
HAL Id: hal-03961502
https://hal.science/hal-03961502

Submitted on 29 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testability and Dependability of AI Hardware: Survey,
Trends, Challenges, and Perspectives

Fei Su, Chunsheng Liu, Haralampos-G. Stratigopoulos

To cite this version:
Fei Su, Chunsheng Liu, Haralampos-G. Stratigopoulos. Testability and Dependability of AI Hard-
ware: Survey, Trends, Challenges, and Perspectives. IEEE Design & Test, 2023, 40 (2), pp.8 - 58.
�10.1109/MDAT.2023.3241116�. �hal-03961502�

https://hal.science/hal-03961502
https://hal.archives-ouvertes.fr


1

Testability and Dependability of AI Hardware:
Survey, Trends, Challenges, and Perspectives

Fei Su∗, Chunsheng Liu†, Haralampos-G. Stratigopoulos‡
∗Intel Coorporation, USA

†Alibaba Inc., USA
‡Sorbonne Université, CNRS, LIP6, France

Abstract—In recent years, there has been an expedited trend
in embracing bold and radical innovation of computer archi-
tectures, aiming at the continuation of computing performance
improvement despite the slowed-down physical device scaling.
One new frontier in this field focuses on Artificial Intelligence
(AI) hardware. While functionality of AI hardware still re-
mains the main focus, testability and dependability of these
new architectures need to be addressed before the mainstream
adoption. This survey paper covers the state-of-the-art in research
and development of dependability and testability solutions for
AI hardware including digital or analog implementations of
Artificial Neural Networks (ANNs) and Spiking Neural Networks
(SNNs), used in accelerators and neuromorphic designs. Trends,
challenges and perspectives are also discussed in this paper.

Index Terms—AI hardware accelerators, neuromorphic com-
puting, artificial neural networks, spiking neural networks, fault
modeling and simulation, testability, dependability, fault toler-
ance, functional safety.

I. INTRODUCTION
Artificial Intelligence (AI) and Machine Learning (ML)

algorithms have been a subject of interest for several decades
now. Although AI and ML have gone through hype cy-
cles of disappointment and enthusiasm, recent algorithmic
advancements, in particular Deep Neural Networks (DNNs)
[1], as well as the availability of big data and the rapid
growth of computing power, have renewed interest leading
nowadays to applications in numerous distinct fields, e.g.,
robotics, medicine, autonomous vehicles, computer vision,
speech recognition, natural language processing, gaming, etc.

DNN models are computational intensive with their back-
propagation training process taking up a number of operations
in the order of millions. Inference on trained models requires a
single forward pass, but still the number of operations remains
very high. From a hardware perspective, this poses severe
challenges of data storage, movement, and processing speed
on conventional Central Processing Units (CPUs) with a tradi-
tional Von Neumann computer architecture, commonly known
as the memory wall problem [2]. To this end, there are intense
and on-going efforts nowadays towards designing dedicated
and customized processors for AI [3]–[9], referred to as AI
hardware accelerators, which belong to the larger family of
domain-specific computing paradigms. Widely used AI hard-
ware accelerators today are Graphics Processing Unit (GPUs)
and Field-Programmable Gate Arrays (FPGAs), but orders of
magnitude of energy-speed improvement can be achieved with
Application-Specific Integrated Circuits (ASICs).

Another high incentive for designing AI hardware accelera-
tors is to push the execution of AI algorithms from the cloud
closer to the sources of data onto edge devices [10]. This is

driven by energy, bandwidth, speed, availability, and privacy
requirements. More specifically, edge computing reduces the
data transfer requirement thus saving energy and bandwidth.
Saving bandwidth is important given the forecast that several
tens of billions of edge devices will be connected to the inter-
net in the near future. Several applications, e.g., autonomous
vehicles, require low-latency real-time computation which is
slowed down due to the communication with the cloud. Also,
several applications require availability, thus they need to be
less dependent on the communication with the cloud. Finally,
handling data locally offers privacy as opposed to transmitting
sensitive data over the cloud. Edge AI is a challenging
objective since edge devices have limited resources and are
often battery-operated. Typically, AI hardware accelerators
embedded on edge devices perform only inference with the
DNN model trained in software and uploaded upfront.

Having stressed that AI hardware accelerators are pivotal
in the AI world, many would believe that neural networks
on hardware inherit the remarkable fault tolerance capabilities
of the biological brain. Indeed, biological neural networks
are capable of regenerating, rewiring or adapting network
elements to make up for damage, which is part of their
neuroplasticity ability [11]. This assumption also stems from
properties of neural networks, such as their high parallelism
and over-provisioning, i.e., there are more neurons available
than the minimum required for a certain cognitive task and
many neurons end up being ineffective. However, as it will be
discussed in more detail in Section IV, recent hardware-level
fault injection experiments have shown that this assumption is
false. A neural network is likely to be capable of learning even
in the presence of a high fault rate; however, the impact on
prediction accuracy can be non-negligible or even detrimental
if a model is uploaded on a faulty hardware neural network
or if a fault occurs during the lifetime of the hardware neural
network.

For these reasons, testability and dependability of AI hard-
ware accelerators are important issues that need to be ad-
dressed already from the design phase [12]. Inspiration can
of course be drawn from known and mature methodologies
applied to traditional computer architectures, but the architec-
tural particularities of AI hardware accelerators often make
such methodologies prohibitive in terms of cost and quality,
requiring the development of new methodologies that are
better suited and take full advantage of the said architectural
particularities.

The aim of this article is to provide a survey of existing
works on testability and dependability methodologies for AI
hardware accelerators and discuss trends, challenges, and



2

Fig. 1: Structure of article.

Fig. 2: Architecture of LeNet-5 CNN.
perspectives. The high-level organization of this article into
sections and their main subsections is shown in Fig. 1.

II. NEURAL NETWORK TYPES
We distinguish two types of neural networks, namely the

Artificial Neural Networks (ANNs) and the Spiking Neural
Networks (SNNs). Both are inspired from the brain structure
composed of layers assembled by neurons and synapses inter-
connecting the different layers. The term “deep" in DNN refers
to the number of layers going beyond of just a few, allowing
to extract more complex features. The number of layers, the
number of neurons within each layer, and synapse connections
define a network topology.

There are three main topologies applied to both ANNs and
SNNs, namely Fully-Connected (FC) networks, Convolutional
Neural Networks (CNNs) [13], and Recurrent Neural Networks
(RNNs) [14]. Fig. 2 shows an example CNN with FC layers
forming the last layers. In FC networks, the neurons of a
new layer are connected via synapses to the outputs of all
neurons in the prior layer. In CNNs, a convolutional layer
is composed of several feature maps. A feature map is a
plane of neurons where each neuron is connected to the
outputs of spatially nearby neurons contained in a lower-
dimensional plane of the prior layer, referred to as a receptive
field. Each neuron has a different receptive field located at
different coordinates of the prior layer. In a given feature
map, all neurons are constrained to share the same synaptic
weights, whereas synaptic weights change from one feature

map to another. Convolutional layers are alternated with sub-
sampling layers which are used to down-sample the output of
the preceding convolutional layer. There are different types of
sub-sampling, such as max pooling and average pooling. Max
pooling captures the maximum value of the receptive field and
processes it to the output, whereas average pooling calculates
the average value. CNNs allow synapse reuse and reduce the
number of synapses compared with a FC network. In RNNs,
neurons can additionally receive as input their previous state
or the previous state of a neuron in a subsequent layer, thus
realizing an internal memory retaining past information to
forecast future outputs. RNNs are used for learning on time-
series or sequential data, while FC networks and CNNs are
feed-forward and inputs are independent of each other.

In ANNs, data are represented as static numerical values.
Neurons apply a non-linear activation function, such as Recti-
fied Linear Unit (ReLU), sigmoid, and tanh, on the weighted
sum of outputs of other neurons, as depicted in Fig. 3. The
weights are scalar values and correspond to the synaptic
weights.

In SNNs, on the other hand, data are represented with spikes
processed in a continuous way in time, which is similar to
brain operation. Thus, they are more biologically plausible
compared with ANNs, bridging the gap between ML and the
biological brain in terms of computation speed and power
consumption [15]. SNNs form the basis of neuromorphic
computing as pioneered by Carver Mead in the 1980s [16].
The most hardware-friendly spiking neuron implementation



3

Fig. 3: Artificial neuron.

Fig. 4: Spiking neuron.

is the Integrate & Fire (I&F) model [17], depicted in Fig.
4. The neuron integrates the spikes from incoming synapses,
and when the potential of its membrane exceeds a threshold
it fires a spike of its own that propagates through synapses
to other neurons. It also resets the threshold so as to be able
to fire again. The neuron has two additional brain-inspired
functionalities. It has a refractory period, i.e., it is allowed to
fire only if a certain time is elapsed since the last output spike,
and a leakage behavior, i.e., the membrane potential decreases
between two consecutive input spikes. The synapse operation
is different from ANNs and also resembles the biological
synapse operation. A synapse receives spikes and in turn
stimulates the membrane potential of post-synaptic neurons
via a current. The most common information representation
in SNNs is rate coding, whereby the information is encoded
into the firing rate over an observation period, but other
representations have been suggested, including time-to-first-
spike and inter-spike interval.

From a hardware perspective, there is a belief that SNNs
offer faster inference and lower energy consumption compared
with ANNs. This belief stems from two SNN characteristics,
namely the real-time asynchronous spike flow and the sparsity
of the spike flow which reduces neuron activities. In contrast,
ANNs have a frame-based operation, i.e., for a layer to perform

its computation the layer has to wait for the computation of
the previous layer to complete and every individual neuron is
being evaluated. However, SNNs are harder to train compared
with ANNs due to the non-continuity of the spiking neuron’s
transfer function, as well as the additional parameters a spiking
neuron carries, e.g., threshold, leakage rate, refractory period,
which could be sensitive. In general, the discussion on the
relative performance between ANNs and SNNs is not trivial
due to the different input type, i.e., sequence of static frames
versus continuous-time event flow. Converting a dataset from
frame-based to spiking format and vice versa creates bias
in the comparison. In general, the advantage of one neural
network type over the other is task-dependent, with the SNNs
being ideally suited for processing spatio-temporal event-based
sensory data. For an extensive discussion on SNNs and the
comparison with their ANN counterparts, the readers are
referred to [5], [18], [19].

III. AI HARDWARE ACCELERATORS
Silicon implementations of neural networks appeared

decades ago with early efforts demonstrating few-layers, few-
neurons per layer networks [20]. Moving to larger designs for
DNN acceleration, the main challenge is the memory wall
that limits the throughput and increases power consumption.
The design ambition is therefore to overcome the memory
wall by distributing the memory within close proximity to
the Processing Elements (PEs), e.g., the Multiple-Accumulate
(MAC) units, or through interleaving of memory and PEs. Ba-
sic architectures include the streaming architecture composed
of many cores with the layers mapped among the cores and the
single-core architecture, i.e., in the form of a systolic array that
parallelizes the storage and computation of the different layers
[3]. SNNs typically employ the streaming architecture with a
core receiving and transmitting spikes via the Address Event
Representation (AER) protocol which essentially implements a
Network-on-Chip (NoC) communication scheme [21]. Clearly,
efficient mapping of the neural network algorithm onto the
hardware becomes of utmost importance and different neural
network topologies require different hardware designs to fully
take advantage of neuromorphic computing.

Analog and Mixed-Signal (AMS) implementations can offer
orders of magnitude lower power consumption compared with
their digital counterparts, thus they are better-suited for edge
computing being capable of acting directly on sensory data
from world-machine interfaces [22], [23]. This is because
transistors are operated in the sub-threshold region and the
main operations of a neural network, i.e., addition and multi-
plication, can be performed efficiently in the analog domain.
Addition can be performed using Kirchhoff’s current law while
multiplication can be performed with just a few transistors.
However they are less robust due to process variations and
noise.

One way to reduce the energy consumption is approximate
computing which involves two strategies. The first uses ap-
proximate arithmetic units in the PEs [24]. The second is
termed network compression or quantization [25]. It reduces
the precision of the weights and neuron activation values by



4

Fig. 5: Memristive crossbar array.

transforming floating point numbers into narrow few-bit inte-
gers. At the extreme, this results in Binary Neural Networks
(BNNs) that use 1-bit precision [26], further simplifying the
network architecture by allowing using XNORs instead of
MAC units [27]. BNNs save energy and storage and can serve
for implementing deep models in resource-constrained edge
devices. Network compression results in accuracy loss but it
may be recovered through training.

Another design paradigm with tremendous potential for
overcoming the memory wall is in-memory computing where
the matrix-vector multiplications are performed within the
memory itself [28], [29]. In-memory computing has two
main embodiments, namely performing arithmetic and logic
operations within the SRAM or using memristive crossbar
arrays.

A memristive crossbar array is composed of horizontal and
vertical metal lines with a memristive device placed at each
cross-point intersection connecting the two metal lines, as
shown in Fig. 5. The conductance of the memristive device
implements the synapse weight, horizontal lines are driven
by the voltage output of pre-synaptic neurons, and vertical
lines provide the current input of post-synaptic neurons. Each
column implements the dot product 𝐼𝑖 = ∑

𝑗 𝐺𝑖,𝑗 ⋅ 𝑉𝑗 and par-
allelized dot-products across the columns implement efficient
in-situ matrix-vector multiplication 𝐼 = 𝐆 ⋅ 𝑉 in analog form,
reducing computational complexity from (𝑛2) to (1). Each
memristive device is augmented with an access device, as
shown in the 1-transistor/1-resistor (1T1R) architecture of Fig.
5, that allows selecting a memristive device for programming
while not disturbing the stored state of other memristive
devices. A memristive crossbar array is accompanied with
peripheral circuits (not shown in Fig. 5) if communication
between crossbars is implemented in the digital domain. These
include Digital-to-Analog Converters (DACs) and Analog-to-
Digital Converters (ADCs) which contribute a large fraction
of the area and power consumption of the array macro.

There are several emerging Non-Volatile Memory (NVM)
devices that can be used to implement the memristive device,
including Resistive Random Access Memory (ReRAM), Phase

Neural
Network

Type

SNN

AMS ASIC
[33]–[35]

In-memory
computing

Memristive
crossbars

[36]

Digital

GPU,...

ASIC
[37]–[41]

FPGA
[42], [43]

ANN

AMS ASIC
[44]

In-memory
computing SRAM-

based
[45], [46]

Memristive
crossbars
[47]–[50]

Digital

GPU,
CPU [51],...

ASIC
[52]–[54]

FPGA
[55], [56]

Fig. 6: Taxonomy of AI hardware accelerators.

Change Memory (PCM), and Spin Transfer Torque Magnetic
Random Access Memory (STT-MRAM) [30]. These devices
are compact and can perform read and write operations with
low power. However, they suffer from several imperfections,
such as conductance variations and drifts, which result in
poor yield, stability, and endurance. Therefore, enhancing
the reliability of crossbar-array computation is a subject of
ongoing research.

Finally, 3D integration technologies could offer several
advantages such as short interconnections, high parallelism,
high bandwidth, and small form factors [31], [32].

A taxonomy of AI hardware accelerators is illustrated in Fig.
6. The first layer defines the type of neural network, i.e., ANN



5

Fig. 7: Fault classification. Images are from [57].
or SNN. The second layer defines different design flavors,
i.e., digital or AMS, with in-memory computing inserted as a
separate category. The third layer defines the implementation,
i.e., ASIC, FPGA, etc., while in-memory computing is further
distinguished into digital processing-in-memory, i.e., SRAM-
based in-memory computing, and memristive crossbar arrays.
In Fig. 6, we provide references to representative designs with
a focus on designs that have been demonstrated on silicon.
Regarding memristive crossbar-array accelerators, most works
present only simulation results up to now. This list of refer-
ences is not meant to be complete. For recent and thorough
surveys on accelerator design for ANNs and SNNs, the readers
are referred to [3], [4], [6]–[9] and [5], respectively.

IV. FAULT CRITICALLY ASSESSMENT
A. Introduction

In the context of an AI hardware accelerator many faults
turn out to be benign: they are masked before their effect
reaches the output or produce an output change that is tol-
erable, i.e., it does not translate to performance loss. This
is thanks to the network sparsity, the over-provisioning, the
distributed computing, and the nature and sequence of math-
ematical computations. Some faults, however, will be critical
and will affect the performance. A fault classification is shown
in Fig. 7. The ability of quickly assessing the impact of faults
on the AI hardware accelerator performance is very valuable
for performing early reliability analysis and for guiding the
development of efficient and cost-effective fault detection, fault
tolerance, and fault repair schemes by placing the focus on
targeting the critical faults only.

A network is viewed as a distributed system where neurons
and synapses can fail independently [58]. Given the large num-
ber of synapses and neurons, the size of the fault space easily
explodes, not to mention the rest of the hardware components.
On the other hand, the fault impact is typically expressed in
terms of accuracy drop on the testing set, which can contain
several thousands of samples, while the time for a single
inference can be very long. For these reasons, performing
fault simulation at the hardware-level can be intractable, thus
necessitating fault modeling approaches at a higher abstract
level. As a matter of fact, performing exhaustive fault injection
even on a higher abstract network representation may still not
be feasible, thus necessitating fault sampling.

Another challenge in fault modeling is that the fault impact
is determined by the interactions between the network model,
the dataset, and the AI hardware accelerator. When analyzing
the fault impact, the AI hardware accelerator architecture
and the scheduling of network operations on its architectural
components cannot be ignored [59].

Fig. 8 shows a fault injection experiment flow. Starting
with a fault model, a fault list is created as a subset of the
fault universe possibly using fault sampling. A single fault
assumption or multiple fault scenario with user-specified fault
rate can be considered in this step. Then fault injection is
performed on the AI hardware accelerator which could be
done at different insertion levels, i.e, in a software model,
RTL-level, microarchitectural-level, gate-level, transistor-level,
on an actual hardware prototype, or with radiation. For every
fault scenario the fault impact is assessed and stored. After
going trough the complete fault list, a report is produced, for
example including the benign and critical faults, the critical
fault locations, and the fault rate that can be tolerated.

Examples of fault criticality visualizations are shown in
Fig. 9. In Fig. 9(a), the x-axis shows the different layers and
for each layer there are two columns, each corresponding to
a different fault type. A column is a colored bar possibly
separated into chunks of different colors. Each chunk of the
bar corresponds to a specific classification accuracy according
to the color shading shown at the bottom of Fig. 9, and the
projection on the y-axis shows the percentage of neurons for
which the fault results in this classification accuracy. While
Fig. 9(a) shows the cumulative neuron criticality across layers,
Fig. 9(b) shows the per-neuron criticality as a heat map with
the neuron number in the x-axis and the layer number in the y-
axis. Each orthogonal corresponds to one specific neuron, and
the color of each orthogonal corresponds to the classification
accuracy in the presence of a fault in the neuron according to
the color shading in the bottom of Fig. 9. For a given fault
type, Fig. 9(c) displays the impact on classification accuracy
of synapse faults in the synaptic matrix between two layers.
Using such plots, one can label faults as critical or benign and
identify critical fault locations across layers and within each
layer.

As we will see next, most research works consider bit-flips
in the memories and registers storing the network parameters,
i.e., synapse weights and neuron activations. For this fault
model, examples of reliability assessment are shown in Fig.
10. Bit-flips can be injected with some Bit Error Rate (BER)



6

Fig. 8: Fault injection experiment flow.

(a) Cumulative neuron fault criticality across layers.

(b) Per-neuron fault criticality.

(c) Synapse fault criticality.

Fig. 9: Fault criticality visualization.

probability to assess the largest BER that can be tolerated,
as shown in Fig. 10(a). The experiment is repeated several
times and summary statistics are visualized in Fig. 10(a) using
box plots. The bottom and top edges of the box indicate the
25th and 75th percentile, respectively. The whiskers extend
to the most extreme data points without considering outliers,
and the outliers are plotted individually using the ‘o’ symbol
and are not always aligned vertically for illustration purpose.
Fig. 10(a) also illustrates the baseline fault-free accuracy

(a) Accuracy drop for bit-
flips with different BER lev-
els.

(b) Accuracy drop for bit-flips
at different positions of the
word representing a network pa-
rameter.

Fig. 10: Reliability assessment using bit-flips as fault model.

shown with the green zone, the median shown with a dotted
circle, and the average accuracy across repetitions of the same
experiment shown with a red line. Bit-flips can also be injected
at individual bit positions as shown in Fig. 10(b) where the
network parameter has an 8-bit representation. For example,
with the results in Fig. 10(b) we can identify those bits starting
from the Least Significant Bit (LSB) that have no impact on
the accuracy if they are flipped and can be left unprotected in
a fault-tolerance strategy.

In Section IV-B, we survey several works demonstrating
fault injection experiments and frameworks. Fig. 11 shows
different fault types at different insertion levels. A taxonomy
of works is provided in Table I based on the fault insertion
level, while memristor crossbar-based architectures are treated
as a special category. In Section IV-C we summarize general
conclusions from these experiments.

B. Fault injection experiments
1) Software-level: The software and hardware implemen-

tation of a neural network matches closely in terms of com-
ponent connectivity and data flow, thus allowing performing
fault injection in software in a more time-efficient manner. This
was noticed in early works [58], [61]–[63] where structural
behavioral-level fault models were used in the main software
operators that support the network computational task, i.e.,
neurons and synapses. Behavioral-level fault types included
stuck-at nodes, missing or saturated neurons, errors in the
summation or the evaluation of the neuron’s nonlinear ac-
tivation function, errors in synaptic multiplication, disabled
or saturated weights, errors in learning rules, noisy inputs,
etc. These behavioral-level faults can be mapped to physical
fault models and root-causes in hardware, i.e., gate-level stuck-
at faults and soft errors, for both digital and analog circuit
implementations of neural networks [64], [65]. In [58], a the-



7

Fig. 11: Faults models at different insertion levels. The chip image corresponds to an AMS implementation of a FC network
used as an on-chip classifier for Built-in Self-Test (BIST) purposes [60].
TABLE I: Taxonomy of fault injection experiments and frame-
works.

Fault injection experiments and frameworks
Software-level [57], [58], [61]–[63], [66]–[91]
RTL-level [92], [93]
Microarchitectural-level [94]
Gate-level [95]–[98]
Transistor-level [99], [100]
Chip-level [101]–[110]
Radiation experiments [81]–[85], [111]–[114]
Memristor crossbar-based architectures [115]–[118]

oretical study is presented for Feed-Forward Neural Networks
(FFNNs) deducing the number of failing neurons and synapses
an FFNN can tolerate.

As there is a large body of works in this direction for modern
AI hardware accelerators, we categorize them according to the
two neural network types, namely ANNs and SNNs.

a) ANNs: In [57], the fault model used is bit-flips in data-
paths and buffers. A wide range of data types are considered
and bit flips are injected in different bit positions. Fault
injection is carried out in the open-source DNN simulator
framework Tiny-CNN written in C++, where each line of
code is mapped to the corresponding hardware component so
as to pinpoint the impact of the fault injection location in
terms of the underlying micro-architectural components. The
focus is on CNNs considering different image classification
tasks. Four types of Silent Data Corruption (SDC), defined
as a mismatch between the output of a faulty and the fault-

free inference execution, or “fault ratings" are proposed taking
into consideration that networks may rank predictions based
on a confidence score. Some conclusions of this large-scale
fault injection study are: (a) different DNNs have different
sensitivities to SDCs depending on the topology, the types of
layers, the data type used, and the position of the bit flip; (b)
Failure in-Time (FIT) rates can exceed the safety standards,
e.g. ISO 26262 for automotive, by orders of magnitude; (c)
data types that provide more dynamic value range are more
vulnerable to SDCs since there are likely to be redundant value
ranges that lead to larger-value deviation under faults. This
implies that just-enough numeric value-range and precision is
advantageous from a reliability point of view; (d) normaliza-
tion layers reduce the impact of faults by averaging fault values
with adjacent correct values.

