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Abstract

In the previous works, the authors presented the reproducing kernel function (RKF)-based Filon
and Levin methods for solving highly oscillatory integrals and compared their accuracy with some
earlier numerical methods. In this paper, we study the RKF-based methods for generalized oscillatory
integrals and apply the Monte Carlo integration method in comparison with the RKF-based ones.
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1 Introduction

In this work, we consider to approximate the integral operator

I(u) =

∫ b

a

u(x) f(λv(x)) dx (1)

using RKF-based and probabilistic methods where, u(x) and v(x) are real valued functions and
f is complex valued function. The special form of this operator

I(u) =

∫ b

a

u(x) eiλv(x) dx (2)

has been studied by [4] using the reproducing kernel function-based Filon and Levin methods.
Reproducing kernel Hilbert space (RKHS) is one of the most important and latest theories

for numerical analysis. Recently, the technology of reproducing kernel function (RKF) theory
has been attended in many fields such as numerical analysis, differential equations, probability
and statistics, learning theory and so on [3–5, 11]. In [4], the authors present two new improved
numerical methods for highly oscillatory integrals through combining the RKHS theory and the
idea of Filon and Levin methods.

In this work, we apply RKF-based Filon and levin method for a generalized form oscillatory
integral (1) in order to have a comparison numerically the accuracy of these two methods
with probabilistic integration approximation methods such as Monte Carlo and importance
sampling.

∗Corresponding author: me.mirebrahimi@gmail.com
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This article is organized as follows. A background theory of RKHS is summarized in the
subsection 2.1. The RKF-based Filon method and RKF-based Levin method for generalized
oscillatory integral (1) are presented in subsections 2.2 and 2.3, respectively. The probabilis-
tic integration approximation including Monte Carlo and importance sampling method are
reviewed in Section 3. The numerical results are shown in the last section, 4.

2 RKF

In this section, we first summarize an essential background of RKF as preliminaries. In two
next parts, we apply RKF-based Filon and Levin methods (based on those were introduced in
[4]) for the generalized oscillatory integral form (1).

2.1 Preliminaries

Suppose that H ⊆ F(E,C) is a Hilbert space such that for any x in E, the evaluation functional
ex(h) = h(x) is continuous, then H is called an RKHS. The Riesz Representation Theorem
guarantees for a Hilbert function space, there exists a unique Kx ∈ H such that (h,Kx) = h(x)
for all h ∈ H. Moreover, the function K : E × E → R is known as an RKF of space H if

• K(., t) ∈ H for all t ∈ Ω,

• g(t) = (g(.), K(., t)), for all t ∈ Ω and g ∈ H.

The RKF of an RKHS is positive definite i.e. for a symmetric function K : E × E → R,
it holds

∑n
i,j=1 cicjK(xi, xj) ≥ 0 for any n ∈ N , x1, x2, ..., xn ∈ E, c1, c2, ..., cn ∈ R. Moreover,

every positive definite kernel can define a unique RKHS of which it is the RKF.

Definition 2.1. Sobolev space Hm[a, b] consists of functions g(t) defined on [a, b] such that
g(k)(t) is absolutely continuous for k = 0, ...,m − 1 and g(m)(t) ∈ L2[a, b]. The inner product
for this space is

(g1, g2)m :=
m−1∑
k=1

g
(k)
1 (a)g

(k)
2 (a) +

∫ b

a

g
(m)
1 (t)g

(m)
2 (t)dt.

Theorem 2.2. [11] Space Hm[a, b] is an RKHS and the RKF of Hm[0, b] is given by

Km(x, y) =

{
ξ(x, y) , y ≤ x,

ξ(y, x) , y > x,
(3)

where ξ(x, y) =
∑m−1

i=0 (y
i

i!
+ (−1)m−1−i y2m−1−i

(2m−1−i)!)
xi

i!
.

2.2 RKF-based Filon method

In this part, following the idea of the RKF-based Filon method in [4], we approximate (1) for
u(x) ∈ C2m[a, b] with the RKF interpolation uX(x) where X = {x1, x2, ..., xN} is a scattered
data subset of [a, b] such that, for each u(x) ∈ Hm (see [7])

uX(x) =
N∑
i=1

αiK
m(x, xi), (4)

where uX(xi) = u(xi) for i = 1, ..., N . Moreover, we assume that v(x) = γ0 + γ1x+ γ2x
2 in this

case.
In the following we compute uX(x).
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Theorem 2.3. [7] For the interpolation (4) there are constants αi satisfying (5) such that
N∑
i=1

αiK(xj, xi) = u(xj) (5)

is solvable.

