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Abstract

Our study is based on an epidemiological compartmental model, the SIRS model. In the SIRS

model, each individual is in one of the states susceptible (S), infected(I) or recovered (R), depend-

ing on its state of health. In compartment R, an individual is assumed to stay immune within

a finite time interval only and then transfers back to the S compartment. We extend the model

and allow for a feedback control of the infection rate by mitigation measures which are related

to the number of infections. A finite response time of the feedback mechanism is supposed that

changes the low-dimensional SIRS model into an infinite-dimensional set of integro-differential

(delay-differential) equations. It turns out that the retarded feedback renders the originally stable

endemic equilibrium of SIRS (stable focus) into an unstable focus if the delay exceeds a certain

critical value. Nonlinear solutions show persistent regular oscillations of the number of infected and

susceptible individuals. In the last part we include noise effects from the environment and allow

for a fluctuating infection rate. This results in multiplicative noise terms and our model turns into

a set of stochastic nonlinear integro-differential equations. Numerical solutions reveal an irregular

behavior of repeated disease outbreaks in the form of infection waves with a variety of frequencies

and amplitudes.

Keywords: Epidemic models, delay-differential equations, stochastic differential equations, bifur-

cation theory, numerical simulations, stability analysis
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I. INTRODUCTION

Mathematical modeling of epidemic dynamics goes back to the seminal work of Kermack

and McKendrick [1927] where the nowadays called ’SIR model’ was introduced, an acronym

from (S = susceptible, I = infected, R = recovered). The basic SIR model and its various

extensions (for a review see [1, 16]) are also called ’compartmental models’ since they divide

the individuals into several compartments depending on their state of health. It turned

out that the features of infectious diseases such as measles, mumps, and rubella could to a

certain extend be captured by such simple models. A huge field has emerged to describe

epidemic spreading in the framework of random walks in complex networks [5, 6, 19, 20] and

(generalized) fractional dynamics [17, 18, 22], just to name but a few. A model based on a

small world network is discussed in [23, 24] and proved to be superiour to SIR (or SEIR)

models comparing its results with data provided by the SARS outbreak in mthe year 2003.

Time periodic outbreaks have been noticed for a long time in the dynamics of several

diseases and were already stated in 1929 by Soper in a model for the time evolution of

measles cases [25].

The SIR model and most of its extensions are not able to describe sustained oscillations

but rather account for a single outbreak caused by the instability of the disease free state. In

the long time limit, the endemic equilibrium is reached where the fractions of the population

in the different compartments attain constant values. In the language of dynamical systems

this behavior is known as a heteroclinic orbit, connecting in phase space an unstable fixed

point (healthy state) with a stable one (endemic state). In the following we shall consider an

extended SIRS model where the time of immunity is finite and in the endemic equilibrium

a nonzero number of infected individuals remains present so that the disease never become

extinct completely. In the original SIR or SIRS models, the interplay between infected and

susceptible individuals is inspired by the dynamics of the even older predator-prey systems

[14] and is expressed in the form of a simple bilinear term β0 I(t)S(t), where I(t) and S(t)

are the number of infected and susceptible individuals and β0 is the constant probability

of infection at each contact (infection rate). The predator (infected) ’catches’ the prey

(susceptible) by infection.
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Other work [13] considered a nonlinear infection rate according to

W = β(j) I(t)S(t) =
β0 I

m(t)S(t)

1 + αIn(t)
, (1)

and obtain limit cycle solutions for certain parameters m = n ≥ 2, α > 0. Tang et al.

[2008] studied the case m = n = 2 and found a weak focus and the existence of two limit

cycles. For m ≥ n, W is a monotonically increasing function of I that saturates for m = n.