In [66], the Ares framework is proposed that simulates
static bit-flips in the memory of the DNN accelerator. Ares
is built on top of Keras [119], which takes high-level DNN
descriptions specified in Python and executes them using
either Theano [120] or TensorFlow [121] back ends. Fault
injection experiments are performed for several DNN models
and datasets to study the classification rate as a function of
BER. Fault injection is performed across the whole network,
per-layer, and across network components, i.e., weights and
activation functions. Main conclusions of this study are: (a)
a thresholded behavior is observed where for small BERs the
classification error is zero, but there is a BER threshold beyond



8

which the classification error rises exponentially from zero; (b)
there is a largely spread fault sensitivity or resilience across
the DNN models, e.g., the threshold varies by two orders of
magnitude; (c) the weight quantization impacts resilience, i.e.,
the larger the range of the possible weight values is the lower
the threshold is; (d) fault sensitivity across network layers and
components can vary by several orders of magnitude.

In [67], the FIdelity DNN resilience analysis framework
is proposed where hardware faults are modeled in software,
i.e., TensorFlow [121], thereafter high-speed software fault
injection is performed. In this way an analysis speedup is
achieved while maintaining the level of accuracy of RTL or
mixed-mode fault injection techniques. To map hardware faults
in software the key insight is that hardware and software
operations closely match, and all operations affected by a fault
can be systematically derived thanks to well-defined data-
flow and scheduling algorithms. Given high-level architec-
ture/hardware information and Flip-Flop (FF) FIT rate, the
framework captures the effect of hardware faults to set a faulty
output neuron using a reuse factor analysis for FFs. Faulty
output neuron values are derived considering that each FF
value already corresponds to a software-variable state. A key
aspect of the framework is that it can treat logic transient errors
in data-path and control FFs and not only memory errors.

In [68], a methodology is proposed to reduce the fault
injection space and, thereby, the overhead of an exhaustive
fault injection. The underlying observation is that most ML
functions in a DNN model, i.e., convolution, ReLu, pooling,
normalization, etc., are monotonic. This means that in a word
representing a model parameter, there exists a SDC-boundary
bit such that bit-flips at higher-order bits would lead to SDCs
and bit-flips at lower-order bits would be masked. Based
on this observation, the Binary Fault Injection (BinFI) fault
simulator is proposed that bisects the fault injection space
and finds the SDC-boundary bit with a binary-search like
algorithm. BinFI is built on top of the TensorFlow framework
[121] duplicating the graph with customized operators.

In [69], a fault injection framework is proposed that repro-
duces fault models and event rates extracted from radiation
tests. The ultimate goal is to have the flexibility of a software-
based fault injector with a reliability assessment precision
close to this of an accelerated neutron beam radiation-based
fault injection experiment in a realistic harsh environment.

The interested reader is referred to [70]–[85] for more
software-based fault injection experiments studying the fault
impact for different neural network models, data type repre-
sentations, layer types, network sizes, pruned networks, com-
pressed versus uncompressed networks, etc. Such experiments
are also part of several other works that will be discussed in
Sections V and VI and they are used for motivation or for
guiding test and dependability solutions. Many of these works
develop at the same time an in-house automated fault injection
framework. The development of automated, fast, flexible,
and accurate fault injection frameworks is an active area of
research. Examples include PyTorchFI [86] and TensorFI [87],
which are open-source and publicly available, and CLASSES
[88]. An interesting research line is the development of ML-
based frameworks that based on a small number of fault

injections they estimate the vulnerability for all parameters
in the DNN in a short time [89]. Such approaches will be
described in more detail in Section IV-B4 for systolic-array
DNN architectures at gate-level and in Section IV-B8 for
memristor crossbar-array architectures. Another possibility is
to use generic fault injection tools, such as SASSIFI [122],
NVBitFI [123], and CAROL-FI [124], to emulate fault effects
in the hardware platform, i.e., GPU, running the application.

b) SNNs: The fault tolerance characteristics of SNNs
trained with different algorithms is studied in [90]. The fault
model is synapse fault where a faulty synapse is zeroed out
or equivalently removed. Synapses are selected to be faulty at
random with different failure rates. Results show that these
different algorithms have different resilience characteristics.
Resilience can greatly depend on the training algorithm and
dataset, and it can also show large variances according to the
synapses that are selected to fail. Common conclusion is that
for all considered networks resilience drops rapidly as fault
rates increase, and SNNs are not inherently resilient as it is
frequently cited.

In [91], the behavioral-level fault model proposed in [100]
(see Section IV-B5) is used to perform accelerated fault
injection in deep SNNs. The fault injection framework is built
on top of the SLAYER [125] and PyTorch [126] frameworks
by customizing the flow of computations and the faulty SNN
is mapped onto a GPU. The general conclusion of this experi-
ment is that saturation neuron faults are the most lethal and can
severely affect inference regardless the location of the neuron
in the network, and that the impact of all other fault types,
i.e., dead neuron faults and timing variations, may be severe
only for neurons in the last hidden and output layer. At the
extreme, timing variations could result in a dead or saturated
neuron. In other words, a neuron that becomes permanently
active has a greater effect on inference compared to a neuron
that is permanently silenced or presents timing variations in
its output spike train.

2) RTL-level: In [92], fault characterization is performed
on a RTL design of a typical accelerator. Fault injection is
performed into the different registers that latch data during
the inference, i.e., input, weights, and intermediate layer com-
putations. The fault model includes permanent stuck-at faults
and transient faults occurring in a single random cycle. In
each fault injection experiment, a different fault is randomly
generated and injected by selecting a random register and set
of bits and a random cycle in the case of transient faults.
Fault characterization is performed across the different register
types, layers, components of fixed-point data representation,
i.e., sign, digit, and fraction, number of PEs, and network
models. General conclusions are: (a) permanent faults are more
critical than transient faults; (b) stuck-at-1 faults are more
critical than stuck-at-0 faults due to the sparsity of zeros; (c)
registers storing intermediate data are the most vulnerable,
whereas input registers are the least vulnerable; (d) permanent
faults are more critical in inner layers, i.e., closer to the output,
while the opposite is observed for transient faults; (e) sign,
digit, and fraction are in this order more vulnerable; (f) for
permanent faults the error decreases with the number of PEs,
while there is no correlation in the case of transient faults.



9

In [93], an RTL-level fault injection framework is proposed
that drastically reduces the fault simulation time. It makes use
of a multi-level structure where on the lower level the inference
is split in several blocks corresponding to the neural network
layers that run as stand-alone application processes and on the
upper level these processes are synchronized.

3) Microarchitectural-level: In software fault injection the
fault model risks to be unrealistic and faults can be mapped to
only a subset of hardware resources. In [94], the concept of a
two-level fault injection is adopted to evaluate the effects on
CNN execution of faults in the GPU’s scheduler and pipeline
registers, two microarchitectural components that otherwise
would be hidden in an abstract high-level CNN model. Mi-
croarchitectural simulation requires a prohibitively high time.
To improve efficiency, the two-level fault injection idea is com-
posed of the following steps: (a) perform microarchitectural
fault injection, i.e. transient bit-flips; (b) observe the effect
on selected CNN tiles (i.e., matrix portions); (c) merge the
corrupted tiles’ output with the other tiles in the convolution
considering their fault-free output to compose the layer’s
output; and (d) continue the execution of CNN at the software-
level to check if the fault is eventually masked or it propagates
at the output creating an error. Finally, a feedback analysis
can determine the microarchitectural locations causing the
observed critical errors that should be targeted for hardening.

4) Gate-level: In [95], fault injection experiments are per-
formed on a systolic array-based DNN accelerator. The core
of the systolic array is composed of a 256×256 grid of MAC
units. Each weight maps to exactly one MAC unit, thus a
faulty MAC unit can result in multiple faulty weights. The
systolic array is developed in Verilog and synthesized at gate-
level. The fault model includes stuck-at faults at gate-level and
timing faults created by under-scaling the power supply which
essentially emulates process variations. It is demonstrated that
training on a faulty systolic array can result in significant
classification drop when as few as four MAC units are faulty.

In [96], the impact of timing variations on hardware imple-
mentation of ANNs is studied. Timing variations could result
from delay defects, process variations, power supply noise,
crosstalk, aging, voltage over-scaling or frequency overclock-
ing. Timing variations are modeled at gate-level by introducing
an extra delay variation in the range of 10-40% into each gate
relative to the nominal gate delay. Results show that ANNs are
sensitive to timing variations with the error growing larger as
the timing variations worsen. Accuracy loss can be alleviated
to a large degree but not fully recovered if the ANN is retrained
under timing errors.

In [97], [98], ML-based frameworks are proposed for an-
alyzing the functional criticality of gate-level stuck-at faults
in systolic array based AI accelerators. Fault injection targets
not only the interface/boundary level of a PE, but also all
internal nodes of a PE. The main challenge of such a task is on
computation/simulation overhead introduced by a significantly
large number of potential fault injection points, e.g., there
will be tens of thousands of stuck-at faults for a single 32-
bit PE, and billions for a 256x256 PE array. To this end,
computationally efficient ML-based methods are proposed to
speed up the analysis. The basic idea is based on the use

of deep learning to predict fault criticality by utilizing the
structural and data flow features. For example, in [98], a two-
tier DNN-based model is presented, as illustrated in Fig. 12.
The first tier DNN is trained on a data set obtained from
ground-truth collection. The second tier DNN is trained on
a smaller and targeted data set containing the critical faults
mis-predicted as benign by the first tier DNN. A Generative
Adversarial Network (GAN)-based method is further used
to augment the data for the second tier DNN, in order to
minimize misclassification (i.e., misclassify critical faults as
benign). The transferability of the proposed method is also
investigated (i.e., if a fault criticality model trained on a PE
can be transferred to evaluate a different PE). The results
show that there exists some inherent transferability across PEs
in the same array, mainly due to their identical topologies.
On the other hand, more model re-training will be needed if
transferability is not met.

5) Transistor-level: Transistor-level fault simulations can be
performed only at neuron-level or for small-size networks.

In [99], transistor-level short- and open-circuit defects are
injected into the fundamental logic operators of a perceptron,
i.e., adders and multipliers. Fault injection experiments in a
shallow 2-layer classical fully-digital spatial expansion ANN
architecture have demonstrated that hidden layers can tolerate
defects even for high defect rates. However, depending on the
affected bit or neuron, there may be single defects that can
influence the inference accuracy. Defects in hidden layers can
be silenced out by a re-training operation with the hardware in-
the-loop even for high defect rates. In contrast, the output layer
is a defect-sensitive layer and defects in this layer cannot be
masked by re-training necessitating a dedicated fault tolerance
scheme.

In [100], defect simulations and Monte Carlo analysis taking
into consideration the technology Process Design Kit (PDK)
are performed for a spiking neuron. The different faulty
behaviors are collected and grouped so as to generate an
abstract behavioral-level fault model for spiking neurons that
capture the effects of low-level faults, i.e., transistor-level
defects and process variations. Faulty behaviors turn out to be
either catastrophic (i.e., dead neurons that are silenced even in
the presence of input activity, saturated neurons that fire non-
stop even in the absence of input activity, neurons with a stuck
output, etc.) or parametric (i.e., timing variations of the output
spike train such as variations in the time-to-first-spike and
firing rate). This bottom-up behavioral-level fault modeling
approach starting from transistor-level simulations can help
generating fault models at a higher abstraction level to be used
for software fault injection, while still capturing the effect of
underlying root-cause transistor-level faults on the neuron’s
output, independent of its actual hardware implementation.
For example, dead and saturated neuron behavior can be
modelled in the output spike train, while timing variations
can be modelled by varying various neuron parameters, i.e.,
the neuron’s membrane potential threshold.

6) Chip-level: Software-based fault injection is fast and
flexible but it ignores the behavior of the AI hardware ac-
celerator. RTL-level, microarchitectural-level, gate-level, and
transistor-level fault injection takes into consideration the



10

Fig. 12: ML-based method for criticality assessment [98].
hardware, but it is slow and inevitably limited on specific
hardware blocks.

FPGA-based hardware accelerators offer the possibility to
perform realistic fault injection, including faults that would be
difficult to model with software simulation, i.e., faults affecting
the configuration memory or controlling modules. They offer
also the possibility to evaluate both accuracy degradation and
system exceptions, such as system stall and running overtime.
Fault injection experiments on accelerators implemented on
FPGAs are presented in [101]–[108]. In particular, fault in-
jection experiments are performed on the FPGA-based FINN
Quantized Neural Network (QNN) accelerator [56] in [101],
[103]–[105], for the tinyTPU implemented on an FPGA in
[107], for FPGA implementations of custom ANN accelerators
in [102], [106], and for neuromorphic FPGA-based hardware
supporting SNNs in [108].

In [109], [110], the soft error reliability of CNN models
running on microprocessors is investigated, analyzing the
results for different components of the microprocessor and
precision bitwidth configurations.

7) Radiation experiments: Experiences from radiation ex-
periments on different GPUs running different DNN models
are described in [81]–[84]. In [81], FIT rates are scaled
to natural terrestrial environment. Main observations are as
follows: (a) crashes are more frequent than SDCs but are less
critical as they can at least be detected; (b) all reported SDCs
rates are higher than the 10 FIT limit imposed by the ISO
26262 safety standard for automotive, thereby reliability of
GPU-based AI accelerators is paramount; (c) FIT is dependent
on the technology, i.e., for FinFET it is an order of magnitude
lower than that of standard CMOS; (d) Error Correction Code
(ECC) protection alone is insufficient to ensure high reliability.
In [82], the FIT rate is evaluated for different data precisions,
showing that it increases with precision since it depends not
only on the fault propagation probability but also on the
probability of the fault occurrence. In [83], the run-time of the
inference is tuned based on the beam flux such that the chip
experiences no more than a single bit flip event during each
application run. The study shows that with the ECC/parity
checking enabled, single bit errors are corrected, no SDCs is
observed, and the most stringent ASIL D requirement imposed
by ISO 26262 is met. However, vulnerability to permanent
faults is observed, which shows that ECC/parity checking must
be complemented with periodic structural tests.

Accelerated radiation testing results for DNNs running on
FPGAs are reported in [85], [111]–[113]. In [85], it is shown
that applying selective Triple Modular Redundancy (TMR) to

only the most vulnerable layers can mask a high percentage
of faults. In [111], [112] it is evaluated how reducing the
bit-width used for data representation impacts the radiation
sensitivity and failure rate. In [113], it is shown that QNNs
trained with fault-aware training are more resilient to soft
errors.

Finally, results on the reliability to neutrons of Google Coral
TPU are reported in [114], considering elementary operations
and several CNN models. It turns out that, despite the high
error rate, most neutron induced errors only slightly modify
the convolution output and do not change the detection or
classification of CNNs.

8) Memristor crossbar-based architectures: The work in
[115] studies the fault injection effect in memristor crossbars.
The fault model includes stuck-at faults in the conductance
of memristors after programming. The conductance error is
defined as the difference between the final programmed value
and the target value. A device with a conductance error higher
than a positive threshold is considered to have a stuck-on
fault, i.e., it freezes at a high conductance state. Whereas a
conductance error below a negative threshold is considered
to have a stuck-off fault, i.e., it freezes in a low conductance
state. Fault injection experiments show that inference accuracy
drops by more than 50% for a stuck-at memristor rate of 20%.

The work in [116] proposes a fault model for SNNs using
memristor crossbars for the connection of the layers. Spike
Timing Dependent Plasticity (STDP) is used for learning.
Some specificities of the SNN design are that the output
neurons are implemented with lateral inhibition and synapses
are off when there is no activity on their connected neurons.
The fault taxonomy is divided into different synapse faults and
neuron faults. Synapse faults include dead synapse, degraded
plasticity, and synapse stuck-at faults. Neuron faults include
dead neurons and delayed spiking, as well as faults specific to
this SNN design, i.e., stuck-at or delayed lateral inhibition and
delayed synapse activation fault. Fault injection experiments
considered only the worst case faults, i.e., dead neuron and
dead synapse faults. Results show that a high fault density is
required for noticeable decrease in recognition rate. Moreover,
for dead neuron faults, learning on a faulty network is more
critical than a fault occurring in a fault-free trained network.

In [117], the susceptibility of ReRAM-based crossbar arrays
to single event and cumulative radiation damage is inves-
tigated. Simulations are performed using an experimentally
derived memristor SPICE model. Results for an ANN trained
with the MNIST dataset indicate that the system is highly
resistant to transient Single Event Effects (SEEs) thanks to



11

the low cross section of the memristive device. Moreover, the
cumulative ionizing dose level corresponding to the inference
failure point is very large, thus it is concluded that ReRAM-
based accelerators have high radiation tolerance in normal
environments.

In [118], it is proposed to train a ML classifier to predict
fault criticality in a DNN mapped to memristor crossbars. The
considered fault types are stuck-on and stuck-off conductance
in the memristor cell. The training set is generated by: (a)
random fault injection for which the overwhelming majority
of analyzed faults will be benign; and (b) a Misclassification-
Driven Training (MDT) algorithm to quickly identify criti-
cal faults so as to have a balanced training set. The MDT
algorithm runs an optimization where the DNN parameters,
i.e., weights, are perturbed towards maximizing the prediction
error. In each iteration, the most significant parameter based on
gradient value is chosen. A fault is injected in this parameter
and is identified as critical fault if all samples in a batch of
the dataset are mispredicted. The features from the benign
and critical faults used to train the ML classifier are: (a)
fault location; (b) fault type; (c) parameter significance; and
(d) parameter deviation amount. The fault criticality analysis
can be used to develop a fault tolerance solution that targets
only critical faults, thus leading to a significant reduction
in the redundancy needed for fault tolerance. The proposed
criticality-aware fault tolerance scheme used in this work is to
introduce spare columns for remapping only columns in the
memristor crossbar that include cells with critical faults.

C. General observations from fault injection experiments

Some common conclusions in the above fault injection
experiments are as follows:

1) The fault impact depends on the DNN topology, type
of layer, and type of activation function used. Moreover,
fault sensitivity across layers and across neurons within a
layer can vary by several orders of magnitude. Typically,
the output layer is a highly-sensitive layer necessitating a
dedicated fault tolerance scheme. Convolution and fully-
connected layers tend to spread the SDCs, while sub-
sampling layers tend to mask a significant portion of
SDCs. Moreover, very frequently a bimodal behavior is
encountered: either the accuracy is negligibly impacted by
the fault, or the accuracy drops rapidly even approaching
random guessing.

2) FIT rates of AI hardware accelerators can exceed safety
standards, which shows that reliability and error recovery
is of paramount concern.

3) The accuracy drop is contingent on the dataset, i.e., the
application. The same fault can be benign for one dataset
but can be critical for another.

4) Fault susceptibility depends on the data type used. DNNs
using data types of higher dynamic range are more
vulnerable. Still, even QNNs with 2-bit precision are
shown to be vulnerable. Susceptibility also depends on
the affected bit position, with the MSBs being the most
critical.

5) Stuck-at-1 faults furnish the largest accuracy drop because
typically over 99% of model parameters have zeros in
their MSBs.

6) For systolic array-based accelerators, by increasing the
number of layers or the number of neurons per layer the
accuracy drop escalates [127]. This is due to the reuse of
the systolic array across multiple layers.

7) For memristor crossbar-based architectures, single mem-
ristor yield and endurance is very low, necessitating yield
rescuing methods.

8) For SNNs, saturation neuron faults seem to be the most
lethal, although dead neuron faults can also cause signif-
icant accuracy drop.

V. TESTABILITY
A. Introduction

The goal of testability in AI hardware accelerators is no
different from traditional hardware: achieving acceptable test
quality under manageable cost. It is confronted by the same
problems as in traditional test but with new challenges. While
some challenges can be handled by existing tools and solu-
tions, many still remain as major problems in today’s Design-
For-Testability (DFT) applications. Some typical issues seen
in industry are discussed below.

Being domain-specific, AI hardware accelerators usually
have some unique features that may not be test friendly. The
most prominent one is the sea-of-core design, e.g., 1472 cores
in Graphcore GC200 [128], 128x128 systolic array in Google’s
TPU [129], or even more such as 850K cores in CS-2 [130].
While the notion of “core" in different accelerators may be
very different in size, cores in one design are usually identical
or very similar. From DFT and physical design perspective,
these cores may be too small to implement DFT on a per-
core basis with a reasonable overhead. On the other hand,
incorporating many cores in a physical partition could lead
to prohibitive cost for DFT or physical implementation and
verification, while not taking the advantage of the similarities
among cores. Attempting to achieve best test quality with
reasonable overhead, there has been plenty of research on
low-cost testing of systems with identical cores [131]–[133].
However for today’s AI architectures, an optimal solution
might be further explored from other angles, i.e., the function
structure may help increase DFT test coverage [134], and
function patterns may become part of test patterns [135].

AI applications are memory intensive, hence many AI
hardware accelerators require embedded memories with much
larger sizes than in traditional ASIC designs. Several MBytes
are common practices, i.e., 900MB in Graphcore GC200
[128]. While these memories can be extensively tested and
repaired using today’s Built-In Self-Test (MBIST) tools, they
can present major penalties to Power, Performance and Area
(PPA) [136]. Recently, many AI hardware research topics have
proposed to bring the computation near to the memory or
into the memory, or using large external memory such as
High Bandwidth Memory (HBM) or wafer-bonding. These
solutions bring in new challenges for testing. For instance,
in-memory solutions may require understanding and creation



12

TABLE II: New testability challenges for AI hardware accel-
erators and possible solutions.

Challenges Solutions
DFT efficiency for designs with large
number of cores

Test architectures
Physical design issues for large die
size (i.e., routing and timing)

Physical-aware DFT [136]
DFT overhead Function-aware DFT [134], [135],

[145]
Complete DFT solutions for large het-
erogeneous systems

Functional test generation [127],
[146]–[156]

Memory-hungry designs On-line test [157]–[165]
New market demands (i.e., 0 DPPM
for automotive, on-line test)

Yield improvement [115], [166]–[169]
New architectures and faults (i.e., in-
memory computing)

Fault modeling and testing of
memristor-based memory technology
[170]–[177]

New design paradigms (i.e., 2.5D/3D
ICs)

2.5D/3D IC DFT
Automotive-grade DFT

of new logic and physical fault models [137], while wafer-
bonding necessitates better solutions for test access, test power
control, and yield improvement [138].

Besides the issues mentioned above, existing test challenges
for traditional ASIC design may also become increasingly
intense in AI applications. For example, current large AI
hardware accelerators require hierarchical DFT solutions that
are scalable with design size. However, since an AI hardware
accelerator is often an heterogeneous system, hierarchical DFT
needs a comprehensive solution for automatic DFT insertion,
verification, debugging and silicon bring up. Another popular
difficulty stems from physical design, i.e., large accelera-
tors often use tile-based design where no dedicated routing
channels are reserved for global routing. However, complex
DFT designs can create hundreds of global signals for scan,
MBIST, debug, etc. This presents a huge overhead for top level
implementation and verification. New solutions are necessary
for both efficient DFT and easy physical implementations
[136] [139].