Theorem 2.4. [7] If the kernel function Km(x, y) is strictly positive definite, the kernel matrix
Km(xj, xi) is guaranteed to be invertible.

Theorem 2.5. [4] If the RKHS H over E possesses an RKF such K(x, y), K(x, x) is uniformly
bounded in E, ‖un(x)− u(x)‖H → 0 when n→∞, then un(x) uniformly converges to u(x).

Theorem 2.6. [4] The interpolant uX ∈ Hm
X to a function u on X has the following error

bound |u(x) − ux(x)| ≤ Pm
X (x)‖u(x)‖m, where Pm

X (x) = ‖Km(., x) −Km(., x)X‖m with respect
to the set X and the RKF Km(x, y).

Lemma 2.7. [5] If u(x) ∈ C2m[a, b] and un is the obtained approximate solution in RKHS
Hm[a, b](m ≤ 3), then

‖uN(x)− u(x)‖∞ = max
x∈[a,b]

|uN(x)− u(x)| ≤ d1h
2m,

where d1 denotes the appropriate constant and h = max1≤i≤N−1 |xi − xi+1|.
Proposition 2.8. [4] I(u) can be approximated as

IN(u) =

∫ b

a

uN(x) f(λv(x)) dx

=
N∑
i=1

αisi

where, si =
∫ b
a
f(λv(x))Km(x, xi) dx can be calculated explicitly.

Theorem 2.9. Let f : R→ R be a bounded function by M > 0. The following results hold:

(i) There exists a constant d > 0 such that |I(u)− IN(u)| ≤ dh2m.

(ii) For a homogeneous function f of degree k, there exists d̄ > 0 s.t |I(u)− IN(u)| ≤ d̄h2m.

Proof. (i)

|I(u)− IN(u)| = |
∫ b

a

(u− uN)f(λv)dx|

≤
∫ b

a

|u− uN | |f(λv)|dx

≤ ‖u− uN‖∞
∫ b

a

|f(λv)|dx

≤ M‖u− uN‖∞.
(ii) If f is a homogeneous function of degree k

|I(u)− IN(u)| ≤ ‖u− uN‖∞
∫ b

a

|f(λv)|dx

≤ λk‖u− uN‖∞
∫ b

a

|f(v)|dx

≤ Mλk‖u− uN‖∞.
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Theorem 2.10. Let f : R → R be a function such that f ◦ (λv) ∈ L2([a, b]). The following
results hold:

(i) There exists a constant e > 0 such that |I(u)− IN(u)| ≤ eh2m.

(ii) For a homogeneous function f of degree k, there exists constant ē s.t |I(u)−IN(u)| ≤ ēh2m

Proof. (i) Using Holder inequality

|I(u)− IN(u)| = |
∫ b

a

(u− uN)f(λv)dx|

≤
∫ b

a

|u− uN | |f(λv)|dx

≤
( ∫ b

a

(|u− uN |)2dx
) 1

2
( ∫ b

a

(|f(λv)|)2dx
) 1

2

≤ M‖u− uN‖2
≤ M‖u− uN‖∞

√
b− a

(ii) If f is a homogeneous function of degree k

|I(u)− IN(u)| ≤
∫ b

a

|u− uN | |f(λv)|dx

≤
( ∫ b

a

(|u− uN |)2dx
) 1

2
( ∫ b

a

(|f(λv)|)2dx
) 1

2

≤ λkM‖u− uN‖2
≤ λkM‖u− uN‖∞

√
b− a,

where M =
∫ b
a
(|f(λv)|)2dx

) 1
2 .

2.3 RKF-based Levin method

Following the idea of Levin method, the calculation of (1) is reduced to finding a solution for
the following differential equations

w′ + wλv′
f ′(λv)

f(λv)
= u(x) (6)

If a solution of (6) is obtained, then

I(u) =

∫ b

a

u(x)f(λv)dx =

∫ b

a

(wf(λv))′dx = w(b)f(λv(b))− w(a)f(λv(a)). (7)

Therefore, the key is how to find the effective approximate solution of (6). In this section,

we will solve (6) in the RKHS Hm[a, b](m > 1) . Define operator Lw = w′ + wλv′ f
′(λv)
f(λv)

and
functionals ϕi = δxi for i = 1, 2, ..., N . We choose N distinct scattered points x1, x2, ..., xN
in [a, b], and construct basis functions by the RKF Km(x, y). Let ψi(x) = ϕi,yK

m(x, y) for
i = 1, 2, ..., N , where ϕi,y denotes ϕi acts on the function of y. The collocation solution wN(x)

for (6) can be written as wN(x) =
∑N

i=1 βiψi(x), where {β}Ni=1 are unknown constants.
We require wN(x) to satisfy the governing differential equation at all centers xj (j = 1, ..., N),

i.e.

