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In this work we study a Nicholson-type periodic system with variable delay, density-dependent mortality and linear harvesting rate. Using the topological degree and Lyapunov stability theories, we obtain sufficient conditions that allow us to demonstrate the existence of periodic solutions for the Nicholson-type system and, under suitable conditions, the uniqueness and local exponential stability of the periodic solution is established. We illustrate our results with an example and numerical simulations.

Introduction

In recent years, the question of the existence of periodic solutions for Nicholsontype systems with periodic coefficients has received the attention of many researchers. This class of systems of differential equations with delays was introduced as a coupled patch population model for marine protected areas and B-cell chronic lymphocytic leukemia [START_REF] Berezansky | Global dynamics of Nicholson-type delay systems with applications[END_REF]. However, it has been pointed out that the new models applied to the fishery must consider non-linear density-dependent mortality rates [START_REF] Berezansky | Nicholson's blowflies differential equations revisited: main results and open problems[END_REF]. Consequently, research on Nicholson-type equations and systems with density-dependent mortality has developed rapidly. But despite that, few studies have considered periodic Nicholson models with density-dependent mortality and harvesting. The goal of this article is to investigate the existence and stability of positive periodic solutions for a m-dimensional Nicholson-type system with periodic coefficients, non-linear mortality rates, and linear harvesting.

1.1. The Nicholson models. In [START_REF] Gurney | Nicholson's blowflies revisited[END_REF] Gurney, Blythe and Nisbet proposed a model to describe the behavior of a population of flies that had been studied in the 1950s by Nicholson [START_REF] Nicholson | Population oscillations caused by competition for food[END_REF]. The model corresponds to the following delayed differential equation [START_REF] Abbas | Pseudo compact almost automorphic solutions for a family of delayed population model of Nicholson type[END_REF] ẋ(t) = -mx(t) + bx(t -τ ) exp -γ -1 x(t -τ ) , where x is the density of the adult population, m is the per capita mortality rate, b the maximum birth rate, τ is the time to maturity and γ indicates where the unimodal function reaches its maximum. Equation ( 1) is known as the Nicholson model.

In [START_REF] Berezansky | Global dynamics of Nicholson-type delay systems with applications[END_REF] Berezansky, Idels and Troib studied the dynamics of metapopulation models with migration between two patches. Within the models studied, the authors considered a model of a marine population, with an age structure that inhabits two areas, one protected and the other for extraction. From this model, they obtained the system of differential equations with delay:

(2)

ẋ1(t) = -(m1 + d1)x1(t) + b1x1(t -τ ) exp -γ -1 1 x1(t -τ ) + d2x2(t) ẋ2(t) = -(m2 + d2 + h)x2(t) + b2x2(t -τ ) exp -γ -1 2 x2(t -τ ) + d1x1(t)
where x i corresponds to the densities of adult populations, m i are the per capita mortality rates, d i are the diffusion rates between patches, b i are the maximum birth rates, γ i indicates where the unimodal functions reaches its maximum, τ is the time to maturity, and h is the harvesting rate. Due to the presence of a nonlinear birth rate that considers delay, models similar to (2) are known as Nicholson-type systems.

The model [START_REF] Amster | Topological methods in the study of boundary value problems[END_REF] has been extended to the non-autonomous case to consider variations due to the passage of time, such as the seasons of the year, which has led to the study of periodic and almost periodic solutions, see [START_REF] Faria | Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems[END_REF][START_REF]Permanence and exponential stability for generalised nonautonomous Nicholson systems[END_REF][START_REF] Liu | New results on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model[END_REF][START_REF]Is uniform persistence a robust property in almost periodic models? a well-behaved family: almost-periodic Nicholson systems[END_REF][START_REF] Obaya | Uniform and strict persistence in monotone skew-product semiflows with applications to non-autonomous Nicholson systems[END_REF][START_REF] Shao | Global exponential stability of non-autonomous Nicholson-type delay systems[END_REF].

