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MACROSCOPIC SCALAR CURVATURE AND LOCAL COLLAPSING

STÉPHANE SABOURAU

Abstract. Consider a closed n-manifold M admitting a negatively curved Riemannian metric.
We show that for every Riemannian metric on M of sufficiently small volume, there is a point
in the universal cover of M such that the volume of every ball of radius r ≥ 1 centered at
this point is greater or equal to the volume of the ball of the same radius in the hyperbolic
n-space. We also give an interpretation of this result in terms of macroscopic scalar curvature.
This result, which holds more generally in the context of polyhedral length spaces, is related to
a question of Guth. Its proof relies on a generalization of recent progress in metric geometry
about the Alexandrov/Urysohn width involving the volume of balls of radius in a certain range
with collapsing at different scales.

Résumé. Considérons une n-variété fermée M admettant une métrique riemannienne à cour-
bure strictement négative. Nous montrons que pour toute métrique riemannienne sur M de
volume suffisamment petit, il existe un point dans le revêtement universel de M tel que le
volume des boules de rayon r ≥ 1 centrées en ce point est supérieur ou égal au volume de la
boule de même rayon dans l’espace hyperbolique de dimension n. Nous donnons également une
interprétation de ce résultat en termes de courbure scalaire macroscopique. Ce résultat, valable
plus généralement dans le contexte des espaces de longueur polyédraux, est lié à une question de
Guth. Sa démonstration repose sur une généralisation de progrès récents en géométrie métrique
concernant la largeur d’Alexandrov/Urysohn mettant en jeu le volume des boules de rayon d’une
certaine amplitude avec un effrondrement à différentes échelles.

1. Introduction

The scalar curvature of a closed Riemannian n-manifold M describes how the volume of
infinitesimal balls in M compares to the volume of infinitesimal balls in the Euclidean n-space.
More precisely, the volume expansion of a ball of radius r centered at x ∈M satisfies

vol(B(x, r)) = ωn r
n

(
1− scal(M,x)

6(n+ 2)
r2 +O(r3)

)
(1.1)

as r goes to zero, where scal(M,x) is the scalar curvature of M at x and ωn is the volume of
a unit ball in the Euclidean n-space; see [10, Theorem 3.98]. Understanding the relationship
between scalar curvature and the topology of M is a major problem in Riemannian geometry.

In this article, we will be interested in macroscopic versions of the following conjecture at-
tributed to Schoen (which follows from a conjecture of Schoen about the Yamabe invariant of
hyperbolic manifolds); see [25] and [16]. This conjecture was also stated by Gromov [13, 3.A]
with nonsharp constants.

Conjecture 1.1 (Schoen). Let (M,hyp) be a closed hyperbolic n-manifold and let g be another
Riemannian metric on M . If scal(g, x) ≥ scal(hyp) for every x ∈M then

vol(M, g) ≥ vol(M, hyp).
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2 S. SABOURAU

Equivalently, using (1.1), if vol(M, g) < vol(M, hyp) then there exists x0 ∈M such that

volg(B(x0, r)) > volhyp(B(r))

for every r > 0 small enough.

This conjecture is true in dimension 2 by the Gauss-Bonnet formula and in dimension 3
from Perelman’s work; see [21, Proposition 93.10]. In higher dimension, it also holds true for
Riemannian metrics close enough to the hyperbolic one, see [5, Corollaire C], or if one replaces
scalar curvature with Ricci curvature, see [6].

Following [15], this leads us to introduce the following notion. The macroscopic scalar cur-
vature of a closed Riemannian n-manifold M at scale r at x ∈ M , denoted by scalr(M,x), is
defined as the unique real s such that

vol(BM̃ (x̃, r)) = vol(BHns (r))

where x̃ is a lift of x in the universal cover M̃ of M and Hn
s is the simply-connected n-dimensional

space form with constant curvature s. It is more conveniently characterized as follows

scalr(M,x) ≤ s if and only if vol(BM̃ (x̃, r)) ≥ vol(BHns (r)).

For example, the macroscopic scalar curvature of a flat torus at any scale is zero. Note that
this property fails if one does not take balls in the universal cover of M , but only in M , in
the definition of the macroscopic scalar curvature, as otherwise, it would be positive at a large
enough scale. By (1.1), at infinitesimally small scale, we have

lim
r→0

scalr(M,x) = scal(M,x).

In a different direction, the macroscopic scalar curvature at large enough scale provides infor-
mation on the exponential growth rate of the volume of balls in the universal cover of M , also
known as the volume entropy, a much-studied geometric invariant related to the growth of the
fundamental group and the dynamics of the geodesic flow. This leads us to define

VM̃ (r) = sup
x̃∈M̃

vol(B(x̃, r))

as the maximal volume of a ball of radius r in the universal cover of M . As explained in [16]
and [15], the celebrated theorem of Besson, Courtois and Gallot [6] on the minimal volume
entropy provides a macroscopic version of Schoen’s conjecture 1.1 at large enough scales. Stated
in a way suited for comparison (ignoring its rigidity counterpart), this result takes the following
form.

Theorem 1.2 (Besson-Courtois-Gallot [6]). Let (M,hyp) be a closed hyperbolic n-manifold and
let g be another Riemannian metric on M . If vol(M, g) < vol(M, hyp) then there exists r0 > 0
(depending on g) such that for every r ≥ r0

VM̃ (r) > VHn(r).

In particular, if scalr(g, x) > scalr(hyp) for every r large enough and every x ∈ M then
vol(M, g) > vol(M, hyp).

A version of this theorem was first established by A. Katok [20] in dimension 2 and a nonsharp
version was obtained before by Gromov [11] in every dimension.

