(Cn+1) is isometric to the product
Γ = S(I1)×· · ·×S(Ik), where the symmetry groups S(Ii) act by isometries on Cn+1 by permuting
the coordinates with index in Ii. Furthermore, the points of Σ = −1(x) ∩ U ∩Cn+1 form a free
orbit of Γ. Fix a point s ∈ Σ and a bijection θ : Γ+ → Γ− between the orientation-preserving
and orientation-reversing isometries of Γ. This bijection gives rise to a partition of Σ into pairs
of points {ti, t̄i}, where ti = σi(s) and t̄i = θ(σi)(s) for some σi ∈ Γ+. By symmetry, the loops
h−1(ti) and h−1(t̄i) have opposite orientation at the limit when x goes to x0. �

For every x ∈ ∆, we have the following decomposition of ~−1(x) into connected components

~−1(x) =
⋃

t∈ −1(x)

h−1(t). (4.6)

Observe also that if t0 ∈ Zn−2 × {0}, then the fiber h−1(t) converges to a point as t goes to t0.

We can now define the 1-cycle Ξx0 ⊆ N so that its restriction to h−1(t0) agrees with the limit

of the simple loops corresponding to the fibers of h over the kt0 points of −1(x) ∩ U as x ∈ ∆̊
goes to x0. This completely characterizes Ξx0 for each of its connected components since its
support lies in ~−1(x0). By Claim 4.8 and the observation following (4.6), the 1-cycle Ξx0 is
equivalent to the zero 1-cycle. See Figure 8 and Figure 9.

As noticed before, the length of the image under f̄|N : N → M of each fiber h−1(t) with

t ∈ −1(x) and x ∈ ∆̊ is at most 4δ. Thus, the maximal length of the image of a connected
component of Ξx (counted according to its geometric multiplicity) is at most 4δκ′n; see Figure 10.
That is, for every x ∈ ∆, we have

max
C⊆Ξx

length(f̄|C) ≤ 4δκ′n

where C runs over the connected components of the 1-cycle Ξx.

Let us extend this family Ξx of 1-cycles to ∂∆ × [0, 1]. By Claim 4.8 (and the observation
following (4.6)), the 1-cycle Ξx with x ∈ ∂∆ can be seen as a graph where the (algebraic) sum of
each edge [a, b] vanishes. Denote by m the midpoint of [a, b]. For (x, t) ∈ ∂∆× [0, 1], define the
1-cycle Ξx,t by replacing each edge [a, b] of Ξx with [a, at]∪ [bt, b] (keeping the same multiplicity),
where at = ta+(1−t)m and bt = tb+(1−t)m in barycentric coordinates; see Figure 11. Observe
that Ξx,t is a continuous family of 1-cycles which agrees with Ξx for t = 0 and with a union of
points corresponding to the vertices of Ξx for t = 1. Thus, we obtain a family of 1-cycles Ξu
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Part of T that lies in some cubical simplex of dimension 4.

This figure illustrates the map from S   to the space of cycles in N or M in 3−D case. 
Here we are assuming that P is a manifold. The center is mapped to the 1−skeleton of 

2

a 4−cube, where each edge appears three times with each of the two possible orientations.

Figure 8. The S2-family of 1-cycles Ξx

1This figure illustrates the map from S   to the space of cycles on N or M, when M is a 
surface. Here we see an edge of T that passes through two cubical simplices. The points
that lie at the centers of cubes are mapped to zero cycles formed by taking the 1−skeleton

oppositely oriented curves. 

of the corresponding 3−cube with both orientations. The center of an edge that lies in the 
common face of the two cubes is mapped to the zero cycle formed by two identical, but 

Figure 9. The S1-family of 1-cycles Ξx

with u ∈ Bn−1 = ∆ ∪ (∂∆× [0, 1]), where the peripheral cycles Ξu for u ∈ ∂Bn−1 are unions of
points and

max
C⊆Ξu

length(f̄|C) ≤ 4δκ′n < W′
1(M) (4.7)

for every u ∈ Bn−1.

By construction, the inverse image under h : N → T of the interior ∆̊i of an (n−1)-simplex ∆i

of TT identifies with the product ∆̊i×S1, where each factor {x}×S1 agrees with the restriction

of Ξx to h−1(∆̊i) for every x ∈ ∆̊i. This implies that the family of 1-cycles Ξu induces a
nontrivial class in

πn−1(Z1(N ;G), {0}) ' Hn(N ;G) ' G
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T

from S   to the space of cycles. In our figure the number of 3−cubes sharing the face is 
3−cubes to share a face. This number will affect the bound when we consider the map 
When the filling of M is not a manifold, (dim M=3), it is possible for a large number of 

3.2

times 3.

