
HAL Id: hal-03961833
https://hal.science/hal-03961833

Submitted on 29 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subset Approach to Efficient Skyline Computation
Dominique H. Li

To cite this version:
Dominique H. Li. Subset Approach to Efficient Skyline Computation. The 26th Interna-
tional Conference on Extending Database Technology (EDBT), Mar 2023, Ioannina, Greece.
�10.48786/edbt.2023.31�. �hal-03961833�

https://hal.science/hal-03961833
https://hal.archives-ouvertes.fr

Subset Approach to Efficient Skyline Computation
Dominique H. Li

LIFAT Laboratory, University of Tours, France

dominique.li@univ-tours.fr

ABSTRACT
Skyline query processing is essential to the database commu-

nity. Many algorithms have been designed to perform efficient

skyline computation, which can be generally categorized into

sorting-based and partitioning-based by considering the differ-

ent mechanisms to reduce the dominance tests. Sorting-based

skyline algorithms first sort all points with respect to a mono-

tone score function, for instance the sum of all values of a point,

then the dominance tests can be bounded by the score func-

tion; partitioning-based algorithms create partitions from the

dataset so that the dominance tests can be limited in partitions.

On the other hand, the incomparability between points has been

considered as an important property, that is, if two points are

incomparable, then any dominance test between them is unnec-

essary. In fact, the state-of-the-art skyline algorithms effectively

reduce the dominance tests by taking the incomparability into

account. In this paper, we present a subset-based approach that

allows to integrate subspace-based incomparability to existing

sorting-based skyline algorithms and can therefore significantly

reduce the total number of dominance tests in large multidimen-

sional datasets. Our theoretical and experimental studies show

that the proposed subset approach boosts existing sorting-based

skyline algorithms and makes them comparable to the state-of-

the-art algorithms and even faster with uniform independent

data.

1 INTRODUCTION
Given a set of multidimensional points, the skyline operator [4]
returns the skyline that is the set of all non-dominated points. A

point 𝑝𝑖 is said non-dominated if there is no any other point 𝑝 𝑗
such that 𝑝 𝑗 is better than 𝑝𝑖 in all dimensions with respect to a

user defined preference order. Figure 1 shows a skyline example

that is very commonly used in the literature: assume a set of

hotels where we want to select the ones with minimized price

(Y axis) and distance from the beach (X axis), then the hotels

{𝑎, 𝑐, 𝑒, ℎ,𝑚} form the skyline because no other hotels can be

better than them on both of the price and the distance from the

beach. The skyline computation problem has received intensive

attention from the database community.

The simplest way to compute the skyline is nested loop-based

pairwise comparison: for each point 𝑝𝑖 in the dataset, compare 𝑝𝑖
with each other point 𝑝 𝑗 , if 𝑝𝑖 dominates 𝑝 𝑗 , then drop 𝑝 𝑗 ; if 𝑝 𝑗
dominates 𝑝𝑖 , then drop the point 𝑝𝑖 and break the nested loop;

otherwise, continue the nested loop while keeping both 𝑝𝑖 and

𝑝 𝑗 . Such a nested loop procedure finally outputs the set of all

non-dominated points in O(𝑑𝑁 2) time where 𝑑 is the number

of dimensions in each point and 𝑁 is the number of points in

the dataset, if we consider O(𝑑) time for testing the dominance

relation (dominance test) between two points of 𝑑 dimensions.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-093-6 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The dominance tests are the major cost of skyline computation.

In order to efficiently resolve the skyline computation problem,

many algorithms have been designed and developed based on the

reduction of dominance testes, which can be categorized into two

classes [14]: sorting-based (such as BNL [4], Index [25], SFS [7, 8],
LESS [9, 10], SaLSa [1, 2], BSkyTree-S [13, 14], and SDI [18])

and partitioning-based (such as D&C [4], NN [11], BBS [20, 21], LS
[19], OSPS [27], ZSearch [16], and BSkyTree-P [13, 14]). Besides,
indexing techniques are also applied to skyline algorithms, such

as Index, BBS, ZINC [17], and SDI, with different mechanisms.

Price

Distance

b
a

d

g

f

i j

k

h

lc

e

m

n

Figure 1: An example of skyline.

Godfrey et al. [9, 10] and Sheng and Tao [24] theoretically

analyzed the time complexity of existing skyline algorithms and

concluded that in the worst case, sorting-based algorithms finish

in O(𝑑𝑁 2) time, however partitioning-based algorithms can fin-

ish in O(𝑁 log
𝑑−2 𝑁) time for any dimensionality𝑑 > 2. Godfrey

et al. [9, 10] also gave a time complexity analysis for the average

case under the uniform independence and component independence
conditions. Essentially, the efficiency of a skyline algorithm heav-

ily relies on how dominance tests are reduced. As the state-of-

the-art skyline algorithms, BSkyTree-S and BSkyTree-P use a

pivot point selection schema to map data points to incomparable

regions, each can be considered as an optimized algorithm of

sorting-based and partitioning-based categories.

Basically, given a 𝑑-dimensional space, a subspace [22] is a sub-
set of all 𝑑 dimensions, which is extended studied with several

skyline problems such as subspace skyline [15, 23, 26] and skycube
[3, 23]. Let P be the dataset, 𝑝 ∈ P be a skyline point, and 𝑞 ∈ P
be any point such that 𝑝 ≠ 𝑞, then, if 𝑝 does not dominate 𝑞,

there must exist a subspace where in each dimension the value of

𝑞 is better than the value of 𝑝 , that is, 𝑞 dominates 𝑝 in this sub-

space. We call such a subspace a dominating subspace. If all points
dominated by the skyline point 𝑝 have been pruned, each point

that remains in the dataset must possess a dominating subspace

where it dominates 𝑝 . Indeed, the above skyline point 𝑝 , also

called a pivot point, is used by the BSkyTree-S and BSkyTree-P
algorithms to partition points into incomparable regions in order

to reduce the dominance tests.

In this paper, we present a novel subspace-based skyline in-

dexing approach to manage the incomparability between testing

Series ISSN: 2367-2005 391 10.48786/edbt.2023.31

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.31

points and skyline points. Instead of partitioning the dataset,

our method indexes the skyline points by dominating subspaces

to reduce the dominance tests. We first show that the dominat-

ing subspace of a point can be merged with respect to multiple

pivot points, called maximum dominating subspace with respect

to a given number of pivot points, then, we show that if a point

𝑞1 dominates a point 𝑞2, 𝑞1’s maximum dominating subspaces

with respect to each pivot point must be a superset of 𝑞2’s maxi-

mum dominating subspaces. Based on the properties presented

in this paper, the sketch of the application of our method can be

described as following:

(1) Find multiple pivot points to generate the maximum dom-

inating subspace for each non-pruned point.

(2) Run a skyline algorithm with the following new actions:

(a) Once a skyline point is determined, put it to the pro-

posed skyline index structure with respect to its maxi-

mum dominating subspace.

(b) While testing a point with the current skyline, get only

the set of comparable points from the skyline index

structure with respect to the maximum dominating sub-

space.

(3) Return the skyline.

Therefore, our proposed method does not concern concrete

skyline computation algorithms because it is designed as a com-

ponent like a container that allows to store (as put function)
the skyline points and to retrieve (as a get function) a minimum

number of skyline points to compare with a testing point. The

paradigm of our method fits best sorting-based skyline algo-

rithms that can progressively output the skyline points, however

partitioning-based skyline algorithms cannot benefit much from

our method because the data have already been partitioned and

the dominance tests are limited in partitions, the double parti-

tioning of data and skyline brings additional costs. Therefore, the

advantage of our method is to boost existing skyline algorithms.

Several sorting-based skyline algorithms such as SFS, SaLSa, and
SDI do not depend on any particular data structures (for instance,

the lattice and SkyTree required by BSkyTree-S and BSkyTree-P,
the ZB-tree required by ZINC, the R-tree required by BBS, and
the B

+
-tree required by Index, etc.), which can be easily imple-

mented in any programming languages including Python and

PHP, so to boost such algorithms has realistic interests to data

industries.

The main result presented in this paper is that the skyline

indexing can be efficiently resolved by a subset query. The subset
query problem is defined as: given a set X of distinct subsets of a

universe 𝐷 , for any set𝑄 ⊆ 𝐷 , return the set {𝑄 ′ ∈ X | 𝑄 ⊂ 𝑄 ′}
that contains all supersets of 𝑄 . The set 𝑄 is called the query set.
Indeed, given a testing point, its maximum dominating subspace

can be considered as a query set, the task is to return all skyline

points of which the maximum dominating subspaces are the

supersets of the query set, hence, the required dominance tests

can be limited in returned skyline points. In order to make our

method efficient, we reversed the subset query problem, that

is, to return the set {𝑄 ′ ∈ X | 𝑄 ′ ⊂ 𝑄}. The subset query

data structure and algorithms proposed in this paper is hash

map based (supported by the most of programming languages),

which can add a skyline point in linear time with respect to the

dimensionality 𝑑 and can retrieve a set of skyline points with

respect to a given subspace in 𝑂 ((𝑑
2

)2) time in the average case

for any 𝑑 > 2. Particularly, in the case of 𝑑 = 2, subset query is

a binary problem so the usefulness of our proposed method is

very limited.

Our experimental results based on SFS, SaLSa, and SDI show

the effectiveness and efficiency of our method. We note that the

data types considered in skyline computation is generally cate-

gorized as [4] anti-correlated (AC), correlated (CO), and uniform
independent (UI) with respect to the characteristics of real data,

however, in literature, there is no single algorithm be the best on

all these three types of data. For instance, BSkyTree-S performs

much better than BSkyTree-P on CO data, however BSkyTree-P
is the best algorithm on AC and UI data. In our experiments, the

boosted SFS, SaLSa, or SDI perform better than BSkyTree-P on

UI data.

The rest of this paper is organized as follows. Section 2 re-

views previous skyline algorithms. Section 3 defines preliminary

concepts required by the formalization. We show in Section 4

that the maximum dominating subspace of each point can be

merged from multiple pivot points and propose a subspace union

algorithm. In Section 5, we present our subset approach to index

the skyline, with store and query algorithms. Section 6 reports

our experimental evaluation, which shows the performance of

our method in boosting skyline algorithms. Finally, we conclude

in Section 7.

2 RELATEDWORK
In this section, we review mainstream skyline algorithms by cat-

egorizing them into sorting-based and partitioning-based classes.