In [16], Guth asks for an estimate on r0 after proving the following nonsharp macroscopic
version of Schoen’s conjecture.
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Theorem 1.3 (Guth [16]). Let (M,hyp) be a closed hyperbolic n-manifold and let g be another
Riemannian metric on M . Then, for every r ≥ 1, there exists a constant δn,r > 0 depending
only on n and r, such that if vol(M, g) ≤ δn,r vol(M, hyp) then

VM̃ (r) ≥ VHn(r).

In other words, if scalr(g, x) ≥ scalr(hyp) for every x ∈M then vol(M, g) ≥ δn,r vol(M, hyp).

Further volume lower bounds have recently been obtained by Alpert and Funano for hyper-
surfaces in closed manifolds with macroscopic scalar curvature bounded below as a consequence
of this result; see [2] and [1].

Theorem 1.3 gives relatively better volume estimates for unit balls (that is, for r = 1) than
for balls of large radius as the constant δn,r falls off exponentially or faster with r. In [16], Guth
suggests that one could try to combine the approaches of [11], [6] and [16] to obtain a uniform
volume estimate with δn,r = δn depending only on n. Such a uniform bound was obtained for
surfaces by Karam [19]. In higher dimension, Balacheff and Karam [4] proved a similar result
for negatively curved metrics g using techniques developed in [11].

In this article, we establish the following result in this direction, following a different approach.
See Theorem 3.7, Corollary 3.9 and Corollary 3.10 for more general statements.

Theorem 1.4. Let (M,hyp) be a closed hyperbolic n-manifold and let g be another Riemann-
ian metric on M . Then, there exists a constant δ′n > 0 depending only on n, such that if
vol(M, g) ≤ δ′n then

VM̃ (r) ≥ VHn(r)

for every r ≥ 1.
In other words, if scalr(g, x) ≥ scalr(hyp) for some r ≥ 1 and every x ∈M then vol(M, g) ≥ δ′n.

This result provides a uniform estimate on the radius of balls in the universal cover of M
whose volume is at least the volume of balls of the same radius in Hn. Furthermore, the balls
of radius r ≥ 1 of large volume in the universal cover of M can be assumed to be centered
around the same point; see Corollary 3.10. Actually, we obtain a more general lower bound on
the maximal volume of balls that holds for every r ≥ 0; see Corollary 3.9. However, contrary to
Theorem 1.3 and Theorem 1.2, the condition of the volume of M which guarantees the existence
of balls of large volume in the universal cover of M does not involve the volume of the hyperbolic
metric in M . This leads to a stronger condition for manifolds of large hyperbolic volume. Note
that similar versions of Theorem 1.4 hold for more general spaces, including closed manifolds
admitting negatively curved metrics. See Corollary 3.9 and Corollary 3.10.

The overall strategy of the proof of Theorem 1.4 is inspired by the approach developed in [27]
and extended in [3] to prove that the minimal volume entropy of a closed manifold admitting
a hyperbolic metric is positive. (As explained above, this result was first obtained in [11] using
bounded cohomology argument, before a sharp version was established in [6] using the so-called
barycenter map.) In [27], we show that for every closed Riemannian n-manifold admitting a hy-

perbolic metric, there exist two loops γ1 and γ2 based at the same point, of length . vol(M, g)
1
n ,

whose homotopy classes generate a subgroup Γ 6 π1(M) of positive algebraic entropy. The proof
of this estimate relies on filling techniques developed in [12] to establish systolic inequalities, and
more precisely, on a lower bound on the filling radius. A lower bound on the volume entropy
of M immediately follows from this estimate by standard comparison argument. Now, in order
to derive a lower bound of the volume of balls in the universal cover of M for any radius, and
not simply for asymptotically large radius, we need to show that there is sufficiently volume
around the basepoint of the two loops γ1 and γ2 to distribute it in the universal cover of M
under the action of Γ. The approach developed in [27], based on filling techniques, does not



4 S. SABOURAU

readily provide any information on where the volume is located and whether there is enough
volume around the basepoint of the two loops. In a different direction, Guth [16] shows that
the volume in the universal cover of a closed aspherical Riemannian manifold is not too diffuse
and that a non-negligeable part of it is contained in a ball of given radius, but this result does
not say where such a ball is located1. Later, building upon the construction of [16], he extended
this result into the following theorem.

Theorem 1.5 (Guth [17]). Let M be a closed Riemannian n-manifold. If every ball of radius R
in M has volume at most εnR

n for a sufficiently small constant εn > 0 then the Alexandrov
width of M is at most R. That is, there exists a continuous map from M to a simplicial (n−1)-
complex P whose fibers have radius at most R.

This theorem was generalized by Liokumovich, Lishak, Nabutovsky and Rotman [22] to metric
spaces and Hausdorff content instead of volume. The proof of this result was greatly simplified
by Papasoglu [24] using the minimal hypersurface approach of Schoen and Yau [26] developed
by Guth [14] in a similar context. Recently, Nabutovsky [23] further extended this approach
improving the constant from an exponential bound to a linear one.

Now, one can show that the Alexandrov width of a closed Riemannian n-manifold M admit-
ting a hyperbolic metric is bounded from below (up to a multiplicative constant depending only
on n) by the minimal length L such that there exist two loops γ1 and γ2 based at the same point,
of length at most L, whose homotopy classes generate a free subgroup of π1(M); see Section 3.
This estimate can be interpreted as a bound on Margulis’ constant; see Definition 3.1. Thus,
by Theorem 1.5, there exists a ball of radius 1

2L in M of volume at least cnL
n. As explained

above, we would like to show that such a ball B is centered at the basepoint of the two loops γ1
and γ2 in order to derive an exponential lower bound on the volume of balls in the universal
cover M̃ by taking the translates of B in M̃ under the free subgroup induced by the two loops in
homotopy. This does not follow directly from the Alexandrov/Urysohn width estimates of [17],
[22], [24] or [23]. Instead, we need to extend Theorem 1.5 by allowing the fibers in the definition
of the Alexandrov width to have diameters of various size so that they capture the thick part
of M in an optimal way.