Figure 10. Multiple cubes sharing a face

under the Almgren isomorphism [2], where G = Z if M (and so N) is orientable and G = Z2

otherwise. By definition of W′
1(M), see (1.3), we derive from (4.7) that the image by f̄ of the

family of 1-cycles Ξu does not represent the fundamental class of M . Thus,

f̄∗([N ]) 6= [M ] ∈ Hn(M ;G).

On the other hand, since the pseudomanifolds N and ∂P are homologuous in Q∪∂P and the
map f̄ : Q ∪ ∂P →M agrees with a deformation of σ on ∂P , we deduce that

f̄∗([N ]) = f̄∗([∂P ]) = σ∗([∂P ]) = [M ].

Hence a contradiction. �

Remark 4.9. In the proof of Theorem 4.7, we did not define the family Ξx of 1-cycles of N
with x ∈ Sn−1 as the inverse images of some map N → Sn−1, but as a perturbation/extension
of the family given by the inverse images of ~ : N → ∆n−1. It would be possible to do so by
pushing apart the 1-cycles and inserting small new 1-cycles along the lines of the examples given
in Subsection 1.2. This would allow us to replace W′

1(M) in Theorem 4.7 with W̄1(M) defined
in (1.2).

We can refine the inequality of Theorem 4.7 by considering the invariant W′′
1(M) instead

of W′
1(M); see (1.4).

Theorem 4.10. Let M be a closed n-manifold with n ≥ 3. Then every Riemannian metric
on M satisfies

FillRad(M) ≥ cn W′′
1(M)

for some explicit positive constant cn depending only on n.

Proof. We argue as in the proof of Theorem 4.7, using the same notations and pointing out
only the differences. Since n ≥ 3, by slightly perturbing f̄ , we can assume that the restriction
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(a) (b)

with opposite orientations.
copies of 1−skeleton of 2−,3−, 4−cubes

mapped to the zero cycle. 
cycles. Note that each boundary point is
Here we are mapping to the space of 

Yet this cycle is obtained from multiple

We will first change the map so that it 
becomes the map from D  to the space of 2

is mapped to a collection of short curves that
Each point of the annulus between two discs
to S by continuously contracting each curve.

shrink to points as one moves towards the 

2

a map from S  .2
boundary of the larger disc. Thus, we obtain 

curves. Next we will extend this map

Changing the map from S   to the space of cycles to a map to the space of curves.2

Figure 11. Extension of the family of cycles to the collar of ∆

of f̄ to P 1 is an embedding into M . By construction, the images by f̄ of the fibers h−1(t) with
t ∈ T \T ′′ lie in small cubes f̄(Cn) of M with Cn ⊆ ∂P . Furthermore, these images are pairwise
disjoint in M and do not intersect the graph f̄(P 1). Likewise, the fibers h−1(t) with t ∈ T \ T ′′
are isomorphic to the 1-skeleton of a cube of dimension at most n + 1, and their images by f̄
lie in the graph f̄(P 1). We can slightly modify f̄ so that the images of the fibers h−1(t) with
t ∈ T \ T ′′ are disjoint in M . Perturbing also the map  : T → ∆, we can further assume the
following. For every t ∈ −1(x), denote by Cn−1

t the (n − 1)-cube of T containing t (or one of
them). For every t′ ∈ −1(x) not lying in an (n − 1)-cube of T intersecting Cn−1

t , the image
of h−1(t′) is disjoint from the image of h−1(t). Now, by the κn-bounded local complexity of P ,
the number of fibers h−1(t′) lying in an (n − 1)-cube of T intersecting Cn−1

t is bounded by an
explicit constant depending only on n. As a result, we obtain a family Ξ′u of 1-cycles of N with
u ∈ Sn−1 such that every connected component C ′ of f̄(Ξ′u) satisfies

length(C ′) ≤ κ′′n δ

for some explicit constant κ′′n depending only on n. Since the 1-cycle family Ξ′u is a deformation
of the original 1-cycle family Ξu, the homotopy class it induces in π1(Z1(N ;G), {0}) is nontrivial.
We conclude as in the proof of Theorem 4.7. �
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5. Filling radius and relative homotopy 1-waist

We adapt the argument of Section 3 to establish a lower bound on the filling radius of a closed
Riemannian manifold in terms of its relative homotopy 1-waist and derive Theorem 1.11.

Theorem 5.1. Fix k ≤ n− 1. Let M be a closed n-manifold and Φ : M → K be a continuous
map to a CW-complex K with πi(K) = 0 for every i ≥ k + 1. Suppose that Φ∗([M ]) 6= 0 ∈
Hn(K;G) for some homology coefficient group G. Then every Riemannian metric on M satisfies

FillRad(M) ≥ cn W1,k(M,Φ)

for some explicit positive constant cn depending only on n.

