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In the previous works, the authors presented the reproducing kernel function (RKF)based Filon and Levin methods for solving highly oscillatory integrals and compared their accuracy with some earlier numerical methods. In this work, we study the RKFbased methods for generalized oscillatory integrals and apply the Monte Carlo integration method in comparison with the RKF-based ones.

Chapter 1 Introduction

In this work, we consider to approximate the integral operator

I(u) = b a u(x) f (λv(x)) dx (1.1)
using RKF-based and probabilistic methods where, u(x) and v(x) are real valued functions and f is complex valued function. The special form of this operator

I(u) = b a u(x) e iλv(x) dx (1.2) 
has been studied by [START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF] using the reproducing kernel function-based Filon and Levin methods.

Reproducing kernel Hilbert space (RKHS) has been introduced by Aronszajn in 1950 [START_REF] Aronszajn | Theory of reproducing kernel[END_REF]. It is one of the most important and latest theories for Machine Learning in particular for Support Vectors Machine (SVM). Recently, the technology of reproducing kernel function (RKF) theory has been attended in many fields such as numerical analysis, differential equations, probability and statistics, learning theory and so on [START_REF] Xiang | On the filon and levin methods for highly oscillatory integral b a f (x)e iωg(x) dx[END_REF][START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF][START_REF] Li | Error estimation for the reproducing kernel method to solve linear boundary value problems[END_REF][START_REF] Geng | Solving a nonlinear system of second order boundary value problems[END_REF]. In [START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF], the authors present two new improved numerical methods for highly oscillatory integrals through combining the RKHS theory and the idea of Filon and Levin methods. The Filon method has been introduced by L. N. G. Filon in 1928 as a quadrature formula to solve the trigonometric integrals [START_REF] Filon | On a quadrature formula for trigonometric integrals[END_REF]. The Levin method has been introduced by David Levin in 1982 in order to approximate the integrals with rapid irregular oscillation [START_REF] Levin | Procedures for computing one and two-dimensional integrals of functions with rapid irregular oscillations[END_REF].

In this work, we apply RKF-based Filon and levin method for a generalized form oscillatory integral (3.1) in order to have a comparison numerically the accuracy of these two methods with probabilistic integration approximation methods such as Monte Carlo and importance sampling.

This document is organized as follows. In Chapter 2, as a starting point, we consider to a brief review of theory of reproducing kernel Hilbert Space. In Chapter ?? we present the main results of this work. A background theory of RKHS in numerical analysis is summarized in the subsection 3.1.1. The RKF-based Filon method and RKF-based Levin method for generalized oscillatory integral (3.1) are presented in subsections 3.1.2 and Chapter 1. Introduction 3.1.3, respectively. The probabilistic integration approximation including Monte Carlo and importance sampling method are reviewed in Section 3.2. The numerical results are shown in the last section, 3.3. In Chapter 4 we concluding some remarks that are obtained from this research. Moreover, we consider to a new problem as a perspective.

We finally remark that main original results of Chapters 3 is contained in [START_REF] Alimohammady | A comparative study of RKF-based Filon, Levin and Monte Carlo methods for generalized oscillatory integral[END_REF] and submitted for publication in an international refereed journal. The paper is on revision.

Chapter 2

Basic of reproducing kernel Hilbert space (RKHS)

In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions f and g in the RKHS are close in norm, i.e., fg is small, then f and g are also pointwise close, i.e., | f (x)g(x)| is small for all x. The converse does not need to be true. The reproducing kernel was first introduced in the 1907 work of Stanisaw Zaremba concerning boundary value problems for harmonic and biharmonic functions. James Mercer simultaneously examined functions which satisfy the reproducing property in the theory of integral equations. The subject was eventually systematically developed in the early 1950s by Nachman Aronszajn and Stefan Bergman.