This leads us to introduce the following definition.

Definition 1.6. Recall that a compact n-polyhedral length space is a finite simplicial n-complex
endowed with an intrinsic metric (or length structure). Let X be a compact n-polyhedral length
space and ρ : X → (0,∞) be a function. The space X ρ-collapses if there exists a continuous
map π : X → P to a finite simplicial (n − 1)-complex such that every fiber of π lies in a ball
B(x, ρ(x)) for some x ∈ X.

Note that the Alexandrov width of a space X that ρ-collapses is bounded by sup ρ. Thus, the
bound on the size of the fibers of π : X → P in Definition 1.6 better reflects the shape of M
than the corresponding uniform bound on the size of the fibers of the map in the definition of
the Alexandrov width; see Theorem 1.5. The collapsing of X can also be interpreted in terms
of coverings; see Proposition 2.1.

We have the following general theorem which extends Theorem 1.5 and some of its generaliza-
tions in [22], [24] or [23]. The point of this theorem is that it allows us to have a better control
on where the space X can collapse or not.

1Though we believe we can combine the argument of [27] with the construction in [16] to obtain the desired
result, we will use different, more elementary, techniques to reach the same conclusion. These techniques also
have the advantage to apply to more general spaces than closed manifolds.
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Theorem 1.7. Let X be a compact n-polyhedral length space and ρ : X → (0,∞) be a continuous
function. Suppose that the space X does not ρ-collapse. Then there exists x0 ∈ X such that

Hn(BX(x0, r)) ≥ cn rn

for every r ∈ [0, ρ(x0)], where cn is an explicit positive constant depending only on n.

The proof of this theorem relies on the general approach developed by Papasoglu [24] and
recently further improved by Nabutovsky [23]. As explained above, this approach can be traced
back to works of Guth [14] and, before, of Schoen and Yau [26]. We will follow the arguments
of [23].

Now, if ρ is given by the Margulis function, see Definition 3.1, and the space X does not
ρ-collapse, we can show that, under some condition of the fundamental group of X, there exist
two loops of X based at x0, of length . ρ(x0), generating a free subgroup in π1(X) as desired.

The article is organized as follows. In Section 2, we prove Theorem 1.7. Then, in Section 3,
we introduce the Margulis function and derive a general version of Theorem 1.4.

2. Collapse and volume localization

The goal of this section is to give an interpretation of the collapse of a metric space X in
terms of coverings through the following classical result and to prove Theorem 1.7 and related
results. Given a subset A ⊆ X, we denote by Ā its closure in X.

Proposition 2.1. Let X be a compact n-polyhedral length space and ρ : X → (0,∞) be a
function. The space X ρ-collapses if and only if there exists a finite covering of X of multiplicity
at most n by open subsets Ui whose closures Ūi are covered by balls B(xi, ρ(xi)) with xi ∈ X.

Remark 2.2. The statement of the proposition would still hold by requiring only Ui to be
covered by a ball B(xi, ρ(xi)). Though more technical, the current statement simplifies the
proofs of forthcoming results, in particular Lemma 2.6.

Proof of Proposition 2.1. Let π : X → P be a continuous map to a finite simplicial (n − 1)-
complex P such that every fiber of π lies in a ball B(x, ρ(x)) for some x ∈ X. By continuity
of π and compactness of the fibers, every point p ∈ P has an open neighborhood Vp such that
π−1(V̄p) lies in a ball B(x, ρ(x)) for some x ∈ X. By compactness of P , we extract from the open
covering {Vp | p ∈ P} of P a finite covering V. Subdividing P if necessary, we can assume that
each open star st(v) ⊆ P of the vertices v of P lies in some open subset V of V. By construction,
the closures Ūv of the inverse images Uv = π−1(st(v)) ⊆ X of the open stars lie in the same
balls B(x, ρ(x)) covering the compact fibers π−1(v). Furthermore, since P is a finite simplicial
(n− 1)-complex, the finite covering of P formed of the open stars st(v) ⊆ P has multiplicity at
most n. Thus, the subsets Uv form a finite covering of X of multiplicity at most n.

Let U = {Ui | i = 1, . . . ,m} be a finite covering of X of multiplicity at most n by open
subsets Ui with Ūi ⊆ B(xi, ρ(xi)) for some xi ∈ X. Take a partition of unity {φi} of X
subordinated to {Ui}. Consider the map π : X → ∆m−1 defined by

π(x) = (φ1(x), . . . , φm(x))

in the barycentric coordinates of ∆m−1. The nerve N of the covering U is a finite simplicial
complex with one vertex vi for each open set Ui, where vi0 , . . . , vik span a k-simplex of N if and
only if the intersection ∩kj=1Uij is nonempty. By construction, the dimension of the nerve N is
one less than the multiplicity of the covering U . That is, dimN ≤ n − 1. Now, we identify in
a natural way the vertices {vi} of N with the vertices of ∆m−1. With this identification, the
nerve N of X lies in ∆m−1. Furthermore, the image of π lies in N and every fiber of π : X → N
lies in one of the open subsets Ui ⊆ B(xi, ρ(xi)). Hence, the space X ρ-collapses. �
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Let us recall Eilenberg’s inequality; see [8, 13.3.1].