We also discuss the use of indexing techniques in existing skyline

algorithms.

In general, typical sorting-based skyline algorithms such as

SFS [7, 8] presort all points by amonotone sorting function 𝑓 such

that for any two points 𝑝𝑖 and 𝑝 𝑗 , we have 𝑓 (𝑝𝑖) < 𝑓 (𝑝 𝑗) ⇒
𝑝 𝑗 ⊀ 𝑝𝑖 (we denote by 𝑝𝑖 ≺ 𝑝 𝑗 that 𝑝𝑖 dominates 𝑝 𝑗 and by

𝑝𝑖 ⊀ 𝑝 𝑗 that 𝑝𝑖 does not dominate 𝑝 𝑗). If we consider the minima

for the skyline, it is clear that the point argmin𝑝∈P (𝑓 (𝑝)) in
the dataset P is immediately the first skyline point, then, by

following the order defined by the sorting function 𝑓 , if a point

is not dominated by all skyline points, it is a new skyline point

and can be added to the skyline.

The sorting function used in sorting-based algorithms is heuris-

tic that heavily affects the total number of dominance tests. LESS
[9, 10] extends SFS with external sort-merge routines. SaLSa
[1, 2] studied different sorting functions with the notion of a stop

point that allows to terminate the algorithm by outputting the

exact skyline without testing all points. The use of stop point in

SaLSa can effectively prune points that are not necessary to be

tested. Index [25] builds a B+-tree data structure to sort and index
each dimension value of all points in order to prune irrelevant

points and to retrieve skyline points by comparing their min/max

values. BSkyTree-S first selects a pivot point, then maps any data

point to a binary vector w.r.t. the pivot point, so existing sorting-

based algorithms can be improved by bypassing dominance tests

between incomparable points.

SDI [18] is a sort-and-scan skyline algorithm that integrates

the designs of Index, SFS, and SaLSa. In the sort phase, SDI sorts
all indexed data point IDs in each dimension, with respect to the

value of each point in each dimension (dimension value), then
each point at the top position of each sorted index is immedi-

ately a skyline point; in the scan phase, SDI uses the breadth-first
strategy to traverse among dimensions. In any dimension, it is

necessary to test by progressive depth-first traversal whether all

392

known skyline points in this dimension (called dimension sky-
line) dominate the current testing point: if the current point is

not dominated, then it is a new skyline point and the algorithm

switches to the dimension that possesses the least number of sky-

line points; otherwise, the current point is marked as dominated

and it continues to test the next point.

In SDI, a testing point can be skipped if it has already been

marked as dominated on another dimension or be added to the

dimension skyline without test; in the case of duplicate dimension

values, that is, the same value in the same dimension for different

tuples, SFS-like local dominance tests will be performed among

concerned points. Furthermore, any data point can be used as the

stop point in SDI, that is, if the progressive depth-first traversal
has passed such a point in each dimension, then the algorithm

can be safely stopped. In practice, the data point having the

minimum Euclidean distance is the most efficient stop point, and

by distributing the dominance tests to each dimension, SDI can
effectively reduce the total number of dominance tests.

Different from sorting-based algorithm, partitioning-based

algorithms divide points to different groups, called partitions (or
regions), the dominance tests are limited among the points in the

same partition.

As a representative divide-and-conquer method, D&C [4] is

designed from the algorithm introduced by Kung et al. [12] in

order to work with external memory. Basically, D&C partitions the
dataset into as fewer as possible blocks to fit in the main memory,

then the local skyline will be computed from each block, and

recursively the true skyline can be computed from local skyline

by applying the basic divide-and-conquer algorithm. The study

of Godfrey et al. [9, 10] shows that the average performance of

divide-and-conquer methods deteriorates with increasing the di-

mensionality of data. The study of Sheng and Tao [24] shows that

the algorithm presented in [12] requiresO(𝑑2𝑁 log
(𝑑−2) 𝑁) time

however their result can effectively finish in O(𝑁 log
(𝑑−2) 𝑁)

time.

NN [11] partitions the dataset by the nearest neighbor of the

query point, then the first nearest neighbor is immediately a

skyline point that allows to prune all dominated points; then, the

second nearest neighbor can be found in all points that are domi-

nated by the first nearest neighbor in one or several dimensions

(a region), and finally all skyline points can be directly output

by recursive calls. The effect of NN is similar to SFS and SaLSa if

we use Euclidean distance as the sorting function. BBS [20, 21]
improves the design of NN by using R-tree to index points that

can efficiently prune non-skyline points with dominance tests

inside the region. Different techniques have been proposed to

perform region-level pruning of non-skyline points, for instance,

LS [19] uses a lattice structure, OSPS [27] uses point-based space

partition, ZSearch [16] uses Z-order index.
BSkyTree-P first selects a pivot point, then recursively parti-

tions a specific region into 2
𝑑
disjoint sub-regions in a divide-and-

conquer manner. Existing partitioning-based skyline algorithms

can be improved by the schema of BSkyTree-P.
On the other hand, indexing techniques are also widely used

in skyline computation to access sorted or partitioned data. For

instance, Index uses B+-tree to store the sorted dataset; BBS uses
R-tree to partition and indexing the dataset; BSkyTree-S and

BSkyTree-P use SkyTree to access indexed dataset; SDI uses

indexes to access the dataset from sorted dimension values. In

particular, ZINC uses ZB-tree to index the dataset, which can

perform skyline computation in both totally ordered and partially

ordered data attribute domains. In this paper, we focus on the

skyline computation problem in the totally ordered domain.

In our method presented in this paper, we do not index any

data points but only the skyline points, in order to minimize the

skyline points required by dominance tests, which makes our

method being a generic component of skyline algorithms.

3 PRELIMINARY CONCEPTS
We consider a dataset P of 𝑁 𝑑-dimensional points, where we

call 𝑁 the cardinality and 𝑑 the dimensionality of the dataset.

Let 𝑝 be a point, we denote 𝑝 [𝑖] the dimension value of 𝑝 in the

dimension 𝑖 , where 1 ≤ 𝑖 ≤ 𝑑 . We consider the preference order
as a total order in each dimension of points for the skyline.

Without loss of generality, the preference order can be defined

as the relation < on the values in each dimension. Given two

points 𝑝 and 𝑞, 𝑝 [𝑖] is better than 𝑞 [𝑖] if 𝑝 [𝑖] < 𝑞 [𝑖]; 𝑝 [𝑖] is equal
to 𝑞 [𝑖] if 𝑝 [𝑖] = 𝑞 [𝑖]; and 𝑞 [𝑖] is not worse than 𝑝 [𝑖] if 𝑝 [𝑖] ≤ 𝑞 [𝑖].
To simplify the formal description, in the rest of this paper, any

dimension refers to an integer value in the range [1, 𝑑].
Definition 3.1. A point 𝑝 dominates a point𝑞, denoted by 𝑝 ≺ 𝑞,

if and only if in each dimension 𝑖 we have 𝑝 [𝑖] ≤ 𝑞 [𝑖], and in at

least one dimension 𝑘 , 1 ≤ 𝑘 ≤ 𝑑 , we have 𝑝 [𝑘] < 𝑞 [𝑘]. ■

Given two points 𝑝 and 𝑞, we denote 𝑝 ⊀ 𝑞 that 𝑝 does not

dominate 𝑞; we denote 𝑝 ≁ 𝑞 ⇐⇒ (𝑝 ⊀ 𝑞) ∧ (𝑞 ⊀ 𝑝) that 𝑝 and

𝑞 are incomparable. We extend {≺, ⊀, ⪯, ≁} to the set of points:

• 𝑝 ≺ 𝑋 (or 𝑝 ⪯ 𝑋) denotes ∀𝑞 ∈ 𝑋, 𝑝 ≺ 𝑞 (or 𝑝 ⪯ 𝑞);

• 𝑋 ≺ 𝑝 (or 𝑋 ⪯ 𝑝) denotes ∃𝑞 ∈ 𝑋,𝑞 ≺ 𝑝 (or 𝑞 ⪯ 𝑝);

• 𝑋 ⊀ 𝑝 (or 𝑋 ⪯̸ 𝑝) denotes �𝑞 ∈ 𝑋,𝑞 ≺ 𝑝 (or 𝑞 ⪯ 𝑝);

• 𝑝 ≁ 𝑋 and 𝑋 ≁ 𝑝 denote ∀𝑞 ∈ 𝑋, 𝑝 ≁ 𝑞.

Definition 3.2. Given a dataset P, a point 𝑝 ∈ P is a skyline
point if and only if �𝑞 ∈ P such that 𝑞 ≺ 𝑝 . The skyline of P is

the complete set of skyline points {𝑝 ∈ P | �𝑞 ∈ P, 𝑞 ≺ 𝑝}. ■

The skyline computation problem is to compute the complete

set of skyline points from amultidimensional dataset with respect

to a user defined preference order ≺.
Definition 3.3. Given a 𝑑-dimensional dataset P, the set 𝐷 =

{1, 2, . . . , 𝑑} is the space of P. Any subset 𝐷′ ⊆ 𝐷 is a subspace
of P. ■

Definition 3.4. Let 𝑝 and 𝑞 be two points. Let 𝐷𝑝≺𝑞 denote the

subspace such that ∀𝑖 ∈ 𝐷𝑝≺𝑞 ⇒ 𝑝 [𝑖] < 𝑞 [𝑖] and ∀𝑖 ∉ 𝐷𝑝≺𝑞 ⇒
𝑞 [𝑖] ≤ 𝑝 [𝑖], then 𝐷𝑝≺𝑞 is the dominating subspace of 𝑝 with

respect to 𝑞. ■

According to Definition 3.4, given a dataset P, let 𝐷 be the

space of P and 𝑝, 𝑞 ∈ P be two points, we have:

• 𝐷𝑝≺𝑞 = ∅ ⇒ 𝑞 ≺ 𝑝 or 𝑝 = 𝑞;

• 𝐷𝑝≺𝑞 = 𝐷 ⇒ 𝑝 ≺ 𝑞.