For m = n = 1 the dynamics is qualitatively the same than for the standard SIR model and

sustained oscillations cannot be observed. The denominator 1 +αIn accounts for mitigation

measures against the epidemics that naturally increase with increasing I. We only note that

for the case n > m the interaction W has a maximum at a certain infection number. For

such nonmonotonic behavior it was shown in [28] that the dynamics in the long time limit

approaches a stable fixed point as for the original SIR or SIRS models.

In the present paper we want to stay as close as possible at the standard SIRS model

and will not consider additional limit cycle solutions obtained for m = n ≥ 2 or non-

monotonic functions W of I. We therefore study a SIRS model with the most simple

nonlinear interaction of the form (1) with m = n = 1. Taking the recent Covid epidemic as

an example, such a feedback control is realized by certain containment measures like social

distancing, hygiene rules, or wearing masks. Normally these measures take effect after a

certain retardation that can be on the same time scale or even much longer than the time of

recovery. The time delay can be either distributed or singular. In our model we generalize

(1) by replacing I(t) in the feedback by a memory integral as follows

W =
β0 I(t)S(t)

1 + αId(t)
with Id(t) =

∫ t

−∞
K(t− τ)I(τ)dτ . (2)

For the distributed case, K(t) is a given causal normalized probability density function

(PDF) introducing memory into the model. The singular time delay is a special case with

K(t− τ) = δ(t− τ − τ0) with Dirac’s δ-function.

Delay or memory terms were introduced in epidemiological models by many other re-

searchers, for an overview see [21]. In a previous work we considered a SIRS model with

a retarded transition from the R to the S compartment, reflecting the rather long time of

decay of immunity [6]. From the mathematical point of view, the presence of a delay term in

an ordinary differential equation makes a low-dimensional system infinitely dimensional and

may allow for the occurrence of periodic, quasi-periodic or even chaotic behavior, rendering
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the dynamics much more complex [3, 10, 15]. Memory effects introduced by finite incubation

periods, delayed infectiousness and the distribution of the recovery period are considered in

an upcoming paper [2].

The main focus of the present paper is to analyze an epidemiological model that allows

for persistent periodic outbreaks of the disease, in contrast to the standard SIR or SIRS

models that show an asymptotically constant endemic equilibrium. To simulate environment

fluctuations, noise terms are added that may have a significant influence of the amplitude

and period of the oscillations.

The paper is organized as follows: After introducing the modified SIRS model with re-

tarded feedback control in part II, we perform in part III a local linear stability analysis

close to endemic equilibrium. Threshold parameters are determined for which the endemic

equilibrium becomes oscillatory (Hopf) unstable. The existence of a Hopf unstable endemic

equilibrium is crucial for the occurrence of sustainable periodic outbreaks. For the kernel

in (2) we consider a δ-function and especially an Erlang PDF which contains two free pa-

rameters and turned out to be flexible enough to capture real-life situations [6]. In Part

IV, fully nonlinear solutions for these cases are given above threshold and the occurrence

of persistent oscillations around the endemic equilibrium is observed. Finally, noise terms

are introduced into the infection rate, accounting for a fluctuating environment [7]. It is

demonstrated that these terms are responsible for much more irregular oscillations, showing

the typical behavior known from real-life data.

II. MODEL

A. SIRS model with feedback control

Let S, I, R be the number of susceptible, infected, and recovered individuals, respectively

and N = S+ I +R their total number. Assuming a bilinear interaction between susceptible

and infected individuals, the SIRS model has the form

dS

dt
= −β0

N
I S + ν R (3a)

dI

dt
=
β0
N
I S − γ I (3b)

dR

dt
= γ I − ν R , (3c)
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where β0 is the average number of contacts per individual per time, multiplied by the

probability of disease infection between a susceptible and an infectious individual, and 1/γ

is the average time of being infectious or the time of recovery. The parameter ν is the

immunity loss rate and accounts for a finite life time of immunity 1/ν. For ν = 0 the

standard SIR model [11] is recovered.