Proof. We are going to give a proof by contradiction. Initially, we argue as in the proof of
Theorem 3.3 using the same notations. Suppose that there exists a continuous map σ : P →
Uν(M) ⊆ L∞(M) defined on a compact cubical (n+1)-pseudomanifold such that the restriction
σ : ∂P →M satisfies

σ∗([∂P ]) = [M ] ∈ Hn(M ;G)

with ν < 1
(k+1) 2k+1 W1,k(M,Φ). As in the proof of Theorem 3.3, we construct a map f : P 1 →M

which agrees with σ on the 1-skeleton of ∂P so that the lengths of the images of the edges of P 1

are less than δ = 2ν + ε < 1
(k+1) 2k

W1,k(M,Φ).

Let P k+1
∗ be the cubical (k+1)-complex formed of the cubical (k+1)-simplices of P not lying

in ∂P . Denote by Qk+1 ⊆ P k+1
∗ the cubical (k+ 1)-complex formed of the pieces Xk+1

1 ⊆ Ck+1,
where Ck+1 is a cubical (k + 1)-simplex of P not lying in ∂P . We define a continuous map
f̄ : Qk+1 ∪ ∂P → M from f : P 1 → M which coincides with the deformation σ̄ : ∂P → M of σ
and takes every edge of P 1 to a segment of length less than δ; see the proof of Theorem 3.3 for
the details of the construction.

Let us extend this map to the (k+1)-skeleton P k+1 of P . Define the cubical k-complex R′ and
the cubical (k − 1)-complex T ′ by respectively pasting together the pieces Y k ⊆ Ck+1 and the
pieces Zk−1 ⊆ Ck+1, where Ck+1 is a cubical (k + 1)-simplex of P not lying in ∂P . Denote by
h′ : R′ → T ′ the map whose restriction to Y k agrees with the map θ : Y k → Zk−1 defined in (2.2)
with p = 1. Similarly, define the cubical k-complex R′′ and the cubical (k − 1)-complex T ′′ by
respectively pasting together the pieces Xk

2 ⊆ Ck and the pieces Zk−2 × [0, 1
2 ] with Zk−2 ⊆ Ck,

where Ck is a cubical k-simplex of ∂P . Denote by h′′ : R′′ → T ′′ the map whose restriction
to Xk

2 agrees with the map Θ : Xk
2 → Zk−2× [0, 1

2 ] defined in (2.3) with p = 1. The two maps h′

and h′′ so-defined agree on the intersection R′∩R′′ formed of the pieces Y k−1 ⊆ Ck lying in ∂P ,
after identifying Zk−2 ⊆ Zk−1 ⊆ T ′ and Zk−2 = Zk−2×{1

2} ⊆ T
′′, where Zk−2 ⊆ Ck lies in ∂P .

Put together, these maps give rise to a continuous map

h : R→ T

from the cubical k-complex R = R′∪R′′ lying in P k+1 to the cubical (k−1)-complex T = T ′∪ST ′′
obtained by gluing T ′ and T ′′ along the cubical (k−2)-complex S formed of the pieces Zk−2 ⊆ Ck
lying in ∂P .

Consider the composite map

F = Φ ◦ f̄ : Qk+1 ∪ ∂P → K

extending Φ ◦ σ̄ : ∂P → K. By construction, every fiber h−1(t) ⊆ R with t ∈ T agrees with
a fiber of θ or Θ, and is isomorphic to the 1-skeleton of a cube of dimension at most k + 1.
Thus, every fiber of h is sent by f̄ to a graph of length at most (k + 1) 2k δ < W1,k(M,Φ). By
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definition of the Φ-relative homotopy k-waist, see Definition 1.1, the restriction F|R : R→ K is
homotopic to a map

R
h→ T → K

which factors out through h. Thus, the map F : Qk+1 ∪ ∂P → K extends to

R× [0, 1]/∼

where (x, 1) ∼ (y, 1) if and only if h(x) = h(y). Since the complement of the interior of Qk+1

in P k+1
∗ is homeomorphic to R × [0, 1]/∼, this yields a map F : P k+1

∗ ∪ ∂P → K defined in
particular on the (k + 1)-skeleton P k+1 of P .

Now, since πi(K) = 0 for every i ≥ k+ 1, the map F further extends into F : P → K. Recall
that the restriction of F to ∂P agrees with Φ ◦ σ̄. Therefore, the homology class

(Φ ◦ σ̄)∗([∂P ]) = Φ∗([M ]) ∈ Hn(K;G)

is trivial. Hence a contradiction. �

Theorem 1.11 follows from Theorem 5.1 and Theorem 3.2.

6. Filling radius, Urysohn width and 1-waist

Using the filling estimate established in Theorem 3.3, we show that the filling radius of a
closed Riemannian manifold is roughly equal to its homology 1-waist.

We need to introduce the following notion related to the 1-waist.