Lemma 3.5. Given a dataset P, let 𝑝 ∈ P be a skyline point
and 𝑞1, 𝑞2 ∈ P, 𝑞1, 𝑞2 ≠ 𝑝 be two arbitrary points such that
𝑝 ⊀ 𝑞1, 𝑝 ⊀ 𝑞2, and 𝑞1 ≠ 𝑞2. 𝑞1 ≁ 𝑞2 if 𝐷𝑞1≺𝑝 ⊈ 𝐷𝑞2≺𝑝 and
𝐷𝑞2≺𝑝 ⊈ 𝐷𝑞1≺𝑝 . ■

Proof. 𝑝 is a skyline point, so 𝐷𝑞1≺𝑝 ≠ 𝐷 and 𝐷𝑞2≺𝑝 ≠ 𝐷 ,

that is, 𝐷𝑝≺𝑞1 ≠ 𝐷 and 𝐷𝑝≺𝑞2 ≠ 𝐷 , which impose that 𝑝 ⊀ 𝑞1
and 𝑝 ⊀ 𝑞2. We have that 𝑝 ⊀ 𝑞1 ⇐⇒ ∃𝑖, 𝑞1 [𝑖] < 𝑝 [𝑖] and 𝑝 ⊀
𝑞2 ⇐⇒ ∃𝑖, 𝑞2 [𝑖] < 𝑝 [𝑖], hence, 𝐷𝑞1≺𝑝 ⊈ 𝐷𝑞2≺𝑝 implies that

there is at least one dimension 𝑖 such that 𝑞1 [𝑖] < 𝑝 [𝑖] ≤ 𝑞2 [𝑖]
and 𝐷𝑞2≺𝑝 ⊈ 𝐷𝑞1≺𝑝 implies that there is at least one dimension

𝑗 such that 𝑞2 [𝑗] < 𝑝 [𝑗] ≤ 𝑞1 [𝑗]. Thus, 𝑞1 ⊀ 𝑞2 and 𝑞2 ⊀ 𝑞1,

that is, 𝑞1 ≁ 𝑞2. □

393

1 2 3 4 5 6 7 8

Subspace size

0

10000

20000

30000

40000

N
um

be
r o

f p
oi

nt
s

1 2 3 4 5 6 7 8

Subspace size

0

100

200

300

400

500

600

700

N
um

be
r o

f p
oi

nt
s

1 2 3 4 5 6 7 8

Subspace size

0

10000

20000

30000

40000

N
um

be
r o

f p
oi

nt
s

(a) 8-D 100K AC dataset. (b) 8-D 100K CO dataset. (c) 8-D 100K UI dataset.

Figure 2: Distribution of points with respect to subspace size where the pivot point is the skyline point with the minimal
Euclidean distance to the zero point.

More simply, Lemma 3.5 can be rewritten as:

|𝐷𝑞1≺𝑝 ∩ 𝐷𝑞2≺𝑝 | < 𝑚𝑖𝑛(|𝐷𝑞1≺𝑝 |, |𝐷𝑞2≺𝑝 |) ⇒ 𝑞1 ≁ 𝑞2 .

Lemma 3.6. Given a dataset P, let 𝑝 ∈ P be a skyline point and
𝑞1, 𝑞2 ∈ P, 𝑞1, 𝑞2 ≠ 𝑝 be two arbitrary points such that 𝑝 ⊀ 𝑞1,
𝑝 ⊀ 𝑞2, and 𝑞1 ≠ 𝑞2. 𝐷𝑞1≺𝑝 ⊉ 𝐷𝑞2≺𝑝 ⇒ 𝑞1 ⊀ 𝑞2. ■

Proof. We have the same context as Lemma 3.5. If 𝐷𝑞2≺𝑝 ⊉
𝐷𝑞1≺𝑝 , according to the proof of Lemma 3.5, there exists at least

on dimension 𝑖 such that 𝑖 ∈ 𝐷𝑞1≺𝑝 and 𝑖 ∉ 𝐷𝑞2≺𝑝 , that is,𝑞2 [𝑖] <
𝑝 [𝑖] ≤ 𝑞1 [𝑖]. Thus, 𝐷𝑞1≺𝑝 ⊉ 𝐷𝑞2≺𝑝 ⇒ 𝑞1 ⊀ 𝑞2. 𝐷𝑞1≺𝑝 ⊇ 𝐷𝑞2≺𝑝
is a necessity of 𝑞1 ≺ 𝑞2. □

Lemma 3.6 shows an inevitable constraint to partition points

with respect to Lemma 3.5: if a point 𝑝 is a skyline point in the

set of points determined by the subspace 𝐷𝑥 , then 𝑝 must be

compared with all skyline points in the set of points determined

by any subspace 𝐷𝑦 ⊃ 𝐷𝑥 . Since a 𝑑-dimensional space contains

2
𝑑 − 2 subspaces without ∅ neither the full space in our context,

obviously, the dominance tests can be effectively reduced if all

points can be distributed to as many incomparable subspaces as

possible.

4 SUBSPACE UNION
In this section, we resolve the unbalanced point distribution

problem. According to Lemma 3.5, given a dataset P in space 𝐷 ,

if a skyline point 𝑝 ∈ P is compared with each other point 𝑞 ∈ P,
then every non-pruned point 𝑞 can be attributed a dominating

subspace 𝐷𝑞≺𝑝 , where 𝐷𝑞≺𝑝 ≠ ∅ and 𝐷𝑞≺𝑝 ≠ 𝐷 .

Figure 2 shows the distribution of non-pruned points in AC,

CO, and UI synthetic datasets
1
with 100K points of 8 dimensions,

where the pivot point is the skyline point with the minimal

Euclidean distance to the zero point. Due to page length limit, it

is difficult to list the number of points for all 2
8 − 2 subspaces, we

show in Figure 2 the number of points with respect to subspace

size. We see that the distribution of points is unbalanced, most of

them are in small-size zones, far away from the 2
𝑑
level. Although

recursive calls can be applied to each subspace to find more

incomparable subspaces with respect to Lemma 3.5, Lemma 3.6

limits the immediate output of skyline points.

We propose a subspace union method to distribute points to

as many subspaces as possible , where the term as many as pos-
sible is controlled by a given threshold that finally affects the

number of pivots points. Given a point, the dominating subspace

1
All concerned synthetic datasets are generated by Skyline Benchmark Data Gener-

ator from http://pgfoundry.org/projects/randdataset.

can be merged from multiple pivot points, that is, a set of sky-

line points since all pivot points are skyline points, and we call

such a merged subspace a maximum dominating subspace, where
the term maximum means the maximum number of dimensions

where the given point dominates the pivot points.

Definition 4.1. Let 𝑆 be a set of skyline points in a dataset P
of space 𝐷 . For a point 𝑞 ∈ P, the union of dominating sub-

spaces 𝐷𝑞≺𝑆 =
⋃

𝑝∈𝑆 𝐷𝑞≺𝑝 , where 𝐷𝑞≺𝑆 ⊆ 𝐷 , is the maximum
dominating subspace of 𝑞. ■

With the above definition, we have the following extensions

of Lemma 3.5 and Lemma 3.6, which are the bases of our results.

Lemma 4.2. Given a dataset P, let 𝑆 be a set of skyline points
of P and 𝑞1, 𝑞2 ∈ P be two arbitrary points such that 𝑞1, 𝑞2 ∉ 𝑆 ,
𝑆 ⊀ 𝑞1, 𝑆 ⊀ 𝑞2, and 𝑞1 ≠ 𝑞2. 𝑞1 ≁ 𝑞2 if 𝐷𝑞1≺𝑆 ⊈ 𝐷𝑞2≺𝑆 and
𝐷𝑞2≺𝑆 ⊈ 𝐷𝑞1≺𝑆 . ■

Proof. The proof is as the proof of Lemma 3.5. If 𝐷𝑞1≺𝑆 ⊈
𝐷𝑞2≺𝑆 and 𝐷𝑞2≺𝑆 ⊈ 𝐷𝑞1≺𝑆 , there must be at least one skyline

point 𝑝 ∈ 𝑆 on at least one dimension 𝑖 where 𝑞1 [𝑖] < 𝑝 [𝑖] ≤
𝑞2 [𝑖] or 𝑞2 [𝑖] < 𝑝 [𝑖] ≤ 𝑞1 [𝑖]. Thus, 𝑞1 ≁ 𝑞2. □

Lemma 4.3. Given a dataset P, let 𝑆 be a set of skyline points
of P and 𝑞1, 𝑞2 ∈ P be two arbitrary points such that 𝑞1, 𝑞2 ∉ 𝑆 ,
𝑆 ⊀ 𝑞1, 𝑆 ⊀ 𝑞2, and 𝑞1 ≠ 𝑞2. 𝐷𝑞1≺𝑆 ⊉ 𝐷𝑞2≺𝑆 ⇒ 𝑞1 ⊀ 𝑞2. ■

Proof. If 𝑞1 ≺ 𝑞2, then ∀𝑖 ∈ 𝐷,𝑞1 [𝑖] ≤ 𝑞2 [𝑖]. If 𝐷𝑞1≺𝑆 ⊉
𝐷𝑞2≺𝑆 , then there exists at least one skyline point 𝑝 ∈ 𝑆 on at least
one dimension 𝑖 where 𝑞2 [𝑖] < 𝑝 [𝑖] ≤ 𝑞1 [𝑖]. Thus, 𝑞1 ⊀ 𝑞2. □

In practice, it is difficult to determine the number of pivot

points, an optimal value depends on many factors including

the number of all skyline points, which should be considered

as unknown. Too few pivot points cannot distribute all points

to a large number of subspaces but too many pivot points will

clearly slow down our method. In general, we use a sorting-based

process to select pivot points and merge dominating subspaces,

the maximum dominating subspace is constructed in iteration.

Each skyline point can assign a dominating subspace to a point

𝑞 ∈ P and all dominated points will be pruned.

In each iteration, we determine the change of point number of

each subspace size, that is, the number of points within the same

subspace with the same size, which is limited by 𝑑 − 1 instead of

all 2
𝑑 −2 subspaces. Let P be the dataset and𝐷𝑞 be the maximum

dominating subspace of a point 𝑞 ∈ P, then, for each point 𝑞,

the subspace 𝐷𝑞 may be changed by current pivot point 𝑝 as

𝐷𝑞 ∪ 𝐷𝑞≺𝑝 . Hence, we propose a heuristic measure, the stability

394

threshold, denoted by 𝜎 , to stop merging dominating subspaces.

The stability threshold is the number of subspace sizes that do not

change while iterating, which means that no new pivot points

are necessary to continue to change the maximum dominating

subspaces.

The following Algorithm 1 merges dominating subspaces of

each non-pruned point in a dataset. The algorithm stops while

the stability threshold is reached.