Since no birth or death processes are considered in (3), the total number of individuals N

is constant in time. Instead of the numbers S, I, R we introduce the fractions s(t), j(t), r(t) ∈

[0, 1]

s(t) =
S(t)

N
, j(t) =

I(t)

N
, r(t) =

R(t)

N
(4)

and obtain from (3)

ds

dt
= −β0 j s+ ν r (5a)

dj

dt
= β0 j s− γ j (5b)

dr

dt
= γ j − ν r , (5c)

Scaling the time with γ and considering r + j + s = 1, the system (5) is reduced to the

nondimensional form

ds

dt
= −R0(j) j s+ µ (1− j − s) (6a)

dj

dt
= R0(j) j s− j , (6b)

with µ = ν/γ and

R0(j) =
β(j)

γ

as the basic reproduction number. From here we allow for an infection number dependent

infection rate β(j) to model feedback control by mitigation measures, see eq. (1). For

arbitrary R0(j), the system (6) has a fixed point

jh = 0, sh = 1 , (7)

corresponding to the disease free state and becoming unstable for R0(0) > 1. For constant

R0 > 1, the other fixed point

je =
µ(R0 − 1)

R0(µ+ 1)
, se =

1

R0

(8)
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denotes the endemic equilibrium and is unconditionally stable. Note that for µ = 0, (8) turns

into je = 0, se = 1− re, where re depends on the initial conditions and on the dynamics.

If containment measures take effect the infection rate β will decrease. Since the strength

of the measures normally increases with the number of infected individuals, it is nearby to

assume a certain dependence β = β0/f(j) or

R0(j) =
r0
f(j)

, r0 = β0/γ (9)

and f(j) ≥ 1 as a monotonically increasing function of j with f(0) = 1. The endemic

equilibrium is now found from the solution of

je (1 + µ) +
µf(je)

r0
− µ = 0 (10)

and depends on f . Taking the most simple form (2)

f(j) = 1 + αj, α ≥ 0 , (11)

eq. (10) is linear in je and

je =
µ(r0 − 1)

r0(µ+ 1) + αµ
, se =

1

r0
(1 + αje) . (12)

The infection number of the endemic equilibrium is monotonically decreasing with increasing

α due to the containment measures. It exists again only for r0 > 1 where it is proved to

be always stable. for r0 > 1 + µ/4 + O(µ2) the endemic equilibrium is a stable focus. For

r0 � 1, je reaches the saturation value µ/(1 + µ) independent on f .

B. Retarded infection rate control

The containment measures are not instantaneously coupled to the number of infected but

follow them rather with a certain time delay. To include this issue, we introduce the causal

probability density function (PDF) K(τ) from which the finite time of delay between cause

and effect is drawn. Instead of (9) we may formulate

R0(j) =
r0

f(jd(t))
(13)

with the retarded infection

jd(t) =

∫ t

−∞
K(t− τ)j(τ)dτ . (14)
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The delay-time PDF is normalized, ∫ ∞
0

K(t)dt = 1.

The complete model reads

ds

dt
= − r0 j s

f(jd)
+ µ (1− j − s) (15a)

dj

dt
=
r0 j s

f(jd)
− j . (15b)

Its solutions are defined by the control parameters r0, µ and depend also on the form of

f(j) and K(t). Due to the memory term, the initial conditions have to be extended to

s(0), j(t), −∞ < t ≤ 0

if the memory is infinite. In practice however, the memory has a finite length t0 where

K(t > t0) → 0. Then it is sufficient to integrate in (14) from t − t0 to t and fix the initial

conditions for j(t) on the stripe −t0 < t ≤ 0.