Definition 6.1. The Urysohn width of a closed Riemannian n-manifold M , denoted by UW(M),
is the infimum of the distances δ such that there exists a continuous map M → X from M to
a simplicial (n − 1)-complex whose fibers have diameters less than δ. Strictly speaking, this
definition corresponds to the notion of Urysohn (n− 1)-width.

Though the homology 1-waist W(M) and the Urysohn width UW(M) are defined in similar
terms, the two notions present some differences. First, the homology 1-waist measures the
1-polyhedron length, while the Urysohn width measures the 1-polyhedron diameter. Second,
the homology 1-waist is concerned with homology 1-sweepouts made of 1-polyhedra which may
intersect each other, while, by definition, the fibers involved in the definition of the Urysohn
width are disjoint. Still, the two notions are connected through the filling radius estimate of
Theorem 3.3 and the general bound

FillRad(M) ≤ 1
2 UW(M) (6.1)

obtained in [6, Appendix 1] satisfied by every closed pseudomanifold.

The following result extends the bound (6.1) to the homology 1-waist W(M).

Proposition 6.2. Every closed Riemannian n-manifold M satisfies

FillRad(M) ≤ 1
2 W(M).

Proof. By definition of the homology 1-waist, see Definition 1.1 where p = 1, there exist a
continuous map h : N → T from a closed n-pseudomanifold N to a finite simplicial (n − 1)-
complex T and a degree one map ϕ : N →M such that

lengthϕ|h−1(t) < W(M) + 2ε (6.2)

for every t ∈ T , where ε > 0 is any given positive real. Slightly perturbing ϕ if necessary, we
can always assume that ϕ is piecewise smooth. Consider the metric gN = ϕ∗gM + λ2g0 on N ,
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where ϕ∗gM is the pull-back of the metric gM on M under ϕ, and g0 is a fixed metric on N with
λ > 0 arbitrarily small. The following chain of inequalities holds

FillRad(M) ≤ FillRad(N) ≤ 1
2 UW(N) ≤ 1

2 W(M) + ε

where each inequality can be justified as follows. By [6, p. 6], the filling radius does not increase
under 1-Lipschitz degree one maps. Applying this result to the contracting map ϕ : (N, gN )→
(M, gM ) yields the first inequality. The second inequality is given by (6.1). By construction,
the diameter of the fibers h−1(t) of h : N → T is less than W(M) + 2ε, see (6.2), which implies
the third inequality. Now, letting ε go to zero in the previous inequality chain, we obtain the
relation FillRad(M) ≤ 1

2 W(M). �

Theorem 1.13 follows from Theorem 3.3 and Proposition 6.2.

7. Hypersphericity, filling radius and Urysohn width

Using the filling estimate established in Theorem 3.3, we derive that the filling radius and the
hypersphericity of a closed orientable Riemannian manifold can be arbitrarily far apart.

Definition 7.1. The hypersphericity of a closed orientable Riemannian n-manifold M , denoted
by HS(M), is the supremum of the radii R such that there exists a 1-Lipschitz map M → Sn(R)
of nonzero degree from M to the standard n-sphere Sn(R) of radius R.

The hypersphericity is related to the filling radius and the Urysohn width through the follow-
ing inequalities.

Proposition 7.2. Let M be a closed orientable n-manifold. Then
1
2 arccos(− 1

n+1) HS(M) ≤ FillRad(M) ≤ 1
2 UW(M).

Proof. The second inequality comes from (6.1). For the first inequality, it is convenient to work
with the rational filling radius, which is defined in a similar way as the standard filling radius, see
Definition 3.1, except that the homology coefficients are in Q. It follows from abstract nonsense
using the relation Hn(X;Q) ' Hn(X;Z)⊗Q for simplicial complexes X given by the universal
coefficient theorem for homology that

FillRadQ(M) ≤ FillRad(M).

By [6, p. 6], the rational filling radius does not increase under 1-Lipschitz maps of nonzero
degree. Thus,

FillRadQ(Sn) HS(M) ≤ FillRadQ(M).

Now, the filling radius of the standard sphere Sn has been computed in [16] and the argument
extends to the rational filling radius. More specifically,

FillRadQ(Sn) = 1
2 arccos(− 1

n+1).

Hence the proposition. �

Remark 7.3. A direct inequality between the hypersphericity and the Urysohn width can be
found in [7], [9, 2.121

2 +
] and [13].

Proposition 8.3 of [3], combined with the previous proposition or remark, shows that for every
Riemannian metric on S2, these geometric invariants are roughly the same

HS(S2) ' FillRad(S2) ' UW(S2).

In higher dimension, examples showing that the hypersphericity and the Urysohn width can
be arbitrarily far apart have first been constructed in [13, §5]. Using the relationship between
the filling radius and the homology 1-waist established in Theorem 3.3, we show that a similar
phenomenon occurs between the hypersphericity and the filling radius.
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Theorem 7.4. There exists a sequence (gi) of Riemannian metrics on S4 with arbitrarily small
hypersphericity and filling radius bounded away from zero.