Algorithm 1:Merge

Input: The dataset P and the stability threshold 𝜎

Output: The initial skyline 𝑆 of P and P with

non-pruned points

1 Score each point 𝑞 ∈ P by Euclidean distance to the zero

point

2 Initialize the maximum dominating subspace 𝐷𝑞 = ∅ for
each point 𝑞 ∈ P

3 𝑆 ← ∅
4 𝜎′ ← 0

5 while 𝜎′ < 𝜎 do
6 if P = ∅ then
7 return S, P
8 𝑝 ← the point with the minimal score (which is a

skyline point)

9 S ← S ∪ {𝑝}
10 P ← P \ {𝑝}
11 foreach 𝑞 ∈ P do
12 Compute dominating subspace 𝐷𝑞≺𝑝
13 if 𝐷𝑞≺𝑝 = ∅ then
14 if 𝑞 = 𝑝 then
15 S ← S ∪ {𝑞}
16 P ← P \ {𝑞}
17 continue

18 𝐷𝑞 ← 𝐷𝑞 ∪ 𝐷𝑞≺𝑝

19 𝜎′ ← compute the stability of point distribution

20 return S, P

First, in our algorithm we score each point in the dataset P by

its Euclidean distance to the zero point (line 1). In this step, the

sorting of all points is not necessary, which requires O(𝑁 log𝑁)
time: assume that the stability threshold 𝜎 can be satisfied by 𝑘

skyline points, the search of minimal score (line 9) can be done

in O(𝑘𝑁) time in the worst case, where 𝑘 ≪ 𝑁 . The algorithm

runs in the iterative loop from line 5 to line 24 with respect to the

stability measure 𝜎′ < 𝜎 . In each iteration, any time if all points

have been pruned, then the algorithm returns the skyline 𝑆 and

the empty dataset P (line 7), so that the whole computation can

be terminated. With pruning dominated points in the dataset,

the point 𝑝 having the minimal score is immediately a skyline

point (line 9 and 10) and can be pruned from the dataset (line

11). Then, the point 𝑝 will be compared with each point 𝑞 ∈ P
in the dataset (line 12 to line 22) by computing the dominating

subspace 𝐷𝑞≺𝑝 (line 13). If 𝑆𝑞≺𝑝 = ∅, then 𝑝 ⊀ 𝑞 or 𝑝 = 𝑞

(here we denote by 𝑝 = 𝑞 that ∀𝑖 ∈ 𝐷, 𝑝 [𝑖] = 𝑞 [𝑖]), in any case,

𝑞 will be pruned from P (line 18) and 𝑞 will be added to the

skyline if 𝑝 = 𝑞 (line 15 to line 17); otherwise, we merge the

maximum dominating subspace 𝐷𝑞≺𝑝 of 𝑞 (line 21). At the end of

each iteration, the stability measure 𝜎′ will be updated (line 23).

Finally, the algorithm returns the skyline 𝑆 and the dataset P that

contains non-pruned points only (line 25), that is ∀𝑞 ∈ P, 𝑆 ⊀ 𝑞.

In summary, Algorithm 1 is designed to merge the maximum

dominating subspace of each point in order to distribute the

points in the dataset to asmuch as possible subspaces, the stability

threshold 𝜎 is set to control the algorithm. Because each merge

procedure of the maximum dominating subspace requires the

dominance tests against all non-pruned points in the dataset, the

value of stability threshold is sensitive to the performance of our

method. For small datasets, the selection of stability threshold is

less important because any skyline algorithm can finish in short

time; for large datasets, the stability threshold can be tested from

a random sample of the dataset. We also note that any measure

can be applied to stop dominating subspace merging.

5 SUBSET QUERY FOR SKYLINE INDEXING
In the previous section, we show a maximum dominating space

can be assigned to each point, this principle can be used to parti-

tion and index skyline points in order to reduce the dominance

tests. Lemma 4.3 shows that 𝐷𝑞1≺𝑆 ⊉ 𝐷𝑞2≺𝑆 is necessary to de-

termine whether 𝑞1 ≺ 𝑞2 while 𝑞1 and 𝑞2 have been attributed a

subspace generated from a set of skyline points 𝑆 .

Lemma 5.1. Given a dataset P, let 𝑆 be a set of skyline points
of P and 𝐷𝑞≺𝑆 be the superposed dominating subspace of a point
𝑞 ∈ P, where all points dominated by 𝑆 have been pruned. Let
𝑝 be a skyline point in P, then, the dominance tests to determine
whether a point 𝑞 ∈ P is a skyline point can be done only with
each skyline point 𝑝 such that 𝐷𝑝≺𝑆 ⊇ 𝐷𝑞≺𝑆 , in the condition of
presorting. ■

Proof. In the condition of presorting like [1, 2, 7, 8, 18], it

is enough to compare a point with all known skyline points to

determine whether the testing point is in the skyline. The rest

of the proof is as the proof of Lemma 4.3, if 𝑞1 in Lemma 4.3 is a

skyline point. □

Our result shows that subspace based partitioning of sky-

line points can significantly reduce the dominance tests: a test-

ing point is necessary to compare only with the skyline points

with the maximum dominating subspace specified in Lemma 5.1.

Therefore, if the skyline points can be stored and retrieved by a

generic container, then this container can be used to improve any

skyline algorithm by reducing the total number of dominance

tests. So we have the following problem statements.

Problem 1. Design a data structure with which:
(1) each skyline point can be stored/indexed and partitioned by

its maximum dominating subspace;
(2) given a subspace 𝐷𝑞 of a testing point 𝑞, all skyline points

with any subspace 𝐷′ ⊇ 𝐷𝑞 can be efficiently returned.

Let 𝐷¬𝑞 denote the reversed maximum dominating subspace

with respect to 𝐷 of a point 𝑞, then the above problem is to find

all subsets of 𝐷¬𝑞 in order to retrieve associated skyline points.

Problem 2. Given a set X of𝑚 subsets of a universe 𝐷 , for any
query set 𝑄 ⊆ 𝐷 , return the set {𝑄 ′ ∈ X | 𝑄 ′ ⊂ 𝑄}.

Many studies have been addressed to the subset query prob-

lem. The recent result [5] shows that the subset query can be

accomplished in O(𝑑𝑀
𝑐
) time. In our context, where 𝑑 is the

the dimensionality, 𝑀 is the number of maximum dominating

395

subspaces, and 𝑐 ≤ 𝑀 is a constant. We propose a very simple

data structure to resolve our reversed subset query problem in

O(𝑑
2

) average time for adding a point and in O((𝑑
2

)2) average
time for query, note that 𝑑 ≪ 𝑀 .

1 3 5

2 3 5 7 5 7 7

5

7

Figure 3: A map based data structure for subset query.

Figure 3 shows our data structure, which is a prefix tree like

structure based on maps, where each value of the key-value pair

of a map consists in two parts: a set of skyline points (IDs, refer-

ences, or pointers, for instance) and a set of sub-maps (references

or pointers, for instance). Each key-value pair is considered as a

node. In considering the access cost, hash map is the best choice

for constant insertion and retrieval of nodes, hence, the following

description and analysis are all based on hash map. Indeed, any

map implementation can be used to construct the proposed data

structure, for instance, a sorted map, but in this case, the access

will be no longer in constant time but in log time. The index

size is the map-based prefix tree that contains all dimensions

in concerned subspaces plus the total number of skyline points

represented by IDs, references, or pointers.

In the example illustrated in Figure 3, the reversed maximum

dominating subspaces are organized by the index of dimensions,

where in this example we have the following subspaces

{{1, 2}, {1, 3, 5, 7}, {1, 5}, {1, 7}, {3, 5}, {3, 7}, {5, 7}}
in the tree. Each node consists of the index of subspace and the

set of all points (any point can be represented by a pointer, a

reference, or its ID, a real copy is not necessary) assigned with

this subspace. Given a query set {1, 3, 5}, we first locate the node
1, the retrieve all points associated with this node, and then, from

the node 1, we locate the node 3 with retrieving all associated

points, and the node 5. In order to find all subsets of {1, 3, 5}, the
node 3 and the node 5 at the first level (root node) should also be

accessed.

We propose the following two subset query algorithms to store

and retrieve skyline points. We suppose that each point in the

dataset has been attributed a maximum dominating subspace

computed from the Algorithm 1, represented by a bit set (which

is supported by many programming languages) or a binary vector

of size 𝑑 .

Algorithm 2 is quite simple. With respect to the data structure

shown in Figure 3, we let the initial node be the root node (line

1). For each dimension in the reversed subspace 𝐷¬𝑞 (the index

of the true bit with respect to a bit set or of the value 1 with

respect to a binary vector), we get the last node by a simple loop

(line 2 to line 4). We define that the 𝑔𝑒𝑡 (𝑖) method (line 3) of

a node returns the sub-node with the index value 𝑖 , which can

Algorithm 2: Store
Input: A point 𝑞 with a subspace 𝐷𝑞

1 𝑛𝑜𝑑𝑒 ← 𝑟𝑜𝑜𝑡

2 foreach 𝑖 ∈ 𝐷¬𝑞 do
3 𝑛𝑜𝑑𝑒 ← 𝑛𝑜𝑑𝑒.𝑔𝑒𝑡 (𝑖)
4 𝑛𝑜𝑑𝑒.𝑝𝑢𝑡 (𝑞)

finish in constant time while using a hash map to implement the

data structure, or in O(log𝑑) time if a sorted map is used. If the

sub-node with the index value 𝑖 does not exist, the 𝑔𝑒𝑡 (𝑖) method

create the sub-node. Finally, the point 𝑞 is added to the last node

(line 5) by the method 𝑝𝑢𝑡 (𝑞).

Lemma 5.2. Algorithm 2 finishes in O(1) time in the best case,

in O(𝑑−1) time in the worst case, and in O(𝑑
2

) time in the average
case. ■

Proof. In the best case, |𝐷¬𝑞 | = 1, the algorithm finishes imme-

diately. In the worst case, |𝐷¬𝑞 | = 𝑑−1 because 𝑞 is not dominated

by any initial skyline points, therefore the algorithm requires

𝑑 − 1 retrievals of sub-node, which requires O(𝑑 − 1) time with

hash map based data structure. In the average case, the mean

size of subspaces can be computed by dividing the sum of the

total size of all subspaces (which is known as 𝑑2𝑑−1) by the total

number of subspaces (which is 2
𝑑
), we have

𝑑2𝑑−1

2
𝑑

=
𝑑

2

. Hence,

this average time complexity is O(𝑑
2

). □

Lemma 5.2 also shows that in the case of 𝑑 = 2, Algorithm 2

finishes always in O(1), however, there will be only two indepen-
dent nodes at the top level to store skyline points, therefore, our

method can contribute very limited performance improvement.