These spaces have wide applications, including complex analysis, harmonic analysis, and quantum mechanics. Reproducing kernel Hilbert spaces are particularly important in the field of statistical learning theory because of the celebrated representer theorem which states that every function in an RKHS that minimises an empirical risk functional can be written as a linear combination of the kernel function evaluated at the training points. This is a practically useful result as it effectively simplifies the empirical risk minimization problem from an infinite dimensional to a finite dimensional optimization problem. This Chapter is organized as follows: in section 2.1 we present basic definitions of Hilbert space, producing a kernel from the feature maps in this space and how to build a new kernel from the old ones. Moreover we consider the kernels which ones have more applications in Machine Learning. In section 2.2 we present some theories of reproducing kernel Hilbert space. At the end of section 2.2 we present the Moore-Aronszajn theorem.

Hilbert Space

Definition 2.1. Let H be a vector space in R. A function ., . : H × H → R is an inner product on H if 

• α 1 f 1 + α 2 f 2 , g H = α 1 f 1 , g H + α 2 f 2 , g H • f, g H = g, f H • f, f H ≥ 0 and f, f H = 0 if
: X × X → R is positive definite if ∀n ≥ 1, ∀(a 1 , ..., a n ) ∈ R n , ∀(x 1 , ..., x n ) ∈ X n , a i a j k(x i , x j ) ≥ 0.
Theorem 2.6. [START_REF] Aronszajn | Theory of reproducing kernel[END_REF] Let H be a Hilbert space, X a non-empty set and Φ : X → H. Then Φ(x), Φ(y) H =: k(x, y) is positive definite.

Proof.

a i a j k(x i , x j ) = a i Φ(x), a j Φ(y) H = a i Φ(x) 2 H ≥ 0 
Theorem 2.7. (Mercer) [START_REF] Aronszajn | Theory of reproducing kernel[END_REF] k is a valid kernel if and only if:

• k is symmetric,
• k is positive definite.

Theorem 2.8.

[6] Suppose k 1 , k 2 are valid (Symmetric, positive definite) kernels. Then the following are valid kernels:

1) The sum of kernels is a kernel, i.e. k(x, y) = αk 1 (x, y) + βk 2 (x, y); for α, β ≥ 0.

2) The product of kernels is a kernel, i.e. k(x, y) = k 1 (x, y)k 2 (x, y).

3) The Polynomial kernel is defined as k d (x, y) := ( x, y + α) d .

4) The exponential kernel is defined as k(x, y) := exp( x, y ).

5)

The Gaussian kernel is defined as k(x, y) := exp(-γ 2 xy 2 )

Reproducing kernel Hilbert space & reproducing kernel function (RKF)

Proof.

1) Using the positive definite property

a i a j [k 1 (x i , x j ) + k 2 (x i , x j )] = a i a j k 1 (x i , x j ) + a i a j k 2 (x i , x j ) ≥ 0.
3) Expanding by using the binomial theorem

k d (x, y) = d s=0 α d-s x, y s .

Reproducing kernel Hilbert space & reproducing kernel function (RKF)

Definition 2.9. Let H be a Hilbert space of R-valued functions on the non-empty set X.

A function k : X × X → R is a reproducing kernel of H and H is a reproducing kernel Hilbert space if

• ∀x ∈ X, k(., x) ∈ H, • ∀x ∈ X, ∀ f ∈ H, f (.), k(., x) H = f (x).
In particular, for any x, y ∈ H, k(x, y) = k(., x), k(., y) H .

Define δ x to be the operator of evaluation at x, i.e.

δ x ( f ) = f (x), ∀ f ∈ H, ∀x ∈ X.
Definition 2.10. (Reproducing kernel space) H is an RKHS if the evaluation operator δ x is bounded: ∀x ∈ X there exists

λ x ≥ 0 such that for all f ∈ H, | f (x) = |δ x f | ≤ λ x f H .
Theorem 2.11. (Riesz representation) In a Hilbert space H, all bounded linear functionals are of the form ., g H , for some g ∈ H.

If

δ x : F → R is a bounded linear functional, by Riesz ∃ f δ x ∈ H such that δ x f = f, f δ x H , ∀ f ∈ H.
Theorem 2.12. (Moore, Aronszajn) [START_REF] Aronszajn | Theory of reproducing kernel[END_REF] Let k : X × X → R be a positive definite kernel.