Theorem 2.3 (Eilenberg’s inequality). Let f : X → Y be a Lipschitz map between separable
metric spaces (i.e., compact metric spaces). Then for every A ⊆ X and every 0 ≤ m ≤ n, we
have ∫∗

Y
Hn−m(A ∩ f−1(y)) dHm(y) ≤ vn−mvm

vn
(Lip f)mHn(A) (2.1)

where
∫∗

denotes the upper Lebesgue integral, vn is the volume of the unit ball in Rn and Hn is
the n-dimensional Hausdorff measure.

The following result is the equivalent to [23, Lemma 2.1] in our language.

Lemma 2.4. Let X be a compact 1-polyhedral length space and ρ : X → (0,∞) be a function.
Suppose that for every x ∈ X, there exists a ball B(x, rx) ⊆ X of radius rx ∈ [0, ρ(x)] such that
H1(B(x, rx)) < rx. Then the space X ρ-collapses.

Proof. By the Eilenberg inequality (2.1) with m = n = 1, for every x ∈ X, there exists τx ∈
(0, rx) such that the sphere S(x, τx) ⊆ X is empty. Thus, every connected component of X lies
in a ball B(x, ρ(x)) for some x ∈ X. �

The proof of Theorem 2.7 rests on the following notion, which generalizes the definition given
in [23, Definition 2.3]; see also [24].

Definition 2.5. Let X be a compact n-polyhedral length space and ρ : X → (0,∞) be a
bounded function. A compact (n− 1)-subcomplex Y of X ρ-separates X if for every connected
component C of X \ Y , there exists x ∈ X (depending on C) such that C̄ ⊆ BX(x, ρ(x)).

The following result is a mere adaptation of [23, Lemma 2.5].

Lemma 2.6. Let X be a compact n-polyhedral length space and ρ : X → (0,∞) be a function.
Let Y be a compact (n−1)-subpolyhedron of X which ρ-separates X. Denote by ρY the restriction
of ρ to Y . Suppose that the space Y ρY -collapses. Then the space X ρ-collapses.

Proof. We follow the argument presented in [23, Lemma 2.5]. Recall that the polyhedral space Y
is endowed with the length structure induced from X. Let U = {Ui} be a finite covering of Y
of multiplicity at most n− 1 by open subsets Ui of Y with Ūi ⊆ BY (yi, ρ(yi)) for some yi ∈ Y .
We can thicken every subset Ui into an open subset Vi of X with V̄i ⊆ BY (yi, ρ(yi)), without
increasing the multiplicity. (Note that BY (y, r) ⊆ BX(y, r) for every y ∈ Y .) Adding the
connected components of X \ Y to the family {Vi}, we obtain a covering of X of multiplicity at
most n (one more than the multiplicity of U) by open subsets of X whose closures lies in balls
BX(x, ρ(x)) with x ∈ X. Hence, the space X ρ-collapses. �

Denote by λn = vn
2vn−1

the coefficient in Eilenberg’s inequality with m = 1; see (2.1). Note

that λ1 = 1.

Theorem 2.7. Let X be a compact n-polyhedral length space and ρ : X → (0,∞) be a continuous
function. Suppose that the space X does not ρ-collapse. Then there exists x0 ∈ X such that

Hn(BX(x0, r)) ≥ cn rn

for every r ∈ [0, ρ(x0)], where cn = 1
n!

∏n
i=1 λi.

Proof. Let η > 0 be small enough. We can η-approximate the distance function dX(x0, ·)
to x0 by a piecewise smooth (or even piecewise linear, after taking sufficiently fine subdivisions)
(1 + η)-Lipschitz function whose level sets are (n − 1)-subpolyhedra. To avoid burdening the
argument with standard approximations, we will assume that the spheres SX(x0, r) are (n− 1)-
subpolyhedra, keeping in mind that the inequalities below, including the Eilenberg inequality,



MACROSCOPIC SCALAR CURVATURE AND LOCAL COLLAPSING 7

only hold with an extra 1 + o(η) factor with η > 0 arbitrarily small. Letting η go to zero, this
will not change the final estimate.

Let us show by induction on the dimension n of X that for every ε ∈ (0, 1) and every α ∈ (0, 1),
there exists x0 ∈ X such that

Hn(BX(x0, r)) ≥
1− ε
n!

(
n∏
i=1
λi

)
rn (2.2)

for every r ∈ [αρ(x0), ρ(x0)]. The case n = 1 with c1 = 1 is covered by Lemma 2.4.

In the general case n ≥ 2, fix ε ∈ (0, 1) and α ∈ (0, 1). Denote ε′ = ε
4 and α′ = ( ε2)

1
n α.

Consider a compact (n − 1)-subcomplex Y ⊆ X which ρ-separates X and has minimal volume

up to δ, where δ = ε′

(n−1)! (
∏n
i=1 λi) α

′n−1 (inf ρ)n−1 > 0. By Lemma 2.6, the space Y does not

ρY -collapse. Thus, by induction (replacing ε with ε′ and α with α′), there exists y0 ∈ Y such
that

Hn−1(BY (y0, s)) ≥
1− ε′

(n− 1)!

(
n−1∏
i=1

λi

)
sn−1 (2.3)

for every s ∈ [α′ ρ(y0), ρ(y0)].
Denote x0 := y0 and let s ∈ [α′ρ(x0), ρ(x0)). Consider the compact (n−1)-subcomplex Z ⊆ X

obtained from Y by replacing Y ∩ BX(y0, s) with the sphere SX(y0, s). The resulting space Z
ρ-separates X. Indeed, the closure of the connected component BX(x0, s) of X \ Z is clearly
covered by the ball BX(x0, ρ(x0)). Furthermore, all the other connected components of X \ Z
are contained in connected components of X \ Y and therefore their closures also lie in balls
BX(x, ρ(x)) with x ∈ X.