Since the model ( 2) allows predicting the dynamics of an adult population, it is relevant to include some types of harvesting in them so that they can be applied in models of fishery or agricultural livestock production. Different authors have considered Nicholson-type equations and systems with harvesting, see for example [START_REF] Abbas | Pseudo compact almost automorphic solutions for a family of delayed population model of Nicholson type[END_REF][START_REF] Amster | Existence of positive t-periodic solutions of a generalized Nicholson's blowflies model with a nonlinear harvesting term[END_REF][START_REF]Necessary and sufficient conditions for the existence of periodic solutions of a Nicholson type delay system[END_REF][START_REF] Duan | Pseudo almost periodic dynamics of delay Nicholson's blowflies model with a linear harvesting term[END_REF][START_REF] Liu | The positive almost periodic solution for Nicholson-type delay systems with linear harvesting terms[END_REF][START_REF] Zhou | The positive periodic solution for Nicholson-type delay system with linear harvesting terms[END_REF].

Berezansky, Braverman, and Idels in [START_REF] Berezansky | Nicholson's blowflies differential equations revisited: main results and open problems[END_REF] mention that for marine populations at low densities it is appropriate a linear model of density-dependent mortality and that new fishery models must consider non-linear density-dependent mortality rates. Afterward, research on Nicholson-type equations and systems with densitydependent mortality has been developing rapidly, see [START_REF] Amster | On persistence of a Nicholson-type system with multiple delays and nonlinear harvesting[END_REF][START_REF] Chen | Positive periodic solutions of Nicholson-type delay systems with nonlinear density-dependent mortality terms[END_REF][START_REF] Chen | Periodic solutions for Nicholson-type delay system with nonlinear density-dependent mortality terms[END_REF][START_REF] Huang | Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term[END_REF][START_REF] Liu | Permanence for Nicholson-type delay systems with nonlinear densitydependent mortality terms[END_REF][START_REF] Liu | Global exponential stability of almost periodic solutions for Nicholson's blowflies system with nonlinear density-dependent mortality terms and patch structure[END_REF][START_REF] Ossandón | Existence of periodic solution of Nicholson-type system with nonlinear density-dependent mortality[END_REF][START_REF] Qian | Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments[END_REF].

However, the study of periodic Nicholson models with density-dependent nonlinear mortality and harvesting terms have not yet been sufficiently explored and this work aims to contribute in this direction.

1.2. Novelty of this work. We consider a Nicholson-type system with nonlinear density-dependent mortality, linear harvesting terms, and several concentrated delays of the form:

(3) x i (t) = - δii(t)xi(t) cii(t) + xi(t) + n j=1 bij(t)r(xi(t -τij(t))) + m j=1,j =i δij(t)xj(t) cij(t) + xj(t) -hi(t)xi(t)
where r(x) = x exp(-x), and

δ ij , c ij , b ij , τ ij , h i : R → (0, +∞) , i = 1, . . . , m, j = 1, .
. . , n, are bounded, continuous and ω-periodic functions.

Note that the above system includes the case where each patch considers a different Ricker-type function, namely r i (y) = ye -γ -1 i y . In fact, in this case the system (3) is obtained by making the change of variable y = γ -1 i x i .

Our objective is to apply topological degree and Lyapunov stability theory to the system (3) to determine the conditions that guarantee the existence and exponential stability of periodic solutions of the system.

1.3. Outline. Section 2 deals with fundamental preliminary aspects of this work, particularly the theory of differential equations with delay and a theorem of continuation of the topological degree; In addition, a result of the existence of solutions and a priori estimates are obtained. Section 3 establishes the main results of this work: Theorem 2 provides sufficient conditions for the existence of positive periodic solutions, while Theorems 3 and 4 prove the local asymptotic and exponential stability, respectively. Section 4 focuses on an example and its numerical simulations.

Preliminaries

2.1. Delay differential equations. Time delays occur naturally in many population dynamical models and their presence is due, among others, to factors like sexual maturity or gestation. Mathematical models with time-delays has a significant role in population dynamics, we refer the reader to [START_REF] Cushing | Integrodifferential equations and delay models in population dynamics[END_REF]24,[START_REF] Piotrowska | Delay differential equations in bio-populations[END_REF][START_REF] Smith | An introduction to delay differential equations with applications to the life sciences[END_REF]. Delayed differential equations may exhibit more complex dynamics than ODE's because of the presence of delay may induce a Hopf bifurcation, periodic and oscillatory solutions or chaos, see [START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Kuang | Delay differential equations: with applications in population dynamics[END_REF][START_REF] Smith | An introduction to delay differential equations with applications to the life sciences[END_REF].