AI hardware accelerators are also facing pressure from
new marketing and technical trends. For example, as one of
today’s popular applications, automotive grade AI hardware
accelerators require more stringent screening than before to
ensure zero Defective Parts Per Million (DPPM), which has
to be reflected in the architectural level of DFT design. Test
data analysis and diagnosis are also critical for yield and
reliability learning [140]. Another typical new paradigm is
3D IC design, since large AI hardware accelerators are often
limited by physical geometry and cost. Chiplet designs based
on 2.5D or 3D methodologies can mitigate the challenges from
die size, process, cost, etc., but necessitate a complete set
of test solutions from die-level, stack-level, to package-level,
which is being addressed in the development of new tools and
test flows [141]–[144].

Table II categorizes some of these challenges or issues
(left) and possible solutions (right), which are discussed in
this paper. This taxonomy is not meant to be comprehensive,
but can be representative for many testability activities in the
AI hardware designs. Table II cites only works specific to
AI hardware, but more generic solutions will be discussed,
especially on the test architecture side, that are applicable to
AI hardware too.

B. DFT and ATPG

1) Test architecture: Plenty of research has been conducted
on DFT solutions for identical cores to minimize test overhead
and maintain test quality. The assumptions of these techniques
may still be valid for AI hardware accelerators, but new
solutions may be needed to handle large AI designs with
limited cost.

A straightforward idea is to broadcast the test stimuli to
identical cores while compare their test responses for pass/fail.
In [131], a Test Access Mechanism (TAM) is designed to
implement on-chip comparison of multiple identical cores. It
contains multiple stages of pipelines and several configurations
so that each core’s test can be implemented in different modes.
As such, it not only supports comparing test responses from
cores for manufacturing test, but also provides diagnosability
of a core during silicon bring up and yield ramp up. With on-
chip comparison, test data volume can be significantly reduced,
and so is test time. However, for large AI designs with many
cores, such broadcasting-style solution may encounter increas-
ing difficulty from routing and top integration. It also needs
some manipulations of test patterns from standard Automatic
Test Pattern Generation (ATPG) tools.

In [132], another form of TAM is proposed supporting
similar features. It is a generalized time-multiplexed TAM,
where the compressed test and control data streams are se-
rialized before going into the decompressor. At core level,
designers can still utilize the regular decompressor/compactor
scan architecture. This simplifies the core level scan channel
configuration and decouples it from top-level scan pin assign-
ment. The designers can be flexible in architecting a core-level
scan scheme without worrying too much about the top-level.
This can be a major benefit for large AI hardware accelerator
designs with many cores but very limited scan pin resources.
Pattern re-targeting, verification and diagnosis flow are also
supported, which are also critical for today’s large AI hardware
designs.

It can be seen that in order to take the advantage of sea-
of-core design style in AI hardware, on-chip processing of
test data may be preferred when implementation is feasible.
There are several varieties in this domain. In [133], a TAM
design is presented for chips with multiple isolated identical
cores. The proposed pipelined architecture relies on forming
nonlinear equations on a very limited number of output pins
that compress the outputs from the identical cores and solve
them off-chip to reproduce the failure information of each core.
It uses test resources similar to testing a single core and also
supports accurate failure diagnosis. In [178], a TAM based on
majority comparison is presented. It also utilizes an on-chip
comparator, yet not to compare with an expected value but
with other core’s test data to determine a majority value. For
example, if more than half of cores in the comparison present
the same value, this value is a majority value. This value is
then compared with Automatic Test Equipment (ATE) data.
The test cost is close to that of a single core.

In [179], yield improvement is considered when a multi-
core system contains spare cores. A comparison-based TAM
that is capable of handling multiple spare cores is proposed.



13

(a) Small core level. (b) Core group level. (c) Big partition level.
Fig. 13: DFT solutions at different levels for many core AI hardware accelerator designs.

All faulty cores can be identified via low-cost comparison,
and if the spare cores are more than the faulty cores, the chip
is still usable. Using spare cores is also common practice in
accelerators with many cores. Such designs usually provide a
configuration with all good cores and several “partial-good”
configurations with different numbers or locations of good
cores for yield improvement.

It can be seen that for such DFT solutions to be acceptable,
several issues have to be resolved. First, we should be able
to manipulate the patterns according to the scan architecture,
e.g., re-targeting the core-level patterns to top-level without
regenerating the pattern. Second, test quality such as coverage
should not be compromised and overhead should be mini-
mized. And finally, from engineering perspective, some critical
metrics such as single core diagnosability, verification effort,
and routing complexity should also be considered. Fortunately,
some of these requirements are already supported well by
current mainstream DFT tools.

2) Physical-aware DFT: The above works are mostly de-
veloped for traditional multi-core designs. As discussed earlier,
many AI hardware accelerator designs share certain features
that may render these traditional solutions either impractical
or not as efficient, especially on physical design. To address
these AI specific problems, some new industrial efforts are
reported to make DFT solutions more physical-friendly and
hence more practical.

In [136], a comprehensive set of DFT solutions targeting
AI hardware accelerators are proposed. In scan test, this
work identifies that although accelerators may contain many
identical cores, these cores are not as big or as complex as
cores in a traditional multi-core system such as a CPU. A
typical accelerator for data center applications may contain
thousands of “small” cores, as shown in Fig. 13(a). At this
core level, any DFT insertion may incur huge PPA penalty, i.e.,
compression logic, wrapper logic, control logic and routing
for DFT signals. It is too small for the DFT overhead to be
economical. On the other hand, if we group many small cores
together to create a big partition and apply DFT insertion
at this level, as seen in Fig. 13(c), the run time, memory
requirement, power consumption, pattern count, verification
efforts, and other concerns may prevail and render it infeasible,
e.g., ATPG or simulation cannot finish in a limited time.
Meanwhile, the similarities among cores cannot be effectively
exploited.

As a result, in [136] it is proposed to find a “sweet spot”
where a suitable number of small cores are viewed as a “core

group” where DFT insertion, verification, pattern generation
and other activities are done at this level, as shown in Fig.
13(b). Note that in practice, this usually aligns with physical
design requirements, which is probably the most straightfor-
ward solution. However, if physical partition is too big or too
small, DFT can still make architectural changes to adapt to a
suitable size of core group. After this core group is determined,
existing technologies such as test data broadcasting, test re-
sponse on-chip comparison, pattern retargeting, scan channel
pin-muxing can be effectively applied.

Note that in practice the logical identical cores may not be
physically identical. Synthesis and physical implementations
may create various physical instances from the same logic
module, converting a homogeneous system to a heterogeneous
system from a physical perspective. A feasible DFT solution
has to take this into account.

Streaming Scan Network (SSN) [139] is a recently intro-
duced tool that can target these physical challenges. SSN is
a bus-based scan data distribution architecture. It contains a
scan data bus that travels through all cores in the design, a per-
core controller (host) with IJTAG support, and regular scan
compression logic. The bus is connected to chip-level scan
pins and scan data for any core in the system are streamed
in through the bus in the form of packets. The concept of
packets is different from that in network switching, since SSN
packet is a fixed-format data segment that only contains scan
data, no address or opcode. The local host in each core is
pre-configured through IJTAG to learn how to offload scan
data from packets. The expected value can also be streamed
in for on-chip comparison. The routing and heterogeneous
problems with tile-based designs are also mitigated, since only
a single test bus is routed through the entire chip. There is
no need to pin-mux the scan channels from various cores
to top-level scan pins, and the test bus interface is identical
for all cores. Another benefit is that due to the flexibility
of packeted test data, any cores can be tested at any time.
This can help effectively control test power and improve
test channel throughput. With comprehensive considerations
of DFT and physical-design requirements, this solution is
especially suitable for AI hardware containing many identical
cores.

3) Function-aware DFT: Most of the aforementioned tech-
nologies are common DFT solutions without in-depth analysis
of the function mode of hardware. Many AI hardware accel-
erator architectures are domain-specific or even application-
specific, hence a customized DFT solution designed for a



14

specific AI architecture is intuitively best for PPA results. To
serve this purpose, a DFT architect needs to understand how
AI hardware works in function mode such that the DFT design
can be optimized accordingly.

In [135], the authors realize that due to the unique archi-
tecture of AI hardware, traditional stuck-at and delay tests
may not be sufficient. They study test methodologies and
DFT requirements specifically for supervised ML systems.
Hardware architecture of FIFO-based and scratchpad-based
accelerators are analyzed. Test strategies for specific hardware
components such as MAC, global buffer, activation functions,
etc., are developed. These solutions are more function-like and
can help bridge the gap between traditional test patterns and
specific AI hardware test requirements. They are also easy for
on-line test to ensure product quality.

In [145], post-manufacturing testing of DNN accelerators is
discussed. It is argued that the inherent error-tolerance can
be leveraged to reduce the fault model size and, thereby,
the test time and cost. The idea is that if a fault does not
lead to inference accuracy degradation for a given accuracy
tolerance margin, then it is non-critical and can be dropped.
Only critical faults will be targeted during test application.
Two approaches are shown considering a gate-level implemen-
tation. The first approach is Boolean Satisfiability (SAT)-based
structural testing where a SAT solver exhaustively checks
all input combinations to determine the fault criticality and
generates a test pattern able to detect it. The second approach
is classical functional testing where the actual workload, e.g.,
images, are used as test inputs.

Function mode operation is also studied in [134] to improve
test quality in accelerators with very large number of small
cores. As suggested in [136], this scenario can be handled
by grouping small cores into a core with a size suitable for
both DFT and physical implementations. However it does
not exploit the similarity among small cores and test quality
may still be impacted if there are interactions between small
cores. In typical AI hardware accelerators, there are heavy
data traffic between adjacent cores, hence the test coverage on
core boundaries is essential. The work in [134] studies inter-
core connectivity, function data flow, and design homogeneity
to derive a C-testable method that can run ATPG for only
a single core to reduce test cost and maintain the coverage
and diagnosability. By exploring design space, it also presents
a hierarchical compaction scheme for on-chip response com-
paction under reasonable design constraints.

Fig. 14 shows a systolic array example consisting of 16
small cores (or PEs). Dataflow is only from left to right and
from top to bottom. Each PE has registers on the input sides
but not on the output side. If ATPG is performed at each PE
level, coverage will be unacceptable since PE itself is not well
wrapped by registers. However, if ATPG run consists of the
five adjacent PEs inside the red line, faults in the green PE in
the middle will be fully covered. Note that this ATPG pattern
can be used to detect faults in all PEs in the same scenario.
Since an architecture with small PEs usually contains a large
number of them, the overhead of such a scheme is low.

Fig. 15 illustrates the sequence of testing the whole systolic
array. ATPG consisting of 5 neighbouring PEs is repeatedly

Fig. 14: Example of a 2D unidirectional pipelined dataflow in
4x4 PE-based systolic array [134].

Fig. 15: Testing 5x5 PE-based systolic array in a checkboard
style [134].
used to detect faults in the dark green PEs with high coverage.
Each iteration will cover a different set of PEs. Light green
PEs are those already covered by previous runs. As a result, for
a large systolic array (e.g. 256x256), most PEs can be covered
by small ATPG patterns in 4 test runs. The uncovered PEs on
the borders can be fully tested in a top-off run.

4) Functional test generation: Functional test generation
aims at generating inputs, e.g., images, that are capable of
sensitizing the fault and propagating its effect to the output,
leading to a different prediction with respect to that of the
nominal fault-free network. This approach has been demon-
strated for ANNs [127], [146]–[149], including memristive
crossbar array-based architectures [146], [147], [149], and for
SNNs [150], [151]. As shown in Fig. 16, functional tests could
be original images from training and testing sets, adversarial
examples generated from original images, or synthetic images
generated from original images.

More specifically, starting from the available set of input
samples, one approach is to select samples that are profoundly
similar to other samples belonging to different output classes,
i.e., a similarity metric could be average pixel intensity [127].
A second approach is to select samples that have been pre-
dicted correctly but with least confidence score [127], [151].
A third approach is to select samples that require more neural
network parameter tuning effort during training, where the
effort is measured with the change in the loss function in
each training step [149]. In [146], [150], it is proposed to



15

Fig. 16: Functional test generation. The street images are from
[154]. The chip image is from [60].
generate adversarial input samples, i.e., perturb available input
samples by adding a minimum amount of noise aiming at
forcing the predictions of the nominal and faulty network to
differ. Another strategy is to craft new samples by attaching
watermarks to available input samples [147]. The network
is deliberately trained to output a designated classification
label for a watermarked input, a technique that is called
backdooring. Using the watermarked inputs as validation set,
a low validation accuracy indicates a fault. In general, in all
aforementioned works, the objective is to use samples that are
more vulnerable to misclassification when faults occur. Finally,
in [148], a method is proposed for querying a network with
a set of specially crafted test inputs, in order to reveal if the
model parameters stored in the memory are faulty.

Functional tests can also be employed by the user of the
programmed AI hardware accelerator to validate that the
embedded DNN model has not undergone any malicious
perturbations [152].

A related research direction is generating error-inducing
corner test cases for a trained DNN, which thereafter can
be used to retrain the DNN and improve its accuracy [153],
[154]. These corner test cases are synthetic real-world in-
put images resulting from realistic transformations of seed
images and generated in a way such that they activate a
large percentage of neurons in the DNN. For example, for
DNN models controlling the perception of autonomous cars,
these transformations include changing brightness, changing
contrast, shearing, rotation, blurring, fog effect, rain effect,
etc.

In [155], an alternative functional test generation is pro-
posed, demonstrated for memristive crossbar-array architec-
tures targeting detection of classification accuracy drop due to
process variability. This approach is inspired from the alternate
analog circuit testing paradigm [180], [181]. First, a compact
test set of input images is generated with the maximum
possible diversity of responses, and a feature vector is defined
at the output of the network. An outlier detector in the form
of an one-class classifier is trained in the space of features
using as training set instances of the DNN with process

Fig. 17: Functional testing of a biologically-inspired spiking
neuron.
variations but with acceptable accuracy. Applying the compact
test set, the outlier detector serves as a first screening of non-
conforming devices. Devices that pass this test are presented to
a regressor which is trained using the same training set to map
the features to the DNN classification accuracy. A guard-band
is defined around the minimum tolerated accuracy to classify
devices as passing, failing or fuzzy, where the fuzzy devices
fall within the guard-band and are subject to standard testing
using the complete image set to obtain a precise decision.
Failing and fuzzy devices found in production testing can be
combined in batches with prior training data to retrain the
outlier detector and regressor.

In [156], a functional BIST scheme is proposed for
biologically-inspired spiking neurons. The idea is to test that
the neuron is capable of producing all the basic firing patterns,
i.e., regular spiking (RS), fast spiking (FS), intrinsic bursting
(IB), and chattering (CH). The test stimulus is composed of
low-resolution ramps applied at the bias nodes of the neuron
such that in one pass all firing patterns appear. If one or more
firing patterns are missing, then the neuron is declared to be
faulty. Examples of functional and faulty neuron responses are
illustrated in Fig. 17.

C. On-line test

1) ATPG and functional testing: Many AI accelerators are
used in datacenter applications, where reliability, availability
and serviceability requirements demand certain level of on-
line test of memories and logic. However, such tests involve
both function mode and test mode, imposing more difficulties
to DFT designs.

A recent effort is reported by Amazon AWS in [182],
where high-speed serdes I/Os in an AI hardware accelerator
are used to transport scan test patterns to test the processing
cores. Test patterns are converted to a format compliant
with corresponding protocol and transported from PCIe/USB,
through standard AXI fabric, to cores. Cores under test will
be idled from workload and isolated from the rest of logic.
Although the major advantage of this solution is test time
reduction, it supports native on-line test capability, which is
critical in a cloud scenario.



16

Returning to the functional test generation methods in
[127], [146]–[151] discussed in Section V-B4, as the resultant
functional test set is compact, it can be also fed periodically
during mission mode in idle times towards functional safety.

In [158], different self-test approaches are proposed for the
compute units and control units of an accelerator. For compute
units that do not contain complex sequential logic, test patterns
based on combinational ATPG are generated. For the control
units that contain finite state machines and sequential logic,
it is proposed to use functional tests in the form of executing
DNN layers with carefully-crafted input and weight values.
The methodology is enhanced in [159] to cover both stuck-at
and delay fault models for both unit types.

2) Checksums and error codes: The idea here is to build
invariants into the accelerator that hold true only in fault-free
operation while they are violated in the presence of faults.
Thus, checking them concurrently with the operation can point
to abnormal operation. Invariants can be built using checksums
or error codes.

In [161], a sanity-check mechanism is proposed, in which
error detection checksums are constructed by utilizing the
linearity property of DNN MAC operations. These linear
algorithmic checksums are added into the convolutional layers
and fully connected layers of DNN models after the training. A
hardware-based solution is proposed for integration into DNN
inference accelerators aiming at reducing the performance
overhead at the cost of a minor area and power overhead.

In [162], additional penalty terms, called balanced check-
sum, are introduced into DNN training. The balance checksum
aims at forcing the DNN layer outputs to adhere to a linear
invariant. With adding the balanced checksum into the cost
function, error-checking invariants are embedded in DNN
model computations. These invariants provide the computation
error detection capability during the DNN inference phase,
assuming the error would lead to the violation of the trained
equilibrium. Furthermore, the introduced custom regulariza-
tion terms even help a better generalization during the training.

In [163], several Algorithm-Based Error Detection (ABED)
techniques are presented focusing on the verification of convo-
lution operation, one of most resource-demanding operations
in CNNs. Three variants of ABED are presented to use
checksums for filters only, input feature maps only, or both
filter and input feature maps. Implementation complexity,
runtime overhead, resilience and performance trade-offs are
studied and compared for the three ABED techniques. This
work also address the overflow challenges of the checksum
arithmetic induced by reduced-precision fixed-point operations
(e.g., 8-bit integers). Resilience improvements are evaluated
using analytical models, error injection experiments, as well
as accelerated radiation experiments.

In [164], an AN code based fault detection mechanism is
proposed to protect the MAC units of the DNN accelerator.
AN codes add redundancy in the data to detect faults during
arithmetic operations.

In the case where the weights of the DNN model are loaded
encrypted in the memory, an on-line test scheme is proposed
in [165] that employs the padding bits. Padding is used to add
a number of bytes to the plaintext to reach a multiple of 16

bytes (i.e., 128 bits) since encryption is performed on 128-
bit blocks. According to the most popular standard, if 𝑛 bytes
are added to pad the plaintext, then each of the bytes will
encode the value 𝑛. If a bit-flip occurs, the on-chip decryption
module will spread it creating multiple bit-flips affecting also
the padding bits. The fault detection scheme is then to check
that the decrypted padding bytes indeed encode the value 𝑛.
Using this approach, most single faults become critical, but
they become detectable at the same time.

3) Software-based: In [157], on-line test strategies based
on Software Test Libraries (STL) are proposed for embedded
systems running ANN applications. STL is composed of self-
test routines that are executed during boot-time or run-time.
The strategies are categorized into two groups according to
whether they incur or not a small penalty in the inference
time. Zero-penalty strategies include: (a1) run part of the
STL during weight data transfer when the PEs are idle; (a2)
test the inactive PEs of a low-intensive computation layer
and cover all PEs in subsequent inferences using a scheduler
based on a round-robin algorithm. Small-penalty strategies
include: (b1) one PE is executing a self-test while the rest
of the PEs share the AI workload; (b2) apply the entire STL
between two consecutive inferences; (b3) arrange and apply
the entire STL between successive layer computations when
weight data transfer is happening. The strategies are evaluated
on CNNs running on an open-source RISC-V platform. First,
STL is verified to have a high stuck-at test coverage. Then, the
different strategies are evaluated based on the inference time
penalty and Fault Detection Time (FDT) trade-off, where FDT
is the worst-case time to detect a fault from the moment of
occurrence.

4) Memristor crossbar arrays: An on-line concurrent fault
detection method for memristor crossbar arrays is proposed
in [160]. The underlying observation is that faults affect the
dynamic power consumption. An indirect simplified measure
of the dynamic power consumption is used, in particular the
number of logic ‘1s’ at the outputs of the ADCs digitizing the
output current of the crossbar’s columns. An adder-tree design
is used to count the number of ‘1s’, which incurs a small
area overhead. The time-series corresponding to the power
consumption and count of ‘1s’ show a strong correlation when
faults are present, which allows using the count of ‘1s’ as a
simplified metric. When abrupt changes occur in the time-
series data, the presence of faults is indicated. Changepoints
are detected by examining time-series within a sliding window.
For a current time point, the sliding window is centered on
it. The probability density functions of the points in the left-
hand and right-hand segments are estimated and compared to
examine if the current time point is a changepoint. When a
changepoint is detected, the percentage of faulty cells in the
crossbar is estimated. A regression model is trained for this
purpose off-line. A variety of independent feature variables
are used, including statistics of the time-series data, average
weight stored in the crossbar, and average input applied to
the crossbar’s input. Error correction is invoked when a high
percentage of faults is estimated. For example, the faulty
crossbar can be replaced with a redundant crossbar.



17

D. Yield improvement

In [166], the Yield and Accuracy aware Optimum Test of AI
accelerators (YAOTA) framework is proposed. The framework
deals with stuck-at faults in MAC units of AI accelerators and
considers output bit position 𝐾 up to which the inference error
is acceptable. Faults in the fan-in logic cones of bit positions
lower than 𝐾 are considered non-critical, while fan-in logic
cones of bit positions higher than 𝐾 are considered critical.
ATPG test patterns are applied and if only non-critical faults
are found in the MAC, then the PE may be acceptable depend-
ing on how many such faults exist, the AI workload, and the
error tolerance limits demanded by the application. If critical
faults are found, then the PE is permanently disabled. The map
of faulty PE locations is programmed in a fault status register.
For Single Instruction, Multiple Data (SMID) architectures
where PEs are interconnected with NoC/mesh, PEs can be
individually switched-off and bypassed. For systolic array-
based accelerators, a deactivation protocol is proposed without
hardware-level modifications. In particular, it is proposed to
deactivate the PE columns that contain PEs with critical faults
and shift input data by inserting dummy rows of zeros. This
approach has no area overhead but decreases the execution
throughput. By adopting this framework, the manufacturer
can avoid discarding the full accelerator chip because of the
presence of a few faulty PEs, thereby increasing yield.

In [115], two methods are proposed to recover the fabrica-
tion yield loss of memristor crossbar-based accelerators due
to high memristor defect rates. The first method consists of
identifying memristors that are stuck at certain conductance
levels and perform re-training of the network where only
defect-free memristors are adjustable. In the case where the
performance loss cannot be fully compensated by re-training,
the second method presents a re-mapping algorithm where
memristor columns that are heavily polluted, i.e., contain many
defective memristors, are replaced by additional redundant
columns.