LwN(xk) = ϕk(wN(x)) =
N∑
i=1

βiϕkψi(x) = u(xk), k = 1, 2, ...N. (8)
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The system (8) can be reduced to the following compact form:

βK̂ = u. (9)

where β = (β1, β2, ·βN)T , u = (u(x1), u(x2), · · ·u(xN))T . Obviously, K̂ is a symmetric positive
semi-definite matrix.

Theorem 2.11. [7] If the functionals ϕi, i = 1, 2, ..., N are linearly independent, then the
matrix A is invertible. That is, system (9) has a unique solution.

From Theorem 16.4 and Corollary 16.12 in [7] ,one obtains ϕi’s, i = 1, 2, · · ·N are linearly
independent. Once the approximate solution of (6) is available, the approximation to HOIs (1)
can be obtained as follows:

IN(u) =

∫ b

a

(wN(x)f(λv))′dx = wN(b)f(λv(b))− wN(a)f(λv(a)). (10)

Lemma 2.12. If u(x) and v′(x) ∈ C2(m−1)[a, b], wN(x) is the approximate solution obtained in
RKHS such Hm[a, b](2 ≤ m ≤ 4) , then we have the error estimate

‖LwN(x)− u(x)‖∞ = max
x∈[a,b]

|u(x)− LwN(x)| ≤ c1 h
2m−2, (11)

where c1 is a positive real number.

Theorem 2.13. Under the assumptions of the Lemma 2.12 and let f : R → R be a bounded
function by M , then the following hold:

(i) There exists a constant c > 0 such that |I(u)− IN(u)| ≤ ch2m−2.

(ii) If f is a homogeneous function of degree k, then there exists c̄ > 0 such that
|I(u)− IN(u)| ≤ c̄h2m−2.

Proof. (i)

|I(u)− IN(u)| = |
∫ b

a

(u(x)− LwN(x)) f(λv)dx|

≤
∫ b

a

|u(x)− LwN(x)| |f(λv)|dx

≤ ‖LwN(x)− u(x)‖∞
∫ b

a

|f(λv)|dx

≤ M‖LwN(x)− u(x)‖∞.
From 11, there exists a positive real number c such that |I(u)− IN(u)| ≤ c h2m−2.

(ii)For a homogeneous function f of degree k,

|I(u)− IN(u)| = |
∫ b

a

(u(x)− LwN(x)) f(λv)dx|

≤
∫ b

a

|u(x)− LwN(x)| |f(λv)|dx

≤ ‖LwN(x)− u(x)‖∞
∫ b

a

|f(λv)|dx

≤ λk‖LwN(x)− u(x)‖∞
∫ b

a

|f(v)|dx

≤ Mλk‖LwN(x)− u(x)‖∞.
which completes the proof.
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Theorem 2.14. Under the assumptions of Lemma 2.12 and f ◦ (λv) ∈ L2([a, b]), the following
results hold:

(i) There exist constants r > 0 such that |I(u)− IN(u)| ≤ rh2m−2.

(ii) If f be a homogeneous function of degree k, then there exists r̄ > 0 such that
|I(u)− IN(u)| ≤ r̄h2m−2.

Proof. Using Holder inequality

|I(u)− IN(u)| = |
∫ b

a

(u− LwN)f(λv)dx

≤
∫ b

a

|u− LwN | |f(λv)|dx

≤
( ∫ b

a

(|u− LwN |)2dx
) 1

2
( ∫ b

a

(|f(λv)|)2dx
) 1

2

≤ M‖u− LwN‖2
≤ M‖u− LwN‖∞

√
b− a

(ii) If f is a homogeneous function of degree k

|I(u)− IN(u)| ≤
∫ b

a

|u− LwN | |f(λv)|dx

≤
( ∫ b

a

(|u− LwN |)2dx
) 1

2
( ∫ b

a

(|f(λv)|)2dx
) 1

2

≤ λkM‖u− LwN‖2
≤ λkM‖u− LwN‖∞

√
b− a

3 Probabilistic integration methods

3.1 Monte Carlo integration

In this section we study the application of Monte Carlo simulation in the calculation of integral
of (1). The key point of Monte Carlo method is to suppose the integral as an expectation of a
random variable. Therefore, the law of large numbers guarantees that average of the outcomes
of the random variable is an efficient approximation for this integral