Proof. We argue as in [13, §5]. Let HP 2 be the quaternionic projective plane (of dimension 8)
with the standard homogeneous metric. Consider a sequence S4

i ⊆ HP 2 of 4-spheres with
their induced metrics, representing HP 1 ' S4 in homology, which Gromov-Hausdorff converges
to HP 2. Such an approximating sequence exists; see [4] and [13, §5]. The girth of the inclusion
maps fi : S4

i → HP 2 tend to zero. That is, there exists a finite open cover {U ik} of HP 2 such that

every preimage f−1
i (U ik) has an arbitrarily small radius for i large enough. By [13, Lemma 5.2],

every 1-Lipschitz map S4
i → S4(R) to the round sphere of radius R is homotopic to a map which

factors out through

S4
i

fi−→ HP 2 → S4(R) (7.1)

for i large enough. This implies that the map S4
i → S4(R) has zero degree. Otherwise, the

induced homomorphism H4(S4(R))→ H4(S4
i ) would be nonzero. In particular, the homomor-

phism H∗(S4(R))→ H∗(HP 2) induced by the second map in (7.1) takes the fundamental coho-
mology class α ∈ H4(S4(R)) to a nonzero class ω ∈ H4(HP 2). By naturality of the cup product,
this homomorphism takes the product α ∪ α ∈ H8(S4(R)) to the product ω ∪ ω ∈ H8(HP 2),
which is impossible since α ∪ α = 0 and ω ∪ ω 6= 0. Therefore, the hypersphericity of S4

i tends
to zero.

On the other hand, suppose that the filling radius of S4
i is not bounded away from zero. Using

the relationship between the filling radius and the homology 1-waist established in Theorem 3.3,
there exist a continuous map hi : Ni → Ti from a closed orientable 4-pseudomanifold Ni to a
finite simplicial 3-complex Ti and a degree one map ϕ : Ni → S4

i such that

lengthϕi|h−1
i (t) < ε (7.2)

for every t ∈ Ti, where ε > 0 is any given positive real. Define a metric gN on N by pulling-back
the metric on M as in the proof of Proposition 6.2 so that the map ϕi : Ni → S4

i is contracting.

By construction, the length of the fibers h−1
i (t) is less than ε; see (7.2). Thus, the girth of

hi : Ni → Ti is less than ε. By [13, Lemma 5.2], the contracting map fi ◦ ϕi : Ni → HP 2 is
homothetic to a map which factors out through

Ni
hi−→ Ti → HP 2.

Since Ti is a simplicial 3-complex, this implies that the homology class (fi ◦ ϕi)∗([Ni]) vanishes
inH4(HP 2), which contradicts the injectivity of the homomorphisms (ϕi)∗ and (fi)∗ in homology.

�

8. Filling radius and homology p-waist

We establish a lower bound on the filling radius of a closed Riemannian manifold in terms of its
homology p-waist and its homological filling functions. As a consequence, we derive Theorem 1.3.

Let us first introduce the following replacement transformation of a map defined on a cubical
complex based on the notion of homological filling functions; see Definition 1.16. For ε > 0
small enough, define FH

ε
k(v) = FHk(v) + ε. In order to keep the notations simple and despite

the risk of confusion, we will continue to write FHk for FH
ε
k in the following proposition.

Proposition 8.1. Let M be a closed Riemannian n-manifold and p be a positive number with
p ≤ n. For every cubical i-complex Ki with i ≤ p and every continuous map f : K1 → M
defined on the 1-skeleton of Ki, sending every edge of K1 to a minimizing segment of M of
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length at most δ > 0, there exists a continuous extension F : X i → M of f : K1 → M defined
on a cubical i-complex X i containing K1 with

volj(F|C) ≤ FHj−1 ◦ · · · ◦ FH1(δ) (8.1)

for every cubical j-simplex C of X i with j ≤ p. The extension F : X i → M is called the
R-transformation† of f : K1 → M modeled on Ki (or simply the R-transformation of f if the
model space Ki is a cube or is implicit).

Furthermore, the R-transformation can be defined so as to satisfy the following properties:

(1) (Triviality) If f : Ki →M is continuous on Ki and if the volume bound

volj(f|C) ≤ FHj−1 ◦ · · · ◦ FH1(δ) (8.2)

holds for each cubical j-simplex C of Ki with j ≤ i, then X i = Ki and F = f .

(2) (Coherence) If K
ij
j (with j = 1, 2) are two cubical ij-complexes with Ki1

1 ⊆ Ki2
2 and

fj : K1
j → M are two continuous maps which coincide on K1

1 , where ij ≤ p, then

X i11 ⊆ X
i2
2 and the two corresponding maps Fj : X ijj →M coincide on X i11 .