In [167], spatial redundancy-based fault tolerance schemes
are proposed for yield loss recovery of memristor crossbars.
The fault model considers stuck-at fault in memristor cells,
i.e., a memristor cell can be stuck-at a high resistance state
or low resistance state. The fault-tolerance schemes apply to
designs where the dot-product operation is mapped to two
memristor crossbars. In particular, once the model is trained,
the mapping allocates the positive weights to a “positive"
crossbar and the negative weights to a “negative" crossbar.
The proposed fault-tolerant mapping algorithm is to make the
positive and negative weights eliminate the impact of faults on
each other. For example, if a positive cell is stuck-at, the weight
of the negative cell is enlarged accordingly to approximate the
target weight. This approach works if only one of two cells
in the same location in the two crossbars is faulty at a time.
Spatial redundancy schemes are proposed in the case where
the fault rate is high, where the same concept of pairwise fault
elimination is used. These schemes make use of redundant
crossbars, crossbar columns, and cells.

In [168], methods are proposed for improving the yield
of memristor crossbars in the presence of memristor resis-

tance variations and stuck-at faults. It is assumed that the
resistance variations and the location of stuck-at cells can
be detected. Two different methods are proposed in the case
of Multilayer Perceptrons (MLPs) and CNNs. For MLPs, the
problem of mapping the weight matrix of the trained model
to the conductance matrix of the crossbar is formulated as a
bipartite matching problem. The metric used is the summed
weighted variations across the cells. Then, in a second step,
the derived new weight matrix is fed as a starting solution
to an off-device training algorithm. The algorithm aims at
iteratively reducing the weight with the maximal deviation.
This is done by scaling down the weight in each training epoch
and adapting the weights of the surrounding cells to recover
the classification accuracy. For CNNs, the method exploits
the fact that two memristor crossbars are used to represent
positive and negative weights since the conductance of a cell
can only be positive. The weight is expressed as the difference
between the two conductances. Therefore, there is a bit-wise
redundancy in the architecture. The proposed method is to
reprogram the resistance of one cell of the pair to eliminate
the resistance variation in each cell. The same principle is used
as a self-compensating mechanism to tolerate stuck-at faults.
In a second step, off-device training and on-device training
with few iterations so as to consider the limited endurance of
the memristors can be performed to improve the classification
accuracy.

A common technique to improve the error-resilience of
DNN accelerators is to extract the memory fault map using
post-manufacturing testing and perform fault-aware retraining
of the model. Doing so for each faulty chip results in sig-
nificant retraining overhead. In [169], it is proposed to train
many faulty chips at a time. The fault maps of chips are
merged into a unified fault map, which is then used for re-
training a single model that will be loaded to every chip. A
fault map is abstracted as a two-dimensional table where an
element corresponds to a memory cell. The state of the cell is
encoded to 1 or 0 for a S-A-1 or S-A-0 fault, respectively.
For contradictory locations where S-A-1 of one fault map
overlaps with S-A-0 of another fault map, the policy is to
select the polarity that incurs less accuracy drop in the DNN
inference. The re-training speedup increases with the number
of fault maps merged. However, this speedup is at the expense
of accuracy drop compared to per-chip retraining. Empirically
it was observed that exposing the DNN gradually to faults
rather than exposing it to all faults from the very start allows
the DNN to learn at a faster rate and achieve better accuracy.

E. Fault modeling and testing of memristor-based memory
technology

Memristors offer a compelling solution to the scalability
problem of AI hardware accelerators, as they can be used as
nano-scale synapses. They offer also the promising in-memory
computing architecture that solves the data transfer bottleneck,
as discussed in Section III. Besides these applications in an AI
hardware context, memristor-based memory technology has a
large potential for replacing traditional memory technologies
and is in the focus of today’s research. As memristors are



18

susceptible to Process, Voltage, and Temperature (PVT) vari-
ations and manufacturing defects because they are fabricated
with new materials and processes, there is a large body of
works that aim at understanding such failure mechanisms and
accurately model them to develop optimal post-manufacturing
memory tests, including march test algorithms and DFT [170]–
[177]. These works find applicability in the context of AI
hardware accelerators implemented with memristive crossbar
arrays.

VI. DEPENDABILITY
A. Introduction

AI hardware is generally integrated in some intelligent
or autonomous systems required to operate throughout their
life cycle in a highly dependable manner. The dependability
issues of AI hardware have aroused great interests in recent
years. Dependability is a broad term used to define the
ability of a system to deliver its intended service [183]. Any
system, including AI hardware, can be viewed as a group
of components integrated into one single entity to serve the
purpose of delivering a certain service (e.g., AI algorithm
acceleration for an AI accelerator). Throughout the life cycle
of system deployment, there may be a service failure triggered
by intrinsic or extrinsic effects, whereby the delivered service
deviates from the intended one. Dependability of a system is
the ability to avoid such service failures that are beyond the
acceptance level.

Dependability encompasses a broad spectrum of attributes,
which are quantities to measure dependability from various
perspectives. The main attributes include reliability, availabil-
ity, maintainability, and safety [183], [184].

∙ Reliability, availability and maintainability are three
highly related attributes, which are usually measured
by statistical metrics. Reliability denotes continuity of
the correct service. The level of reliability is com-
monly specified in terms of Mean Time To Failure
(MTTF) [184]. Maintainability denotes the ability to
repair when a service failure has occurred. It can also
be specified as a statistical term with the Mean Time
To Repair (MTTR) metric which represents the expected
system down time (including repair time) [184]. Lastly,
availability denotes readiness for correct service. It can
be expressed as a function of MTTF and MTTR as
A=MTTF⁄((MTTF+MTTR)) [184].

∙ Safety denotes the ability of a system to not cause harm
to people, things or the environment. Safety includes
Functional Safety (FuSa) and Safety of the Intended
Functionality (SOTIF). FuSa is defined as the absence
of unreasonable risk due to hazards caused by malfunc-
tions [185]–[187]. On the other hand, SOTIF focuses on
absence of risks caused by performance limitations of the
intended behaviors or by reasonably foreseeable misuse
by the user [188].

We note that security is often not characterized as a single
attribute of dependability. While highly related with depend-
ability, security is considered as a composite notion combing
confidentiality, availability and integrity attributes [184].

From dependability perspective, there are various threats
leading to potential violation of the targeted goal. A threat
at the component operation layer is usually called as fault.
There are two main categories of faults: intrinsic faults and
extrinsic ones. The former may be originated by aging effects,
device variability, latent manufacturing defects, susceptibility
to environmental conditions (e.g., radiation causing soft errors,
electrical/mechanical stress). On the other hand, there are some
faults caused by system inputs (e.g., malicious inputs to AI
system, or user misuse), which are said to be extrinsic or
external.

There are a variety of techniques to improve dependability
of a system, including fault prevention, removal, tolerance
and prediction. Fault tolerance is one of the most popular
means aiming at tolerating a fault in a functional system.
There are different levels of fault tolerance requirements,
e.g., fail-operational, fail-safe, etc. A fail-operational system
upholds the continued functionality and intended services in
the presence of a fault. There are two main subcategories:
upholding service without performance degradation, and with
degraded performance. The latter is commonly referred to
as fail-degraded or fail-reduced. A fail-safe system aims at
transitioning the system to a well-defined condition to maintain
a safe state in the event of faults. Functional safety mechanism
is one example of means to achieve a fail-safe property. Note
that there is another term of “fail-silent”, which is described
as the guarantee of no service (e.g., no system output) in the
event of failures. Such a silent state can be viewed as a specific
defined safe state, thus from this perspective fail-silent can be
considered as a subcategory of fail-safe.

As AI hardware provides service to more and more mission-
critical or safety-critical applications, these hardware elements
need to be evaluated for compliance with the dependability
goal (e.g., safety). In general, they share the same dependabil-
ity theory foundation and requirements as other hardware (e.g.,
traditional general-purpose processors). However, there are
several novel dependability challenges as well as opportunities
introduced by unique characteristics of AI hardware computing
architecture, application and also R&D cultures.

First, AI hardware goes under a new computing paradigm
called “Domain-Specific Computing” [189]. Domain-specific
computer architecture with domain-specific hardware accel-
eration has been introduced in recent years to address per-
formance needs that general-purpose computing is hard to
meet. This emerging computing paradigm shift is expected to
bring new opportunities to AI hardware dependability method
development. For example, while many traditional application
(domain)-agnostic fault tolerance techniques, e.g., ECC or
TMR, are commonly used in general-purpose computing, an
alternative technique with exploiting domain-specific charac-
teristics of AI hardware could be pursued to achieve better
efficiency in terms of PPA.

As discussed in Section IV, many research works suggest
that DNNs have inherent resilience to moderate variation of
parameters and activations. Such approximate nature of DNNs
enables development of approximate computing to support
efficient AI learning in resource-constrained hardware, espe-
cially for inference. However, the actual impact of AI hardware



19

faults could be more severe on AI application service results,
e.g., classification accuracy. It demands thorough hardware
fault analysis and novel lightweight fault tolerance techniques
exploiting architectural properties of AI hardware.

We also note that some research suggests deep learning
models may have inherent weakness against input perturbation
e.g., adversarial examples. Adversarial robustness of DNNs
has received particular attention and there is a rapidly grow-
ing body of research work in this field [190], [191]. Such
adversarial inputs can be viewed as external/extrinsic faults.
In this survey paper we focus on dependability against intrinsic
faults, i.e., those induced by AI hardware internally while
potentially stressed by environmental effects or workloads.
Other security threats that will not be covered in this survey
include DNN model IP theft [192]–[194], backdoor attacks on
DNNs performed when training is outsourced [195], [196], and
fault injection attacks [197], [198].

Another characteristic of AI hardware is that it is often
an integral part of some AI-based solution consisting of
multiple interacting system layers – from hardware/physical
to software/application. From this perspective, AI hardware
dependability strategies should use a system-based approach
beyond the techniques limited to local hardware. The concept
of cross-layer dependability or cross-layer resilience [199],
which leverages the inherent fault-tolerance of multiple layers,
should be used for AI hardware to exploit domain-specific
fault at the system level. Moreover, heterogeneous computing
containing AI accelerators along with general-purpose CPUs
and/or FPGAs has gained mainstream adoption in computing
industry [200]. There exist far greater opportunities for ex-
ploiting heterogeneity to achieve system-level dependability.

Deep learning-based AI has become a revolutionary tool
in many industry fields, with seemly-unlimited potential to
outclass traditional techniques. This is a burgeoning field filled
with the opportunities as well as chaos, much like the new kind
of “Wild West”. We see industry and academia are eager to
push out AI innovations, with new architectures and higher
performance expressed mainly with the Tera Operations Per
Second (TOPS) metric, so as to battle for technical leadership
in this rapidly growing field. In general, the AI field is
permeated by a pioneering and risk-taking spirit. On the
other hand, conservatism is fundamental in the dependability
field (specially for safety). It is in a sharp contrast with the
pioneering spirit and self-regulation philosophy. A paradigm
shift is needed to bridge the gap between them. Over the past
few years there has been growing efforts on this direction. For
example, Europe has started legislation to make the use of
AI safer and more ethical, such as in critical infrastructure
impacting people’s lives and health [201]. Still there is a
considerable gap between the AI dependability goal and the
available solutions. This is a research frontier where the
technical community can contribute more to bridge the gap
by introducing new methods.

Design-for-dependability aims at enhancing the reliability,
availability, maintainability, and safety features of the AI hard-
ware accelerator. All these attributes boil down to rendering
the AI hardware accelerator error-resilient. We classify the
existing design-for-dependability approaches into four cate-

Fig. 18: Design-for-dependability approaches.
gories, as illustrated in Fig. 18. The first category includes
model-based approaches where the goal is to derive a model
that meets the performance requirements and additionally it
has intrinsically built-in or programmed error-resilient capa-
bilitiessuch that by construction when mapped onto hardware
it is capable of tolerating certain hardware-level faults. The
second category includes proactive hardware-based techniques
where the goal is to make the accelerator design passively
tolerate certain hardware-level faults. The third category in-
cludes reactive hardware-based techniques where the goal is
to make the accelerator react to an occurring fault in real-
time, including built-in monitoring of fault occurrence and
low-latency error recovery whenever a fault has occurred. The
final fourth category includes cross-layer approaches where
the error tolerance objective is shared between model and
hardware.

A taxonomy of existing techniques under the different
categories is provided in Table III. These techniques will be
presented in more detail next.

B. Model-based approaches

Fig. 19 combines and illustrates model-based approaches
that will be discussed next in detail.

1) Model training modification: A number of works pro-
pose to achieve fault tolerance by modifying training. A first
method is to add artificial faults and noise into the network
during training such that the network learns to tolerate faults
[61], [202], [203]. A second method is to restrict weights
to have low values since intuitively fault tolerance degrades
by the use of large values [202]. A third method is to
add a penalty term to the training cost function that takes
into account errors that arise due to faults, and multiply
the penalty with a regularization parameter that controls the
trade-off between the degree of fault tolerance and inference
accuracy. The underlying idea is to bias the solution toward
a fault-tolerant network. Approaches in this category include
constraining the weights to lie within a limited range toward
an even weight distribution [204]–[206]. A fourth method is
to combine the training process and fault tolerance objective
into an optimization problem solved by nonlinear optimiza-
tion algorithms with the aim to learn a network model that
performs the desired task and at the same time fulfills fault
tolerance constraints [207]–[210]. A fifth method proposed
in [211] considers a constructive training in the presence of
faults, where neurons are incrementally added whenever the
network fails to learn until a satisfactory learning or a user-
defined maximum network size is reached.



20

TABLE III: Taxonomy of design-for-dependability approaches.
Model-based Proactive hardware-based Reactive hardware-based Cross-layer
Model training modification [61], [90], [91],
[202]–[223]

Memory cell re-design [224], [225] Weight-shifting [226] Model/hardware co-design
[227], [228]

Model modification [229]–[231] Memory aging mitigation [232] Re-learning [233] Fault-aware pruning with re-
training [95]

Fault-tolerant model search [234] Activation clipping [57], [81], [235]–
[238]

Algorithmic-based fault-tolerance [81],
[239]–[244]

Fault-aware mapping [101],
[245]–[249]

Redundancy-based [77], [85], [91],
[101], [104], [250]–[256]

Fault masking [91], [92], [257], [258],
[259], [260], [261]

Variation-aware mapping for
memristor crossbar arrays [262],
[263]

ECC [81], [83], [84], [264] ML-based [265] Adaptive training after testing
[146], [266]

Razor [257], [267], [268] Neuron adaptation [269] Aging-aware on-line training of
memristor crossbar arrays [270],
[271]

Hardening against radiation [272] Thermal-aware optimization
of memristor crossbar arrays
[273]–[275]

Fig. 19: Model-based approaches.
The aforementioned approaches are early works targeting

shallow FC networks and considering faults at behavioral-
level. They laid the foundation of several approaches for
modern AI hardware accelerators presented recently which are
discussed next. A thorough and comprehensive review of these
early approaches is provided in [212].

a) Fault-aware training: In [213] and [91], it is demon-
strated for ANNs and SNNs, respectively, that training with
dropout improves the error-resilience. Dropout was originally
proposed in [276] to prevent over-fitting and reduce the
generalization error on unseen data. The idea is to temporarily
remove neurons during training with some probability 𝑝, along
with their incoming and outgoing connections. At test time,
the final outgoing synapse weights of a neuron are multiplied
by 𝑝. For a network with 𝑛 neurons, there are 2𝑛 “thinned"

scaled-down networks, and training with dropout combines
exponentially many thinned network models. The motivation is
that model combination nearly always improves performance,
and dropout achieves this efficiently in one training session.
The reason why dropout is a natural fault-aware training
approach is that it equalizes the importance of neurons across
the network, resulting in more uniform and sparse activity
across the network. Therefore, if a neuron becomes faulty, this
turns out to have no effect on the overall inference accuracy.
In [91], it is demonstrated that training the SNN with dropout
can nullify the effect of dead neuron faults and neuron timing
variations in all hidden layers, while the SNN can withstand
a multiple fault scenario with high dead neuron rates. A
technique equivalent to dropout, called erasure regularization,
is to set neuron activations and weights to zero during training
[214].

In [215], an error injection layer is developed that allows
injecting faults according to a fault model during training time.
The FINN FPGA-based QNN accelerator for CNNs [56] is
adopted for the study. The focus is on two main fault types
for CNNs, namely single channel stuck-at faults and same
pixel in all channels stuck-at. Training is performed on a GPU
and fault injection on FPGA. Results show that this fault-
aware training approach: (a) improves the error-free accuracy
behaving like a regularizer; (b) leads to highly fault-tolerant
networks with accuracy very close to the error-free one; (c)
offers an improved hardware cost vs. worst case accuracy
trade-off when selective TMR is used to compensate errors
in the most critical layers.

Another fault-aware training approach is to inject bit errors
in the weights during the training process. This strategy has
been investigated in [214], [216], [217] showing that it allows
margin for voltage reduction in the memory of the DNN
accelerator, thereby helping to reduce the energy consumption.
In other words, the accuracy drop due to bit errors resulting
from voltage under-scaling can be compensated by this fault-
aware training approach.

b) Training with noise: In [218]–[220], it is shown for
memristor crossbar-based architectures that injecting noise
during software training enhances the robustness of inference
to the non-ideal effects of memristor crossbars. In [218], a
Gaussian noise source is incorporated at the crossbar outputs,
while in [219], [220] a random noise term is injected to the



21

weights during training.
c) Co-optimizing inference accuracy and fault-tolerance:

Techniques to unify inference accuracy maximization and
fault-tolerance improvement optimization are proposed in [90],
[221], [222]. In [90], a variant of an evolutionary optimization-
based training algorithm for SNNs is proposed where the
fitness function is re-designed aiming at improving the error-
resilience capability. In particular, the fitness function becomes
a weighted sum of the baseline accuracy and the average
accuracy obtained on a faulty version of the network when
imposing a certain synapse fault rate. In [221], process vari-
ations and noise are modelled as random variables and are
incorporated into the weights of the neural network during
training. In [222], a framework is presented that utilizes a
Bayesian neural network to conduct a variation- and defect-
aware training. The approaches in [221], [222] are demon-
strated for memristor crossbar-based architectures.

d) Restricting numerical ranges: The range of parame-
ters inside each layer of a DNN can vary a lot. This can be
a major source of vulnerability to bit errors in DNNs. For
example, considering a conventional fixed point data format,
the variation in the first few MSBs can be very detrimental
for small parameter values. In [219], it is proposed to use the
Dynamical Fixed Point (DFP) data representation formation
which allows to adaptively change the location of the decimal
point based on the range of data. In particular, by left shifting
the decimal point position we can make sure that there
is no unused MSBs. In [223], to reduce the vulnerability
surface, layer-wise quantization techniques are proposed to
tighten the quantization margins to match the utilized range
in each DNN layer. Also, a new regularization method, called
outlier regularization, is introduced in the training phase to
further tighten the numerical range and shape the parameter
distributions.

2) Model modification: In [229], it is proposed to augment
the trained network by replicating critical neurons and their
associated connections. A neuron and its replica have half
the weights of the original neuron to maintain the network
mapping. The underlying idea is that if a critical neuron fails
then the effect on the inference will be lower thanks to the
spatial redundancy.

In [230], it is proposed to prune unimportant nodes in the
network according to a sensitivity analysis and then re-train
the pruned network. Redundant nodes are also introduced so
as to share the task of critical nodes.

In [231], a method is proposed to enhance the error-
resilience of DNNs by modifying just the output layer that
performs the binary classification. Typically, an ensemble of
independent logistic classifiers is used, each implementing a
winner-takes-all rule by one-hot encoding. Error-correcting
Output Code (ECOC) learning is applied to optimize the cod-
ing matrix and increase the Hamming distance of codewords
assigned to different classes. This work proposes a collabora-
tive logistic classifier extended from the logistic classifier to
ease the neuron competition and improve the error capacity.
Increasing the decision distance on final classification is shown
to rectify the accuracy degradation induced by faults across the
complete architecture. The method is cost-effective, scales to

any network size, and can be easily integrated with existing
hardware-level fault tolerance techniques.

3) Fault-tolerant model search: In [234], a Neural Archi-
tecture Search (NAS) algorithm, such as the one proposed
in [277], is employed to discover a fault-tolerant architecture.
The employed NAS algorithm uses reinforcement learning
rewarding architectures towards maximizing performance. In
this work, the NAS algorithm is modified to add a second
term in the reward that expresses fault tolerance to bit flips
(FT-NAS). Another version of the algorithm computes the
first term of the reward, i.e., the classification accuracy,
by inducing faults during training (FTT-NAS). The hand-
designed networks show performance degradation already with
a very small bit-flip rate. Instead, the network found by
FT-NAS shows a graceful degradation with increasing error
rate, whereas the network found by FTT-NAS achieves near
baseline accuracy for high error rate. The discovered fault-
tolerant architectures are inspected and they are found to
establish double connections between some pairs of nodes.
In other words, sensitive connections are identified by the
algorithm and redundant paths are added for defending against
faults.
C. Proactive hardware-based approaches

Traditional fault tolerance methods continue to play critical
roles in AI hardware. For example, ECC is used to protect
the memories of AI hardware accelerators [81], [83], [84],
[264]. The Razor technique [278], aiming at detecting and
correcting circuit timing errors, is also used in some AI
hardware accelerator designs [257], [267], [268]. Besides these
standard domain-agnostic fault tolerance techniques, there are
other different proactive hardware-based approaches for AI
hardware, illustrated in Fig. 20, that will be described in more
detail in this section.

1) Memory cell re-design: In [224], a passive fault-
tolerance method for ReRAM-based crossbars is proposed by
re-designing the memory cell to have a 2-transistor/2-resistor
(2T2R) structure, where each bit of information is stored in
a differential fashion. In particular, the pair Low Resistive
State (LRS)/High Resistive State (HRS) means logic value
zero, while the pair HRS/LRS means logic value one. Readout
is performed by comparing the resistance values of the two
differential devices, thus doubling the memory read window
with regards to the conventional 1T1R cell architecture, shown
in Fig. 5. This differential architecture reduces the amount
of bit errors due to device variations and limited endurance.
Its benefits are demonstrated on a BNN. This inherent fault-
tolerant architecture has auxiliary advantages. Weak program-
ming conditions can be applied achieving energy savings. It
also features outstanding endurance opening the way to the
possibility of training neural networks on-chip.

In [225], a hardened SRAM cell is proposed for DNN
accelerators. Based on the key observation of sparsity in
DNNs, i.e., weights have a strong bias towards zero, and that
bit flipping from zero to one is more likely to cause a failure
of DNN outputs, the proposed memory cell provides robust
immunity against node upsets and reduces the leakage current
dramatically when zero is stored in the cell.



22

Fig. 20: Proactive hardware-based approaches.
2) Memory aging mitigation: A low-overhead aging miti-

gation scheme of weight memory buffers in DNN accelerators
is proposed in [232]. The underlying observation is that
optimized aging can be achieved by balancing the duty-cycle
of the memory. To this end, a micro-architecture is proposed
composed of a Write Data Encoder (WDE) for encoding the
weights before writing them to the on-chip memory, and
a Read Data Decoder (RDD) which performs the inverse
function when reading the data from the on-chip memory and
before passing it to the PEs. The WDE XORes the incoming
weights with a common 1-bit enable signal that is generated
by a True Random Bit Generator (TRBG), thus adding a sense
of randomness on the bits to be written in the memory. The
output of the TRBG is periodically inverted by XORing it
with a bitstring stored in a register to account for the scenario
where the TRBG is biased towards either ‘0’ or ‘1’. The RDD
performs the same XOR operation as the WDE on the outgoing
bits. Results show that this scheme offers maximum aging-
mitigation for any data representation and across different
accelerators and DNN models.