Following the idea of Monte Carlo integration, we consider (1) as follows

I =

∫ b

a

u(x)f(λv)dx =

∫ b

a

φ(x)dx

Therefore, if x1, ..., xN are generated independently and identically from an uniform probability
distribution in [a, b], then φ(x1), ..., φ(xN) are random variables with the expectation I. Thus,
the law of large numbers leads to

P
(

lim
n→∞

b− a
N

N∑
i=1

φ(xi) = E(φ(xi))
)

= 1

i.e. IN = b−a
N

∑N
i=1 φ(xi)→ I almost surely [10].

6
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The error of this estimator is determined via the rate of convergence of its standard deviation
as follows

σ(IN) = O(
1√
N

) (12)

that is bounded and moreover tends to zero with increasing of sample size, since

σ2(IN) =σ2
(b− a
N

N∑
i=1

φ(xi)
)

=
(b− a)2

N2

N∑
i=1

σ2(φ(xi))

=
(b− a)2

N
σ2(φ(x))

where σ2(φ(x)) =
1

b− a
∫ b
a

(
φ(x)− E(φ(x))

)2
dx.

3.2 Importance sampling

Although, the error of Monte Carlo approximation is reduced with the rate (12), still is propor-
tional of standard deviation of φ(x). Instead, Importance sampling method provides to reduce
the standard deviation than uniform law. Following the idea of the importance sampling, sup-
pose that random vector y = (y1, ..., yN) has a known probability density function py(.). Hence
a modified estimator is given by

ĨN =
b− a
N

N∑
i=1

φ(yi)

p(yi)

such that ĨN −→ I a.s. when N →∞ [10].
The absolute error in Monte Carlo approximation is considered by

|IN − I| < ε,

|ĨN − I| < ε.
in which to calculate the solution to desired level of an accuracy ε,

N =
z21−α/2 σ

2(.)

ε2

where

σ2(IN) =
(b− a)

N

∫ b

a

(
φ(x)− E(φ(x))

)2
dx,

σ2(ĨN) =
(b− a)

N

∫ b

a

(φ(y)

p(y)
− E(φ(y))

)2
dy.

The preference of the estimator ĨN is that with suitable choice of p(.) such that p(y) = c φ(y),

then we have z =
φ(yi)

p(yi)
=

1

c
that implies σ2(z) = 0, i.e. getting a less variance with better

importance sampling (see [9]).

4 Numerical examples

Let the absolute error EN = |I − IN | and choosing xi = i−1
N−1 . In the following problems we

take ω = 1
λ

in order to equate the integrals with the form (1). Moreover, note that to apply

7
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Importance sampling we take the beta distribution β(a, b) with parameters a = 1 and b = 3 as
a known probability distribution.

Problem 1. We consider the oscillatory integral given by [8]

I =

∫ 1

0

cos(x)eiω(x
2+x)dx

We apply RKF-based Filon method in RKHS Hn to solve Problem 1. Moreover we apply Monte
Carlo method in comparison with the RKF-based one. The obtained absolute error EN ’s are
listed in Table 1.
In Table 2, we summarize the results using RKF-based Levin method in RKHS Hn in com-
parison with Importance sampling. In thees two tables N = 11 is fixed and different ω’s are
displayed. In order to compare the accuracy of two probabilistic methods, we apply the Monte
Carlo and Importance Sampling with different N in table 3. The numerical results in Table 1
and Table 2 show that RKF-based methods have higher accuracy. Moreover, it can be observed
from Table 3 that the larger N is, the higher accuracy of both probabilistic methods becomes.

Table 1: Absolute errors E11 for Problem 1.

ω Filon H1 Filon H2 Filon H3 MonteCarlo

100 1.76363× 10−5 2.95031× 10−6 1.5383× 10−7 5.08946× 10−2

300 4.63999× 10−7 2.92602× 10−7 2.05819× 10−8 7.81025× 10−2

1000 1.12593× 10−7 2.73966× 10−8 1.76987× 10−9 8.88181× 10−2

104 1.64673× 10−9 2.95038× 10−10 1.57692× 10−11 2.27703× 10−2

Table 2: Absolute errors E11 for Problem 1.