(3) (Commutation with the boundary operator ∂) If Ki is a closed i-cube and e1, . . . , e2i de-
note its (i− 1)-faces, then X i = Σi is a compact i-pseudomanifold whose boundary ∂Σi

agrees with the union of the 2i cubical (i−1)-complexes/pseudomanifolds Yj correspond-
ing to the domains of the R-transformations of the restrictions f|e1j

: e1
j → M modeled

on ej for j = 1, . . . , 2i.

Proof. We argue by induction on p. If p = 1, we simply take X 1 = K1 and F : K1 →M for
f : K1 →M . The inequality (8.1) and the properties (1)-(3) are satisfied in this case. Suppose
that the result of the proposition holds true for p ≥ 1. Let Kp+1 be a cubical (p + 1)-complex
and f : K1 →M be a continuous map as in the proposition. Let us define the R-transformation
of the restriction of f to the 1-skeleton of each cubical (p + 1)-simplex Cp+1 ⊆ Kp+1. Denote
by Cpi the p-faces of Cp+1 with 1 ≤ i ≤ 2(p + 1). By induction, the R-transformation of the
restriction of f to the 1-skeleton of Cpi is a map Fi : X pi = Σp

i → M defined on a compact
p-pseudomanifold Σp

i with

volp(Fi) ≤ FHp−1 ◦ · · · ◦ FH1(δ).

By coherence of the R-transformation, the maps Fi : Σp
i → M and Fj : Σp

j → M coincide on

the cubical (p − 1)-complex given by the intersection Σp
i ∩ Σp

j . Thus, the maps Fi : Σp
i → M

give rise to a continuous map G : ∪2(p+1)
i=1 Σp

i →M with

volp(G) ≤ 2(p+ 1) FHp−1 ◦ · · · ◦ FH1(δ).

The cubical structures of the p-faces Cpi of ∂Cp+1 = ∪iCpi induce compatible natural decompo-
sitions of the boundaries ∂Σp

i of the pseudomanifolds Σp
i into compact (p− 1)-pseudomanifolds

corresponding to the (p − 1)-faces of Cpi . Every compact (p − 1)-pseudomanifold of these de-
compositions appears twice with opposite orientations. Therefore, the sum of the boundaries
of the pseudomanifolds Σp

i vanishes. Thus, the space ∪iΣp
i obtained by replacing the p-faces of

∂Cp+1 = ∪iCpi with the compact p-pseudomanifolds Σp
i is a closed p-pseudomanifold Σp. By

definition of the homological filling function, there exists a continuous extension F : Σp+1 →M
of G : Σp →M defined on a compact (p+ 1)-pseudomanifold Σp+1 with ∂Σp+1 = Σp such that

volp+1(F ) ≤ FHp ◦ · · · ◦ FH1(δ). (8.3)

Gluing together the compact (p+1)-pseudomanifolds Σp+1 corresponding to the cubical (p+1)-
simplices C ⊆ Kp+1 along their common faces Σp

i following the combinatorial structure of Kp+1,

†R stands for “replacement”.
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we obtain a cubical (p + 1)-complex X p+1 and a continuous extension F : X p+1 → M of
f : K1 →M modeled on Kp+1 satisfying (3).

Now, if f is defined on Kp+1 and if each cubical j-simplex C ⊆ Kp+1 satisfies (8.2), then
Σp
i = Cpi and Fi : Cpi → M agrees with f|Cpi : Cpi → M by induction. In this case, we can

take f : Kp+1 →M for its R-transformation since f|Cp+1 : Cp+1 → M satisfies the volume
bound (8.3). Thus, the property (1) is satisfied. The property (2) follows by induction (it holds
for the p-skeleton of Kp+1) and construction. �

Remark 8.2. The R-transformation of the map f : K1 →M modeled on Kp only depends on
the choice of the filling pseudomanifolds involved in the homological filling functions.

The homology p-waist is related to the filling radius through the homological filling function;
see Definition 1.16.

Theorem 8.3. Let M be a closed Riemannian n-manifold. Then, for every positive integer p,

Wp(M) ≤ 1

2n−p+1

(
n+1
p

)−1
FHp−1 ◦ · · · ◦ FH1(2 FillRad(M)).