There is unique RKHS H ⊂ R X with reproducing kernel k.  

Chapter 3 A comparative study of RKF-based methods and probabilistic methods for generalized oscillatory integral

In this work, we consider to approximate the integral operator

I(u) = b a u(x) f (λv(x)) dx (3.1) 
using RKF-based and probabilistic methods where, u(x) and v(x) are real valued functions and f is complex valued function. The special form of this operator

I(u) = b a u(x) e iλv(x) dx (3.2)
has been studied by [START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF] using the reproducing kernel function-based Filon and Levin methods.

Reproducing kernel Hilbert space (RKHS) is one of the most important and latest theories for numerical analysis. Recently, the technology of reproducing kernel function (RKF) theory has been attended in many fields such as numerical analysis, differential equations, probability and statistics, learning theory and so on [START_REF] Xiang | On the filon and levin methods for highly oscillatory integral b a f (x)e iωg(x) dx[END_REF][START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF][START_REF] Li | Error estimation for the reproducing kernel method to solve linear boundary value problems[END_REF][START_REF] Geng | Solving a nonlinear system of second order boundary value problems[END_REF]. In [START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF], the authors present two new improved numerical methods for highly oscillatory integrals through combining the RKHS theory and the idea of Filon and Levin methods.

In this work, we apply RKF-based Filon and levin method for a generalized form oscillatory integral (3.1) in order to have a comparison numerically the accuracy of these two methods with probabilistic integration approximation methods such as Monte Carlo and importance sampling.

This article is organized as follows. A background theory of RKHS is summarized in the subsection 3.1.1. The RKF-based Filon method and RKF-based Levin method for generalized oscillatory integral (3.1) are presented in subsections 3.1.2 and 3.1.3, respectively. The probabilistic integration approximation including Monte Carlo and importance sampling method are reviewed in Section 3.2. The numerical results are shown in the last section, 3.3.

Chapter 3. A comparative study of RKF-based methods and probabilistic methods for generalized oscillatory integral

RKF

In this section, we first summarize an essential background of RKF as preliminaries. In two next parts, we apply RKF-based Filon and Levin methods (based on those were introduced in [START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF]) for the generalized oscillatory integral form (3.1).

Preliminaries

Suppose that H ⊆ F (E, C) is a Hilbert space such that for any x in E, the evaluation functional e x (h) = h(x) is continuous, then H is called an RKHS. The Riesz Representation Theorem guarantees for a Hilbert function space, there exists a unique

K x ∈ H such that (h, K x ) = h(x) for all h ∈ H. Moreover, the function K : E × E → R is known as an RKF of space H if • K(., t) ∈ H for all t ∈ Ω,
• g(t) = (g(.), K(., t)), for all t ∈ Ω and g ∈ H.

The RKF of an RKHS is positive definite i.e. for a symmetric function

K : E × E → R, it holds n i, j=1 c i c j K(x i , x j ) ≥ 0 for any n ∈ N, x 1 , x 2 , ..., x n ∈ E, c 1 , c 2 , ..., c n ∈ R.
Moreover, every positive definite kernel can define a unique RKHS of which it is the RKF. 

Definition 3.1. Sobolev space H m [a, b] consists of functions g(t) defined on [a, b] such that g (k) (t) is absolutely continuous for k = 0, ..., m -1 and g (m) (t) ∈ L 2 [a, b]. The inner product for this space is (g 1 , g 2 ) m := m-1 k=1 g (k) 1 (a)g (k) 2 (a) + b a g (m) 1 (t)g (m) 2 (t)dt.
K m (x, y) = ξ(x, y) , y ≤ x, ξ(y, x) , y > x, (3.3) 
where ξ(x, y) = m-1 i=0 (

y i i! + (-1) m-1-i y 2m-1-i (2m-1-i)! ) x i i! .