3) Activation clipping: In [235], it is observed that as the
fault rate increases, the activation of neurons becomes more
intense. In [57], when the activation output of a neuron exceeds
by 10% the expected range of values it is considered as a
symptom of an error occurring. To this end, in [235] it is
proposed to use a clipped version of the activation function
such that when activation exceeds a threshold, then the neuron
is silenced. A search algorithm using the area under the curve
accuracy vs. fault rate as metric is proposed to find the optimal
threshold that maximizes classification accuracy under differ-
ent fault rates. This strategy is investigated also in [236]–[238].

In [236], values are truncated to the maximum value observed
in the training set. While in [235], [236] activation functions
are bounded globally per layer, in [237] the truncation value
is fine-grained per neuron. In [238], to avoid the risk of false
positives, it is proposed to compute several single statistics
on neurons’ output values, i.e., minimum, maximum, average,
and standard deviation. If at least two different statistics are
out of range, then a fault detection is flagged.

In [81], it is proposed to redesign the maxpool layer of
CNNs so as to halter the fault propagation. The redesign
consists in evaluating if the value of the max element is higher
than a threshold and, if so, then halt the processing of the
frame and move on to the next frame, or use the second largest
element if it is reasonably small.

4) Redundancy-based: State-of-the-art AI hardware accel-
erators for autonomous driving vehicles employ Dual Modular
Redundancy (DMR) to ensure safety for the system [250],
[251], which requires substantial hardware resources.

One idea is to perform selective TMR applied to the most
critical layers instead of a full TMR, which is inspired by
the observation that different layers have different sensitivity
to faults [85], [91], [101], [104]. Selective TMR is feasible
resource-wise and the resultant area and power consumption
overhead can be tolerated. Typically, the most critical output
layer is protected with TMR, which is enough to achieve a
high level of fault masking. For deep networks the output
layer accounts for a small percentage of neurons of the whole
network, thus the percentage overhead of applying TMR only
to the output layer scales down.

Redundancy-based fault tolerance can also be applied at
different hierarchy levels, for example TMR of critical kernels



23

[77], DMR of critical feature maps [252], TMR of MSBs in
computational blocks such as adders and multipliers [253], and
TMR of critical neurons [254].

In [255], a redundancy-based fault-tolerance strategy, called
Hybrid Computing Architecture (HyCA), is proposed for the
2-D array of PEs that greatly reduces the overhead of the
classical DMR. The basic idea is to add a separate set of
Dot-Production Processing Units (DPPUs) in parallel to the
original computing array of PEs. HyCA can be utilized to
scan the entire 2-D array and detect the faulty PEs at runtime,
and recompute all the operations that are mapped to the faulty
PEs, independently of the location of faulty PEs.

Finally, a redundancy-based fault-tolerance strategy based
on ensemble learning is proposed in [256]. Ensemble learning
consists of training a set of independent smaller and weak (i.e,
with lower accuracy) base networks, using different network
structures, learning algorithms, and training datasets. There-
after, the results are combined, i.e., using voting or averaging,
to improve the task performance. The idea is that when one or
more weak networks fail due to a fault, the ensemble of other
networks can still operate reliably.

5) Hardening against radiation: In general, ionizing radia-
tion, depending on the energy of the incident particle and the
time of exposure, can give rise to transient events or permanent
damage, such as bit-flips, shift in the transistor’s threshold
voltage, and increase in the leakage current. Transistor hard-
ening refers to applying changes in the layout so as to tolerate
exposure to ionizing radiation. In [272], a spiking neuron
design is hardened by redesigning the transistors’ layout using
an Enclosed Layout Transistor (ELT) topology for the gate.
This particular neuron uses a memristive device to implement
the memory element, i.e. the membrane, of the neuron. The
area overhead with respect to the original design excluding
the memristive device is 4.51x. However, taking into account
the memristive device, it is argued that area overhead is
negligible because the memristive device is placed on top
of the CMOS subsystem during the back-end phase which
requires an extensive area.

D. Reactive hardware-based approaches
Fig. 21 illustrates different reactive hardware-based ap-

proaches described in this section, separating the two underly-
ing mechanisms, namely fault/error detection and localization
and fault/error mitigation.

1) Weight-shifting: In [226], the weight-shifting fault-
recovery mechanism is proposed. If an incoming synapse of
a neuron is detected faulty, then the loss is compensated by
adapting the weights of other synapses. If a neuron is faulty,
then its outgoing synapses are treated as faulty.

2) Re-learning: In [233], a high-level biologically-inspired
model of the cortical structure of the brain is developed
capable of performing feed-forward sensory processing and
automatic abstraction for visual inputs. The model is trained
using Hebbian learning with repeated exposure to input sam-
ples. A software version of the model is deployed on a
GPU for fault tolerance experimentation. The fault model
considers neuron stuck-at faults, i.e., neurons that do not

Fig. 21: Reactive hardware-based approaches.

fire when they should (stuck-at-0) or they fire when they
should not (stuck-at-1). Single and multiple fault scenarios are
studied including spatially distributed and clustered faults. For
stuck-at-0 neurons, the network is capable of re-learning as
their functionality is taken over by neighboring neurons. On
the other hand, stuck-at-1 neurons can severely degrade the
performance and upon detection are disabled and the network
re-learns. Detection is performed by interrupting the operation
and recomputing the response of the winning minicolumn of
neurons on two neighboring minicolumns. A voting scheme is
used to determine a defective minicolumn. This is a form of
TMR but using the existing redundancy. The model’s accuracy
with re-learning shows a graceful degradation to faults and a
large number of faults can be tolerated.

3) Algorithmic-based fault tolerance: Algorithmic-Based
Fault Tolerance (ABFT), originally proposed in [279], is
a low-cost solution for detecting and correcting abnormal
behavior in matrix-matrix multiplications based on checksums.
As neural network operation heavily relies on matrix-matrix
multiplications, ABFT finds a natural application for enabling
fault-tolerance in AI hardware accelerators with several ABFT
schemes being proposed to date in the literature [81], [239]–
[244].

As an example, in [242], the compute underutilization
of inference-optimized GPUs is exploited by evaluating the
computing resource bottleneck for GPU kernels. The metric
being used is a comparison between the arithmetic intensity
of the kernel (in GPU terminology a GPU kernel consists of
multiple threads that can be executed in parallel) versus the
Compute-to-Memory-Bandwidth ratio (CMR) of the GPU. A
kernel is compute-bound if the arithmetic intensity is higher
than the CMR; otherwise, it is memory-bandwidth bound. For
a memory-bandwidth bound kernel (i.e., with low arithmetic
intensity running on a high CMR hardware), there is an
opportunity to leverage underutilization of compute units to
allow ABFT execution on unused resources. Motivated by
this observation, a finer-grained ABFT scheme is proposed,
referred as thread-level ABFT, as illustrated in Fig. 22. Per-
forming ABFT at the thread level can exploit compute un-
derutilization of bandwidth-bound kernel to reduce execution
time overhead of ABFT. Furthermore, an arithmetic-intensity-
guided ABFT is proposed that selects the best ABFT scheme



24

Fig. 22: ABFT global and local schemes.

Fig. 23: Memristor crossbar checksums.
for each individual layer of the network, e.g., global (kernel)-
level ABFT for compute-bound layer, and thread-level ABFT
for memory-bandwidth-bound layers.

An implementation of ABFT for memristor crossbar-array
architectures is proposed in [240]. As illustrated in Fig. 23,
a crossbar of size 𝑟𝑥𝑏𝑎𝑟 × 𝑐𝑥𝑏𝑎𝑟 is partitioned into smaller
crossbars of size 𝑟𝑡 × 𝑐𝑡. For each smaller crossbar two extra
columns are added. In the first column, the cell in row 𝑖
computes the non-weighted checksum 𝐺𝑟(𝑖, 1) =

∑𝑐𝑡
𝑗=1𝐺(𝑖, 𝑗),

where 𝐺(𝑖, 𝑗) is the nominal expected conductance value
of the cell in position (𝑖, 𝑗) of the crossbar. In the second
column, the cell in row 𝑖 computes the weighted checksum
𝐺𝑟(𝑖, 2) =

∑𝑐𝑡
𝑗=1𝑊𝐺(𝑗) ⋅ 𝐺(𝑖, 𝑗), where 𝑊𝐺(𝑗) = 𝑗. For each

smaller crossbar 𝑀 test input vectors are applied, denoted by
𝐕𝐭(𝑘) = [𝑉𝑡(𝑘, 1),⋯ , 𝑉𝑡(𝑘, 𝑟𝑡)], where 𝑉𝑡(𝑘, 𝑖) = 𝑉0 ⋅𝑊𝑡(𝑘, 𝑖),
𝑉0 is a unit voltage, 𝑊𝑡(𝑘, 𝑖) = (𝑓 (𝑖))𝑘−1, 𝑓 (𝑖) = 2𝑖−1,
𝑘 = 1,⋯ ,𝑀 . The outputs of the two checksum columns
for test input 𝑘 are 𝑂𝑠(𝑘, 1) =

∑𝑟𝑡
𝑖=1 𝑉𝑡(𝑘, 𝑖) ⋅ 𝐺𝑟(𝑖, 1) and

𝑂𝑠(𝑘, 2) =
∑𝑟𝑡

𝑖=1 𝑉𝑡(𝑘, 𝑖) ⋅ 𝐺𝑟(𝑖, 2). The output of crossbar
column 𝑗 for test input 𝑘 is 𝑂𝑡(𝑘, 𝑗) =

∑𝑟
𝑖=1 𝑡𝑉𝑡(𝑘, 𝑖) ⋅𝐺

′ (𝑖, 𝑗),
where 𝐺′ (𝑖, 𝑗) is the actual conductance value of the cell in the
(𝑖, 𝑗) position of the crossbar. Two signatures are defined for
test input 𝑘, namely 𝐴(𝑘) =

(

∑𝑐𝑡
𝑗=1𝑂𝑡(𝑘, 𝑗) − 𝑂𝑠(𝑘, 1)

)

∕𝑉0 =
∑𝑐𝑡

𝑗=1
∑𝑟𝑡

𝑖=1𝑊𝑡(𝑘, 𝑖) ⋅ [𝐺′ (𝑖, 𝑗) − 𝐺(𝑖, 𝑗)] and 𝐵(𝑘) =
(

∑𝑐𝑡
𝑗=1𝑊𝐺(𝑗)𝑂𝑡(𝑘, 𝑗) − 𝑂𝑠(𝑘, 2)

)

∕𝑉0 =
∑𝑐𝑡

𝑗=1
∑𝑟𝑡

𝑖=1𝑊𝐺(𝑗) ⋅
𝑊𝑡(𝑘, 𝑖) ⋅ [𝐺

′ (𝑖, 𝑗) − 𝐺(𝑖, 𝑗)]. In fault-free operation, 𝐴(𝑘) =
𝐵(𝑘) = 0. Based on the percentage of faulty cells, the size

Fig. 24: Word and bit masking error mitigation techniques.

𝑟𝑡 × 𝑐𝑡 is chosen such that no more than 2 faults occur in a
small crossbar. In this case, using 𝑀 = 4 test inputs we can
perform fault localization and compute conductance deviations
in faulty cells in both the crossbar and the checksum columns
using the 2 signatures. In particular, we can write 8 equations
with 6 unknowns, i.e., the fault locations, denoted by (𝑥1, 𝑦1)and (𝑥2, 𝑦2), and the conductance deviations, denoted by 𝑑1and 𝑑2, for the two faults, and solve the system of equations
with linear algebra.

4) Fault masking: In [92], [257], memory bit-flip miti-
gation schemes are proposed with no costly fault-tolerance
operations relying on the sparsity of data. The assumption
made is that information is available on which bits are affected,
for example using Razor shadow latches that can detect faults
by monitoring circuit delays [278]. The schemes are based
on masking faulty bits. The two main schemes, namely word
and bit masking, proposed in the case of fixed-point data
representation, are illustrated in Fig. 24. Word masking sets
all bits of the corrupted register to zero. This is equivalent
to setting the synapse weight to zero which intuitively, due
to sparsity of the network, will have a lesser impact on the
accuracy as opposed to leaving uncorrected a 0 → 1 bit-flip
in a high-order position. Bit masking sets a faulty bit equal to
the sign bit and can tolerate more faults than word masking.
It achieves a similar effect by rounding the synapse weight
towards zero.

In [258], a soft error detection and correction scheme is
proposed for CNNs accelerated on FPGAs. Fault injection
analysis shows that Single Event Upsets (SEUs) on PEs are far
more consequent than SEUs occurring in memory. Moreover,
SEUs in MSBs are shown to be far more critical. It is proposed
to execute a self-test of PEs during free cycles motivated by
the fact that the average PE utilization ratio is usually below
85% during inference. The self-test consists in exercising the
higher bits of multiplexers and adders in the PE separately,
and this traversal overhead can be easily confined within the
free cycle. Temporary error mitigation is achieved by using
zero setting upon SEU detection, instead of re-configuring the
PE immediately.

In [259], a fault-tolerant design of the systolic Output Sta-
tionary (OS) DNN architecture is proposed. Faults in the data-
path, i.e., outputs of PEs, are detected on-line and mitigated. A
functional on-line test approach is proposed where neighboring
PEs are tested separately by applying the same input (i.e., one
PE needs to be taken off-line) and checking if their outputs
are identical. The fault mitigation approach is to mask the
faulty PE’s output to zero. As a PE roughly corresponds to a



25

Fig. 25: Symptom detector for a spiking neuron.

Fig. 26: Spiking neuron design with cut-off transistor enabled
when the neuron starts saturating raising the flag signal high.

single neuron, performing training with dropout can augment
robustness. This fault-tolerance approach shows no latency in
the inference and in terms of area overhead it requires the
addition of 3 MUXes per PE and an external comparator for
the whole PE array.

In [260], the Opportunistic Parity (OP) fault mitigation
technique is proposed for protecting CNN weights. OP is based
on the observation that errors in the LSBs of the weights can
be tolerated. The idea is to flip the LSB if needed such that the
weight has even parity. Checking the parity code can detect
an odd number of bit flips. Noting that a memory word can be
large and multiple weights can be stored in one memory word,
we can adjust parity for individual weights or for the entire
memory word. When a parity error is detected, the weight
values are replaced with zeros.

Regarding SNNs, with the passive neuron fault-tolerance
scheme based on dropout in place, active neuron fault tolerance
in hidden layers needs only to address neuron saturation (see
Sections IV-B1b and VI-B1a) [91]. A compact on-line monitor
can be used per neuron to detect this symptom [91]. The
monitor, shown in Fig. 25, is based on a small-size counter
that counts the number of spikes a neuron produces after every
single input spike and has a reset port connected to the input
of the neuron. A saturated neuron will produce spikes with
higher frequency than usual, causing the counter to overflow
before an incoming spike resets it again. A latch is set when
overflow happens and an error flag is raised. On the other hand,
in fault-free operation, the neuron needs to integrate multiple
input spikes before it can produce a spike of its own, hence
the counter is always reset, and the error flag signal stays at
zero. If saturation is detected, the “fault hopping" concept is
proposed as a recovery mechanism [91]. The idea is to turn a
saturated neuron into a dead neuron since the network can
withstand dead neuron faults. This simplifies the hardware
implementation requiring adding a single extra transistor per
neuron. An example is shown in Fig. 26 where a transistor
shown in red is added to cut-off the biasing of the spiking

neuron when the flag signal indicating neuron saturation goes
high.

In [261], a run-time soft-error mitigation technique for
SNNs is proposed. A fault criticality analysis shows that
increased weights and neuron saturation are the only faults
that can decrease inference accuracy. For synaptic faults it
is proposed to perform weight bounding. In particular, if the
weight is greater than a threshold, then it is replaced with a
pre-defined value, i.e., zero or maximum weight value from the
nominal SNN. For neuron saturation faults, if the membrane
voltage stays above the threshold for more than two clock
cycles, then spike generation is disabled similar to [91].

5) ML-based: In [265], a ML-based method is proposed
to detect an anomaly in a DNN and mitigate the effect at
run time. The fault model is transient faults in the form
of random single bit-flips in the buffer memories and data
paths of the accelerator. For a given input, each layer of the
DNN provides a set of feature activations (i.e., the respective
neuron output values). A unified feature activation trace is
generated by concatenating the feature activations of all layers.
Then, a small FFNN, named as Error Detection and Mitigation
Network (EDMN), is trained in this feature space to perform
anomaly detection due to critical bit-flips, as well as to predict
and recover the correct classification result for error mitigation.
The training data is generated by random bit-flip injection
simulations recording the feature and classification result.
Furthermore, the small EDMN can be safeguarded against
faults by using classic methods, e.g., TMR.

6) Neuron adaptation: An application-specific fault-
tolerant design of a SNN implemented in an FPGA in proposed
in [269]. The SNN is used to control the motion of a
robotic car, i.e., speed and direction, establishing an obstacle
avoidance task. There are four motor neurons controlling the
forward (F), right (R), left (L), and reverse (REV) movements.
The neuron’s excitatory synapse receives input current accord-
ing to the obstacle distance. The prioritization is achieved via
the inhibitory synapses. The neuron’s spiking rate detects the
activity of the corresponding motor, i.e., F, R, L, or REV.
Fault tolerance is achieved by using many synapses instead
of one receiving the same input. The neuron monitors the
total injected current from all synapses during a time window,
and if an abrupt or abnormal variation is noticed, then this
points to a fault occurring to one or more synapses. Fault
tolerance in this context means retaining the same firing rate.
This is achieved with one of two mechanisms: (a) adjust the
neuron’s threshold and (b) adjust the operating frequency of
the neuron. Mechanism (b) is achieved via the dynamic partial
reconfiguration feature of the FPGA that provides a way to
generate custom clocks on-the-fly. The adjustment scheme is
not continuous, but it is based on a Look Up Table (LUT) for
given expected-erroneous pairs of input currents.

E. Cross-layer approaches

Fig. 27 illustrates together different cross-layer hardware-
based approaches that will be described in detail in this
section.



26

Fig. 27: Cross-layer hardware-based approaches.
1) Model/hardware co-design: In [227], a method is pro-

posed to maintain DNN accuracy under high error rates by
suppressing the numerical contributions of anomalous acti-
vation. It first integrates anomaly detection and suppression
layers into DNN models. To address the training challenges
due to the discontinuous nature of these layers, a two-stage
training process is proposed to ensure a fast convergence
with competitive accuracy. A hardware module is proposed to
perform anomaly detection and suppression at the inference
phase of the DNN accelerator.

In [228], a median feature selection technique is introduced
to alleviate the impact of bit errors before the numerical
operation of each layer. It is observed that the critical bit
errors are often those leading to a significant numerical
increase in the activation or weight magnitude. Such errors
exhibit characteristics similar to the spike noise patterns in the
image processing field, where order-statistics filters have been
proven to be effective against large spike noises. Therefore,
DNN models are first trained with integrated median filters.
After achieving the desired accuracy in training, the model
is deployed on the AI accelerator with dedicated hardware
performing median filtering operations.

2) Fault-aware pruning with re-training: In [95], a fault-
tolerance scheme is proposed for systolic array-based DNN
accelerators, depicted in Fig. 28. In a first step, the scheme
includes fault-aware pruning where the faulty MAC is by-
passed using multiplexing, which is equivalent to setting the
MAC’s weight to zero. In a second step, the pruned systolic
array is re-trained. It is demonstrated that this fault tolerance
scheme can maintain a classification accuracy close to the
baseline even when up to half of the MAC units are faulty.
It is also demonstrated that with the fault-tolerance scheme in
place, more aggressive voltage under-scaling can be employed

Fig. 28: Fault-aware pruning followed by re-training.

to provide energy savings while not sacrificing classification
accuracy.

3) Fault-aware mapping: In [245], the underlying hypoth-
esis is that neurons with strong contribution have a high
impact on the inference accuracy if they are faulty, thus a
strong contribution implies low error resiliency. To derive
the ranking, an algorithm is proposed based on Taylor de-
composition of the network and layer-wise propagation of the
contribution. The average contribution is considered taking the
mean over the training set. Thereafter, it is proposed to design
an accelerator to have a number of protected PEs and memory
buffers, where protected means that they are safeguarded
against faults by utilizing spatial or temporal redundancy and
error correction mechanisms. The neurons with the lower error
resiliency are mapped to protected elements, whereas neurons
with the highest error resiliency are mapped to unprotected
and unreliable elements.

In the case of overlay architectures that consist of an array
of PEs on which layers or portion of layers are scheduled



27

to be executed in sequence, whenever a single PE is faulty
this affects multiple outputs both within a layer or among
layers. Thus, the portion of the neural network affected by
the corrupted PEs depends on the scheduling. One zero-
overhead approach, therefore, would be to identify and utilize
the optimal scheduling that minimizes the accuracy drop [101].

In [246], first the faulty PEs are pruned after testing,
similarly to the approach discussed in Section VI-E2. Given
the saliency of the weights, it is proposed to map neurons of
a layer on different segments of the hardware such that the
sum of saliency of the weights that are mapped on pruned
PEs during inference is minimized.

In [247], it is proposed to first identify the most critical
neurons, then determine an optimal scheduling that distributes
evenly the critical neurons to the available PEs such that if a
PE exhibits a fault this affects the functionality of a limited
number of neurons.

In [248], it is proposed to first derive the memory fault map
using testing, then apply a fault-aware mapping consisting in
bit shuffling to prioritize placing the MSBs on the non-faulty
memory cells. This strategy is also investigated in [249].

4) Variation-aware mapping for memristor crossbar ar-
rays: Line-resistances degrade the voltage levels along the
crossbar columns, thereby inducing more errors at the columns
away from the drivers. In [262], it is proposed to rank the
DNN kernels based on a sensitivity analysis and re-arrange
the columns such that the most sensitive kernels are mapped
closer to the drivers.

In [263], it is shown with circuit simulations that a mem-
ristor crossbar presents current imbalance, i.e., asymmetry in
the current propagating through its different memristors. This
current instability is due to the parasitic components on the
horizontal and vertical wires of the crossbar that result in
voltage drops. For example, the current on the largest path
from a pre-synaptic neuron to a post-synaptic neuron, i.e.,
the path that traverses the top horizontal line through the
upper right memristor and down the far right vertical line,
is smaller compared to the current on the smallest path, i.e.,
the path that includes only the bottom left memristor. This
current variation results in endurance variability of memristors
in the crossbar, where endurance is defined as the ratio of
average failure time and switching activity. For example,
the memristor in the upper right corner will have higher
endurance, whereas the memristor in the bottom left corner
will have the lowest endurance. Based on this observation, the
eSpine framework is proposed for endurance-aware mapping of
SNNs to neuromorphic hardware. Given the SNN workload,
the objective of eSpine is to find an intelligent mapping of
neurons and synapses to neuromorphic hardware, such that
synapses with high activation are implemented on memristors
with high endurance, and vice versa.

5) Adaptive training after testing: In [266], a methodology
is proposed, named Memory Adaptive Training with In-situ
Canaries (MATIC), aiming at aggressive voltage scaling of
weight SRAMs in AI hardware accelerators obtaining signifi-
cant energy savings, while maintaining the inference accuracy.
The idea is to perform read-after-write and read-after-read
operations on each SRAM address of the chip, in order to

generate a profile or failure map of the marginal, failure
prone bit cells. Then memory adaptive training is performed
where the profiled bit errors are injected in the training
process enabling the DNN to compensate via learning. In this
way, during normal operation, by applying voltage scaling a
significant fraction of resultant bit errors is passively tolerated.
Further, tuneable accuracy-energy trade-offs can be achieved
by using a select set of bit cells that are on the margin
of read failure as canary. Canaries are replicated critical bit
cells that can detect imminent failures. Such in-situ canary
bits can be polled at run-time to determine whether voltage
modifications should be applied to maintain an advantageous
accuracy-energy trade-off.