Algorithm 3: Query
Input: A subspace 𝐷𝑞

Output: A set 𝑆 of points such that ∀𝑝 ∈ 𝑆, 𝐷𝑝 ⊇ 𝐷𝑞

1 𝑆 ← 𝑟𝑜𝑜𝑡 .𝑝𝑜𝑖𝑛𝑡𝑠

2 foreach 𝑛𝑜𝑑𝑒 ∈ 𝑟𝑜𝑜𝑡 .𝑛𝑜𝑑𝑒𝑠 do
3 if 𝑛𝑜𝑑𝑒.𝑖𝑛𝑑𝑒𝑥 ∈ 𝐷¬𝑞 then
4 𝑞𝑢𝑒𝑟𝑦 (𝐷¬𝑞 , 𝑛𝑜𝑑𝑒, 𝑆)

5 return 𝑆

Algorithm 4: Recursive query
Input: A subspace 𝐷𝑞 , a node, and a set 𝑆 of points such

that ∀𝑝 ∈ 𝑆, 𝐷𝑝 ⊇ 𝐷𝑞

1 𝑆 ← 𝑆 ∪ 𝑛𝑜𝑑𝑒.𝑝𝑜𝑖𝑛𝑡𝑠
2 foreach 𝑛𝑜𝑑𝑒 ∈ 𝑛𝑜𝑑𝑒.𝑛𝑜𝑑𝑒𝑠 do
3 if 𝑛𝑜𝑑𝑒.𝑖𝑛𝑑𝑒𝑥 ∈ 𝐷¬𝑞 then
4 𝑞𝑢𝑒𝑟𝑦 (𝐷¬𝑞 , 𝑛𝑜𝑑𝑒, 𝑆)

Algorithm 3 presents a recursive retrieval of partitioned sky-

line points with respect to a given subspace 𝐷𝑞 , all points dis-

tributed to any super set of 𝐷𝑞 will be returned. Algorithm 4

corresponds to the 𝑞𝑢𝑒𝑟𝑦 method in the line 4 of Algorithm 3.

The skyline point set 𝑆 is updated by each call of the method

396

2 3 4 5 6 7 8

Number of stable subspaces

1

10

100

1x103

10x103

M
ea

n
nu

m
be

r o
f d

om
in

an
ce

 te
st

s

SDI-Subset
SFS-Subset
SaLSa-Subset

2 3 4 5 6 7 8

Number of stable subspaces

1

1.02

1.04

1.06

1.08

1.1

M
ea

n
nu

m
be

r o
f d

om
in

an
ce

 te
st

s

SDI-Subset
SFS-Subset
SaLSa-Subset

2 3 4 5 6 7 8

Number of stable subspaces

1

10

100

M
ea

n
nu

m
be

r o
f d

om
in

an
ce

 te
st

s

SDI-Subset
SFS-Subset
SaLSa-Subset

(a) 8-D 100K AC dataset. (b) 8-D 100K CO dataset. (c) 8-D 100K UI dataset.

Figure 4: Mean dominance test numbers with respect to stable subspaces on 8-D 100K datasets.

2 3 4 5 6 7 8

Number of stable subspaces

1x103

10x103

M
ea

n
el

ap
se

d
tim

e
(m

s)
 fo

r 1
0

ru
ns

SDI-Subset
SFS-Subset
SaLSa-Subset

2 3 4 5 6 7 8

Number of stable subspaces

1

1.5

2

2.5

3

3.5

4

M
ea

n
el

ap
se

d
tim

e
(m

s)
 fo

r 1
0

ru
ns

SDI-Subset
SFS-Subset
SaLSa-Subset

2 3 4 5 6 7 8

Number of stable subspaces

100

1x103

M
ea

n
el

ap
se

d
tim

e
(m

s)
 fo

r 1
0

ru
ns

SDI-Subset
SFS-Subset
SaLSa-Subset

(a) 8-D 100K AC dataset. (b) 8-D 100K CO dataset. (c) 8-D 100K UI dataset.

Figure 5: Elapsed processor time (ms) for 10 runs with respect to stable subspaces 8-D 100K datasets.

𝑞𝑢𝑒𝑟𝑦 (Algorithm 4), which is initialized by all points distributed

to the root node (line 1 of Algorithm 3).

Lemma 5.3. Given a subspace 𝐷𝑞 , Algorithm 3 returns the set 𝑆
such that ∀𝑝 ∈ 𝑆, 𝐷𝑝 ⊇ 𝐷𝑞 in O(1) time in the best case, in

O((𝑑 − 1) (𝑑 − 2)
2

)

time in the worst case, and in

O((𝑑/2) (𝑑/2 − 1)
2

)

time in the average case. The average time complexity of Algorithm

3 can be considered as O((𝑑
2

)2). ■

Proof. Let |𝐷¬𝑞 | = 𝑛, then
𝑛(𝑛 − 1)

2

tests must be done with

respect to the data structure shown in Figure 3 to retrieve all

subsets of 𝐷¬𝑞 , that is, all super sets of 𝐷𝑞 . In the best case, 𝑛 = 1,

1 test returns the subset of 𝐷¬𝑞 ; in the worst case, 𝑛 = 𝑑 − 1,

hence O((𝑑 − 1) (𝑑 − 2)
2

) time is required. In the average case, as

shown in the proof of Lemma 5.2, 𝑛 =
𝑑

2

, therefore, Algorithm 3

terminates in O((𝑑/2) (𝑑/2 − 1)
2

) time, which can be considered

in O((𝑑
2

)2) time complexity. □

We note that the dimensionality 𝑑 of the dataset is much less

than the cardinality 𝑁 of the dataset, the O((𝑑
2

)2) average subset
query time can be ignored in comparison with O(𝑑𝑁 2) time or

O(𝑁 log
(𝑑−2) 𝑁) time. However, our method is not suitable to

directly partition points in a dataset because 2
𝑑 −2 subspaces can

be generated in the worst case and in this case O((𝑑
2

)2𝑁) time

is required to retrieve comparable points. Hence, we propose our

method to partition skyline points only, and the dominance tests

can be performed in general ways. Therefore, the best application

of our result is to boost sorting-based skyline algorithms.

6 EXPERIMENTAL RESULTS
In this section, we report the experimental results of our method.

We applied our method to SFS, SaLSa, and SDI algorithms with-

out changing their original designs, the main function of our

method is to store and to retrieve skyline points. The code is

implemented in C++ with the C++11 standard
2
and tested on

AMD Epyc 7702 2GHz CPU with 512 GB RAM.

The evaluation metrics are based on the mean dominance test
number [14] and the elapsed processor time, where the mean

dominance test number is defined as the ratio of the total number

of dominance tests on the total number of points. All elapsed

processor time results, in milliseconds, are based on the mean

time of 10 runs, all data have been loaded into the main memory

before counting.

6.1 Effect of Stability Threshold
First, we study the effect of the stability threshold 𝜎 , where

1 < 𝜎 ≤ 𝑑 (𝑑 is the dimensionality of dataset). Note that it

is meaningless to set 𝜎 = 1 because the objective of our method

is to balance the distribution of points among subspaces. Figure

4 and Figure 5 show that low-value stability thresholds can effec-

tively reduce the mean number of dominance tests however there

2
The source code of our method is available at https://github.com/dominiquehli/

skyline-subset. We thank Jongwuk Lee for the source code of BSkyTree-S and

BSkyTree-P.

397

1 2 3 4 5 6 7 8

Subspace size

0

10000

20000

30000

40000

N
um

be
r o

f p
oi

nt
s

1 2 3 4 5 6 7 8

Subspace size

0

100

200

300

400

500

600

700

N
um

be
r o

f p
oi

nt
s

1 2 3 4 5 6 7 8

Subspace size

0

10000

20000

30000

40000

N
um

be
r o

f p
oi

nt
s

(a) 8-D 100K AC dataset. (b) 8-D 100K CO dataset. (c) 8-D 100K UI dataset.

Figure 6: Distribution of points with respect to subspace size where the stability threshold is set to 3.

Dimensionality 2-D 4-D 6-D 8-D 10-D 12-D 16-D 20-D 24-D

AC datasets 55 4806 40423 95898 139770 166641 190360 197142 199048

CO datasets 3 20 57 148 252 1303 4473 9582 20891

UI datasets 14 382 3275 13046 37379 77200 154827 190501 198742

Cardinality 100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

AC datasets 55969 95898 131632 164204 193488 221317 247651 273151 297131 320138

CO datasets 135 148 189 203 219 238 260 259 202 208

UI datasets 55969 95898 131632 164204 193488 221317 247651 273151 297131 320138

Table 1: Skyline size of synthetic datasets.

is no exact corresponding changes in elapsed processor time on

CO and UI (with SDI-Subset) datasets. Note that the format of

Y axis of AC and UI datasets is logarithmic and that of CO is

linear. The main reason is that AC data require a huge number

of dominance tests so that the time variance among different

dominance tests can be statistically neutralized, however CO

and UI data require much less dominance tests so the different

dominance test time makes sense. Indeed, in comparison with

Figure 2, Figure 6 can show that while 𝜎 = 3, the most of points

in AC data are distributed in high subspaces but that in CO and

UI data are distributed in low subspaces, which requires less sky-

line index accesses and the index is much smaller. We have the

similar results on other AC/CO/UI datasets with different dimen-

sionality and cardinality, where the fastest 𝜎 for SDI-Subset is
around 𝑑/3. Therefore, in the reported performance evaluations,

the stability threshold 𝜎 is set to rounded 𝑑/3.

6.2 Effect of Data Type
We now report the improvements of SFS, SaLSa, and SDI algo-
rithms with the boost of our method, where the state-of-the-art

algorithms BSkyTree-S and BSkyTree-P are used as the baseline.
Two groups of tests have been conducted in order to study the

effect of the data dimensionality and the effect of the data cardi-

nality on synthetic AC, CO, and UI datasets. In the first group,

the cardinality of all datasets is fixed to 2 × 10
5
(200K) points,

the dimensionality varies from 2-D to 24-D; in the second group,

the dimensionality of all datasets is fixed to 8-D, the cardinality

varies from 10
5
(100K) to 10

6
(1M) points. Table 1 lists the skyline

size of all synthetic datasets.