RKF-based Filon method

In this part, following the idea of the RKF-based Filon method in [START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF], we approximate

(3.1) for u(x) ∈ C 2m [a, b] with the RKF interpolation u X (x) where X = {x 1 , x 2 , ..., x N } is a scattered data subset of [a, b] such that, for each u(x) ∈ H m (see [7]) u X (x) = N i=1 α i K m (x, x i ), (3.4) 
where u X (x i ) = u(x i ) for i = 1, ..., N. Moreover, we assume that v(x) = γ 0 + γ 1 x + γ 2 x 2 in this case.

In the following we compute u X (x).

Theorem 3.3. [START_REF] Wendland | Scattered Data Approximation[END_REF] For the interpolation (3.4) there are constants α i satisfying (3.5) such that

N i=1 α i K(x j , x i ) = u(x j ) (3.5)
is solvable.

Theorem 3.4. [START_REF] Wendland | Scattered Data Approximation[END_REF] If the kernel function K m (x, y) is strictly positive definite, the kernel matrix K m (x j , x i ) is guaranteed to be invertible.

Theorem 3.5. [START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF] If the RKHS H over E possesses an RKF such K(x, y), K(x, x) is uniformly bounded in E, u n (x)u(x) H → 0 when n → ∞, then u n (x) uniformly converges to u(x).

Theorem 3.6. [START_REF] Geng | Reproducing kernen function-based Filon and Levin methods for solving highly oscillatory integral[END_REF] The interpolant u X ∈ H m X to a function u on X has the following error bound |u(x)u x (x)| ≤ P m X (x) u(x) m , where P m X (x) = K m (., x) -K m (., x) X m with respect to the set X and the RKF K m (x, y).

[5] If u(x) ∈ C 2m [a, b] and u n is the obtained approximate solution in RKHS H m [a, b](m ≤ 3), then u N (x) -u(x) ∞ = max x∈[a,b] |u N (x) -u(x)| ≤ d 1 h 2m ,
where d 1 denotes the appropriate constant and h = max 1≤i≤N-1 |x ix i+1 |.

[4] I(u) can be approximated as

I N (u) = b a u N (x) f (λv(x)) dx = N i=1 α i s i
where, s i = b a f (λv(x))K m (x, x i ) dx can be calculated explicitly. Theorem 3.7. Let f : R → R be a bounded function by M > 0. The following results hold: Proof.

(i) There exists a constant d > 0 such that |I(u) -I N (u)| ≤ dh 2m . (ii) For a homogeneous function f of degree k, there exists d > 0 s.t |I(u) -I N (u)| ≤ dh 2m . Proof. (i) |I(u) -I N (u)| = | b a (u -u N ) f (λv)dx| ≤ b a |u -u N | | f (λv)|dx ≤ u -u N ∞ b a | f (λv)|dx ≤ M u -u N ∞ . (ii) If f is a homogeneous function of degree k |I(u) -I N (u)| ≤ u -u N ∞ b a | f (λv)|dx ≤ λ k u -u N ∞ b a | f (v)|dx ≤ Mλ k u -u N ∞ .
(i) Using Holder inequality

|I(u) -I N (u)| = | b a (u -u N ) f (λv)dx| ≤ b a |u -u N | | f (λv)|dx ≤ b a (|u -u N |) 2 dx 1 2 b a (| f (λv)|) 2 dx 1 2 ≤ M u -u N 2 ≤ M u -u N ∞ √ b -a (ii) If f is a homogeneous function of degree k |I(u) -I N (u)| ≤ b a |u -u N | | f (λv)|dx ≤ b a (|u -u N |) 2 dx 1 2 b a (| f (λv)|) 2 dx 1 2 ≤ λ k M u -u N 2 ≤ λ k M u -u N ∞ √ b -a, where M = b a (| f (λv)|) 2 dx 1 2 .
3.1. RKF