III. STABILITY OF THE ENDEMIC EQUILIBRIUM

A. Characteristic equation

For the rest of the paper we assume f given as (11). To investigate the stability of the

endemic equilibrium, we insert

s = se + u eλt, j = je + v eλt

into (15) and linearize with respect to (u, v). The solvability condition reads

P (λ) = aλ2 + λ
(
r0 + αK̃(λ) + aµ

)
+ r0 (1 + µ) + µα K̃(λ) = 0 , (16)

where K̃(λ) =
∫∞
0

exp(−λt)K(t)dt stands for the Laplace transform of K(t) and a = 1+1/je

with je from (12). Since α, a, µ, r0 > 0 and K̃(0) = 1, there exists no real valued λ = 0 as

solution of (16). As a consequence, the endemic equilibrium (12) can only become unstable

due to an oscillatory (Hopf) instability.

8



B. δ-kernel

Now we need to define the memory kernel. The most simple form is

K(t) = δ(t− τ0)

where τ0 is the singular delay time between cause (high incidence) and effect (measures

become active) and K̃(λ) = exp(−λτ0). Inserting λ = iω, (16) is separated into real and

imaginary parts and a quadratic equation for the Hopf frequency ω2 can be derived:

a2ω4 + ω2
(
r20 + a2µ2 − α2 − 2r0a

)
+ r20 (1 + µ)2 − α2µ2 = 0 (17)

from where ω is determined from the larger root. Finally, τ0 follows from

τ0 =
1

ω
arccos

(
−r0(µ(1 + µ) + ω2)

α(µ2 + ω2)

)
. (18)

Fig.1 shows τ0 and the time period 2π/ω for which the fixed point je, se becomes oscillatory

unstable as a function of r0 for fixed α = 50 and µ = 0.1.

0
r

t

stable endemic equilibrium

Hopf unstable

2π/ω

τ
0

FIG. 1: τ0 and 2π/ω according to (17,18) as a function of r0 for α = 50 and µ = 0.1. Time in

units of the recovery time 1/γ. Above the red line the endemic equilibrium is oscillatory unstable.
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C. Erlang kernel

Another candidate for the kernel which is able to capture a variety of behaviors is the so

called Erlang distribution (also called gamma-distribution) which has the form

Kη,ξ(t) =
ξηtη−1

Γ(η)
e−ξt, η > 0, ξ > 0, t ≥ 0 , (19)

where the index η may take any positive (including non-integer) values and Γ(η) denotes

the Euler Gamma-function which recovers the standard factorial Γ(η+1) = η! when η ∈ N0.

The Erlang distribution (19) contains two parameters η, ξ > 0 which may take any

positive values. The Erlang PDF has the Laplace transform

K̂η,ξ(λ) =

∫ ∞
−∞

e−λtΘ(t)Kη(t)dt =
ξη

(ξ + λ)η
, (20)

where Θ(t) indicates the Heaviside unit step function which comes into play by causality.

The Erlang distribution is able to capture a variety of pertinent situations. For η = 1 the

exponential PDF is recovered. Further the two extreme cases of a globally sharp time of

immunity τ0 = η/ξ as well as a broadly scattered distribution can be described. A sharp

expected immunity life time τ0 is obtained by the limit

lim
ξ→∞

Kξτ0,ξ(t) = δ(t− τ0). (21)

where τ0 is constant. This feature can easily be seen by performing this limit in Fourier

space, replacing in (20) the Laplace variable with λ = iω, thus

lim
ξ→∞

(1 + iω/ξ)−ξτ0 = e−iωτ0 =

∫ ∞
−∞

e−iωtδ(t− τ0)dt

which is the Fourier transform of Dirac’s δ-distribution δ(t − τ0). A broadly scattered

distribution is obtained for K̂η,ξ(λ) → 0+ for λ > 0 whereas K̂∞,ξ(0) = 1 (normalization)

is maintained. In this situation the parameters are chosen such that the Erlang variance is

diverging

〈(∆t)2〉 =
η

ξ2
→∞ .