In [146], periodical on-line testing is performed using a
functional test set of adversarial examples, as discussed in
Section V-B4. If the network is found faulty, memory fault
diagnosis is performed using a march test. If a soft fault has
occurred, the remedy is to refresh the memory with a model
back-up stored in the edge device. If the fault is permanent,
the fault map is sent to the cloud for model retraining after
masking the faults, and afterwards the model is re-transmitted
to the edge device.

6) Aging-aware on-line training of memristor crossbar ar-
rays: The writing endurance of memristor cells ranges from
106 to 108 write operations, whereas the training phase can
take 105 to 107 iterations. Therefore, on-line training of
memristor crossbar-based accelerators causes degradation of
the valid resistance range of the memristor, an effect called
aging in the memristor, resulting in most memristor cells
becoming faulty. In [270], [271], frameworks are proposed
combining software training and hardware tuning to counter
the aging effect. For example, in [270], first the threshold-
training method is introduced to reduce the number of write
operations in each iteration. The observation is that for the
vast majority of weights the weight update is very small. In
this case, the weight update is suppressed. Second, after a
fixed number of iterations, a fault detection method is executed
to detect stuck-at faults and update the status of cells. The
method, called quiescent-voltage comparison, consists in the
following steps: (a) divide the crossbar into smaller crossbars;
(b) for each crossbar perform a write operation with the same
write change to every cell; (c) compare the actual crossbar
outputs to the expected reference output and if a discrepancy
is found then it means that at least one cell in the selected
crossbar is stuck-at and cannot be updated when we write an
increment. By using smaller crossbar size we increase fault
detection accuracy at the expense of higher test time. After
fault detection, the third method exploits the fact that over
half of the weights are zero. The idea is to map zero weights
to cells that have stuck-at-0 faults. This can be achieved by
reordering the column and rows of the weight matrix. To
do this efficiently while respecting the inherent connection of
cascaded layers, it is proposed to reorder only the neurons.

7) Thermal-aware optimization of memristor crossbar ar-
rays: Temperature increase changes the conductance value of
a memristor cell and decreases its endurance. In [273]–[275],
thermal-aware training and on-line optimization schemes are
proposed to resolve the temperature-dependent retention issues



28

of memristors with one-time DNN deployment.
VII. PERSPECTIVES

A. Fault criticality assessment
Lesson learned from published fault injection experiments

is that not all faults are equal. Most end up being benign, i.e.,
they are masked, their effect on the output is not large enough
to result in accuracy loss, or the accuracy loss is insignificant.
On the other hand, there are some suspect critical faults, e.g.,
0 → 1 bit flips in high order bit positions, stuck-at-1 artificial
neuron activations, saturated spiking neurons, and faults in
last layers especially in the output layer. Yet, the locations of
critical faults cannot be safely presumed and depend on many
factors, such as the network architecture (e.g., depth, number
of channels, etc.), the sparsity of the network (e.g., percentage
of near-zero weights), and the cognitive task (e.g., dataset).
Given that the fault space explodes for deep networks, to speed
up reliability analysis one of the main challenges is reducing
safely the fault space aiming at circumventing simulation of
faults that would prove to be benign. For example, we can
use ML to predict fault criticality and block the simulation
unless a fault has some likelihood of being critical. This will
allow avoiding speculative and unguided fault sampling and
evaluating more faults, thus identifying with higher probability
the critical faults that will need to be dealt with fault tolerance
techniques. Identifying the critical faults will allow better
targeting the fault tolerance strategies and reducing test costs.

Along this direction, we require faster automated fault
injection frameworks. More “tricks" to speed up simulation
can be integrated in current frameworks. For example, as
every layer is computed sequentially, if a fault is masked in
an intermediate layer, then simulation can be stopped early.
Or, for a fault in a given layer, we can start the simulation
from this layer considering the golden fault-free response of
the previous layer.

A second main challenge is developing fault models for
higher-level descriptions of the accelerator such that they are
plausible in hardware and capture well foreseen hardware-level
faults. Many works consider faults at an abstract behavioral
level that do not necessarily map to hardware or their prob-
ability of occurrence from a hardware point of view is very
small. Most fault injection experiments consider a subset of
possible faults or a subset of the sub-blocks of an accelerator.
Fault injection experiments on actual hardware or radiation
experiments can shed more light on the impact of faults but
ideally the impact should be assessed earlier at the design
stage so as to add the necessary provisions on-chip for fault
tolerance.

B. Testability
As discussed above, a plethora of new testability features

and methodologies have been proposed in the literature and
adopted in practical AI hardware accelerator designs. However,
moving forward, there is still pressing need for novel DFT
solutions to target existing and upcoming challenges. We have
seen various demands emerging on the horizon for products
in the next several years.

First, as part of ordinary ASIC flow, DFT activities are
tightly associated with design and physical design in many
aspects, such as turn-around cycle, physical design tools,
methodologies, and even computing resources. Since many
today’s large AI hardware accelerator designs are indeed
challenging the design and physical design limitations, posing
direct threats to project delivery, successful DFT solutions
should recognize and attempt to help mitigate these threats. For
example, large AI hardware accelerator designs usually cannot
be readily fit into existing computing resources (i.e., servers,
emulators etc.), hence design needs to be sliced into multiple
modes and multiple partitions. Without a feasible solution, the
number of modes and partitions may quickly get out of control
and computing resources will soon be depleted. In many
cases, DFT verification may demand even more resources than
function verification. Existing tools provide basic help, yet
a major function and DFT verification framework still has
to be hand-crafted to ensure resource availability and design
space coverage. On the physical design side, many issues
have been addressed in earlier sections and current DFT tools
have had a strong focus on solving these problems. However,
major challenges continue to bother the DFT owners, such as
timing budget, PPA request, signal routability, performance
correlation, etc., not only in large AI hardware accelerator
designs for cloud utilization, but also in smaller designs used
in edge devices, which are extremely sensitive to power and
area. As such, DFT architects have to be well-versed with
all stages of the design flow and ensure their customized
DFT architecture and flow can accommodate the design and
physical design requirements to meet the target of PPA and
time-to-market.

Second, new AI hardware accelerator architectures may
require the advances of novel DFT architectures, algorithms
or models. Needless to mention the exotic neuromorphic and
in-memory computing hardware, which have spurred research
on many new DFT architectures and fault models. Even the
traditional style of design may encounter a much higher
level of challenges than before. For example, as mentioned
earlier, DFT for large AI hardware accelerator designs need to
be multi-mode and multi-partition in design and verification
spaces. This may incur an excessive number of test patterns,
causing ATE memory overflow or unaccepted test expenses.
This is not a new problem, but exacerbated in AI hardware
accelerators. Since there are no readily adopted solutions,
DFT architects need to be creative on designing some on-
chip hardware for low-cost test. On the other side, problems
rarely seen before may emerge as new norm. For example,
some AI hardware accelerator architectures feature unique
logic that is not ATPG friendly, e.g., a very deep logic depth at
post-synthesis requesting very high coverage. Traditional test
point insertion may lead to unacceptable performance or area
penalty. To handle such issues, upgrades in ATPG algorithms
or DFT architecture may be needed. Moreover, the extensive
use of large size SRAMs at advanced tech-nodes may see new
types of memory faults, and MBIST algorithms may need to
be updated too.

In addition, as already a trend in traditional design, efficient
and effective DFT activities need to be both left-shift and right-



29

shift. Left-shift refers to the DFT involvement in early design
stages, e.g., DFT flow starts with design architecting and
floor-planning, most DFT implementations are done at RTL
stage, etc. Right-shift refers to the DFT activities extending
well into or even beyond post-silicon stages such as bring
up, diagnosis, volume production and in-field debug, so that
the entire product life-cycle quality can be ensured. Since
most AI hardware accelerator designs are domain-specific with
very tight schedule, left-shift can help shrink design cycle
and meet the time-to-market target. Meanwhile, the new AI
hardware accelerator architectures or components are usually
not fully proved over their service time, thus a right-shift
strategy is crucial to fully capture silicon characterization
and product behavior over its life cycle. This learning is
particularly important for the mission critical products such as
automobile and data center, where reliability is of top concern
and in-field test may be dictated. From DFT perspective, such
designs not only require a complete solution from regular scan,
MBIST, I/O test, to on-line test, but also a close correlation
between test and function operation to ensure a high quality
product. This goal may be as challenging as the design itself.

Finally, as Moore’s law slows down, 3D IC has been pro-
posed as a major solution to performance gain, cost reduction
and shrink of form factor. While traditional interposer-based
2.5D solutions connect dies horizontally and have been widely
adopted, 3D designs stack dies in vertical dimension and
currently have focused mostly on external memories such as
HBM. Test for 3D IC with memory dies have seen major
advances in addressing several challenges. First, faults on
Through-Silicon Vias (TSV) and memories have to be tested.
Second, these faults need diagnosis solutions for repair and
quick yield ramp up. Finally, at-speed self-test is needed to
reduce cost and ensure fault coverage. Moving forward, as
stacked logic die becomes widely adopted, the test, diagnosis
and repair of interconnects between dies and test access of
stacked dies seem to be the next challenge.

C. Dependability
From the perspective of AI hardware and system depend-

ability, one fundamental challenge is on specifiability of AI-
based functionality. The traditional dependability assurance,
e.g., safety assurance required by standards such as ISO 26262
or IEC 61508, is based on the assumption that there exists a
full specification of the targeted functionality. These specifica-
tions are then used to guide risk analysis, dependability (e.g.
safety) management, concept development and validation ac-
tivities. The full specification assumption holds valid for most
traditional rule-based programmed approaches. On the other
hand, AI-based functionality may not be fully specifiable. For
example, functionality of object recognition in autonomous
driving applications can only partially be specified using
rules. While lack of full specification is exactly one basic
driving factor of employing data-driven AI methods in these
application domains, it creates a big challenge to dependability
assurance, especially under the existing framework.

AI specifiability challenge is also related to its interpretabil-
ity challenge, especially for DNNs. While there is a significant

research effort on “Explainable AI”, many advanced DNN
models have hitherto remained non-interpretable. This char-
acteristic of AI-based system becomes an obstacle to directly
applying traditional white-box verification and testing meth-
ods, which are common in traditional dependability assurance
practices. As we have surveyed, most works in AI hardware
dependability focus on fault tolerance techniques. While fault
tolerance is an important means to mitigate dependability
issues, verification and testing are vital components to meet the
assurance requirements, especially from standard compliance
perspective (e.g. to meet ASIL requirements defined in ISO
26262). Existing functional safety standards, e.g. ISO26262
and ISO21448, do not explicitly address the specific char-
acteristics of the AI system. Lack of both specifiability and
interpretability renders the challenges of applying a traditional
ISO26262 style approach to AI systems, unless these obstacles
are removed, or a new alternative approach is taken.

One outstanding challenge is on how to define efficiently
measurable metrics for evaluation of dependability of AI
hardware and systems, both on-line and off-line. Most of recent
work we have surveyed are based on DNN models, and the
metrics used for dependability evaluation are primarily based
on prediction accuracy. While this metric is suitable for off-line
analysis with ground-truth info available (e.g. fault criticality
analysis), it is challenging to use the accuracy metric during
on-line dependability management where real-time assessment
is needed and often ground truth may not exist. For these types
of applications, an alternative metric may be needed to quickly
assess the dependability state of AI hardware and system.

Also, currently most research has been focused on super-
vised learning for DNNs. There are other paradigms of AI/ML,
including unsupervised learning and reinforcement learning.
Dependability of AI hardware for these paradigms are still
under-explored. Moreover, there is an emerging end-to-end
DNN approach (e.g., DNN is trained to infer the control
directly from sensor data inputs) in many AI application
domains. How to define the appropriate metrics for such an
approach remains a challenge.

Fault prevention and fault tolerance are current focus areas
of AI hardware dependability research field, as witnessed by
this survey. Fault prediction may start attracting more attention
in some dependability-critical applications, where proactive
management is much desired. A growing interest is calling
for more research on this direction. For example, applying an
AI approach to fault prediction of AI hardware may be a good
example of creating a virtuous cycle of “AI for AI”.

Finally, from AI hardware perspective, some AI hardware
architectures are highly specified for training, while the others
target at optimization for inference workload. While most
recent dependability study focus on inference AI hardware, the
dependability assurance of AI hardware used for training also
deserves attention, especially with the edge computing and
federated learning paradigms where training is moved from
cloud to edge devices.

VIII. CONCLUSIONS
In this paper we presented a systematic survey on state-of-

the-art research and development of AI hardware testability



30

and dependability. With the emergence of more hardware inno-
vations to address AI computing challenges, testability and de-
pendability challenges of AI hardware should be addressed to
meet both manufacturing quality and in-field service assurance
requirements. This paper covers the research of this new field,
which has rapidly been evolving especially over the past few
years. Although much work has been done, in the future many
open challenges remain, including fault criticality assessment
with dramatically exploding fault space, hardware-aware fault
modeling at the high abstraction level, practical DFT for large-
scale designs and 3-D/2.5D advanced packaging, dependability
verification and validation with the limited specifiability and
interpretability of AI models, efficient metrics for in-field real-
time dependability evaluation, etc. To address these existing
and upcoming challenges, continuous advances of innovations
from both industry and academia are expected over the next
years.

ACKNOWLEDGMENTS
The work of H.-G. Stratigopoulos was supported by the

ANR RE-TRUSTING project under Grant No ANR-21-CE24-
0015-03.

REFERENCES
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT

Press, 2016.
[2] Wm. A. Wulf and S. A. McKee, “Hitting the memory wall: Implica-

tions of the obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, Mar. 1995.

[3] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Nov. 2017.

[4] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kep-
ner, “Survey and benchmarking of machine learning accelerators,” in
Proc. High Perform. Extreme Comput. Conf. (HPEC), Sep. 2019.

[5] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,
E. Vianello, and E. Beigne, “Spiking neural networks hardware
implementations and challenges: A survey,” ACM J. Emerg. Technol.
Comput. Syst., vol. 15, no. 2, Apr. 2019.

[6] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of
accelerator architectures for deep neural networks,” Engineering, vol.
6, no. 3, pp. 264–274, Mar. 2020.

[7] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[8] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and
M. Martina, “An updated survey of efficient hardware architectures for
accelerating deep convolutional neural networks,” Future Internet, vol.
12, no. 7, 2020.

[9] S. Bavikadi et al., “A survey on machine learning accelerators and
evolutionary hardware platforms,” IEEE Des. Test, vol. 39, no. 3, pp.
91–116, Jun. 2022.

[10] M. Shafique et al., “An overview of next-generation architectures for
machine learning: Roadmap, opportunities and challenges in the IoT
era,” in Proc. Design Autom. Test Europe Conf. (DATE), Mar. 2018,
pp. 827–832.

[11] M. Costandi, Neuroplasticity, The MIT Press, 2016.
[12] S. Dave, A. Marchisio, M. A. Hanif, A. Guesmi, A. Shrivastava,

I. Alouani, and M. Shafique, “Special Session: Towards an agile design
methodology for efficient, reliable, and secure ML systems,” in Proc.
40th IEEE VLSI Test Symp. (VTS), Apr. 2022.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[15] W. Maass, “Networks of spiking neurons: The third generation of
neural network models,” Neural Netw., vol. 10, no. 9, pp. 1659–1671,
Dec. 1997.

[16] C. Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989.
[17] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Front.

Neurosci., vol. 5, May 2011, Article 73.
[18] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons:

opportunities and challenges,” Front. Neurosci., vol. 12, Oct. 2018,
Article 774.

[19] L. A. Camuñas-Mesa, B. Linares-Barranco, and T. Serrano-
Gotarredona, “Spiking neural networks and their memristor-CMOS
hardware implementations,” Materials, vol. 12, no. 17, Aug. 2019,
Article 2745.

[20] M. Valle, “Analog VLSI implementation of artificial neural networks
with supervised on-chip learning,” Analog Integr. Circuits Signal
Process., vol. 33, pp. 263–287, Dec. 2002.

[21] S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-
based neuromorphic systems, John Wiley & Sons, 2014.

[22] B. Chatterjee, P. Panda, S. Maity, A. Biswas, K. Roy, and S. Sen,
“Exploiting inherent error resiliency of deep neural networks to achieve
extreme energy efficiency through mixed-signal neurons,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 6, pp. 1365–1377,
Mar. 2019.

[23] A. Rubino, C. Livanelioglu, N. Qiao, M. Payvand, and G. Indiveri,
“Ultra-low-power FDSOI neural circuits for extreme-edge neuromor-
phic intelligence,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68,
no. 1, pp. 45–56, Nov. 2021.

[24] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and C. Wu,
“Leveraging the error resilience of neural networks for designing highly
energy efficient accelerators,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 34, no. 8, pp. 1223–1235, Aug. 2015.

[25] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proc. Int. Conf. Mach.
Learn. (ICML), Jul. 2015, p. 1737–1746.

[26] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” arXiv:1602.02830 [cs.LG],
Mar. 2016.

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
Imagenet classification using binary convolutional neural networks,”
arXiv:1603.05279 [cs.CV], Aug. 2016.

[28] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella,
“Analog architectures for neural network acceleration based on non-
volatile memory,” Appl. Phys. Rev., vol. 7, no. 3, pp. 031301, Sep.
2020.

[29] A. Ankit, I. Chakraborty, A. Agrawal, M. Ali, and K. Roy, “Circuits
and architectures for in-memory computing-based machine learning
accelerators,” IEEE Micro, vol. 40, no. 6, pp. 8–22, Nov./Dec. 2020.

[30] S. Yu, “Neuro-inspired computing with emerging nonvolatile memo-
ries,” Proc. IEEE, vol. 106, no. 2, pp. 260–285, Feb. 2018.

[31] B. Belhadj, A. Valentian, P. Vivet, M. Duranton, L. He, and O. Temam,
“The improbable but highly appropriate marriage of 3D stacking and
neuromorphic accelerators,” in Proc. Int. Conf. Compil. Archit. Synth.
Embed. Syst. (CASES), Oct. 2014, pp. 1–9.

[32] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3D memory,” in Proc. ACM/IEEE 43rd Annual Int. Symp.
Comput. Archit. (ISCA), Jun. 2016, pp. 380–392.

[33] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neuro-
morphic asynchronous processors (DYNAPs),” IEEE Trans. Biomed.
Circuits Syst., vol. 12, no. 1, pp. 106–122, Nov. 2018.

[34] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Mill-
ner, “A wafer-scale neuromorphic hardware system for large-scale
neural modeling,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May/Jun. 2010, pp. 1947–1950.

[35] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102, no.
5, pp. 699–716, Apr. 2014.

[36] A. Valentian et al., “Fully integrated spiking neural network with
analog neurons and RRAM synapses,” in Proc. IEEE Int. Electron
Devices Meeting (IEDM), Dec. 2019, pp. 14.3.1–14.3.4.

[37] G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Kr-
ishnamurthy, “A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural
network with on-chip STDP learning and sparse weights in 10-nm
FinFET CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 992–
1002, Apr. 2019.



31

[38] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A 0.086-mm2

12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking
neuromorphic processor in 28-nm CMOS,” IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 1, pp. 145–158, Feb. 2019.

[39] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
Project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[40] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345,
no. 6197, pp. 668–673, Aug. 2014.

[41] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb.
2018.

[42] H. Mostafa, B. U. Pedroni, S. Sheik, and G. Cauwenberghs, “Fast
classification using sparsely active spiking networks,” in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), May 2017.

[43] L. A. Camuñas-Mesa, Y. L. Domínguez-Cordero, A. Linares-Barranco,
T. Serrano-Gotarredona, and B. Linares-Barranco, “A configurable
event-driven convolutional node with rate saturation mechanism for
modular convnet systems implementation,” Front. Neurosci., vol. 12,
Feb. 2018, Article 63.

[44] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An
always-on 3.8 𝜇J/86% CIFAR-10 mixed-signal binary CNN processor
with all memory on chip in 28-nm CMOS,” IEEE J. Solid-State
Circuits, vol. 54, no. 1, pp. 158–172, Jan. 2019.

[45] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array,” IEEE J.
Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[46] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep
neural networks,” in Proc. ACM/IEEE 45th Annual Int. Symp. Comput.
Archit. (ISCA), Jun. 2018, pp. 383–396.

[47] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in reRAM-based main memory,” in Proc.
ACM/IEEE 43rd Annual Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 27–39.

[48] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. ACM/IEEE 43rd
Annual Int. Symp. Comput. Archit. (ISCA), Jun. 2016, pp. 14–26.

[49] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined
ReRAM-based accelerator for deep learning,” in IEEE Proc. Int. Symp.
High-Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 541–552.

[50] C.-X. Xue et al., “A CMOS-integrated compute-in-memory macro
based on resistive random-access memory for AI edge devices,” Nat.
Electron., vol. 4, pp. 81–90, Jan. 2021.

[51] N. Nassif et al., “Sapphire rapids: The next-generation intel xeon
scalable processor,” in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), Feb. 2022, vol. 65, pp. 44–46.

[52] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “DianNao family:
Energy-efficient hardware accelerators for machine learning,” Commun.
ACM, vol. 59, no. 11, pp. 105–112, Nov. 2016.

[53] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan.
2017.

[54] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE Annual Int. Symp. Comput.
Archit. (ISCA), Jun. 2017.

[55] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-
based processor for convolutional networks,” in Proc. Int. Conf. Field-
Program. Log. Appl. (FPL), Aug./Sep. 2009.

[56] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays (FPGA), Feb. 2017, p. 65–74.

[57] G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal. (SC), Nov. 2017.

[58] E. M. El Mhamdi and R. Guerraoui, “When neurons fail,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May/Jun. 2017,
pp. 1028–1037.

[59] F. H. Bahnsen, V. Klebe, and G. Fey, “Effect analysis of low-level
hardware faults on neural networks using emulated inference,” in Proc.
Int. Conf. Mod. Circuits Syst. Technol. (MOCAST), Jul. 2021.

[60] D. Maliuk, H.-G. Stratigopoulos, H. Huang, and Y. Makris, “Analog
neural network design for RF built-in self-test,” in Proc. IEEE Int. Test
Conf. (ITC), Nov. 2010, Paper 23.2.

[61] C.H. Sequin and R.D. Clay, “Fault tolerance in artificial neural
networks,” in Proc. Int. Jt. Conf. Neural Netw. (IJCNN), Jun. 1990,
vol. 1, pp. 703–708.

[62] G. Bolt, “Fault models for artificial neural networks,” in Proc. Int. Jt.
Conf. Neural Netw. (IJCNN), Nov. 1991, vol. 2, pp. 1373–1378.

[63] P. Chandra and Y. Singh, “Fault tolerance of feedforward artificial
neural networks - A framework of study,” in Proc. Int. Jt. Conf. Neural
Netw. (IJCNN), 2003, vol. 1.

[64] D.B.I. Feltham and W. Maly, “Physically realistic fault models for
analog CMOS neural networks,” IEEE J. Solid-State Circuits, vol. 26,
no. 9, pp. 1223–1229, Sep. 1991.