RKF-based Levin method

Following the idea of Levin method, the calculation of (3.1) is reduced to finding a solution for the following differential equations

w + wλv f (λv) f (λv) = u(x) (3.6)
If a solution of (3.6) is obtained, then

I(u) = b a u(x) f (λv)dx = b a (w f (λv)) dx = w(b) f (λv(b)) -w(a) f (λv(a)). (3.7)
Therefore, the key is how to find the effective approximate solution of (3.6). In this section, we will solve (3.6) in the RKHS H m [a, b](m > 1) . Define operator Lw = w + wλv f (λv) f (λv) and functionals ϕ i = δ x i for i = 1, 2, ..., N. We choose N distinct scattered points x 1 , x 2 , ..., x N in [a, b], and construct basis functions by the RKF K m (x, y). Let ψ i (x) = ϕ i,y K m (x, y) for i = 1, 2, ..., N, where ϕ i,y denotes ϕ i acts on the function of y. The collocation solution w N (x) for (3.6) can be written as w N (x) = N i=1 β i ψ i (x), where {β} N i=1 are unknown constants.

We require w N (x) to satisfy the governing differential equation at all centers x j ( j = 1, ..., N), i.e.

Lw N (x k ) = ϕ k (w N (x)) = N i=1 β i ϕ k ψ i (x) = u(x k ), k = 1, 2, ...N. (3.8) 
The system (3.8) can be reduced to the following compact form:

β K = u. (3.9) 
where

β = (β 1 , β 2 , •β N ) T , u = (u(x 1 ), u(x 2 ), • • • u(x N )) T .
Obviously, K is a symmetric positive semi-definite matrix.

Theorem 3.9. [START_REF] Wendland | Scattered Data Approximation[END_REF] If the functionals ϕ i , i = 1, 2, ..., N are linearly independent, then the matrix A is invertible. That is, system (3.9) has a unique solution.

From Theorem 16.4 and Corollary 16.12 in [START_REF] Wendland | Scattered Data Approximation[END_REF] ,one obtains ϕ i 's, i = 1, 2, • • • N are linearly independent. Once the approximate solution of (3.6) is available, the approximation to HOIs (3.1) can be obtained as follows:

I N (u) = b a (w N (x) f (λv)) dx = w N (b) f (λv(b)) -w N (a) f (λv(a)). (3.10) If u(x) and v (x) ∈ C 2(m-1) [a, b], w N (x) is the approximate solution obtained in RKHS such H m [a, b](2 ≤ m ≤ 4
) , then we have the error estimate

Lw N (x) -u(x) ∞ = max x∈[a,b] |u(x) -Lw N (x)| ≤ c 1 h 2m-2 , (3.11)
where c 1 is a positive real number. (ii) If f is a homogeneous function of degree k, then there exists c > 0 such that

|I(u) -I N (u)| ≤ ch 2m-2 .
Proof.

(i)

|I(u) -I N (u)| = | b a (u(x) -Lw N (x)) f (λv)dx| ≤ b a |u(x) -Lw N (x)| | f (λv)|dx ≤ Lw N (x) -u(x) ∞ b a | f (λv)|dx ≤ M Lw N (x) -u(x) ∞ .
From 3.11, there exists a positive real number c such that |I(u) -

I N (u)| ≤ c h 2m-2 .
(ii)For a homogeneous function f of degree k,

|I(u) -I N (u)| = | b a (u(x) -Lw N (x)) f (λv)dx| ≤ b a |u(x) -Lw N (x)| | f (λv)|dx ≤ Lw N (x) -u(x) ∞ b a | f (λv)|dx ≤ λ k Lw N (x) -u(x) ∞ b a | f (v)|dx ≤ Mλ k Lw N (x) -u(x) ∞ .
which completes the proof. (ii) If f be a homogeneous function of degree k, then there exists r > 0 such that |I(u) -I N (u)| ≤ rh 2m-2 .

Probabilistic integration methods

Proof.