Now, since Y has minimal volume up to δ among all compact (n − 1)-subpolyhedra that
ρ-separate X, we derive

Hn−1(Z) ≥ Hn−1(Y )− δ.
This implies

Hn−1(SX(x0, s)) ≥ Hn−1(Y ∩BX(y0, s))− δ
≥ Hn−1(BY (y0, s))− δ

≥ 1− ε′

(n− 1)!

(
n−1∏
i=1

λi

)
sn−1 − ε′

(n− 1)!

(
n−1∏
i=1

λi

)
sn−1

≥ 1− 2ε′

(n− 1)!

(
n−1∏
i=1

λi

)
sn−1.

where the second inequality follows from the inclusion BY (y0, s) ⊆ Y ∩BX(y0, s) and the third
inequality follows from (2.3) and the bound s ≥ α′(inf ρ).

Thus, by the Eilenberg inequality (2.1), we obtain

Hn(BX(x0, r)) ≥ λn
∫ r∗

α′ρ(x0)
Hn−1(SX(x0, s)) ds ≥

1− 2ε′

n!

(
n∏
i=1
λi

)(
rn − α′n ρ(x0)

n
)

for every r ∈ [αρ(x0), ρ(x0)]. (Note that r ≥ α′ρ(x0) since α′ ≤ α.)
We want this expression to be greater or equal to 1−ε

n! (
∏n
i=1 λi) r

n for every r ∈ [αρ(x0), ρ(x0)].
That is, we want

(ε− 2ε′)rn ≥ α′nρ(x0)
n.

Since r ≥ αρ(x0), it is enough to have

(ε− 2ε′)αn ≥ α′n.
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Replacing ε′ and α′ with their expressions in terms of ε and α, we observe that this inequality
is satisfied, and in fact, is an equality. Hence,

Hn(BX(x0, r)) ≥
1− ε
n!

(
n∏
i=1
λi

)
rn

for every r ∈ [αρ(x0), ρ(x0)].

Take a decreasing sequence (εm) converging to zero and fix α = εm. There exists xm ∈ X such
that the n-dimensional Hausdorff measure of BX(xm, s) satisfies a similar lower bound to (2.2)
for every s ∈ [εm ρ(xm), ρ(xm)] with ε = εm. By compactness of X, we can assume that (xm)
converges to a point x0 ∈ X. Also, by compactness of X and continuity of ρ, the function ρ is
bounded. Let r ∈ [0, ρ(x0)]. By the triangle inequality, we have

BX(x0, r) ⊇ BX(xm, r − |x0xm|).
Thus, for m large enough, we obtain

Hn(BX(x0, r)) ≥
1− εm
n!

(
n∏
i=1
λi

)
min{r − |x0xm|, ρ(xm)}n.

Since |x0xm| goes to zero and ρ is continuous, we obtain the desired lower bound forHn(BX(x0, r)).
�

Remark 2.8. If X is a compact n-polyhderon with a piecewise Riemannian metric (e.g., a
closed Riemannian n-manifold), we can apply the coarea formula, see [8, 13.4.2], instead of
Eilenberg’s inequality in the proof of Theorem 2.7. In this case, we can get rid of the product∏n
i=1 λi in the expression of cn.

Remark 2.9. The lower bound (2.2) holds even if ρ is not continuous, provided it is bounded
away from zero.

Let us introduce a couple of definitions: one of topological nature and the other one of
geometrical nature.

Definition 2.10. Let X be a connected compact n-polyhedral space and φ : π1(X) → G be a
group homomorphism to a discrete group G. The space X is φ-essential if the classifying map
Φ : X → K(G, 1) induced by φ is not homotopic to a continuous map X → P → K(G, 1) which
factors out through a simplicial (n− 1)-complex P .

Definition 2.11. Let X be a connected compact n-polyhedral length space and φ : π1(X)→ G
be a nontrivial group homomorphism to a discrete group G. The φ-systolic function of X is the
function sysφ : X → (0,∞) defined as

sysφ(X,x) = inf{length(γ) | γ is a loop of X based at x with φ([γ]) nontrivial}.
Clearly, the φ-systolic function is continuous and even 2-Lipschitz.

We have the following non-collapsing result, which is a mere generalization of the inequality (4)
in [23].

Proposition 2.12. Let X be a φ-essential connected compact n-polyhedral length space, where
φ : π1(X) → G is a nontrivial group homomorphism to a discrete group G. Then the space X
does not 1

2sysφ-collapse.

Proof. We follow again an argument presented in [23] (suggested by R. Karasev). Suppose

that the space X 1
2sysφ-collapses. Denote by π : X̂ → X the cover corresponding to the

subgroup kerφ � π1(X). By Proposition 2.1, there exists a finite covering of X of multiplicity
at most n by open subsets Ui with Ūi ⊆ B(xi,

1
2sysφ(xi)) for some xi ∈ X. Without loss of
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generality, we can assume that the open subsets are connected. Every loop γ in Ūi is homotopic
to the concatenation of loops of length less than sysφ(xi) based at xi. (The loops are of the
form xips ∪ psps+1 ∪ ps+1xi, where the points {pi} are given by a sufficiently fine subdivision
of γ.) By definition of the φ-systolic function, each homomorphism π1(Ui) → π1(X) → G is
trivial, where the first homomorphism is induced by the inclusion Ui ↪→ X. It follows that the
preimage π−1(Ui) of each open set Ui decomposes as the disjoint union of open sets α · Ûi ⊆ X̂,

where Ûi is a lift of Ui in X̂ and α runs over H = π1(X)/ kerφ. Consider the nerve N of

the covering {Ui} of X and the nerve N̂ of the covering {α · Ûi} of X̂. We have the following
commutative diagram

X̂ N̂

X N

where the horizontal maps correspond to the natural maps from a space to its nerve and the
vertical maps are the quotient maps under the natural free actions of the subgroup H 6 G.
We can construct an equivariant map N̂ → K̃ to the universal cover K̃ of K = K(G, 1).
By construction, this map passes to the quotient giving rise to a map N → K such that
the composite X → N → K is homotopic to the classifying map induced by φ. Since the
covering {Ui} has multiplicity at most n, the nerve of N is a simplicial complex of dimension at
most n− 1. Therefore, the space X is not φ-essential. �

3. Margulis’ constant and volume of large balls

In this section, we introduce the Margulis function and apply the results of the previous
section to obtain an exponential lower bound on the maximal volume of balls in the universal
cover of a metric with negative curvature, and more generally, of a metric space satisfying similar
features.