We introduce some definitions and notation for delay differential equations. For

τ ≥ 0, we consider C = C([-τ , 0], R m ) the Banach space with the norm ||ϕ|| τ = sup -τ ≤θ≤0 ||ϕ(θ)||, where || • || is the maximum norm in R m . Any vector v ∈ R m is identified in C with the constant function v(θ) = v for θ ∈ [-τ , 0]. A general system of functional differential equations take the form (4) ẋ(t) = f (t, x t ),
where f : R × C ⊃ D → R m and x t corresponds to the translation of a function

x(t) on the interval [t -τ , t] to the interval [-τ , 0], more precisely x t ∈ C is given by x t (θ) = x(t + θ), θ ∈ [-τ , 0].
A function x is said to be a solution of system (4) on [-τ , A) if there is A > 0 such that x ∈ C([-τ , A), R m ), (t, x t ) ∈ D and x(t) satisfies (4) for t ∈ [0, A). For given φ ∈ C, we say x(t; 0, φ) is a solution of system (4) with initial value φ at 0 if there is an A > 0 such that x(t; 0, φ) is a solution of equation ( 4) on [-τ , A) and x 0 (t; 0, φ) = φ. In addition, for a given continuous and bounded function f ∈ C(R, R) we will denote by f + and f -respectively, the supremum and infimum of f over R. Now, for system (3) we consider τ

:= max{τ + ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Since nonnegative solutions are significant for population models, the following subsets of C are often introduced :

C + := C([-τ , 0], R m + ), C 0 := {φ ∈ C + : φ i (0) > 0, 1 ≤ i ≤ m}. Theorem 1.
The system (3) has a unique nonnegative solution defined over [-τ , +∞)

for each initial condition φ ∈ C + .
Proof. We will denote by

F i (t, x(t), x(t -τ i1 (t)), • • • , x(t -τ ij (t))) the right hand side of system (3) and x(t) = (x 1 (t), • • • , x m (t)) T , then (3) can be written as, (5) ẋ(t) = F (t, x(t), x(t -τ 11 (t)), • • • , x(t -τ mn (t))),
where

F : R + × (R m + ) mn+1 → R m .
We denote F x to the derivative of F respect to the state x(t), consequently the map

F x : R + × (R m + ) mn+1 → M (R) m×m defined by F x =      F 1 /∂x 1 F 1 /∂x 2 . . . F 1 /∂x m F 2 /∂x 1 F 2 /∂x 2 . . . F 2 /∂x m . . . . . . . . . . . . F m /∂x 1 F m /∂x 2 . . . F m /∂x m      . is continuous over R + × (R m + ) mn+1
. Now, applying theorems 3.1 and 3.2 of [START_REF] Smith | An introduction to delay differential equations with applications to the life sciences[END_REF], it follows that the system (3) has a unique solution defined over a maximal interval, for each initial condition φ ∈ C + . In order to show that x(t; 0, φ) takes nonnegative values, we fix i ∈ {1, . . . , m} and t in the maximal interval, in addition we assume that entries of the function F are nonnegative vectors while x ∈ R m + is such that

x i = 0, then F i (t, x, •) = - δ ii (t)x i c ii (t) + x i + n j=1 b ij (t)r(y i ) + m j=1,j =i δ ij (t)x j c ij (t) + x j -h i (t)x i = n j=1 b ij (t)r(y i ) + m j=1,j =i δ ij (t)x j c ij (t) + x j ≥ 0.
Consequently, each nonnegative initial condition φ has a corresponding solution x(t; 0, φ) that takes nonnegative values for t in the maximal interval. Now we will prove that the solutions of (3), corresponding to nonnegative initial conditions, are defined for all t ≥ 0. Otherwise, they would be defined over an interval [-τ , A), where 0 < A < ∞. Since x(t) is a solution of (3), it follows that x i (t) satisfies