Using Holder inequality

|I(u) -I N (u)| = | b a (u -Lw N ) f (λv)dx ≤ b a |u -Lw N | | f (λv)|dx ≤ b a (|u -Lw N |) 2 dx 1 2 b a (| f (λv)|) 2 dx 1 2 ≤ M u -Lw N 2 ≤ M u -Lw N ∞ √ b -a (ii) If f is a homogeneous function of degree k |I(u) -I N (u)| ≤ b a |u -Lw N | | f (λv)|dx ≤ b a (|u -Lw N |) 2 dx 1 2 b a (| f (λv)|) 2 dx 1 2 ≤ λ k M u -Lw N 2 ≤ λ k M u -Lw N ∞ √ b -a

Probabilistic integration methods

Monte Carlo integration

In this section we study the application of Monte Carlo simulation in the calculation of integral of (3.1). The key point of Monte Carlo method is to suppose the integral as an expectation of a random variable. Therefore, the law of large numbers guarantees that average of the outcomes of the random variable is an efficient approximation for this integral Following the idea of Monte Carlo integration, we consider (3.1) as follows

I = b a u(x) f (λv)dx = b a φ(x)dx
Therefore, if x 1 , ..., x N are generated independently and identically from an uniform probability distribution in [a, b], then φ(x 1 ), ..., φ(x N ) are random variables with the expectation I. Thus, the law of large numbers leads to [START_REF] Robert | Introducing Monte Carlo Methods with R. Series "Use R![END_REF]. The error of this estimator is determined via the rate of convergence of its standard deviation as follows

P lim n→∞ b -a N N i=1 φ(x i ) = E(φ(x i )) = 1 i.e. I N = b-a N N i=1 φ(x i ) → I almost surely
σ(I N ) = O( 1 √ N ) (3.12) 
that is bounded and moreover tends to zero with increasing of sample size, since

σ 2 (I N ) =σ 2 b -a N N i=1 φ(x i ) = (b -a) 2 N 2 N i=1 σ 2 (φ(x i )) = (b -a) 2 N σ 2 (φ(x))
where

σ 2 (φ(x)) = 1 b -a b a φ(x) -E(φ(x))
2 dx.

Importance sampling

Although, the error of Monte Carlo approximation is reduced with the rate (3.12), still is proportional of standard deviation of φ(x). Instead, Importance sampling method provides to reduce the standard deviation than uniform law. Following the idea of the importance sampling, suppose that random vector y = (y 1 , ..., y N ) has a known probability density function p y (.). Hence a modified estimator is given by

ĨN = b -a N N i=1 φ(y i ) p(y i ) such that ĨN -→ I a.s. when N → ∞ [10].
The absolute error in Monte Carlo approximation is considered by

|I N -I| < ε, | ĨN -I| < ε.
in which to calculate the solution to desired level of an accuracy ε,

N = z 2 1-α/2 σ 2 (.) ε 2
where

σ 2 (I N ) = (b -a) N b a φ(x) -E(φ(x)) 2 dx, σ 2 ( ĨN ) = (b -a) N b a φ(y) p(y) -E(φ(y)) 2 dy.
The preference of the estimator ĨN is that with suitable choice of p(.) such that p(y) = c φ(y), then we have z = φ(y i ) p(y i ) = 1 c that implies σ 2 (z) = 0, i.e. getting a less variance with better importance sampling (see [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]).

Numerical examples

Let the absolute error E N = |I -I N | and choosing x i = i-1 N-1 . In the following problems we take ω = 1 λ in order to equate the integrals with the form (3.1). Moreover, note that to apply Importance sampling we take the beta distribution β(a, b) with parameters a = 1 and b = 3 as a known probability distribution.

Problem 1. We consider the oscillatory integral given by [START_REF] Islam | A comparative study of meshless complex quadrature rules for highly oscillatory integrals[END_REF] 

I = 1 0 cos(x)e iω(x 2 +x) dx
We apply RKF-based Filon method in RKHS H n to solve Problem 1. Moreover we apply Monte Carlo method in comparison with the RKF-based one. The obtained absolute error E N 's are listed in Table 1. In Table 2, we summarize the results using RKF-based Levin method in RKHS H n in comparison with Importance sampling. In thees two tables N = 11 is fixed and different ω's are displayed. In order to compare the accuracy of two probabilistic methods, we apply the Monte Carlo and Importance Sampling with different N in table 3. The numerical results in Table 1 and Table 2 show that RKF-based methods have higher accuracy. Moreover, it can be observed from Table 3 that the larger N is, the higher accuracy of both probabilistic methods becomes. Problem 2. We consider the oscillatory integral given by [START_REF] Islam | A comparative study of meshless complex quadrature rules for highly oscillatory integrals[END_REF] 