For 0 < η ≤ 1 the Erlang distribution is completely monotonic, for η > 1 it possesses a

maximum at tm = (η− 1)/ξ. The Erlang PDF has a finite mean (expected response time of

measures) 〈t〉 =
∫∞
0
tKη,ξ(t) = η/ξ, i.e. large η and small ξ increase the response time.
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ω

η

t

η,ξ
K    (t)

FIG. 2: Left: the zeros of imaginary part (blue) and real part of P (iω) intersect at ω ≈ 0.28

and η ≈ 6.1 for ξ = 1, r0 = 1.6 and other parameters as in fig.1. Right: Erlang distribution for

η = 6.1, ξ = 1.

Inserting (20) into (16), an analytic solution for ω is no longer accessible. Instead we

propose a graphical solution by plotting the zero contours of real and imaginary parts of

P (iω) in the (ω, η) plane and looking for their intersections (fig.2). Thus, for fixed r0 and ξ

a minimal value of η for the instability of the endemic state as well as the Hopf frequency

can be determined.

At r0 = 1.6 and ξ = 1 we see from fig.2 a minimal value of η ≈ 6.1. In this case the

Erlang distribution has its maximum at tm ≈ 5.1.

IV. NUMERICAL SOLUTIONS

A. Deterministic model

1. δ-kernel

The system (15) is solved numerically by a 4th order Runge-Kutta method with fixed

time step δt = 0.001 [4]. For the δ-kernel, the last n = τ0/δt values of j are stored to compute

the delay term. Fig.3 shows the number of infectious and the actual effective reproduction
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number

Reff(t) =
r0 s(t)

1 + αjd(t)
(22)

over time t. For r0 = 1.6 the endemic equilibrium becomes unstable for τ0 > 4.9 with

the Hopf frequency ω = 0.33. If τ0 is increased, the oscillations become more and more

anharmonic, their frequency decreases and their amplitude increases significantly, together

with the mean values of j. We find

< j >= je = 0.009 (τ0 < 4.9), < j >= 0.01 (τ0 = 5.2), < j >= 0.012 (τ0 = 6.2) .

t

R
eff

j

FIG. 3: Top: j(t) over time for (15) with delta-kernel K(t) = δ(t− τ0), dashed line is the endemic

equilibrium je. Bottom: effective reproduction number. Parameters as in fig.1, r0 = 1.6, τ0 = 5.2

(black) and τ0 = 6.2 (red). Time in units of the recovery time 1/γ.

2. Erlang kernel

Taking the Erlang distribution, the memory integral (14) must be approximated with a

finite lower limit

jd(t) =

∫ t

t−t0
K(t− τ)j(τ)dτ . (23)
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and numerically evaluated by a sum over the last n = t0/δt time steps. We chose t0 = 5 tm

where tm denotes the maximum of K(t), resulting in an error in the order of K(t0)/K(tm) ≈

2 · 10−6. For the largest η = 7 we have n = 30 000. Fig.4 shows the number of infectious

and the actual effective reproduction number for this case, again for the parameters of (3)

for η = 6.5 and η = 7.0. From the linear theory onset of oscillations is expected at η ≈ 6.2,

compare fig.2. The results are at least qualitatively similar to those of the δ-kernel. This is

due to the fact that the Erlang distribution for η ≈ 6 has a pronounced and rather sharp

maximum, cmp. fig.2, left frame. On the other hand, a monotonically decreasing kernel

would not lead to an oscillatory instability.

t

R
eff

j

FIG. 4: Same as fig.3 but now for the Erlang distribution with ξ = 1, η = 6.5 (black), and η = 7.0

(red).