Because the scale of obtained values is huge, our results are

presented as numbers listed in Table 2 — Table 13, where the

algorithms with -Subset suffix are boosted by our method. Fur-

thermore, we introduce the performance gains metric into the

presented tables, which is calculated as the ration of any value

obtained without boosting on the value boosted by our method.

If there is no performance gain, we mark it as “–”.

From Table 2 to Table 5, we study the the performance of our

method on AC data. It is not surprising that BSkyTree-P is the
absolute winner on AC data, and the boost of our method is very

limited. We can preview this result from the previous analysis.

However, in high-dimensional data, for instance 20-D and 24-D

datasets, our method can boost SFS, SaLSa, and SDI up to 30 to

40 times. The reason is that the 200K points have been distributed

till to 2
20

and 2
24

subspaces, that is also why SDI-Subset wins
BSkyTree-P in 16-D and 24-D.

The effectiveness of our method on CO data is studied from

Table 6 to Table 9. Except SaLSa and SDI, all other methods

require at least on scan of the full dataset. We can see that there

is almost no performance gain inmany datasets, as already shown

in Figure 6: it is difficult to distribute CO data. We also see that

SDI is the winner in mean dominance test numbers because of its

early stop mechanism, as SaLSa. However SDI needs much more

time to finish the computation in comparison with BSkyTree-S
because it must first build the dimension index of the full dataset.

Table 10 to Table 13 prove the performance of our method. We

note the in Table 10, our method cannot reduce any mean domi-

nance test numbers on the datasets of which the dimensionality is

less than 6 in comparisonwith SaLSa and SDI because of the same

reason described with CO data. On 6-D dataset, SaLSa-Subset
is the winner, lightly faster then SDI-Subset. However, from
6-D data, the boosted methods SaLSa-Subset and SDI-Subset
run faster than BSkyTree-P. From 8-D datasets

3
, SDI-Subset

becomes the fastest algorithm on UI data.

Finally, our experimental results show that BSkyTree-P is the

best choice for AC data, BSkyTree-S is always the winner on

CO data and low-dimensional data (for instance, 𝑑 < 6), and

the boosted methods, particularly SDI-Subset, is best for UI

3
The 16-D dataset is exceptional. We have tested different 16-D UI datasets from

100K to 1M points, all results are very similar to that of AC datasets.

398

Dimensionality 2-D 4-D 6-D 8-D 10-D 12-D 16-D 20-D 24-D

SFS 3.66836 141.496 4568.9 23648.6 49406.2 69797.2 90707.7 97192 99059.0

SFS-Subset 3.66836 301.28 2010.01 4884.64 10568.8 15764.2 11408.7 2059.39 2182.93

Performance Gain — — × 2.27 × 4.84 × 4.67 × 4.43 × 7.95 × 47.19 × 45.38

SaLSa 1.05371 41.3559 1780.08 10883.6 25035.1 37825.5 53188.3 58872 61164.7

SaLSa-Subset 3.66836 210.186 702.753 1871.68 4751.66 7716.71 6154.24 1195.77 1264.72

Performance Gain — — × 2.53 × 5.81 × 5.27 × 4.90 × 8.64 × 49.23 × 48.36

SDI 4.1517 57.3677 611.713 1775.54 2908.51 3544.81 3975.69 3748.68 3538.47

SDI-Subset 3.66836 42.8875 147.725 260.142 601.158 911.765 655.527 132.627 125.826
Performance Gain × 1.13 × 1.34 × 4.14 × 6.83 × 4.84 × 3.89 × 6.06 × 28.26 × 28.12

BSkyTree-S 2.77378 62.2657 1037.81 2642.78 3251.29 2770.63 1570.63 1375.05 803.409

BSkyTree-P 2.96938 20.8456 70.0527 153.205 240.783 263.435 382.818 359.256 466.324

Table 2: Mean dominance test numbers on synthetic 200K AC dataset with respect to the dimensionality from 2-D to 24-D.

Dimensionality 2-D 4-D 6-D 8-D 10-D 12-D 16-D 20-D 24-D

SFS 32.6347 316.748 11519.5 79646.1 200778 290403 438638 513578 495081.0

SFS-Subset 14.4623 794.527 6220.12 18914.7 35340.6 55567.1 39347.6 20817.5 16630.1

Performance Gain × 2.26 — × 1.85 × 4.21 × 5.68 × 5.23 × 11.15 × 24.67 × 29.77

SaLSa 31.942 149.111 5897.42 39627.7 134451 174043 294857 338326 410082.0

SaLSa-Subset 17.4618 785.225 7097.27 25528.3 50362.1 93603 98041.8 25432.1 17157.5

Performance Gain × 1.83 — — × 1.55 × 2.67 × 1.86 × 3.01 × 13.30 × 23.90

SDI 48.2699 427.674 7512.17 27096.3 42502.4 52725.2 60998.5 57874.9 52973.4

SDI-Subset 15.7008 538.322 1579.89 5197.69 10514.9 14936.4 12372.4 12074.1 9632.24
Performance Gain × 3.07 — × 4.75 × 5.21 × 4.04 × 3.53 × 4.93 × 4.79 × 5.50

BSkyTree-S 8.2063 382.894 12472.8 36874.9 59113.1 58579 52648.1 51648.3 40451.4

BSkyTree-P 8.7188 82.9531 696.73 2139.81 4062.37 5389.26 10650 17095.5 29731.9

Table 3: Elapsed processor time (ms) on synthetic 200K AC dataset with respect to the dimensionality from 2-D to 24-D.

Cardinality 100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

SFS 16094.3 23648.6 29744 34746.4 38630.9 42150.5 45269.6 48205 50733.8 53040.0

SFS-Subset 5448.8 4884.64 6506.3 9785.86 12398 12136.6 14463.9 15638.7 16222.5 18461.7

Performance Gain × 2.95 × 4.84 × 4.57 × 3.55 × 3.12 × 3.47 × 3.13 × 3.08 × 3.13 × 2.87

SaLSa 7686.93 10883.6 13400.6 15422.7 16974.9 18335.3 19523.3 20675.1 21621.6 22470.2

SaLSa-Subset 2380.6 1871.68 2471.55 3748.81 4780.51 4588.65 5453.09 5776.88 5950.9 6818.11

Performance Gain × 3.23 × 5.81 × 5.42 × 4.11 × 3.55 × 4 × 3.58 × 3.58 × 3.63 × 3.30

SDI 1197.53 1775.54 2285.43 2715.21 3057.96 3651.34 3679.31 3955.05 4206.04 4439.36

SDI-Subset 380.506 260.142 347.751 592.091 773.557 706.018 991.316 1005.2 1111.23 1323.31

Performance Gain × 3.15 × 6.83 × 6.57 × 4.59 × 3.95 × 5.17 × 3.71 × 3.93 × 3.79 × 3.35

BSkyTree-S 1840.34 2642.78 3294.33 3825.6 4226.94 4585.38 4924.65 5224.82 5495.08 5746.91

BSkyTree-P 138.385 153.205 165.693 172.064 179.472 184.118 185.679 189.311 191.758 191.702

Table 4: Mean dominance test numbers on synthetic 8-D AC dataset with respect to the cardinality from 100K to 1M.

Cardinality 100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

SFS 19460.6 79646.1 217338 397901 443378 569681 1606980 2139990 2393550 2710520.0

SFS-Subset 5626.8 18914.7 28654.9 54100.5 96181.3 115770 166344 223040 269236 374428.0

Performance Gain × 3.46 × 4.21 × 7.58 × 7.35 × 4.61 × 4.92 × 9.66 × 9.59 × 8.89 × 7.24

SaLSa 17124.8 39627.7 217466 420102 572934 433723 931318 1159820 1112750 1204340.0

SaLSa-Subset 7106.61 25528.3 28876.9 60517.9 106613 130710 174473 230938 283176 398255.0

Performance Gain × 2.41 × 1.55 × 7.53 × 6.94 × 5.37 × 3.32 × 5.34 × 5.02 × 3.93 × 3.02

SDI 5348.27 27096.3 44927.6 84776.9 131919 199842 248619 316241 386424 459770.0

SDI-Subset 1443.94 5197.69 5854.34 11830 20698.5 23743.9 37005.5 43266.8 70195.4 94795.2

Performance Gain × 3.70 × 5.21 × 7.67 × 7.17 × 6.37 × 8.42 × 6.72 × 7.31 × 5.50 × 4.85

BSkyTree-S 8754.06 36874.9 65591.6 113072 169633 232899 302621 379215 450423 503851.0

BSkyTree-P 855.191 2139.81 3231.9 4597 6280.92 7493.29 9186.88 10759.3 12452.9 13986.8

Table 5: Elapsed processor time (ms) on synthetic 8-D AC dataset with respect to the cardinality from 100K to 1M.

399

Dimensionality 2-D 4-D 6-D 8-D 10-D 12-D 16-D 20-D 24-D

SFS 1 1.00095 1.01652 1.09495 1.21073 6.14055 53.3143 233.428 1095.44

SFS-Subset 1 1.00035 1.01202 1.04543 1.06489 2.51762 9.72743 18.7451 45.6721

Performance Gain — × 1 × 1 × 1.05 × 1.14 × 2.44 × 5.48 × 12.45 × 23.98

SaLSa 0.000015 0.00032 0.01269 0.054905 0.09861 1.74134 18.7257 91.0814 474.549

SaLSa-Subset 1 1.00005 1.00721 1.02232 1.03373 1.46619 3.07304 7.96234 20.3894

Performance Gain — — — — — × 1.19 × 6.09 × 11.44 × 23.27

SDI 0 0.00014 0.003715 0.02436 0.03205 1.08491 8.20914 21.5959 52.8217

SDI-Subset 1 1.00004 1.00556 1.01909 1.0234 1.30619 1.86312 3.4836 6.7105
Performance Gain — — — — — — × 4.41 × 6.20 × 7.87

BSkyTree-S 1.00011 1.00383 1.07056 1.98896 8.24004 3.38524 13.6984 19.9785 33.2862

BSkyTree-P 1.0001 1.00379 1.07219 1.98422 8.22813 3.14621 13.0169 17.1449 33.0747

Table 6: Mean dominance test numbers on synthetic 200K CO dataset with respect to the dimensionality from 2-D to 24-D.