x i (t) = - δii(t)xi(t) cii(t) + xi(t) + n j=1 bij(t)r(xi(t -τij(t))) + m j=1,j =i δij(t)xj(t) cij(t) + xj(t) -hi(t)xi(t) ≤ n j=1 bij(t)r(xi(t -τij(t))) + m j=1,j =i δij(t)xj(t) cij(t) + xj(t) ≤ n j=1 b + ij e -1 + m j=1,j =i δ + ij .
Whence, integrating the above estimation we obtain

x i (t) ≤ x i (0) +   n j=1 b + ij e -1 + m j=1,j =i δ + ij   t, 0 ≤ t < A.

This estimates ensure that

A = +∞, because if A < +∞ then |x(t)| → ∞ as t → A,
contradicting the estimates.

2.2. Topological degree and periodic functions. We begin this subsection by recalling some definitions and notations that will be used in this work. The closure and the boundary of a subset A of a topological space will be denoted respectively by A and ∂A. Let

C ω := {x(t) = (x i (t)) ∈ C(R, R m ) : x(t + ω) = x(t) for all t ∈ R}
the Banach space of the continuous vector functions ω periodic with the norm

||x|| = max 1≤i≤m sup t∈[0,ω] ||x i (t)|| .
It is useful consider the usual notation for the natural embedding R m → C ω given by y → y, where y(t) = y for t ∈ R. Given a continuous function and ω periodic f ∈ C(R, R) notice that f + and f -coincide, respectively, with the maximum and the minimum value of f over the interval [0, ω].

The existence of periodic solutions of the system (3) will be proved as a consequence of a general Continuation Theorem, see [2, Theorem 6.3], in our case we consider:

Lemma 1. Assume there exists an open bounded Ω ⊂ C ω such that:

i) The system

(6) x (t) = λF (t, x(t), x(t -τ 11 (t)), • • • , x(t -τ mn (t)))
has no solutions on ∂Ω for λ ∈ (0, 1).

ii) g(x) = 0 for x ∈ ∂Ω ∩ R m , where g = (g i ) : R m → R m is given by:

g i (x) = 1 ω ω 0   δ ii (t)x i c ii (t) + x i - n j=1 b ij (t)r(x i ) - m j=1,j =i δ ij (t)x j c ij (t) + x j + h i (t)x i   dt. iii) deg B (g, Ω ∩ R m , 0) = 0.
Then there exist at least one solution of (3) in Ω.

To study conditions ii) and iii) is useful introduce additional notation, let

I m = Π m i=1 [a i , b i ] be a bounded and closed subset of R m and x = (x i ) ∈ R m , for each 1 ≤ i ≤ m let us denote I - i := {x ∈ I m : x i = a i }, I + i := {x ∈ I m : x i = b i
}, the i-th opposite faces. Condition iii) of the Lemma 1 will be obtained by the construction of an affine isomorphism homotopic to g combined with the homotopy invariance property of the Brouwer degree.

A priori bounds.

To prove the existence of a periodic solution of (3) by using the theory of topological degree we need to find some a priori bounds for any ω-periodic solution of the system [START_REF] Berezansky | Nicholson's blowflies differential equations revisited: main results and open problems[END_REF]. Next, we will state some propositions related to upper and lower a priori bounds that will be useful when proving the existence of positive periodic solutions of (3). To obtain the existence of upper bounds for the solutions of the system (6) we consider the following assumption:

(H1) The coefficients of the system satisfy:

min ξ∈[0,ω]   δ ii (ξ) - 1 e n j=1 b ij (ξ) - m j=1,j =i δ ij (ξ)   > 0, i = 1, • • • , m.
Proposition 1. If (H1) holds, then every non-negative ω-periodic solution of [START_REF] Berezansky | Nicholson's blowflies differential equations revisited: main results and open problems[END_REF] is bounded above for any λ ∈ (0, 1). Proof. Let (x i (t)) an ω-periodic solution of ( 6) and

x + i = R i ≥ x + j , for i = j let ξ ∈ [0, ω] such that x + i = x i (ξ), since x i (ξ) = 0 it follows that 0 = λ   - δ ii (ξ)x i (ξ) c ii (ξ) + x i (ξ) + n j=1 b ij (ξ)r(x i (ξ -τ ij (ξ))) + m j=1,j =i δ ij (ξ)x j (ξ) c ij (ξ) + x j (ξ) -h i (ξ)x i (ξ)   .
Now, combining the monotonicity of the map u → δu c+u , the assumptions over the

functions b ij (•), δ ij (•), c ij (•), h i (•)
and, the fact that r(u) ≤ 1 e for u ∈ R + we obtain

0 ≥ δ ii (ξ)R c ii (ξ) + R - 1 e n j=1 b ij (ξ) - m j=1,j =i δ ij (ξ)R c ij (ξ) + R .
Next, adding and subtracting the terms

δ ii (ξ) + m j=1,j =i δ ij (ξ), we can assert that 0 ≥   δ ii (ξ) - 1 e n j=1 b ij (ξ) - m j=1,j =i δ ij (ξ)   -δ + ii 1 - R c ii (ξ) + R + m j=1,j =i δ - ij 1 - R c ij (ξ) + R .
The above inequality implies

(7) 0 ≥   δ ii (ξ) - 1 e n j=1 b ij (ξ) - m j=1,j =i δ ij (ξ)   -δ + ii 1 - R c ii (ξ) + R .
On the other hand, (H1) and the continuity of the coefficients imply that there is

ζ > 0 such that (8) min ξ∈[0,ω]   δ ii (ξ) - 1 e n j=1 b ij (ξ) - m j=1,j =i δ ij (ξ) -ζ   > 0.
Note that lim R→∞ 1 -R cii(ξ)+R = 0 uniformly on ξ ∈ [0, ω], so there exists R 0 such that

(9) -ζ ≤ -δ + ii 1 - R c ii (ξ) + R < 0, ξ ∈ [0, ω].
Now, for R 0 taking the minimum in [START_REF] Berezansky | Global dynamics of Nicholson-type delay systems with applications[END_REF], by using the estimations ( 8) and ( 9) we obtain a contradiction

0 ≥ min ξ∈[0,ω]   δ ii (ξ) - 1 e n j=1 b ij (ξ) - m j=1,j =i δ ij (ξ) -δ + ii 1 - R c ii (ξ) + R   > 0.
Consequently there is a positive number R 0 such that [START_REF] Couture-Beil | PBSddesolve: solver for delay differential equations[END_REF] x

i (t) < R 0 , for t ∈ R and i = 1, 2, • • • , m.
To study the a priori lower bounds for the solutions of the system (6) we will proceed in a similar way to the proof of the proposition 1, but this time the key hypothesis is:

(H2) For i = 1, 2, • • • , m we have: max η∈[0,ω]   δ ii (η) c ii (η) - n j=1 b ij (η) - m j=1,j =i δ ij (η) c ij (η) + h i (η)   < 0.
Proposition 2. If (H1) and (H2) hold, then every positive ω-periodic solution of ( 6) is bounded below by a positive constant for any λ ∈ (0, 1).

Proof. Consider ε = min{x - 1 , x - 2 , • • • , x - m }
and, without loss of generality, we suppose that x i (η) = ε for some η ∈ [0, ω], then we obtain x i (η) = 0 whence

(11) 0 = δii(η)xi(η) cii(η) + xi(η) - n j=1 bij(η)r(xi(η -τij(η))) - m j=1,j =i δij(η)xj(η) cij(η) + xj(η) + hi(η)xi(η).
Since (H1) holds, proposition 1 implies that the periodic solutions of ( 6) are bounded from above by R 0 .