We will need the following definition of the Margulis function.

Definition 3.1. Let X be a compact n-polyhedral length space. Consider a group homomor-
phism φ : π1(X)→ G to a discrete group G. For every x ∈ X and µ > 0, denote by

Γµφ,x = 〈φ([γ]) ∈ G | γ loop of X based at x with length(γ) ≤ µ〉
the subgroup of G generated by the φ-image of the homotopy classes of the loops of X based
at x of length at most µ.

The Margulis function of X is the function µφ : X → (0,∞] defined as

µφ(x) = sup{µ | Γµφ,x has subexponential growth〉.
Clearly, the Margulis function is continuous and even 2-Lipschitz. With this definition, the

subgroup Γµφ,x has subexponential growth for every µ < µφ(x). Note that if the image of φ has

exponential growth, the Margulis function is bounded by 2 diam(X). When φ is the identity
homomorphism, we simply write µ for µφ.

Remark 3.2. One could replace “has subexponential growth” with “is virtually nilpotent” in
the definition of the Margulis function since we will be primarily interested in groups satisfying
the Tits alternative; see Definition 3.5.

We have the following non-collapsing result.

Proposition 3.3. Every closed n-manifold M with nonzero simplicial volume does not 1
2µ-

collapse.
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Proof. Suppose that M 1
2µ-collapses. By Proposition 2.1, there exists a finite covering of M of

multiplicity at most n by open subsets Ui with Ūi ⊆ B(xi,
1
2µ(xi)) for some xi ∈ X. Without loss

of generality, we can assume that the open subsets Ui are connected. The image of π1(Ui) under
the π1-homomorphism induced by the inclusion map Ui ↪→ M is generated by the homotopy
classes of loops of length at most µ(xi) based at xi. By definition of the Margulis function,
see Definition 3.1, this subgroup of π1(X) has subexponential growth. Thus, it is amenable.
By Gromov’s vanishing simplicial volume theorem, see [11] or [18], it follows that M has zero
simplicial volume. �

Remark 3.4. More generally, every closed n-manifold with nonzero minimal volume entropy
does not 1

2µ-collapse; see [3, Corollary 2.11].

Let us introduce a quantitative version of the Tits alternative for groups; see [7] for earlier
results about this notion.

Definition 3.5. Let κ be a positive integer. A group G satisfies the κ-Tits alternative if
for every symmetric subset S of G containing the identity, either S generates a subgroup of
subexponential growth, or there exist two elements in Sκ generating a nonabelian free subgroup.
In the latter case, the subgroup generated by S has exponential growth and its algebraic entropy

(or exponential growth rate) with respect to S is at least log(3)
κ .

Example 3.6. Our main source of examples of groups satisfying the κ-Tits alternative is given
by fundamental groups of closed Riemanian n-manifolds with sectional curvature lying between
−k2 and −1 for some k ≥ 1, where κ = κ(n, k) depends only on n and k; see [9].

We can now state the main general result of this section.

Theorem 3.7. Let X be a compact n-polyhedral length space and φ : π1(X) → G be a group
homomorphism whose image satisfies the κ-Tits alternative. Suppose that X does not 1

2µφ-

collapse. Then there exists x̃0 ∈ X̃ such that

Hn(BX̃(x̃0, r)) ≥ voln(BHn(C r))

for every r ≥ 0, where C = Cn,κ ·min{1, 1
supµφ

} with Cn,κ > 0 depending only on n and κ.

Proof. According to Theorem 2.7, there exists x0 ∈ X such that for every lift x̃0 ∈ X̃ of x0,

Hn(BX̃(x̃0, r)) ≥ Hn(BX(x0, r)) ≥ cn rn (3.1)

for every r ∈ [0, 12µφ(x0)], where cn = 1
n!

∏n
i=1 λi. For simplicity, denote µ0 = µφ(x0).

Let us establish an exponential lower bound for the volume of balls of large enough radius
centered at x̃0.

Lemma 3.8. For every r ≥ 1
2 µ0, we have

Hn(BX̃(x̃0, r)) ≥
cn
2n
µn0

(
3

⌊
r−µ02
2κµ0

⌋
− 1

)
(3.2)

where b·c is the floor function.

Proof. The idea of the proof is to find a nonabelian free subgroup F of π1(X,x0) generated by
loops of length at most 2κµ0 such that the translates of BX̃(x̃0,

µ0
2 ) under the free action of F

on X̃ are disjoint.

Denote by S the symmetric generating set of Γ2µ0
φ,x0
6 G formed of the elements φ([γ]) where

γ is a loop of X based at x0 of length at most 2µ0. By definition of the Margulis function,
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see Definition 3.1, the subgroup Γ2µ0
φ,x0
6 G generated by S has exponential growth. (One could

consider Γµ0+εφ,x0
instead of Γ2µ0

φ,x0
if one wanted to be more precise.) Note also that every element

of Sκ is the φ-image of the homotopy class of a loop of X based at x0 of length at most 2κµ0.
Thus, since the image of φ in G satisfies the κ-Tits alternative, there exist two loops γ1 and γ2
based at x0 of length at most 2κµ0 whose homotopy classes α1 and α2 generate a nonabelian
free subgroup of π1(X,x0).