[65] A. S. Orgenci, G. Dundar, and S. Balkur, “Fault-tolerant training of
neural networks in the presence of MOS transistor mismatches,” IEEE
Trans. Circuits Syst. II. Analog Digit. Signal Process., vol. 48, no. 3,
pp. 272–281, Mar. 2001.

[66] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in Proc. 55th ACM/ESDA/IEEE Design Autom.
Conf. (DAC), Jun. 2018.

[67] Y. He, P. Balaprakash, and Y. Li, “FIdelity: Efficient resilience
analysis framework for deep learning accelerators,” in Proc. 53rd Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO), Oct. 2020, pp. 270–281.

[68] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “BinFI: An
efficient fault injector for safety-critical machine learning systems,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal. (SC),
Nov. 2019.

[69] L. M. Luza et al., “Emulating the effects of radiation-induced soft-
errors for the reliability assessment of neural networks,” IEEE Trans.
Emerg. Topics Comput., vol. 10, no. 4, pp. 1867–1882, Oct./Dec. 2022.

[70] A. P. Arechiga and A. J. Michaels, “The robustness of modern deep
learning architectures against single event upset errors,” in Proc. High
Perform. Extreme Comput. Conf. (HPEC), Sep. 2018.

[71] M. Sabbagh, C. Gongye, Y. Fei, and Y. Wang, “Evaluating fault
resiliency of compressed deep neural networks,” in Proc. IEEE Int.
Conf. Embed. Softw. Syst. (ICESS), Jun. 2019.

[72] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability
analysis of a deep neural network,” in Proc. IEEE Lat. Am. Test Symp.
(LATS), Mar. 2019.

[73] A. Ruospo, A. Bosio, A. Ianne, and E. Sanchez, “Evaluating convo-
lutional neural networks reliability depending on their data represen-
tation,” in Proc. 23rd Euromicro Conf. Digit. Syst. Des. (DSD), Aug.
2020, pp. 672–679.

[74] M. A. Neggaz, I. Alouani, S. Niar, and F. Kurdahi, “Are CNNs reliable
enough for critical applications? An exploratory study,” IEEE Des. Test,
vol. 37, no. 2, pp. 76–83, Apr. 2020.

[75] K. Givaki et al., “On the resilience of deep learning for reduced-voltage
FPGAs,” in Proc. Euromicro Int. Conf. Parallel Distrib. Netw. Based
Process. (PDP), Mar. 2020, pp. 110–117.

[76] Z. Gao et al., “Reliability evaluation of pruned neural networks against
errors on parameters,” in Proc. IEEE Int. Symp. Defect Fault Toler.
VLSI Nanotechnol. Syst. (DFT), Oct. 2020.

[77] Y. Ibrahim et al., “Soft error resilience of deep residual networks for
object recognition,” IEEE Access, vol. 8, pp. 19490–19503, Jan. 2020.

[78] K. Adam, I. I. Mohd, and Y. M. Younis, “The impact of the soft
errors in convolutional neural network on GPUs: Alexnet as case study,”
Procedia Comput. Sci., vol. 182, pp. 89–94, 2021.

[79] E. Malekzadeh, N. Rohbani, Z. Lu, and M. Ebrahimi, “The impact of
faults on DNNs: A case study,” in Proc. IEEE Int. Symp. Defect Fault
Toler. VLSI Nanotechnol. Syst. (DFT), Oct. 2021.

[80] Z. Wan, A. Anwar, Y.-S. Hsiao, T. Jia, V. J. Reddi, and A. Ray-
chowdhury, “Analyzing and improving fault tolerance of learning-based
navigation systems,” in Proc. Design Autom. Conf. (DAC), Dec. 2021,
pp. 841–846.

[81] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of
convolutional neural networks on GPUs,” IEEE Trans. Reliab., vol.
68, no. 2, pp. 663–677, Jun. 2019.

[82] F. F. dos Santos, P. Navaux, L. Carro, and P. Rech, “Impact of reduced
precision in the reliability of deep neural networks for object detection,”
in Proc. IEEE Eur. Test Symp. (ETS), May 2019.

[83] A. Lotfi et al., “Resiliency of automotive object detection networks on
GPU architectures,” in Proc. IEEE Int. Test Conf. (ITC), Nov. 2019.

[84] F. F. Dos Santos et al., “Characterizing a neutron-induced fault model
for deep neural networks,” IEEE Trans. Nucl. Sci., 2022.

[85] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga,
C. Frost, and P. Rech, “Selective hardening for neural networks in
FPGAs,” IEEE Trans. Nucl. Sci., vol. 66, no. 1, pp. 216–222, Jan.
2019.



32

[86] A. Mahmoud et al., “PyTorchFI: A runtime perturbation tool for
DNNs,” in Proc. 50th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. Workshops (DSN-W), Jun./Jul. 2020, pp. 25–31.

[87] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “TensorFI: A flexible fault injection framework for
tensorflow applications,” in Proc. IEEE Int. Symp. Softw. Rel. Eng.
(ISSRE), Oct. 2020, pp. 426–435.

[88] C. Bolchini, L. Cassano, A. Miele, and A. Toschi, “Fast and accurate
error simulation for CNNs against soft errors,” IEEE Trans. Comput.,
2022.

[89] Y. Zhang, H. Itsuji, T. Uezono, T. Toba, and M. Hashimoto, “Estimat-
ing vulnerability of all model parameters in DNN with a small number
of fault injections,” in Proc. Design Autom. Test Europe Conf. (DATE),
Mar. 2022, pp. 60–63.

[90] C. D. Schuman et al., “Resilience and robustness of spiking neural
networks for neuromorphic systems,” in Proc. Int. Jt. Conf. Neural
Netw. (IJCNN), Jul. 2020.

[91] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Neuron fault tolerance in spiking
neural networks,” in Proc. Design Autom. Test Europe Conf. (DATE),
Feb. 2021.

[92] B. Salami, O. S. Unsal, and A. C. Kestelman, “On the resilience of
RTL NN accelerators: Fault characterization and mitigation,” in Proc.
Int. Symp. Comput. Archit. High Perform. Comput. (SBAC-PAD), Sep.
2018, pp. 322–329.

[93] A. Ruospo, A. Balaara, A. Bosio, and E. Sanchez, “A pipelined multi-
level fault injector for deep neural networks,” in Proc. IEEE Int. Symp.
Defect Fault Toler. VLSI Nanotechnol. Syst. (DFT), Oct. 2020.

[94] J. E. Rodriguez Condia, F. F. dos Santos, M. Sonza Reorda, and
P. Rech, “Combining architectural simulation and software fault
injection for a fast and accurate CNNs reliability evaluation on GPUs,”
in Proc. IEEE VLSI Test Symp. (VTS), Apr. 2021.

[95] J. J. Zhang, K. Basu, and S. Garg, “Fault-tolerant systolic array based
accelerators for deep neural network execution,” IEEE Des. Test, vol.
36, no. 5, pp. 44–53, Oct. 2019.

[96] J. Deng et al., “Retraining-based timing error mitigation for hardware
neural networks,” in Proc. Design Autom. Test Europe Conf. (DATE),
Mar. 2015, pp. 593–596.

[97] A. Chaudhuri, J. Talukdar, J. Jung, G. Nam, and K. Chakrabarty,
“Fault-criticality assessment for AI accelerators using graph convo-
lutional networks,” in Proc. Design Autom. Test Europe Conf. (DATE),
Feb. 2021, pp. 1596–1599.

[98] A. Chaudhuri, J. Talukdar, F. Su, and K. Chakrabarty, “Functional
criticality analysis of structural faults in AI accelerators,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 12, pp. 5657–
5670, Dec. 2022.

[99] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in Proc. Annual Int. Symp. Comput. Archit.
(ISCA), Jun. 2012, pp. 356–367.

[100] S. A. El-Sayed, T. Spyrou, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Spiking neuron hardware-level
fault modeling,” in Proc. 26th IEEE Int. Symp. On-Line Test. Robust
Syst. Des. (IOLTS), Jul. 2020.

[101] G. Gambardella, J. Kappauf, M. Blott, C. Doehring, M. Kumm, P. Zipf,
and K. Vissers, “Efficient error-tolerant quantized neural network
accelerators,” in Proc. IEEE Int. Symp. Defect Fault Toler. VLSI
Nanotechnol. Syst. (DFT), OCt. 2019.

[102] C. De Sio, S. Azimi, and L. Sterpone, “An emulation platform for
evaluating the reliability of deep neural networks,” in Proc. IEEE Int.
Symp. Defect Fault Toler. VLSI Nanotechnol. Syst. (DFT), Oct. 2020.

[103] N. Khoshavi, C. Broyles, and Y. Bi, “Compression or corruption? a
study on the effects of transient faults on BNN inference accelerators,”
in Proc. IEEE Int. Symp. Qual. Electron. Design (ISQED), Mar. 2020,
pp. 99–104.

[104] N. Khoshavi, A. Roohi, C. Broyles, S. Sargolzaei, Y. Bi, and D. Z. Pan,
“SHIELDeNN: Online accelerated framework for fault-tolerant deep
neural network architectures,” in Proc. Design Autom. Conf. (DAC),
Jul 2020.

[105] I. Souvatzoglou, A. Papadimitriou, A. Sari, V. Vlagkoulis, and
M. Psarakis, “Analyzing the single event upset vulnerability of
binarized neural networks on SRAM FPGAs,” in Proc. IEEE Int. Symp.
Defect Fault Toler. VLSI Nanotechnol. Syst. (DFT), Oct. 2021.

[106] D. Xu et al., “Reliability evaluation and analysis of FPGA-based neural
network acceleration system,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 29, no. 3, pp. 472–484, Mar. 2021.

[107] P. Corneliou, P. Nikolaou, M. K. Michael, and T. Theocharides, “Fine-
grained vulnerability analysis of resource constrained neural inference

accelerators,” in Proc. IEEE Int. Symp. Defect Fault Toler. VLSI
Nanotechnol. Syst. (DFT), Oct. 2021.

[108] T. Spyrou, S. A. El-Sayed, E. Afacan, L. A. Camuñas-Mesa, B. Linares-
Barranco, and H.-G. Stratigopoulos, “Reliability analysis of a spiking
neural network hardware accelerator,” in Proc. Design Autom. Test
Europe Conf. (DATE), Mar. 2022.

[109] G. Abich, J. Gava, R. Garibotti, R. Reis, and L. Ost, “Applying
lightweight soft error mitigation techniques to embedded mixed preci-
sion deep neural networks,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 11, pp. 4772–4782, Nov. 2021.

[110] G. Abich, R. Garibotti, R. Reis, and L. Ost, “The impact of soft
errors in memory units of edge devices executing convolutional neural
networks,” IEEE Trans. Circuits Syst. II: Express Br., vol. 69, no. 3,
pp. 679–683, Mar. 2022.

[111] L. M. Luza et al., “Investigating the impact of radiation-induced soft
errors on the reliability of approximate computing systems,” in Proc.
IEEE Int. Symp. Defect Fault Toler. VLSI Nanotechnol. Syst. (DFT),
Oct. 2020.

[112] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, and J. Brun-
haver, “How reduced data precision and degree of parallelism impact
the reliability of convolutional neural networks on FPGAs,” IEEE
Trans. Nucl. Sci., vol. 68, no. 5, pp. 865–872, May 2021.

[113] G. Gambardella, N. J. Fraser, U. Zahid, G. Furano, and M. Blott,
“Accelerated radiation test on quantized neural networks trained with
fault aware training,” in Proc. IEEE Aerosp. Conf. (AERO), Mar. 2022.

[114] R. L. Rech Junior et al., “High energy and thermal neutron sensitivity
of google tensor processing units,” IEEE Trans. Nucl. Sci., vol. 69, no.
3, pp. 567–575, Mar. 2022.

[115] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-
based neuromorphic design with high defects,” in Proc. 54th
ACM/EDAC/IEEE Design Autom. Conf., Jun. 2017.

[116] E. Vatajelu, G. Di Natale, and L. Anghel, “Special session: Reliability
of hardware-implemented spiking neural networks (SNN),” in Proc.
IEEE VLSI Test Symp. (VTS), Apr. 2019.

[117] Z. Ye, R. Liu, J. L. Taggart, H. J. Barnaby, and S. Yu, “Evaluation
of radiation effects in RRAM-based neuromorphic computing system
for inference,” IEEE Trans. Nucl. Sci., vol. 66, no. 1, pp. 97–103, Jan.
2019.

[118] C.-Y. Chen and K. Chakrabarty, “Efficient identification of critical
faults in memristor crossbars for deep neural networks,” in Proc.
Design Autom. Test Europe Conf. (DATE), Feb. 2021.

[119] F. Chollet et al., “Keras,” https://keras.io, 2015.
[120] J. Bergstra et al., “Theano: A CPU and GPU math compiler in python,”

Jan. 2010.
[121] M. Abadi et al., “TensorFlow: A system for large-scale machine

learning,” in Proc. 12th USENIX Symp. Oper. Syst. Des. Implement.
(OSDI), Nov. 2016, p. 265–283.

[122] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“SASSIFI: An architecture-level fault injection tool for GPU applica-
tion resilience evaluation,” in IEEE Int. Symp. Perform. Anal. Syst.
Softw. (ISPASS), 2017, pp. 249–258.

[123] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler,
“NVBitFI: Dynamic fault injection for GPUs,” in Proc. 51st Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2021, pp.
284–291.

[124] D. Oliveira et al., “Experimental and analytical study of Xeon Phi
reliability,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal. (SC), Nov. 2017.

[125] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reas-
signment in time,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
2018, pp. 1412–1421.

[126] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, Eds., pp. 8024–8035. Curran Associates,
Inc., 2019.

[127] S. Kundu, S. Banerjee, A. Raha, S. Natarajan, and K. Basu, “Toward
functional safety of systolic array-based deep learning hardware accel-
erators,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29,
no. 3, pp. 485–498, Jan. 2021.

[128] S. Knowles, “Designing the colossus Mk2 IPU,” Hot Chips, 2021.
[129] T. Norrie et al., “The design process for Google’s training chips:

TPUv2 and TPUv3,” IEEE Micro, vol. 41, no. 2, pp. 56–63, Mar./Apr.
2021.

[130] G. Lauterbach, “The path to successful wafer-scale integration: The
cerebras story,” IEEE Micro, vol. 41, no. 6, pp. 52–57, Nov./Dec.
2021.



33

[131] G. Giles, J. Wang, A. Sehgal, K. J. Balakrishnan, and J. Wingfield,
“Test access mechanism for multiple identical cores,” in Proc. IEEE
Int. Test Conf. (ITC), Oct. 2008.

[132] K. Chakravadhanula, V. Chickermane, D. Pearl, A. Garg, R. Khurana,
S. Mukherjee, and P. Nagaraj, “SmartScan - hierarchical test compres-
sion for pin-limited low power designs,” in Proc. IEEE Int. Test Conf.
(ITC), Sep. 2013.

[133] M. Sharma, A. Dutta, W.-T. Cheng, B. Benware, and M. Kassab, “A
novel test access mechanism for failure diagnosis of multiple isolated
identical cores,” in Proc. IEEE Int. Test Conf. (ITC), Sep. 2011.

[134] A. Chaudhuri, C. Liu, X. Fan, and K. Chakrabarty, “C-testing and
efficient fault localization for AI accelerators,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 41, no. 7, pp. 2348–2361, Jul.
2022.

[135] S. Motaman, S. Ghosh, and J. Park, “A perspective on test method-
ologies for supervised machine learning accelerators,” IEEE Trans.
Emerg. Sel. Topics Power Electron., vol. 9, no. 3, pp. 562–569, Aug.
2019.

[136] Y. Huang and R. Singhai, “Tutorial 1B: AI chip technologies and DFT
methodologies,” in Proc. IEEE Int. Syst.-on-Chip Conf. (SOCC), Sep.
2019.

[137] H. Jia et al., “A programmable neural-network inference accelerator
based on scalable in-memory computing,” in Proc. IEEE Int. Solid-
State Circuits Conf. (ISSCC), Feb. 2021, pp. 236–237.

[138] D. Niu et al., “184QPS/W 64Mb/𝑚𝑚2 3D logic-to-DRAM hybrid bond-
ing with process-near-memory engine for recommendation system,” in
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2022.

[139] J. Cote et al., “Streaming scan network (SSN): An efficient packetized
data network for testing of complex SoCs,” in Proc. IEEE Int. Test
Conf. (ITC), Nov. 2020.

[140] G. Boschi, E. Spano, H. Grigoryan, A. Kumar, and G. Harutyunyan,
“Die-to-die testing and ECC error mitigation in automotive and indus-
trial safety applications,” in Proc. IEEE Int. Test Conf. (ITC), Nov.
2020.

[141] M. Hutner, G. Tshagharyan, and G. Harutyunyan, “Testing HBM2 in
at-speed mode,” in Innovative Practices Session on In-System Test and
Reliability of Memories, Proc. IEEE VLSI Test Symp. (VTS), Apr. 2019.

[142] G. Harutyunyan and Y. Zorian, “An effective embedded test &
diagnosis solution for external memories,” in Proc. IEEE Int. Symp.
On-Line Test. Robust Syst. Des. (IOLTS), Jul. 2015, pp. 168–170.

[143] J. Mekkoth, S. Bandyopadhyay, and A. Kumar, “Efficient infrastructure
for external memory DRAM test,” in Innovative Practices Session
on In-System Test and Reliability of Memories, Proc. IEEE VLSI Test
Symp. (VTS), Apr. 2019.

[144] “IEEE standard for test access architecture for three-dimensional
stacked integrated circuits,” IEEE Std 1838-2019, pp. 1–73, 2020.

[145] A. Gebregiorgis and M. B. Tahoori, “Testing of neuromorphic circuits:
Structural vs functional,” in Proc. IEEE Int. Test Conf. (ITC), Nov.
2019, Paper 3.2.

[146] W. Li, Y. Wang, H. Li, and X. Li, “RRAMedy: Protecting ReRAM-
based neural network from permanent and soft faults during its life-
time,” in Proc. IEEE Int. Conf. Comput. Des. (ICCD), Nov. 2019, pp.
91–99.

[147] C.-Y. Chen and K. Chakrabarty, “On-line functional testing of
memristor-mapped deep neural networks using backdoored check-
sums,” in Proc. IEEE Int. Test Conf. (ITC), Oct. 2021, pp. 83–92.

[148] O. Aramoon and G. Qu, “Provably accurate memory fault detection
method for deep neural networks,” in Proc. Great Lakes Symp. VLSI
(GLSVLSI), Jun. 2021, pp. 443–448.

[149] S. T. Ahmed and M. B. Tahoori, “Campact functional test generation
for memristive deep learning implementations using approximate gra-
dient ranking,” in Proc. IEEE Int. Test Conf. (ITC), Sep. 2022, pp.
239–248.

[150] H.-Y. Tseng, I-W. Chiu, M.-T. Wu, and J. C.-M. Li, “Machine learning-
based test pattern generation for neuromorphic chips,” in IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2021.

[151] S. A. El-Sayed, T. Spyrou, L. A. Camuñas-Mesa, and H.-G.
Stratigopoulos, “Compact functional testing for neuromorphic com-
puting circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 2022.

[152] B. Luo, Y. Li, L. Wei, and Q. Xu, “On functional test generation for
deep neural network IPs,” in Proc. Design Autom. Test Europe Conf.
(DATE), Mar. 2019, pp. 1010–1015.

[153] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated
whitebox testing of deep learning systems,” in Proc. 26th ACM Symp.
Oper. Syst. Princ. (SOSP), Oct. 2017.

[154] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proc. IEEE/ACM
Int. Conf. Softw. Eng. (ICSE), May/Jun. 2018, p. 303–314.

[155] K. Ma, A. Saha, C. Amarnath, and A. Chatterjee, “Efficient low cost
alternative testing of analog crossbar arrays for deep neural networks,”
in Proc. IEEE Int. Test Conf. (ITC), Sep. 2022, pp. 499–503.

[156] S. A. El-Sayed, L. A. Camuñas-Mesa, B. Linares-Barranco, and H.-G.
Stratigopoulos, “Self-testing analog spiking neuron circuit,” in Proc.
Int. Conf. Synth. Model. Anal. Simulat. Methods Appl. Circuit Design
(SMACD), Jul. 2019.

[157] A. Ruospo, D. Piumatti, A. Floridia, and E. Sanchez, “A suitability
analysis of software based testing strategies for the on-line testing of
artificial neural networks applications in embedded devices,” in Proc.
IEEE Int. Symp. On-Line Test. Robust Syst. Des. (IOLTS), 2021.

[158] Y. He, T. Uezono, and Y. Li, “Efficient functional in-field self-test for
deep learning accelerators,” in Proc. IEEE Int. Test Conf. (ITC), Oct.
2021, pp. 93–102.

[159] T. Uezono, Y. He, and Y. Li, “Achieving automotive safety require-
ments through functional in-field self-test for deep learning accelera-
tors,” in Proc. IEEE Int. Test Conf. (ITC), Sep. 2022, pp. 465–473.

[160] M. Liu and K. Chakrabarty, “Online fault detection in ReRAM-based
computing systems by monitoring dynamic power consumption,” in
Proc. IEEE Int. Test Conf. (ITC), Nov. 2020.

[161] E. Ozen and A. Orailoglu, “Low-cost error detection in deep neural
network accelerators with linear algorithmic checksums,” J. Electron.
Test.: Theory Appl., vol. 36, no. 6, pp. 703–718, Dec. 2020.

[162] E. Ozen and A. Orailoglu, “Concurrent monitoring of operational
health in neural networks through balanced output partitions,” in Proc.
IEEE Asia South–Pac. Design Autom. Conf. (ASP-DAC), Jan. 2020, pp.
169–174.

[163] S. Hari, M. Sullivan, T. Tsai, and S. Keckler, “Making convolutions
resilient via algorithm-based error detection techniques,” IEEE Trans.
Dependable Secure Comput., vol. 19, no. 4, pp. 2546–2558, Jul./Aug.
2022.

[164] B. F. Goldstein et al., “A lightweight error-resiliency mechanism for
deep neural networks,” in Proc. IEEE Int. Symp. Qual. Electron. Design
(ISQED), Apr. 2021, pp. 311–316.

[165] N. I. Deligiannis, R. Cantoro, M. Sonza Reorda, M. Traiola, and
E. Valea, “Towards the integration of reliability and security mecha-
nisms to enhance the fault resilience of neural networks,” IEEE Access,
vol. 9, pp. 155998–156012, Nov. 2021.

[166] M. Sadi and U. Guin, “Test and yield loss reduction of AI and
deep learning accelerators,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 7, pp. 1124–1135, Jan. 2021.

[167] L. Xia et al., “Stuck-at fault tolerance in RRAM computing systems,”
IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 8, no. 1, pp. 102–115,
Mar. 2018.

[168] Z. Song, Y. Sun, L. Chen, T. Li, N. Jing, X. Liang, and L. Jiang,
“ITT-RNA: Imperfection tolerable training for RRAM-crossbar-based
deep neural-network accelerator,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 40, no. 1, pp. 129–142, Apr. 2021.

[169] L.-H. Hoang, M. A. Hanif, and M. Shafique, “TRe-map: Towards re-
ducing the overheads of fault-aware retraining of deep neural networks
by merging fault maps,” in Proc. 24th Euromicro Conf. Digit. Syst.
Des. (DSD), Sep. 2021, pp. 434–441.