I = 1 0 1 1 + 25x 2 e iωx dx.
We apply RKF-based Filon method in RKHS H 3 to solve problem 2 for fixed N = 11. Moreover we apply Monte Carlo and Importance sampling methods in comparison with 1.06183 × 10 -2 5.41356 × 10 -5 6.04515 × 10 -5 6.78041 × 10 -5

3.77867 × 10 -3 1000 7.16477 × 10 -5 7.10809 × 10 -5 7.04138 × 10 -5

6.42895 × 10 -3 10 1.03669 × 10 -4 1.03669 × 10 -4 1.03669 × 10 -4

1.78491 × 10 -3 Chapter 4

Conclusion and perspectives

In this work, two RKF-based methods are presented for generalized HOIs. Moreover we apply the probabilistic approximation integration for these problems in comparison with the RKF-based ones. In the RKF-based Filon method, u (x) is approximated by using Sobolev reproducing kernel functions. The approximation can avoid Runge phenomenon in the setting of high order polynomial interpolation, and there is no restriction on the choice of interpolation nodes. In addition, the form of Sobolev reproducing kernel functions is piecewise polynomials, and the moments in RKF-based Filon method can be computed exactly. Also, RKF-based Levin method is meshless. The results of numerical experiments show that the two new methods proposed in this paper are effective and efficient for HOIs.

Perspectives

Energy Functional

In chapter 3, we studied the several RKF-based methods in order to approximate the integral form 3.1. we can work further on these methods to apply them for solving an energy functional. Suppose we have the wave equation as follows:

-u = f (x) u = 0
where the denotes the Laplacian operator, i.e.

f = ∇ 2 f = n i=1 ∂ 2 f ∂x 2 i
. Then, the energy functional is given by

I(u) = 1 2 |∇u| 2 - F(u).
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 310 Under the assumptions of the Lemma 3.1.3 and let f : R → R be a bounded function by M, then the following hold: (i) There exists a constant c > 0 such that |I(u) -I N (u)| ≤ ch 2m-2 .

Theorem 3 . 11 .

 311 Under the assumptions of Lemma 3.1.3 and f • (λv) ∈ L 2 ([a, b]), the following results hold: (i) There exist constants r > 0 such that |I(u) -I N (u)| ≤ rh 2m-2 .

ω Filon H 1 Filon H 2 Filon H 3

 123 Monte Carlo 100 1.79117 × 10 -5 7.27718 × 10 -6 1.07228 × 10 -6 1.18554 × 10 -1 300 3.14773 × 10 -6 5.50166 × 10 -7 1.00796 × 10 -7 1.95602 × 10 -1 1000 1.73829 × 10 -7 1.95607 × 10 -8 7.25793 × 10 -9 1.92572 × 10 -1 4 1.88033 × 10 -9 5.05618 × 10 -10 9.1844 × 10 -11 1.09875 × 10 -1

  and only if f = 0.

	Remark 2.2. A norm in Hilbert space is induced by the inner product f H :=	f, f H .
	Definition 2.3. A Hilbert is an inner product space containing the Cuachy sequence
	limits.	
	Definition 2.4. Let X be a non-empty set. A function k : X × X → R is a kernel if there
	exists a Hilbert space and a map Φ(x) : X → H such that ∀x, y ∈ X	
	k(x, y) := Φ(x), Φ(y) H .	
	Definition 2.5. A symmetric function k	

Table 3 .