Consider a nonabelian free subgroup F 6 π1(X,x0) generated by two (nontrivial) elements
α1 and α2 with dX̃(x̃0, αi · x̃0) ≤ 2κµ0 such that the orbit F · x̃0 has a minimal number of points
in BX̃(x̃0, µ0). (The existence of such subgroup is ensured by the previous discussion.) Suppose
that the intersection F · x̃0 ∩BX̃(x̃0, µ0) has a point α · x̃0 different from x̃0 with α ∈ F . Denote

by k the smallest positive integer such that αk · x̃0 does not lie in BX̃(x̃0, µ0). We have

dX̃(x̃0, α
k · x̃0) ≤ dX̃(x̃0, α

k−1 · x̃0) + dX̃(αk−1 · x̃0, αk · x̃0)
≤ µ0 + dX̃(x̃0, α · x̃0)
≤ 2µ0

Thus, the displacement of x̃0 by αk is at most 2κµ0. (Note that κ ≥ 1.) Furthermore, either
the subgroup generated by α1 and αk, or the subgroup generated by α2 and αk is nonabelian
free. Denote by F ′ 6 F this nonabelian free subgroup. Since k ≥ 2, the point α · x̃0 does not lie
in the orbit of F ′. Therefore, the orbit F ′ · x̃0 of F ′ has fewer elements in BX̃(x̃0, µ0) than the
orbit F · x̃0 of F , which contradicts the definition of F . Thus, the only point of the orbit F · x̃0
lying in BX̃(x̃0, µ0) is x̃0. This implies that the translates of BX̃(x̃0,

µ0
2 ) under the free action

of F on X̃ are disjoint.

Let r ≥ 1
2 µ0. The ball BX̃(x̃0, r) contains all the translates of BX̃(x̃0,

µ0
2 ) under the elements

of F = 〈α1, α2〉 which can be written as words of length at most

w =

⌊
r − µ0

2

2κµ0

⌋
with the letters α1 and α2. Since the translates of BX̃(x̃0,

µ0
2 ) under F are disjoint, we derive

from (3.1) that

Hn(BX̃(x̃0, r)) ≥ cn
µn0
2n

(3w − 1)

as desired. �

Let us resume the proof of Theorem 3.7 using the polynomial lower bound (3.1) and the
exponential lower bound (3.2) on the volume of balls in the universal cover of X.

Recall that

voln(BHn(r)) = σn−1

∫ r

0
sinh(t)n−1 dt (3.3)

where σn−1 is the Euclidean volume of the unit sphere Sn−1. We want to show that

Hn(BX̃(x̃0, r)) ≥ voln(BHn(C r)) (3.4)

for every r ≥ 0, where C > 0 is a metric-independent constant to determine. We will consider
the following situations:

(1) If r ≥ 5κµ0 then the estimate (3.2) yields the following lower bound

Hn(BX̃(x̃0, r)) ≥
cn
2n
µn0

(
3
r−µ02
4κµ0 − 1

)
. (3.5)
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(2) If r ≤ 5κµ0 then the estimate (3.1) yields the following lower bound

Hn(BX̃(x̃0, r)) ≥
cn

2n(5κ)n
rn. (3.6)

(3) If r ≥ 1 then the formula (3.3) combined with the inequality sinh(t) ≤ et

2 for t ≥ 0 yields
the following upper bound

voln(BHn(Cr)) ≤ σn−1
(n− 1)2n−1

(
e(n−1)Cr − 1

)
. (3.7)

(4) If r ≤ 1 then the formula (3.3) combined with the inequality sinh(t) ≥ sinh(1) t for
0 ≤ t ≤ 1 yields the following upper bound

voln(BHn(Cr)) ≤ σn−1
n

sinh(1)n−1Cn rn. (3.8)

We will consider four cases analyzing the different combinations of situations, starting with
the more technical cases.

Case 1. Suppose that r ≥ 5κµ0 and r ≥ 1. By (3.5) and (3.7), the inequality (3.4) holds if

cn
2n
µn0

(
3
r−µ02
4κµ0 − 1

)
≥ σn−1

(n− 1)2n−1

(
e(n−1)Cr − 1

)
. (3.9)

Comparing the exponential growth rates of the two sides of the inequality, we want log(3)
4κµ0

≥
(n− 1)C. That is,

C ≤ log(3)

4(n− 1)κµ0
. (3.10)

Thus, we need to compare f(t) = a eαt + a′ and g(t) = b eβt + b′ with a, b > 0 and α ≥ β > 0.
We have f(t) ≥ g(t) for every t ≥ t0 if f(t0) ≥ g(t0) and f ′(t0) ≥ g′(t0). In our case, we need to
check the inequality (3.9) and the inequality

cn
2n
µn0

log(3)

4κµ0
3
r−µ02
4κµ0 ≥ σn−1

2n−1
C e(n−1)Cr

for r = max{5κµ0, 1}.
If 5κµ0 ≥ 1, it is enough to have

C ≤ 1

5(n− 1)κµ0
log

(
1 +

(n− 1)cn
σn−1

µn0

)
for the first inequality (since the term between parenthesis in the left-hand side of (3.9) is
bounded from below by 2 when r = 5κµ0) and

cn
2n
µn0

log(3)

4κµ0
3−

1
8κ ≥ σn−1

2n−1
C

for the second inequality using (3.10). Since µ0 ≥ 1
5κ , these conditions are satisfied if C ≤ Cn,κ

µ0
for some constant Cn,κ > 0 depending only on n and κ.