[170] S. Kannan, J. Rajendran, R. Karri, and O. Sinanoglu, “Sneak-path
testing of crossbar-based nonvolatile random access memories,” IEEE
Trans Nanotechnol., vol. 12, no. 3, pp. 413–426, May 2013.

[171] C.-Y. Chen et al., “RRAM defect modeling and failure analysis based
on march test and a novel squeeze-search scheme,” IEEE Trans.
Comput., vol. 64, no. 1, pp. 180–190, Jan. 2015.

[172] E. I. Vatajelu, P. Prinetto, M. Taouil, and S. Hamdioui, “Challenges
and solutions in emerging memory testing,” IEEE Trans. Emerg. Topics
Comput., vol. 7, no. 3, pp. 493–506, Jul./Sep. 2019.

[173] L. Wu et al., “Defect and fault modeling framework for STT-MRAM
testing,” IEEE Trans. Emerg. Topics Comput., vol. 9, no. 2, pp. 707–
723, Apr./Jun. 2021.

[174] P. Liu, Z. You, J. Wu, B. Liu, Y. Han, and K. Chakrabarty, “Fault
modeling and efficient testing of memristor-based memory,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 68, no. 11,
pp. 4444–4455, Nov. 2021.

[175] P. Girard, Y. Cheng, A. Virazel, W. Zhao, R. Bishnoi, and M. B.
Tahoori, “A survey of test and reliability solutions for magnetic random
access memories,” Proc. IEEE, vol. 109, no. 2, pp. 149–169, Feb. 2021.

[176] L. Wu, S. Rao, M. Taouil, E. J. Marinissen, G. S. Kar, and S. Hamdioui,
“Characterization, modeling, and test of intermediate state defects in



34

STT-MRAMs,” IEEE Trans. Comput., vol. 71, no. 9, pp. 2219–2233,
Sep. 2022.

[177] M. Fieback et al., “Defects, fault modeling, and test development
framework for RRAMs,” ACM J. Emerg. Technol. Comput. Syst., vol.
18, no. 3, Apr. 2022.

[178] T. Han, I. Choi, and S. Kang, “Majority-based test access mechanism
for parallel testing of multiple identical cores,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 23, no. 8, pp. 1439–1447, Aug. 2014.

[179] A. Ramdas and O. Sinanoglu, “Testing chips with spare identical
cores,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
32, no. 7, pp. 1124–1135, Jun. 2013.

[180] P. N. Variyam, S. Cherubal, and A. Chatterjee, “Prediction of analog
performance parameters using fast transient testing,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 3, pp. 349–
361, Mar. 2002.

[181] H.-G. Stratigopoulos and S. Mir, “Adaptive alternate analog test,” IEEE
Des. Test Comput., vol. 29, no. 4, pp. 71–79, Jun. 2012.

[182] A. Pandey, B. Tully, A. Samudra, A. Nagarandal, K. Natarajan, and
R. Singhal, “Novel technique for manufacturing & in-system testing
of large scale SoC using functional protocol based high-speed I/O,” in
Proc. IEEE VLSI Test Symp. (VTS), Apr. 2022.

[183] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Trans. Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, Oct. 2004.

[184] G. Buja and R. Menis, “Dependability and functional safety: Applica-
tions in industrial electronics systems,” IEEE Ind. Electron. Mag., vol.
6, no. 3, pp. 4–12, Sep. 2012.

[185] “ISO 26262: Road vehicles-functional safety,” 2018.
[186] “IEC 61508: Edition 2.0 functional safety,” 2010.
[187] “RTCA/DO-178C: Software considerations in airborne systems and

equipment certification,” 2012.
[188] “ISO PAS 21448: Road vehicles – safety of the intended functionality,”

2019.
[189] J.L. Hennessy and D.A. Patterson, “A new golden age for computer

architecture,” Commun. ACM, vol. 62, no. 2, pp. 48–60, Feb. 2019.
[190] J. Goodfellow, I, J.n Shlens, and C. Szegedy, “Explaining and

harnessing adversarial examples,” arXiv:1412.6572v3 [stat.ML], Mar.
2015.

[191] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14410–14430,
Feb. 2018.

[192] T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine
learning on encrypted data,” in Proc. Int. Conf. Inf. Secur. Cryptol.
(ICISC), Dec. 2012, p. 1–21.

[193] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in Proc. IEEE Symp. Secur. Priv. (SP), May 2018, pp. 36–52.

[194] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018.

[195] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47230–47244, Apr. 2019.

[196] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “DeepInspect: A black-box
trojan detection and mitigation framework for deep neural networks,” in
Proc. 28th Int. Jt. Conf. Artif. Intell. (IJCAI), Jul. 2019, pp. 4658–4664.

[197] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep
neural network,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2017, pp. 131–138.

[198] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural
network with progressive bit search,” in 2019 IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct./Nov. 2019, pp. 1211–1220.

[199] E. Cheng et al., “(Invited) Cross-layer resilience: Challenges, insights,
and the road ahead,” in Proc. 56th ACM/IEEE Design Autom. Conf.
(DAC), Jun. 2019.

[200] S. Mittal and J.S. Vetter, “A survey of CPU-GPU heterogeneous
computing techniques,” ACM Comput. Surv., vol. 47, no. 4, pp. 1–
35, Jul. 2015.

[201] European Commission, “Ethics guidelines for trustworthy artificial
intelligence (AI),” https://digital-strategy.ec.europa.eu/en/library/ethics-
guidelines-trustworthy-ai, Apr. 2019, Online.

[202] C.-T. Chin, K. Mehrotra, C.K. Mohan, and S. Rankat, “Training
techniques to obtain fault-tolerant neural networks,” in Proc. IEEE
Int. Symp. Fault-Toler. Comput. (FTCS), Jun. 1994, pp. 360–369.

[203] B. S. Arad and A. El-Amawy, “On fault tolerant training of feedforward
neural networks,” Neural Netw., vol. 10, no. 3, pp. 539–553, 1997.

[204] N. Wei, S. Yang, and S. Tong, “A modified learning algorithm for
improving the fault tolerance of BP networks,” in Proc. Int. Conf.
Neural Netw. (ICNN), Jun. 1996, vol. 1, pp. 247–252.

[205] P.J. Edwards and A.F. Murray, “Penalty terms for fault tolerance,” in
Proc. Int. Conf. Neural Netw. (ICNN), Jun. 1997, vol. 2, pp. 943–947.

[206] S. Cavalieri and O. Mirabella, “A novel learning algorithm which
improves the partial fault tolerance of multilayer neural networks,”
Neural Netw., vol. 12, no. 1, pp. 91–106, Jan. 1999.

[207] C. Neti, M.H. Schneider, and E.D. Young, “Maximally fault tolerant
neural networks,” IEEE Trans. Neural Netw., vol. 3, no. 1, pp. 14–23,
Jan. 1992.

[208] D. Deodhare, M. Vidyasagar, and S. Sathiya Keethi, “Synthesis of
fault-tolerant feedforward neural networks using minimax optimiza-
tion,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 891–
900, 1998.

[209] Z.-H. Zhou and S.-F. Chen, “Evolving fault-tolerant neural networks,”
Neural. Comput. Appl., vol. 11, pp. 156–160, Jun. 2003.

[210] E. Sugawara, M. Fukushi, and S. Horiguchi, “Fault tolerant multi-layer
neural networks with GA training,” in Proc. IEEE Int. Symp. Defect
Fault Toler. VLSI Syst. (DFT), Nov. 2003, pp. 328–335.

[211] N.C. Hammadi, T. Ohmameuda, K. Kaneko, and H. Ito, “Fault tolerant
constructive algorithm for feedforward neural networks,” in Proc. IEEE
Pacific Rim Int. Symp. Fault-Toler. Syst. (PRFTS), Dec. 1997, pp. 215–
220.

[212] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17322 – 17341, Aug.
2017.

[213] R. A. Solovyev, A. L. Stempkovsky, and D. V. Telpukhov, “Study of
fault tolerance methods for hardware implementations of convolutional
neural networks,” Opt. Mem. Neural Networks, vol. 28, no. 2, pp.
82–88, Apr. 2019.

[214] G. B. Hacene, F. Leduc-Primeau, A. B. Soussia, V. Gripon, and
F. Gagnon, “Training modern deep neural networks for memory-fault
robustness,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May
2019.

[215] U. Zahid, G. Gambardella, N. J. Fraser, M. Blott, and K. Vissers, “FAT:
Training neural networks for reliable inference under hardware faults,”
in Proc. IEEE Int. Test Conf. (ITC), Nov. 2020.

[216] L. Yang and B. Murmann, “SRAM voltage scaling for energy-efficient
convolutional neural networks,” in Proc. IEEE Int. Symp. Qual.
Electron. Design (ISQED), Mar. 2017, pp. 7–12.

[217] R. V. W. Putra, M. A. Hanif, and M. Shafique, “SparkXD: A framework
for resilient and energy-efficient spiking neural network inference using
approximate DRAM,” in Proc. 58th Design Autom. Conf. (DAC), Dec.
2021, p. 379–384.

[218] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise injection
adaption: End-to-end ReRAM crossbar non-ideal effect adaption for
neural network mapping,” in Proc. 56th ACM/IEEE Design Autom.
Conf. (DAC), Jun. 2019.

[219] Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN
accelerator with un-reliable ReRAM,” in Proc. Design Autom. Test
Europe Conf. (DATE), Mar. 2019, pp. 1769–1774.

[220] V. Joshi et al., “Accurate deep neural network inference using
computational phase-change memory,” Nat. Commun., vol. 11, no.
1, pp. 1–13, May 2020.

[221] Y. Zhu et al., “Statistical training for neuromorphic computing using
memristor-based crossbars considering process variations and noise,”
in Proc. Design Autom. Test Europe Conf. (DATE), Mar. 2020, pp.
1590–1593.

[222] D. Gao, G.L. Zhang, X. Yin, B. Li, U. Schlichtmann, and C. Zhuo,
“Reliable memristor-based neuromorphic design using variation-and
defect-aware training,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2021.

[223] E. Ozen and A. Orailoglu, “SNR: Squeezing numerical range defuses
bit error vulnerability surface in deep neural networks,” ACM Trans.
Embed. Comput. Syst., vol. 20, no. 5s, Sep. 2021.

[224] M. Bocquet, T. Hirtzlin, J.-O. Klein, E. Nowak, E. Vianello, J.-M.
Portal, and D. Querlioz, “Embracing the unreliability of memory
devices for neuromorphic computing,” in Proc. IEEE Int. Reliab. Phys.
Symp. (IRPS), Apr./May 2020.

[225] A. Azizimazreah, Y. Gu, X. Gu, and L. Chen, “Tolerating soft errors
in deep learning accelerators with reliable on-chip memory designs,”
in Proc. IEEE Int. Conf. Netw. Archit. Storage (NAS), Oct. 2018.

[226] C. Khunasaraphan, K. Vanapipat, and C. Lursinsap, “Weight shifting
techniques for self-recovery neural networks,” IEEE Trans. Neural
Netw., vol. 5, no. 4, pp. 651–658, Jul. 1994.



35

[227] E. Ozen and A. Orailoglu, “Just say zero: containing critical bit-
error propagation in deep neural networks with anomalous feature
suppression,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2020.

[228] E. Ozen and A. Orailoglu, “Boosting bit-error resilience of DNN
accelerators through median feature selection,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 39, no. 11, pp. 3250–3262,
Nov. 2020.

[229] M.D. Emmerson and R.I. Damper, “Determining and improving
the fault tolerance of multilayer perceptrons in a pattern-recognition
application,” IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 788–793,
1993.

[230] C.-T. Chiu, K. Mehrotra, C.K. Mohan, and S. Ranka, “Robustness of
feedforward neural networks,” in Proc. IEEE Int. Conf. Neural Netw.
(ICNN), Mar./Apr. 1993, vol. 2, pp. 783–788.

[231] T. Liu, W. Wen, L. Jiang, Y. Wang, C. Yang, and G. Quan, “A fault-
tolerant neural network architecture,” in Proc. 56th ACM/IEEE Design
Autom. Conf. (DAC), Jun. 2019.

[232] M. A. Hanif and M. Shafique, “DNN-life: An energy-efficient aging
mitigation framework for improving the lifetime of on-chip weight
memories in deep neural network hardware architectures,” in Proc.
Design Autom. Test Europe Conf. (DATE), Feb. 2021.

[233] A. Hashmi, H. Berry, O. Temam, and M. Lipasti, “Automatic
abstraction and fault tolerance in cortical microachitectures,” in Proc.
ACM/IEEE Annual Int. Symp. Comput. Archit. (ISCA), Jun. 2011, pp.
1–10.

[234] W. Li, X. Ning, G. Ge, X. Chen, Y. Wang, and H. Yang, “FTT-
NAS: Discovering fault-tolerant neural architecture,” in Proc. 25th Asia
South–Pac. Design Autom. Conf. (ASP-DAC), Jan. 2020, pp. 211–216.

[235] L.-H. Hoang, M. A. Hanif, and M. Shafique, “FT-ClipAct: Resilience
analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in Proc. Design Autom. Test Europe Conf.
(DATE), Mar. 2020, p. 1241–1246.

[236] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for
deep neural networks through range restriction,” in Proc. 51st Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2021.

[237] B. Ghavami, M. Sadati, Z. Fang, and L. Shannon, “FitAct: Error
resilient deep neural networks via fine-grained post-trainable activation
functions,” in Proc. Design Autom. Test Europe Conf. (DATE), Mar.
2022, pp. 1239–1244.

[238] S. Burel, A. Evans, and L. Anghel, “Improving DNN fault tolerance in
semantic segmentation applications,” in Proc. IEEE Int. Symp. Defect
Fault Toler. VLSI Nanotechnol. Syst. (DFT), Oct. 2022.

[239] Z. Xu and J. Abraham, “Safety design of a convolutional neural network
accelerator with error localization and correction,” in Proc. IEEE Int.
Test Conf. (ITC), Nov. 2019, Paper 12.3.

[240] M. Liu, L. Xia, Y. Wang, and K. Chakrabarty, “Algorithmic fault
detection for RRAM-based matrix operations,” ACM Trans. Des.
Autom. Electron. Syst., vol. 25, no. 3, pp. 29:1–29:31, May 2020.

[241] K. Zhao et al., “FT-CNN: Algorithm-based fault tolerance for convo-
lutional neural networks,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 7, pp. 1677–1689, Jul. 2021.

[242] J. Kosaian and K. V. Rashmi, “Arithmetic-intensity-guided fault
tolerance for neural network inference on GPUs,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal. (SC), Nov. 2021.

[243] D. Filippas, N. Margomenos, N. Mitianoudis, C. Nicopoulos, and
G. Dimitrakopoulos, “Low-cost online convolution checksum checker,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 2, pp.
201–212, Feb. 2022.

[244] C. S. Mummidi, S. Bal, B. F. Goldstein, S. Srinivasan, and S. Kundu,
“A highly-efficient error detection technique for general matrix multi-
plication using tiled processing on SIMD architecture,” in Proc. IEEE
Int. Conf. Comput. Des. (ICCD), Oct. 2022, pp. 529–536.

[245] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience
prediction for a flexible reliability management in neural network
accelerators,” in Proc. Design Autom. Test Europe Conf. (DATE), Mar.
2018, pp. 979–984.

[246] M. A. Hanif and M. Shafique, “SalvageDNN: salvaging deep neural
network accelerators with permanent faults through saliency-driven
fault-aware mapping,” Phil. Trans. R. Soc. A, vol. 378, no. 2164, Feb.
2020.

[247] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on AI-oriented MPSoCs,” Appl. Sci., vol. 11,
no. 14, Jul. 2021.

[248] R. V. W. Putra, M. A. Hanif, and M. Shafique, “ReSpawn: Energy-
efficient fault-tolerance for spiking neural networks considering unreli-

able memories,” in Proc. ACM/IEEE Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2021.

[249] S.-K. Lu, Y.-S. Wu, J.-H. Hong, and K. Miyase, “Fault resilience
techniques for flash memory of DNN accelerators,” in Proc. IEEE Int.
Test Conf. Asia (ITC-Asia), Aug. 2022.

[250] E. Talpes et al., “Compute solution for Tesla’s full self-driving
computer,” IEEE Micro, vol. 40, no. 2, pp. 25–35, Mar./Apr. 2020.

[251] K. Matsubara et al., “4.2 a 12nm autonomous-driving processor with
60.4TOPS, 13.8TOPS/W CNN executed by task-separated ASIL D
control,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb.
2021, vol. 64, pp. 56–58.

[252] M. Abdulrahman et al., “HarDNN: Feature map vulnerability evalua-
tion in CNNs,” CoRR, vol. abs/2002.09786, Dec. 2020.

[253] H. R. Mahdiani, S. M. Fakhraie, and C. Lucas, “Relaxed fault-tolerant
hardware implementation of neural networks in the presence of multiple
transient errors,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no.
8, pp. 1215–1228, Aug. 2012.

[254] A. Ruospo, G. Gavarini, I. Bragaglia, M. Traiola, A. Bosio, and
E. Sanchez, “Selective hardening of critical neurons in deep neural
networks,” in Proc. IEEE Int. Symp. Des. Diagn. Electron. Circuits
Syst. (DDECS), Apr. 2022, pp. 136–141.

[255] C. Liu, C. Chu, D. Xu, Y. Wang, Q. Wang, H. Li, X. Li, and K.T.
Cheng, “HyCA: A hybrid computing architecture for fault tolerant
deep learning,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 41, no. 10, pp. 3400–3413, Oct. 2022.

[256] Z. Gao et al., “Soft error tolerant convolutional neural networks on
fpgas with ensemble learning,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 30, no. 3, pp. 291–302, Mar. 2022.

[257] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep
neural network accelerators,” in Proc. ACM/IEEE Annual Int. Symp.
Comput. Archit. (ISCA), Jun. 2016, pp. 267–278.

[258] W. Li et al., “Soft error mitigation for deep convolution neural network
on FPGA accelerators,” in Proc. IEEE Int. Conf. Artif. Intell. Circuits
Syst. (AICAS), 2020.

[259] S. Burel, A. Evans, and L. Anghel, “MOZART+: Masking outputs
with zeros for improved architectural robustness and testing of DNN
accelerators,” IEEE Trans. Device Mater. Reliab., vol. 22, no. 2, pp.
120–128, Jun. 2022.

[260] S. Burel, A. Evans, and L. Anghel, “Zero-overhead protection for
cnn weights,” in Proc. IEEE Int. Symp. Defect Fault Toler. VLSI
Nanotechnol. Syst. (DFT), Oct. 2021.

[261] R. V. W. Putra, M. A. Hanif, and M. Shafique, “SoftSNN: Low-
cost fault tolerance for spiking neural network accelerators under soft
errors,” in Proc. 59th Design Autom. Conf. (DAC), Jul. 2022, p.
151–156.

[262] A. Agrawal, C. Lee, and K. Roy, “X-CHANGR: changing memris-
tive crossbar mapping for mitigating line-resistance induced accuracy
degradation in deep neural networks,” CoRR, vol. abs/1907.00285, Jun.
2019.

[263] T. Titirsha, S. Song, A. Das, J. Krichmar, N. D. Dutt, N. Kandasamy,
and F. Catthoor, “Endurance-aware mapping of spiking neural networks
to neuromorphic hardware,” IEEE Trans. Parallel Distrib. Syst., Mar.
2021.

[264] S.-S. Lee and J.-S. Yang, “Value-aware parity insertion ECC for fault-
tolerant deep neural network,” in Proc. Design Autom. Test Europe
Conf. (DATE), Mar. 2022, pp. 724–729.

[265] C. Schorn, A. Guntoro, and G. Ascheid, “Efficient on-line error
detection and mitigation for deep neural network accelerators,” in Proc.
Int. Conf. Comput. Safety Rel. Secur. (SAFECOMP), Sep. 2018, pp.
205–219.

[266] S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze, and V. Sathe,
“MATIC: Learning around errors for efficient low-voltage neural net-
work accelerators,” in Proc. Design Autom. Test Europe Conf. (DATE),
Mar. 2018.

[267] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G.-
Y. Wei, “A 28nm SoC with a 1.2GHz 568nJ/prediction sparse deep-
neural-network engine with >0.1 timing error rate tolerance for IoT
applications,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2017, pp. 242–243.

[268] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “ThUnderVolt:
Enabling aggressive voltage underscaling and timing error resilience
for energy efficient deep learning accelerators,” in Proc. Design Autom.
Conf. (DAC), Jun. 2018.

[269] A. P. Johnson et al., “Homeostatic fault tolerance in spiking neural
networks: A dynamic hardware perspective,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 65, no. 2, pp. 687–699, 2018.



36

[270] L. Xia, M. Liu, X. Ning, K. Chakrabarty, and Y. Wang, “Fault-
tolerant training enabled by on-line fault detection for RRAM-based
neural computing systems,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 38, no. 9, pp. 1611–1624, Sep. 2019.

[271] S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann,
“Aging-aware lifetime enhancement for memristor-based neuromorphic
computing,” in Proc. Design Autom. Test Europe Conf. (DATE), Mar.
2019.

[272] P. I. Vaz, P. Girard, A. Virazel, and H. Aziza, “Improving TID radiation
robustness of a CMOS OxRAM-based neuron circuit by using enclosed
layout transistors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 29, no. 6, pp. 1122–1131, 2021.

[273] M. V. Beigi and G. Memik, “Thermal-aware optimizations of ReRAM-
based neuromorphic computing systems,” in Proc. Design Autom. Conf.
(DAC), Jun. 2018.

[274] H. Shin, M. Kang, and L.-S. Kim, “A thermal-aware optimization
framework for ReRAM-based deep neural network acceleration,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov.
2020.

[275] J. Meng et al., “Temperature-resilient RRAM-based in-memory com-
puting for DNN inference,” IEEE Micro, vol. 42, no. 1, pp. 89–98,
Jan./Feb. 2022.

[276] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jun.
2014.

[277] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proc. Int. Conf. Learn. Represent. (ICLR), Apr. 2017.

[278] D. Ernst et al., “Razor: circuit-level correction of timing errors for low-
power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, Nov./Dec.
2004.

[279] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance
for matrix operations,” IEEE Trans. Comput., vol. C-33, no. 6, pp.
518–528, Jun. 1984.

Fei Su is a DFX and Telemetry architect at Intel Corporation. His research in-
terests include testability and dependability of semiconductor circuits/chiplets,
AI/ML hardware, cyber-physical systems, and edge/cloud computing. Su has
a PhD from Duke University, USA. He is a Senior Member of IEEE.

Chunsheng Liu is the leader of DFT team at Alibaba inc. His research
interests include test infrastructure for high-performance processors, FPGA
and machine learning accelerators, as well as high dependability of cloud
computing hardware. He has a PhD from Duke University, USA. He is a
Senior Member of IEEE.

Haralampos-G. Stratigopoulos is a Research Director of the French National
Center for Scientific Research (CNRS) at the LIP6 Laboratory of Sorbonne
Université, Paris, France. His research interests include neuromorphic comput-
ing, hardware security, and design-for-test of integrated circuits and systems.
Stratigopoulos has a PhD from Yale University, New Haven, USA. He is a
Member of IEEE.