Proof. We argue as in the proof of Theorem 3.3 using the same notations. Fix a geodesic cubical
structure of M of size at most ε > 0 such that every cubical simplex of M is an almost minimal
filling of its boundary. Suppose that there exists a continuous map σ : P → Uν(M) ⊆ L∞(M)
defined on a compact cubical (n+ 1)-pseudomanifold such that the restriction σ : ∂P →M is a
PL-homeomorphism, and, therefore, satisfies

σ∗([∂P ]) = [M ] ∈ Hn(M)

where ν is chosen so small that
1

2n−p+1

(
n+1
p

)−1
FHp−1 ◦ · · · ◦ FH1(2ν) < Wp(M). (8.4)

Construct a map f : P 1 → M as in the proof of Theorem 3.3 by projecting the images by σ
of the vertices of P to their closest points in M and by sending every edge of P to a segment
of M . The length of these segments is at most δ := 2ν+ ε. Taking a sufficiently fine subdivision
of P , we can assume without loss of generality that the inequality (8.4) is still satisfied with δ
replacing 2ν. Note that f agrees with σ on P 1 ∩ ∂P . Now, denote by Q ⊆ P the neighborhood
of the p-skeleton P (p) of P composed of the pieces Xn+1

1 ⊆ Cn+1 corresponding to the cubical

(n + 1)-simplices Cn+1 of P ; see Section 2. Define a “retraction” r : Q → P (p) by putting

together the “retractions” ρ : Xn+1
1 → (Cn+1)(p) described in (2.4). Deform σ : ∂P → M into

σ̄ : ∂P →M so that the restriction of σ̄ to each cubical n-simplex of ∂P agrees with σ ◦ ρ̄, where
ρ̄ is the extension of the “retraction” ρ defined in (2.5). Define

f̄ : P 1 ∪ ∂P →M

which agrees with f ◦ r : P 1 →M on P 1 and with σ̄ : ∂P →M on ∂P . Contrary to the proof of
Theorem 3.3, see (3.2), it may not be possible to extend f̄ : P 1 ∪ ∂P → M to Q ∪ ∂P , or even

to P (p) ∪ ∂P , when p > 1. Instead, we will consider the R-transformation of f̄ : P 1 ∪ ∂P →M
modeled on P (p) ∪ ∂P to carry on the argument.

The compact cubical n-pseudomanifold N ′ ⊆ Q with boundary lying in ∂P is composed of
the cubical n-pseudomanifolds Y n ⊆ Cn+1, where Cn+1 is a cubical (n + 1)-simplex of P ; see
Section 2. Similarly, the cubical (n − p)-complex T ′ is composed of the pieces Zn−p ⊆ Cn+1,
where Cn+1 is a cubical (n + 1)-simplex of P ; see Section 2. Denote by ~′ : N ′ → T ′ the
map whose restriction to Y n agrees with the map θ : Y n → Zn−p defined in (2.2). The
cubical n-complexes Xn

i ⊆ Cn, where Cn is a cubical n-simplex of ∂P ' M , form a cubical
n-pseudomanifold N ′i ⊆ ∂P with the same boundary as N ′′i . Also, the pieces Zn−p−1 × [0, 1

2 ]
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with Zn−p−1 ⊆ Cn, where Cn is a cubical n-simplex of ∂P , form a finite cubical (n − p)-
complex T ′′. Denote by ~′′ : N ′′2 → T ′′ the continuous map whose restriction to Xn

2 agrees
with the map Θ : Xn

2 → Zn−p−1 × [0, 1
2 ] defined in (2.3). The two maps ~′ and ~′′ so-defined

agree on the common boundary of N ′ and N ′′2 after identifying Zn−p−1 ⊆ Zn−p ⊆ T ′ and
Zn−p−1 ⊆ Zn−p−1 × {1

2} ⊆ T ′′, where Zn−p−1 ⊆ Cn lies in ∂P . Put together, these maps give
rise to a continuous map

~ : N → T

from the closed n-pseudomanifold N = N ′ ∪N ′′2 lying in Q∪ ∂P to the cubical (n− p)-complex
T = T ′ ∪S T ′′ obtained by gluing T ′ and T ′′ along the cubical (n− p− 1)-complex S formed of
the pieces Zn−p−1 ⊆ Cn, where Cn is a cubical n-simplex of ∂P .

By construction, every fiber ~−1(t) ⊆ N ′ with t ∈ T ′ agrees with a fiber of θ, and therefore
is isomorphic to the p-skeleton of a cube of dimension at most n + 1. Moreover, the retraction
r : Q→ P (p) sends every fiber ~−1(t) with t lying in the interior τ̊ of a cubical simplex τ of T ′

to the same cubical p-complex Cτ ⊆ Cn+1, preserving the cubical structure. (Note that Cτ is
only composed of p-cubes K glued together.) In particular, the preimage ~−1(̊τ) ⊆ N ′ of the
interior of a cubical simplex τ of T ′ decomposes as ~−1(̊τ) ' τ̊ × Cτ and the map ~ : N ′ → T ′

takes (t, x) ∈ τ̊ × Cτ ⊆ N ′ to ~(t, x) = t ∈ T ′. Therefore, the compact n-pseudomanifold N ′

with boundary lying in ∂P 'M decomposes as the union

N ′ =
⋃
τ ⊆T ′

⋃
K⊆Cτ

τ ×K (8.5)

over the cubical simplices τ of T ′ and the p-cubes K of Cτ , where τ1×K1 is attached to τ2×K2

along (τ1 ∩ τ2)× (K1 ∩K2). Note that if τ1 ⊆ τ2 then Cτ2 ⊆ Cτ1 .