B. Stochastic model

There exist plenty of possibilities to extend the model considering noisy perturbations

coming from the environment. A nearby assumption is that of a fluctuating infection rate

which was studied for a SIRS model without memory and therefore without an oscillatory
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instability in [7]. To this end we replace r0 in (15) by

rf (t) = r0 (1 + σ ξ(t))

where ξ(t) is a Gaussian distributed random variable (white noise) with

< ξ(t) >= 0, < ξ(t)ξ(t′) >= δ(t− t′)

and σ denotes the noise intensity. Thus, the stochastic model reads now

ds =

[
− r0 j s
f(jd)

+ µ (1− j − s)
]
dt− σ r0 j s

f(jd)
dW (24a)

dj =

[
r0 j s

f(jd)
− j
]
dt+

σ r0 j s

f(jd)
dW . (24b)

where dW is the one-dimensional Wiener process [8] with

dW = ξ(t) dt .

A numerical realization of (24) applying a stochastic Euler forward method (Euler-

Maruyama scheme) [12] with time step δt reads

sk+1 = sk +

[
−r0 jk sk
f(jdk)

+ µ (1− jk − sk)
]
δt− σ r0 jk sk

f(jdk)
zk
√
δt (25a)

jk+1 = jk +

[
r0 jk sk
f(jdk)

− jk
]
δt+

σ r0 jk sk
f(jdk)

zk
√
δt . (25b)

where jk = j(kδt), jdk = jd(kδt), sk = s(kδt) and zk is a Gaussian or Bernoulli distributed

uncorrelated random variable with mean zero and variance one,

< zk >= 0, < zkz` >= δk` (26)

and δk` denotes the Kronecker symbol. For δt → 0, the scheme (25) converges to the Itô

stochastic ODE system (24).

1. δ-kernel

We repeat the simulations of sect.IV A, first with the δ-kernel, including now fluctuations.

System (25) is integrated numerically. For accuracy reasons we treated the deterministic

part again by a 4th order Runge-Kutta scheme with δt = 10−3. The random variable zk is
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computed by an equally distributed series zk = ±1 with probability 1/2, fulfilling (26). The

result for σ = 0.075 is shown in fig.5. A main influence of the noise terms can be seen on

the amplitudes of the oscillations. Contrary to the series of fig.3 there is now no distinct

difference between the amplitudes of τ0 = 5.2 and τ0 = 6.2. The main frequency decreases

with increasing delay time for both cases.

t

R
eff

j

FIG. 5: Infection number and Reff for the stochastic δ-kernel model with σ = 0.075, other param-

eters as in fig.3.

2. Erlang-kernel

The same simulations for the Erlang kernel show a significant difference in the behavior

of the effective reproduction number, fig.6. Due to the integration over a continuous kernel,

Reff is a smooth function of t and the fluctuations are only pronounced in j(t). For both

kernels, the oscillations become much more irregular and the frequencies are distributed over

an area with width ∼ σ.

In fig.7 we show the Fourier transform

A(ωk) =
N∑
n

Reff(nδt) exp

(
2πink

t1 − t0

)
, ωk = 2πk/(t1 − t0)
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t

R
eff

j

FIG. 6: Infection number and Reff for the stochastic Erlang kernel model with σ = 0.1, other

parameters as in fig.4.

ω

A(   )ω| |
2

FIG. 7: Fourier transform |A(ω)|2 (arbitrary units) of a long time series Reff(t) for 200 < t < 10000

for the Erlang kernel with η = 7 and r0 = 1.6, α = 50, µ = 0.1. Black: σ = 0, red: σ = 0.25.

of a rather long time series up to t1 − t0 = 10000, corresponding to about 400 oscillations.
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The function Reff is sampled with N = 216 = 65536 points with about 160 points per period.

var (ω)

<ω>

σσ

FIG. 8: Mean value (left) and variance of ω as function of σ for the parameters of fig.7. The data

is an average over 30 runs with the same parameters but different noise realizations.