 3 1 -Absolute errors E 11 for Problem 1. MonteCarlo 100 1.76363 × 10 -5 2.95031 × 10 -6 1.5383 × 10 -7 5.08946 × 10 -2 300 4.63999 × 10 -7 2.92602 × 10 -7 2.05819 × 10 -8 7.81025 × 10 -2 1000 1.12593 × 10 -7 2.73966 × 10 -8 1.76987 × 10 -9 8.88181 × 10 -2 10 4 1.64673 × 10 -9 2.95038 × 10 -10 1.57692 × 10 -11 2.27703 × 10 -2

	ω	Filon H 1	Filon H 2	Filon H 3

Table 3 .

 3 2 -Absolute errors E 11 for Problem 1. Importance Sampling 100 2.46664 × 10 -5 6.09622 × 10 -6 2.11802 × 10 -6 5.31605 × 10 -2 300 2.69833 × 10 -6 6.95863 × 10 -7 2.48263 × 10 -7 6.00546 × 10 -2 1000 2.45155 × 10 -7 6.25975 × 10 -8 2.19865 × 10 -8 2.2191 × 10 -2 10 4 2.49266 × 10 -9 6.22499 × 10 -10 1.2638 × 10 -10 1.89282 × 10 -2

	ω	Levin H 2	Levin H 3	Levin H 4

Table 3 .

 3 3 -Absolute errors E N for Problem 1 with ω = 300.the RKF-based one. The results of are listed in Table4. In table 5 the absolute error E N are listed, using RKF-based Levin method in RKHS H n for fixed ω = 300 and different N in comparison with Importance sampling method. The numerical results show that still RKF-based methods have higher accuracy. Nevertheless, the superiority of accuracy of RKF-based methods in comparison with the probabilistic methods, is decreased in Problem 2 w.r.t the obtained results in Problem1.

	N	MonteCarlo	Importance Sampling
	20	3.10356 × 10 -2	1.36432 × 10 -2
	100 2.04119 × 10 -2	1.0154 × 10 -2
	1000 9.01701 × 10 -3	3.71157 × 10 -3
	10 4 3.43552 × 10 -3	1.9473 × 10 -3

Table 3 .

 3 4 -Absolute errors E N for Problem 2 with ω = 300.We apply RKF-based Filon methods in RKHS H n to solve 3.13. Moreover we apply Monte Carlo method in comparison with the RKF-based one. In Table6the absolute error E N are listed for fixed N = 11 and different ω's. The results show that RKF-based Filon has the higher accuracy. In table 7, We apply RKF-based Levin methods in RKHS H n . Moreover, the absolute error using Importance sampling method are displayed in comparison with the RKF-based one. It can be observed from Table7that RKF-based Levin method in space H 3 and H 4 does not approximate the integral 3.13 as well as problems previously. Indeed, the absolute error E N are obtained with the huge values in thees cases. The numerical results show that the Importance sampling has the higher accuracy than the RKF-based Levin in space H 3 and H 4 .

	N	Filon H 3	MonteCarlo	Importance Sampling
	10	5.74591 × 10 -5 4.23122 × 10 -2	5.40508 × 10 -3
	100 7.21492 × 10 -5 1.92091 × 10 -2	2.91083 × 10 -3
	1000 7.21418 × 10 -5 5.69007 × 10 -3	2.89973 × 10 -3
	Problem 3. We consider a new problem of oscillatory integral given as follows
		1		
		I =	cos(sin(x)) e iω sin(x) dx.	(3.13)
		0		

Table 3 .

 3 5 -Absolute errors E 11 for Problem 2. Importance Sampling 1.66474 × 10 -4 1.09386 × 10 -4 4.3234 × 10 -5

	ω	Levin H 2	Levin H 3	Levin H 4

Table 3 .

 3 6 -Absolute errors E 11 for Problem 3.

Table 3 .

 3 7 -Absolute errors E 11 for Problem 3.

	ω	Levin H 2	Levin H 3 Levin H 4 Importance Sampling
	100 2.89089 × 10 -5 316.414	18689.3	5.08946 × 10 -2
	300 6.04304 × 10 -6 15.4763	782.181	7.81025 × 10 -2
	1000 2.96585 × 10 -7 51.0473	2353.03	2.97788 × 10 -3
	10 4 1.26371 × 10 -9 34.6904	430.602	2.27703 × 10 -2