ω Levin H2 Levin H3 Levin H4 Importance Sampling

100 2.46664× 10−5 6.09622× 10−6 2.11802× 10−6 5.31605× 10−2

300 2.69833× 10−6 6.95863× 10−7 2.48263× 10−7 6.00546× 10−2

1000 2.45155× 10−7 6.25975× 10−8 2.19865× 10−8 2.2191× 10−2

104 2.49266× 10−9 6.22499× 10−10 1.2638× 10−10 1.89282× 10−2

Table 3: Absolute errors EN for Problem 1 with ω = 300.

N MonteCarlo Importance Sampling

20 3.10356× 10−2 1.36432× 10−2

100 2.04119× 10−2 1.0154× 10−2

1000 9.01701× 10−3 3.71157× 10−3

104 3.43552× 10−3 1.9473× 10−3

Problem 2. We consider the oscillatory integral given by [8]

I =

∫ 1

0

1

1 + 25x2
eiωxdx.

We apply RKF-based Filon method in RKHS H3 to solve problem 2 for fixed N = 11. Moreover
we apply Monte Carlo and Importance sampling methods in comparison with the RKF-based

8
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one. The results of are listed in Table 4. In table 5 the absolute error EN are listed, using
RKF-based Levin method in RKHS Hn for fixed ω = 300 and different N in comparison with
Importance sampling method. The numerical results show that still RKF-based methods have
higher accuracy. Nevertheless, the superiority of accuracy of RKF-based methods in comparison
with the probabilistic methods, is decreased in Problem 2 w.r.t the obtained results in Problem1.

Table 4: Absolute errors EN for Problem 2 with ω = 300.

N Filon H3 MonteCarlo Importance Sampling

10 5.74591× 10−5 4.23122× 10−2 5.40508× 10−3

100 7.21492× 10−5 1.92091× 10−2 2.91083× 10−3

1000 7.21418× 10−5 5.69007× 10−3 2.89973× 10−3

Table 5: Absolute errors E11 for Problem 2.

ω Levin H2 Levin H3 Levin H4 Importance Sampling

100 1.66474× 10−4 1.09386× 10−4 4.3234× 10−5 1.06183× 10−2

300 5.41356× 10−5 6.04515× 10−5 6.78041× 10−5 3.77867× 10−3

1000 7.16477× 10−5 7.10809× 10−5 7.04138× 10−5 6.42895× 10−3

104 1.03669× 10−4 1.03669× 10−4 1.03669× 10−4 1.78491× 10−3

Problem 3. We consider a new problem of oscillatory integral given as follows

I =

∫ 1

0

cos(sin(x)) eiω sin(x)dx. (13)

We apply RKF-based Filon methods in RKHS Hn to solve 13. Moreover we apply Monte Carlo
method in comparison with the RKF-based one. In Table 6 the absolute error EN are listed for
fixed N = 11 and different ω’s. The results show that RKF-based Filon has the higher accuracy.
In table 7, We apply RKF-based Levin methods in RKHS Hn. Moreover, the absolute error
using Importance sampling method are displayed in comparison with the RKF-based one. It
can be observed from Table 7 that RKF-based Levin method in space H3 and H4 does not
approximate the integral 13 as well as problems previously. Indeed, the absolute error EN are
obtained with the huge values in thees cases. The numerical results show that the Importance
sampling has the higher accuracy than the RKF-based Levin in space H3 and H4.

Table 6: Absolute errors E11 for Problem 3.

ω Filon H1 Filon H2 Filon H3 Monte Carlo

100 1.79117× 10−5 7.27718× 10−6 1.07228× 10−6 1.18554× 10−1

300 3.14773× 10−6 5.50166× 10−7 1.00796× 10−7 1.95602× 10−1

1000 1.73829× 10−7 1.95607× 10−8 7.25793× 10−9 1.92572× 10−1

104 1.88033× 10−9 5.05618× 10−10 9.1844× 10−11 1.09875× 10−1

9
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Table 7: Absolute errors E11 for Problem 3.

ω Levin H2 Levin H3 Levin H4 Importance Sampling

100 2.89089× 10−5 316.414 18689.3 5.08946× 10−2

300 6.04304× 10−6 15.4763 782.181 7.81025× 10−2

1000 2.96585× 10−7 51.0473 2353.03 2.97788× 10−3

104 1.26371× 10−9 34.6904 430.602 2.27703× 10−2
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