Fig.8 shows the mean frequency

< ω >=
1

N

∑
k

ωk |A(ωk)|2

and the variance

var(ω) =< ω2 > − < ω >2

over the fluctuation strength σ. It is clear that for rather large fluctuations the oscillations

become very irregular but the main frequency clearly persists, fig.9. We observe that the

mean frequency decreases slightly with increasing σ.

j

t

FIG. 9: Infection number for the stochastic Erlang kernel (η = 7) with large fluctuations σ = 0.6.
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3. Outbreaks

For large σ the infection dynamics shows long phases where the infection number remains

very small, interrupted by sharp periodic bursts, fig.9. The amplitudes of these outbreaks

are larger up to a factor 10 than those for the deterministic model (fig.4) and may differ

strongly from each other. In this context it is interesting to note that for large σ, the minimal

values for j(t) become very small. For the series with σ = 0.6 we have min(j) ≈ 10−6, for

σ = 1 we find min(j) ≈ 10−9. But if the population N is finite, the minimal number of

infected individuals according to (4) is Im = N min(j). If we take N ≈ 108, corresponding to

the population of a rather large country, for j < 10−8 there would be no infected individual

anymore and the disease would have become extincted. Thus, large fluctuations could lead

to extinction even if the basic reproduction number stays larger than one, a result already

shown by Cai et al. [2015]. For our model we estimate the critical sigma for extinction with

σc =

√
2(r0 − 1)

r0
.

Not very realistic if for instance compared with data from the recent COVID waves are the

rather equal times between the outbreaks. Here it could be possible to include fluctuations

also in the immunity loss rate or in the delay times of the feedback control. External effects

like seasonal variations could be included as well, a program that we want to study in

forthcoming work.

V. CONCLUSIONS

In this paper we studied the influence of delayed feedback control on the dynamics of

a standard SIRS model. Delay terms normally generate oscillatory (Hopf) instabilities of

otherwise stable fixed points if the delay time exceeds a certain critical value. Finite time

delays, or, for the continuous case, memory effects come into play quite naturally by the

rather long time scales of macroscopic effects like a finite time of immunity, the time neces-

sary for the emergence of certain virus mutants, or the time needed to establish mitigation

measures. From this list it is clear that there exist many possibilities to extend the model

including one or even more memory terms with different kernels. For an upcoming project

it could be of interest to study the interplay of two or more different delay terms on an
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otherwise low-dimensional deterministic dynamics and see if quasi-periodic or even chaotic

solutions may occur. It is known for long that rather simple delay-differential equations like

the Mackey-Glass equation [15] or the sinusoidal nonlinearity [26] show chaotic solutions if

the time delay becomes large enough.

Further interesting generalizations could be opened by considering fat-tailed memory

kernels with power-law decays and with diverging means (very long delay times). Accounting

for such kernels leads naturally to time-fractional generalizations of SIR or SIRS models. In

particular the combination of random walk models and memory effects induced by renewal

processes such as the fractional Poisson process and its generalizations [9, 17, 18, 22] (and

many others, see references therein) may be of interest as well.

On the other hand, additional degrees of freedom may be encountered by including en-

vironmental noise leading to fluctuating parameters of the SIR or SIRS models. Then,

simulations in the frame of stochastic nonlinear differential equations with multiplicative

noise come into the focus of attention. The present paper tries to study the combined in-

fluence of retarded feedback control and fluctuations due to a coupling to the environment

onto the same parameter, namely the infection rate. We found that noise my lead to large

fluctuations of amplitude and frequency of the otherwise very regular oscillations provided

by the time delayed feedback control alone. In this context, the discussion of a correspond-

ing Fokker-Planck equation of (24) could be of interest. Such an equation was derived for

(24) in [7], but for the case without delay terms. Here we would need the extension of the

Fokker-Planck theory to delay terms, a task that we shall leave for future work.

Our model can be extended in different directions. A finite duration of being immune

can as well be included and modeled by a memory term with another given PDF as done in

our recent paper [6]. Spatial effects can be taken into account by including diffusion terms

in the infection rate equation or considering the dynamics on small-world networks. Finally,

space and time varying infection rates could be introduced to model seasonal variations and

density distributions of the population.
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