Dimensionality 2-D 4-D 6-D 8-D 10-D 12-D 16-D 20-D 24-D

SFS 20.4586 29.0367 38.259 40.8126 40.8972 58.4573 204.267 783.707 3411.88

SFS-Subset 2.0127 2.838 5.11 8.6771 7.2286 37.1798 331.794 1179.47 4011.02

Performance Gain × 10.16 × 10.23 × 7.49 × 4.70 × 5.66 × 1.57 — — —

SaLSa 25.8268 27.3071 29.3963 30.6528 30.7115 40.746 97.8189 353.89 1760.31

SaLSa-Subset 2.109 3.6676 4.2471 6.4295 7.0722 20.3191 140.599 474.649 1540.02

Performance Gain × 12.25 × 7.45 × 6.92 × 4.77 × 4.34 × 2.01 — — × 1.14

SDI 37.8009 91.3422 135.347 178.336 221.828 276.807 440.341 659.926 1064.64

SDI-Subset 2.4486 3.9579 3.9521 6.3952 7.6565 20.9283 95.6926 266.429 892.259
Performance Gain × 15.44 × 23.08 × 34.25 × 27.89 × 28.97 × 13.23 × 4.60 × 2.48 × 1.19

BSkyTree-S 0.0732 0.1962 0.2866 0.8575 2.0497 13.768 135.577 281.453 933.818

BSkyTree-P 0.8813 1.4264 2.1908 6.1156 11.9934 23.1115 124.2 330.976 1209.79

Table 7: Elapsed processor time (ms) on synthetic 200K CO dataset with respect to the dimensionality from 2-D to 24-D.

Cardinality 100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

SFS 1.15714 1.09495 1.11023 1.0878 1.09627 1.10625 1.1115 1.10019 1.0526 1.05208

SFS-Subset 1.05833 1.04543 1.04546 1.03052 1.03156 1.0359 1.03737 1.03598 1.01502 1.0148

Performance Gain × 1.09 × 1.05 × 1.06 × 1.06 × 1.06 × 1.07 × 1.07 × 1.06 × 1.04 × 1.04

SaLSa 0.09037 0.0549 0.0568 0.042585 0.041912 0.0379 0.0393 0.03806 0.01542 0.015499

SaLSa-Subset 1.03135 1.02232 1.02243 1.01315 1.01379 1.01574 1.01626 1.01845 1.00788 1.00828

Performance Gain — — — — — — — — — —

SDI 0.03404 0.02436 0.03979 0.02133 0.02357 0.02051 0.0209586 0.022 0.004756 0.004795
SDI-Subset 1.02565 1.01909 1.01635 1.00973 1.00999 1.01229 1.01224 1.01482 1.00575 1.0057

Performance Gain — — — — — — — — — —

BSkyTree-S 2.37996 1.98896 1.19064 1.74626 1.85352 1.15658 1.7801 1.95128 1.02078 1.10242

BSkyTree-P 2.35791 1.98422 1.19132 1.74511 1.8546 1.15933 1.78536 1.95586 1.02092 1.10346

Table 8: Mean dominance test numbers on synthetic 8-D CO dataset with respect to the cardinality from 100K to 1M.

Cardinality 100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

SFS 10.4544 40.8126 47.7369 66.9709 106.479 122.469 122.189 139.056 155.7 171.368

SFS-Subset 2.2779 8.6771 13.5451 13.7252 31.7945 21.079 21.1029 22.3662 42.2938 32.2714

Performance Gain × 4.59 × 4.70 × 3.52 × 4.88 × 3.35 × 5.81 × 5.79 × 6.22 × 3.68 × 5.31

SaLSa 14.084 30.6528 44.4031 59.58 74.613 91.1816 103.349 119.546 134.693 146.871

SaLSa-Subset 1.935 6.4295 7.4033 8.454 10.7574 14.6004 15.0803 17.5672 20.1752 21.2981

Performance Gain × 7.28 × 4.77 × 6 × 7.05 × 6.94 × 6.25 × 6.85 × 6.81 × 6.68 × 6.90

SDI 79.3928 178.336 256.307 343.177 442.941 536.764 628.812 724.978 810.822 913.288

SDI-Subset 2.8573 6.3952 10.4126 11.9223 23.9418 17.4361 20.745 25.2528 34.5934 31.4668

Performance Gain × 27.79 × 27.89 × 24.62 × 28.78 × 18.50 × 30.78 × 30.31 × 28.71 × 23.44 × 29.02

BSkyTree-S 0.7982 0.8575 1.5527 2.0601 3.6962 3.2064 3.434 3.8724 2.0915 2.0029
BSkyTree-P 3.9025 6.1156 6.1724 13.3343 16.8883 14.1379 22.9712 28.8244 16.5354 21.6284

Table 9: Elapsed processor time (ms) on synthetic 8-D CO dataset with respect to the cardinality from 100K to 1M.

400

Dimensionality 2-D 4-D 6-D 8-D 10-D 12-D 16-D 20-D 24-D

SFS 1.00995 2.07385 38.3914 459.212 3568.61 15015.3 60021.5 90753.8 98751.0

SFS-Subset 1.00995 1.59669 17.9581 106.088 710.948 3082.02 26693.7 11347 2034.05

Performance Gain — × 1.30 × 2.14 × 4.33 × 5.02 × 4.87 × 2.25 × 8 × 48.55

SaLSa 0.00975 0.532165 12.3735 167.818 1430.21 6809.19 32449.3 53197.5 58806.3

SaLSa-Subset 1.00995 1.39582 7.60971 43.9786 273.812 1364.84 14261.8 6486.06 1194.34

Performance Gain — — × 1.63 × 3.82 × 5.22 × 4.99 × 2.28 × 8.20 × 49.24

SDI 0.00602 0.54185 12.7038 75.1358 371.175 1305.16 2884.92 3712.77 3484.04

SDI-Subset 1.00995 1.11015 3.02379 10.2973 47.508 185.514 1512.53 645.27 114.729
Performance Gain — — × 4.20 × 7.30 × 7.81 × 7.04 × 1.91 × 5.75 × 30.37

BSkyTree-S 1.01232 7.0461 31.7958 133.137 332.591 717.365 1137.52 936.944 558.125

BSkyTree-P 1.01279 7.21108 25.7719 79.2428 93.519 158.027 529.538 582.166 432.831

Table 10: Mean dominance test numbers on synthetic 200K UI dataset with respect to the dimensionality from 2-D to 24-D.

Dimensionality 2-D 4-D 6-D 8-D 10-D 12-D 16-D 20-D 24-D

SFS 23.1289 40.7084 120.397 1268.57 11673.8 68903.9 313820 472481 559174.0

SFS-Subset 3.3954 12.6331 99.9347 696.141 2832.31 16612.6 122205 46537.1 13353.8

Performance Gain × 6.81 × 3.22 × 1.20 × 1.82 × 4.12 × 4.15 × 2.57 × 10.15 × 41.87

SaLSa 20.8913 25.4035 72.0775 608.382 5749.55 32369 235476 321931 355698.0

SaLSa-Subset 3.0395 9.6911 59.2101 403.433 2367.69 18146.9 249288 100806 17245.0

Performance Gain × 6.87 × 2.62 × 1.22 × 1.51 × 2.43 × 1.78 — × 3.19 × 20.63

SDI 35.8351 82.9728 265.237 988.093 5087.94 23951.7 52147.6 75153.3 60557.6

SDI-Subset 2.3276 11.2018 83.3118 337.974 755.396 2447.71 31524 12808.6 9872.25
Performance Gain × 15.40 × 7.41 × 3.18 × 2.92 × 6.74 × 9.79 × 1.65 × 5.87 × 6.13

BSkyTree-S 0.1235 7.6218 104.15 896.382 5651.38 15539.5 42210.9 38429 32554.3

BSkyTree-P 1.155 24.1729 95.2192 434.162 1146.56 2879.16 13397.5 27845.5 32266.7

Table 11: Elapsed processor time (ms) on synthetic 200K UI dataset with respect to the dimensionality from 2-D to 24-D.

Cardinality 100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

SFS 460.313 459.212 499.667 531.194 522.63 507.032 522.836 528.471 520.552 507.664

SFS-Subset 89.5718 106.088 129.523 122.864 120.545 114.264 141.636 144.664 139.262 139.63

Performance Gain × 5.14 × 4.33 × 3.86 × 4.32 × 4.34 × 4.44 × 3.69 × 3.65 × 3.74 × 3.64

SaLSa 175.827 167.818 176.903 185.034 179.431 171.196 176.839 178.822 174.434 167.308

SaLSa-Subset 31.4026 43.9786 38.6649 39.2604 36.4398 34.823 38.6292 39.7039 37.9282 37.959

Performance Gain × 5.60 × 3.82 × 4.58 × 4.71 × 4.92 × 4.92 × 4.58 × 4.50 × 4.60 × 4.41

SDI 70.879 75.1358 86.6211 96.2773 97.7019 101.154 103.341 105.916 105.649 105.536

SDI-Subset 8.84229 10.2973 9.57091 9.85854 9.60977 9.08958 9.54601 9.87711 8.79965 8.82683
Performance Gain × 8.02 × 7.30 × 9.05 × 9.77 × 10.17 × 11.13 × 10.83 × 10.72 × 12.01 × 11.96

BSkyTree-S 140.838 133.137 133.913 131.735 118.279 111.169 88.9518 88.8225 162.526 100.47

BSkyTree-P 85.5219 79.2428 79.191 72.7893 61.2489 52.4952 32.0429 36.6836 99.3828 38.4963

Table 12: Mean dominance test numbers on synthetic 8-D UI dataset with respect to the cardinality from 100K to 1M.