Let K be a p-cube of P . By Proposition 8.1, the R-transformation F̄K : ΣK → M of
f̄|K1 : K1 → M modeled on K is defined on a compact p-pseudomanifold ΣK with boundary
and satisfies

volp(F̄K) ≤ FHp−1 ◦ · · · ◦ FH1(δ). (8.6)

Since the image under f̄ = σ̄ of each cubical simplex of ∂P is an almost minimal filling of the
image of its boundary, it follows from the property (1) of the R-transformation that for every
p-cube K ⊆ ∂P , the pseudomanifold ΣK is equal to K and the map F̄K : ΣK = K →M agrees
with f̄ : K →M . Replacing every p-cube K with ΣK in (8.5), we obtain a simplicial n-complex

V ′ =
⋃
τ ⊆T ′

⋃
K⊆Cτ

τ × ΣK

where τ1×ΣK1 is attached to τ2×ΣK2 along (τ1∩τ2)×(ΣK1∩ΣK2) whenever τ1×K1 is attached to
τ2×K2 in (8.5). By the coherence property (2) of Proposition 8.1, the pseudomanifold structure
of N ′ carries over to V ′. More precisely, V ′ is a compact n-pseudomanifold with the same
boundary as N ′. Thus, the union V = V ′ ∪N ′′2 is a closed n-pseudomanifold.

For every cubical simplex τ of T ′, define

Xτ =
⋃

K⊆Cτ

ΣK (8.7)

as the union of the compact p-pseudomanifolds ΣK corresponding to the p-cubes K of Cτ , where
ΣK1 is attached to ΣK2 along ΣK1∩K2 ; see Proposition 8.1. The map

h : V → T

which agrees with ~′′ : N ′′2 → T ′′ on N ′′2 and sends (t, x) ∈ τ̊ × Xτ to t ∈ T for every cubical
simplex τ of T ′ is well defined and continuous. By the coherence property (2) of Proposition 8.1,
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the previously defined maps F̄K : ΣK → M put together induce a map F̄τ : Xτ → M . Now,
consider the map

F : V →M

which coincides with f̄ : ∂P → M on N ′′2 ⊆ ∂P and whose restriction to each fiber h−1(t) '
{t} ×Xτ with t ∈ τ̊ agrees with F̄τ : Xτ ' h−1(t) → M . By the coherence property and since
F̄K = f̄K for every p-cube K ⊆ ∂P , the map F : V →M is well defined and continuous.

For every cubical simplex τ of T ′, recall that the cubical p-complex Cτ lies in Cn+1. Since
Cn+1 has at most k = 2n−p+1

(
n+1
p

)
faces of dimension p, the cubical complex Xτ ' h−1(t)

for t ∈ τ̊ is composed of at most k pseudomanifolds ΣK ; see (8.7). Since the volume of the
restriction of F to each of these pseudomanifolds satisfies (8.6), we obtain

volp[F (h−1(t))] ≤ 2n−p+1
(
n+1
p

)
FHp−1 ◦ · · · ◦ FH1(δ) < Wp(M)

for every t ∈ τ̊ , where the second inequality follows from the filling radius assumption; see (8.4).
Thus, by definition of the homology p-waist, see Definition 1.1, the map F : V →M satisfies

F∗([V ]) 6= [M ] ∈ Hn(M). (8.8)

In a different direction, the retraction r : Q → P (p) takes every piece τ × Cτ of N , where τ
is a cubical simplex of T ′, see (8.5), to the cubical p-complex Cτ . Thus, the map f̄ : Q → M
defined as f̄ = f ◦ r takes τ ×Cτ to the image of Cτ in M by f . Similarly, the map F : V →M
takes τ ×Xτ to the image of Xτ in M by F̄τ , where τ is a cubical simplex of T ′. Therefore, the
contribution of the pieces τ × Xτ to the image by F∗ of the fundamental class of V is trivial.
Now, by construction, the map f̄ : ∂P → M induces a degree one map in relative homology
between every cubical n-complex Xn

2 of N ′′2 and the cubical n-simplex Cn of ∂P containing Xn
2 .

Since the map F agrees with f̄ on N ′′2 , we deduce that

F∗([V ]) = [M ] ∈ Hn(M).

Hence a contradiction with (8.8). �

Remark 8.4. Working this simplicial complexes instead of cubical complexes yields a better
quantitative estimate in Theorem 8.3. Namely,

Wp(M) ≤
(
n+1
p

)−1
FHp−1(pFHp−2(· · · (3 FH2(2 FH1(6 FillRad(M)))) · · · )).

Since the homological filling functions are nondecreasing, Theorem 1.17 follows from Theo-
rem 8.3 and Theorem 3.2.
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