If 5κµ0 ≤ 1, it is enough to have

C ≤ 1

n− 1
log

(
1 +

(n− 1)cn
2σn−1

(3
1

8κµ0 − 1)µn0

)
for the first inequality (since r − µ0

2 ≥
r
2 when r = 1) and

cn
2n
µn0

log(3)

4κµ0
3

1
8κµ0 ≥ σn−1

2n−1
C e(n−1)C
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for the second inequality. Since µ0 ≤ 1
5κ , the expression µn−10 3

1
8κµ0 is bounded from below by

a positive constant depending only on n and κ. Thus, the previous conditions are satisfied if
C ≤ Cn,κ for some constant Cn,κ > 0 depending only on n and κ.

Case 2. Suppose that r ≥ 5κµ0 and r ≤ 1. By (3.5) and (3.8), the inequality (3.4) holds if

cn
2n
µn0

(
3
r−µ02
4κµ0 − 1

)
≥ σn−1

n
sinh(1)n−1Cn rn. (3.11)

Observe that the left-hand side of this inequality divided by rn is bounded from below by a
positive constant depending only on n and κ when 5κµ0 ≤ r ≤ 1. Thus, the condition (3.11) is
satisfied if C ≤ Cn,κ for some constant Cn,κ > 0 depending only on n and κ.

Case 3. Suppose that r ≤ 5κµ0 and r ≥ 1. By (3.6) and (3.7), the inequality (3.4) holds if

cn
2n(5κ)n

rn ≥ σn−1
(n− 1)2n−1

(
e(n−1)Cr − 1

)
. (3.12)

Since 1 ≤ r ≤ 5κµ0, the left-hand side of this inequality is bounded from below by cn
2n(5κ)n and

the right-hand side is bounded from above by σn−1

(n−1)2n−1

(
e5(n−1)κµ0 C − 1

)
. Thus, the condi-

tion (3.12) is satisfied if C ≤ Cn,κ
µ0

for some constant Cn,κ > 0 depending only on n and κ.

Case 4. Suppose that r ≤ 5κµ0 and r ≤ 1. By (3.6) and (3.8), the inequality (3.4) holds if

cn
2n(5κ)n

rn ≥ σn−1
n

sinh(1)n−1Cn rn. (3.13)

This condition is satisfied if C ≤ Cn,κ for some constant Cn,κ > 0 depending only on n and κ.

In conclusion, there exists a positive constant Cn,κ depending only on n and κ such that for
every C ≤ Cn,κ ·min{1, 1

µ0
}

Hn(BX̃(x̃0, r)) ≥ voln(BHn(C r)) (3.14)

for every r ≥ 0. �

We immediately derive the following two corollaries. The first corollary claims that when the
volume of X is small enough, the constant C in Theorem 3.7 does not depend on the Margulis
function, but only on n and κ.

Corollary 3.9. Let X be a compact n-polyhedral length space and φ : π1(X) → G be a group
homomorphism whose image satisfies the κ-Tits alternative. Suppose that X does not 1

2µφ-

collapse. There exists a constant δn > 0 such that if Hn(X) ≤ δn then there exists x̃0 ∈ X̃ such
that

Hn(BX̃(x̃0, r)) ≥ voln(BHn(Cn,κ r))

for every r ≥ 0, where Cn,κ > 0 is a constant depending only on n and κ.

In particular, there exists constant δ′n,κ > 0 such that if Hn(X) ≤ δ′n,κ then there exists x̃0 ∈ X̃
such that

Hn(BX̃(x̃0, r)) ≥ voln(BHn(r))

for every r ≥ 1.

Proof. Applying the second inequality of (3.1) to r = 1
2µφ(x0), we obtain

µφ(x0)
n ≤ 2ncnHn(X). (3.15)

Thus, if Hn(X) ≤ δn := 1
2ncn

then µφ(x0) ≤ 1 and we can take C = Cn,κ in (3.14), which proves
the first part of the corollary.



14 S. SABOURAU

Recall that the volume of a ball in Hn grows exponentially with its radius. Thus, we can
choose λ = λn,κ > 0 large enough such that

voln(BHn(Cn,κ λr)) ≥ λn voln(BHn(r))

for every r ≥ 1. Denote by λX the compact n-polyhedral length space obtained by multiplying
the metric on X by λ. If δ′n,κ = δn

λn then Hn(λX) = λnHn(X) ≤ δn. Therefore, there exists

x̃0 ∈ λ̃X = λX̃ such that

Hn(BλX̃(x̃0, t)) ≥ voln(BHn(Cn,κ t))

for every t ≥ 0. Hence,

Hn(BX̃(x̃0, r)) =
1

λn
Hn(B

λX̃
(x̃0, λr)) ≥

1

λn
voln(BHn(Cn,κλr)) ≥ voln(BHn(r))

for every r ≥ 1. �

The second corollary is what occurs when we apply the previous result to a closed manifold
admitting a metric with negative sectional curvature.

Corollary 3.10. Let M be a closed n-manifold admitting a metric with sectional curvature
lying between −k2 and −1 for some k ≥ 1. Then for every Riemannian metric on M with
vol(M) ≤ δ′n,κ for some constant δ′n,κ > 0 depending only on n, there exists x̃0 ∈ M̃ such that

vol(BM̃ (x̃0, r)) ≥ vol(BHn(r)) (3.16)

for every r ≥ 1.

Proof. As explained in Example 3.6, the fundamental group of M satisfies the κ-Tits alternative
for some constant κ = κ(n, k) depending only on n and k; see [9]. Since M is a closed manifold
admitting a metric of negative curvature, its simplicial volume is nonzero; see [11]. By Propo-
sition 3.3, this implies that M does not 1

2µ-collapse. Therefore, the conclusion of Corollary 3.9
holds for M . �
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