Cardinality 100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

SFS 569.967 1268.57 2519.03 3879.07 4406.86 5569.82 6462.62 9452.43 7414.07 8824.39

SFS-Subset 213.963 696.141 1213.75 1679.07 2010.92 2396.66 3437.86 4159.97 4627.68 4730.24

Performance Gain × 2.66 × 1.82 × 2.08 × 2.31 × 2.19 × 2.32 × 1.88 × 2.27 × 1.60 × 1.87

SaLSa 320.66 608.382 1001.58 1423.56 1707.41 1943.35 2388.99 2749.06 2987.54 3272.88

SaLSa-Subset 139.294 403.433 585.847 799.217 877.945 1069.97 1547.82 1848.41 1622.37 1709.46

Performance Gain × 2.30 × 1.51 × 1.71 × 1.78 × 1.94 × 1.82 × 1.54 × 1.49 × 1.84 × 1.91

SDI 361.305 988.093 1263.2 1879.79 2403.84 2938.16 3639.35 4111.78 4371.11 4802.71

SDI-Subset 99.4546 337.974 386.365 481.068 550.036 546.609 898.925 1049.89 1082.65 1220.89
Performance Gain × 3.63 × 2.92 × 3.27 × 3.91 × 4.37 × 5.38 × 4.05 × 3.92 × 4.04 × 3.93

BSkyTree-S 380.996 896.382 1157.3 1599.01 1944.32 2368.51 2818.7 3104.79 3777.96 4034.15

BSkyTree-P 210.467 434.162 600.422 790.853 916.168 1012.09 1041.63 1189.88 2039.03 1428.89

Table 13: Elapsed processor time (ms) on synthetic 8-D UI dataset with respect to the cardinality from 100K to 1M.

401

data. Besides, the usefulness of our method is also limited in low-

dimensionality domains, such as 2-D to 4-D datasets. The main

reason is that the number of subspaces is not enough to boost

SFS, SaLSa, and SDI: there is no subspace in 2-D dataset and

only 2
4 − 2 = 14 subspaces can be generated to distribute points.

In the presented experiments, any tested algorithm can finish

the skyline computation of a 4-D UI dataset with 2 × 105 (200K)
points in millisecond-level, so our method can not give additional

performance gain. However, on larger dataset, for instance, on a

4-D UI dataset with 10
6
(1M) points, our extended experiments

show that all boosted methods, SFS-Subset, SaLSa-Subset, and
SDI-Subset perform better than BSkyTree-S and BSkyTree-P,
where the skyline contains 423 points, as shown in Figure 14 (DT:

Mean dominance test numbers; RT: Elapsed processor time).

Method DT RT

SFS 1.38777 193.684 ms

SFS-Subset 1.39038 74.731 ms

Performance Gain – ×2.59
SaLSa 0.298219 169.865 ms

SaLSa-Subset 1.17633 49.637 ms

Performance Gain – ×3.42
SDI 0.388056 574.287 ms

SDI-Subset 1.03643 64.737 ms

Performance Gain – ×8.87
BSkyTree-S 8.96764 111.378 ms

BSkyTree-P 9.06151 120.388 ms

Table 14: Results on 4-D UI dataset with 1M points.

6.3 Results on Real Datasets
We also tested our method on the three real world datasets HOUSE
(6-D, 127,931 points, 5,774 skyline points), NBA (8-D, 17,264 points,
1,796 skyline points), and WEATHER (15-D, 566,268 points, 26,713

skyline points) [6] as listed from Table 15 to Table 17 (DT: Mean

dominance test numbers; RT: Elapsed processor time).

Method DT RT 𝜎

SFS 173.446 298.147 ms

SFS-Subset 135.977 245.348 ms 4

Performance Gain ×1.28 ×1.22
SaLSa 94.4504 211.248 ms

SaLSa-Subset 73.2253 249.887 ms 4

Performance Gain ×1.29 –

SDI 21.6086 214.724 ms

SDI-Subset 18.9641 111.7 ms 4

Performance Gain ×1.14 ×1.92
BSkyTree-S 60.3785 287.097 ms

BSkyTree-P 13.1706 56.219 ms

Table 15: The HOUSE dataset.

Our experimental results show that our method can boost

SFS, SaLSa, and SDI, where all stability threshold 𝜎 values have

been manually adjusted. We note and analyzed the relatively

limited (< 2) effectiveness on these three datasets. HOUSE is an

AC type dataset, we have already shown the limits of our method

with such a data type. NBA is a small dataset with only 17,264

points dataset, SaLSa cannot be boosted at all in terms of elapsed

processor time because the I/O of our proposed skyline index

Method DT RT 𝜎

SFS 149.09 29.167 ms

SFS-Subset 104.749 23.84 ms 2

Performance Gain ×1.42 ×1.22
SaLSa 115.763 26.005 ms

SaLSa-Subset 74.4728 24.236 ms 2

Performance Gain ×1.55 ×1.07
SDI 17.817 24.488 ms

SDI-Subset 18.5333 22.376 ms 2

Performance Gain – ×1.04
BSkyTree-S 54.5101 26.769 ms

BSkyTree-P 39.7169 17.681 ms

Table 16: The NBA dataset.

Method DT RT 𝜎

SFS 10793.9 43279.4 ms

SFS-Subset 9530.47 43231.2 ms ms 3

Performance Gain ×1.42 1.0001 = –

SaLSa 3080.55 14349.4 ms

SaLSa-Subset 2630 26169.5 ms 3

Performance Gain ×1.17 –

SDI 537.066 10653.4 ms

SDI-Subset 525.12 10617.3 ms 3

Performance Gain ×1.02 ×1.04
BSkyTree-S 3116.63 43495.9 ms

BSkyTree-P 561.723 11694.2 ms

Table 17: The WEATHER dataset.

requires additional processor time. WEATHER dataset consists of
15 dimensions, so SDI works well because it was designed for

high-dimensionality domains. Besides, there are a large number

of duplicate values in several dimensions in the WEATHER dataset,

and this factor causes that there may be a lot of skyline points in

one single node of our proposed skyline index, which will affect

the performance of the skyline index. However, both SDI and

SDI-Subset perform better then BSkyTree-P.

7 CONCLUSION
In this paper, we present a subset approach to efficient skyline

computation, which is designed to boost sorting-based skyline

algorithms. We proposed a subspace union method to assign all

points a maximum dominating subspace, with which the domi-

nance tests between skyline points and testing points are only

necessary between comparable subspaces. In order to efficiently

retrieve skyline points for dominance tests with respect to maxi-

mum dominating subspaces, we proposed a subset query method

to index the skyline. Our theoretical analysis and experimental

results show that the skyline computation can be boosted by

our subspace union and subset query method. The perspective

of the work presented in this paper includes: (1) extending the

proposed method to AC and CO data; (2) developing a cost model

to improve the stability threshold in order to find the best number

of pivot points; (3) adapting the proposed method to updating

data such as data streams.

ACKNOWLEDGMENT
The author benefited from the use of the cluster at the Centre de
Calcul Scientifique en Région Centre-Val de Loire, France.

402

REFERENCES
[1] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Salsa: Computing the skyline

without scanning the whole sky. In CIKM, pages 405–414, 2006.

[2] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Efficient sort-based skyline

evaluation. ACM Transactions on Database Systems (TODS), 33(4):1–49, 2008.
[3] Kenneth S Bøgh, Sean Chester, Darius Šidlauskas, and Ira Assent. Hashcube:

A data structure for space-and query-efficient skycube compression. In CIKM,

pages 1767–1770, 2014.

[4] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. The skyline oper-

ator. In ICDE, pages 421–430, 2001.
[5] Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset

query, partial match, orthogonal range searching, and related problems. In

International Colloquium on Automata, Languages, and Programming, pages
451–462. Springer, 2002.

[6] Sean Chester, Darius Šidlauskas, Ira Assent, and Kenneth S Bøgh. Scalable

parallelization of skyline computation for multi-core processors. In ICDE,
pages 1083–1094, 2015.

[7] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline with

presorting. In ICDE, volume 3, pages 717–719, 2003.

[8] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline with

presorting: Theory and optimizations. In Intelligent Information Processing
and Web Mining, pages 595–604. Springer, 2005.

[9] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Maximal vector computation in

large data sets. In VLDB, volume 5, pages 229–240, 2005.

[10] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Algorithms and analyses for

maximal vector computation. The VLDB Journal, 16(1):5–28, 2007.
[11] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the sky:

An online algorithm for skyline queries. In VLDB, pages 275–286, 2002.
[12] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. On finding the

maxima of a set of vectors. Journal of the ACM (JACM), 22(4):469–476, 1975.
[13] Jongwuk Lee and Seung-won Hwang. Bskytree: scalable skyline computation

using a balanced pivot selection. In EDBT, pages 195–206, 2010.
[14] Jongwuk Lee and Seung-won Hwang. Scalable skyline computation using a

balanced pivot selection technique. Information Systems, 39:1–21, 2014.
[15] Jongwuk Lee and Seung-won Hwang. Toward efficient multidimensional

subspace skyline computation. The VLDB Journal, 23(1):129–145, 2014.
[16] Ken CK Lee, Wang-Chien Lee, Baihua Zheng, Huajing Li, and Yuan Tian.

Z-sky: an efficient skyline query processing framework based on z-order. The
VLDB Journal, 19(3):333–362, 2010.

[17] Bin Liu and Chee-Yong Chan. Zinc: Efficient indexing for skyline computation.

Proceedings of the VLDB Endowment, 4(3):197–207, 2010.
[18] Rui Liu and Dominique Li. Efficient skyline computation in high-

dimensionality domains. In EDBT, pages 459–462, 2020.
[19] Michael Morse, Jignesh M Patel, and Hosagrahar V Jagadish. Efficient skyline

computation over low-cardinality domains. In VLDB, pages 267–278, 2007.
[20] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and

progressive algorithm for skyline queries. In SIGMOD, pages 467–478, 2003.
[21] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive

skyline computation in database systems. ACM Transactions on Database
Systems (TODS), 30(1):41–82, 2005.

[22] Jian Pei, Wen Jin, Martin Ester, and Yufei Tao. Catching the best views of

skyline: A semantic approach based on decisive subspaces. In VLDB, pages
253–264, 2005.

[23] Jian Pei, Yidong Yuan, Xuemin Lin, Wen Jin, Martin Ester, Qing Liu, Wei

Wang, Yufei Tao, Jeffrey Xu Yu, and Qing Zhang. Towards multidimensional

subspace skyline analysis. ACM Transactions on Database Systems (TODS),
31(4):1335–1381, 2006.

[24] Cheng Sheng and Yufei Tao. Worst-case i/o-efficient skyline algorithms. ACM
Transactions on Database Systems (TODS), 37(4):1–22, 2012.

[25] Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi, et al. Efficient progressive

skyline computation. In VLDB, volume 1, pages 301–310, 2001.

[26] Yufei Tao, Xiaokui Xiao, and Jian Pei. Subsky: Efficient computation of skylines

in subspaces. In ICDE, pages 65–65. IEEE, 2006.
[27] Shiming Zhang, Nikos Mamoulis, and David W Cheung. Scalable skyline

computation using object-based space partitioning. In SIGMOD, pages 483–
494, 2009.

403