We assume that R 0 ≥ 1 and consider ρ 0 as the unique value in (0, 1] such that r(ρ 0 ) = r(R 0 ). We may suppose that ε ≤ ρ 0 since otherwise, we have trivially a lower bounds for the solutions of ( 6), from ρ 0 < x i (t), for t ∈ R. Now, since ε ≤ ρ 0 , it follows

ε ≤ x i (η -τ ij (η)) ≤ R 0 , and r(x i (η -τ ij (η))) ≥ r(ε), 1 ≤ j ≤ n.
Adding and subtracting the terms δii(η)ε cii(η) , n j=1 b ij (η)ε, and

ε m j=1,j =i δij (η) cij (η) , it follows that 0 = δ ii (η)ε c ii (η) + ε - n j=1 b ij (η)r(x i (η -τ ij (η))) - m j=1,j =i δ ij (η)x j (η) c ij (η) + x j (η) + h i (η)ε ≤ δ ii (η)ε c ii (η) + ε - n j=1 b ij (η)εe -ε - m j=1,j =i δ ij (η)ε c ij (η) + ε + h i (η)ε = δ ii (η)ε c ii (η) - n j=1 b ij (η)ε -ε m j=1,j =i δ ij (η) c ij (η) + h i (η)ε -δ ii (η)ε 1 c ii (η) - 1 c ii (η) + ε + n j=1 b ij (η)ε(1 -e -ε ) + m j=1,j =i δ ij (η)ε 1 c ij (η) - 1 c ij (η) + ε ≤ δ ii (η)ε c ii (η) - n j=1 b ij (η)ε -ε m j=1,j =i δ ij (η) c ij (η) + h i (η)ε + n j=1 b + ij ε(1 -e -ε ) + m j=1,j =i δ + ij ε 1 c ij (η) - 1 c ij (η) + ε .
Since ε > 0, the above inequality is equivalent to

(12) 0 ≤ δ ii (η) c ii (η) - n j=1 b ij (η) - m j=1,j =i δ ij (η) c ij (η) + h i (η) + n j=1 b + ij (1 -e -ε ) + m j=1,j =i δ + ij 1 c ij (η) - 1 c ij (η) + ε .
On the other hand, (H2) and the continuity of the coefficients, implies that there is ζ > 0 such that max

η∈[0,ω]   δ ii (η) c ii (η) - n j=1 b ij (η) - m j=1,j =i δ ij (η) c ij (η) + h i (η) + ζ   < 0.
So, there exists 0 < ε

1 such that 0 < n j=1 b + ij (1 -e -ε ) + m j=1,j =i δ + ij 1 c ij (η) - 1 c ij (η) + ε ≤ ζ, η ∈ [0, ω].
Therefore, for ε > 0 arbitrarily small values we obtain

0 ≤ max η∈[0,ω]   δ ii (η) c ii (η) - n j=1 b ij (η) - m j=1,j =i δ ij (η) c ij (η) + h i (η) + n j=1 b + ij (1 -e -ε ) + m j=1,j =i δ + ij 1 c ij (η) - 1 c ij (η) + ε   < 0, a contradiction. Consequently there is a positive number ε 0 such that (13) ε 0 < x i (t) < R 0 , for t ∈ R and i = 1, 2, • • • , m.

Results

In this section, we address the problem of the existence and local stability of positive periodic solution for (3). We prove the existence of at least one periodic solution of the system (3) under assumptions (H1) and (H2) by using the degree topological theory.

Theorem 2. Assume that (H1) and (H2) hold. Then the system (3) has at least one ω-periodic positive solution.

Proof. The proof of this result is supported by Lemma 1. Since (H1) and (H2) hold, we apply propositions 1 and 2 to obtain lower and upper bounds for the periodic solutions of ( 6) for all λ ∈ (0, 1). Next define the set Ω ⊂ C ω as ( 14)

Ω := {(x i (t)) ∈ C ω : ε 0 < x i (t) < R 0 , t ∈ [0, ω], i = 1, 2, • • • , m},
where the positive constants R 0 and ε 0 are, respectively, the upper and lower bounds given by Propositions 1 and 2, we note that Ω ∩ R m = ( 0 , R 0 ) m . As a consequence of these propositions, it follows that the system (6) has no solution in ∂Ω for any λ ∈ (0, 1). We will prove that there are positive constants ε and R such that

g(x) = 0 for x ∈ ∂I, where I = [ , R] m .
We recall that, for i = 1, 2, • • • , m and x = (x i ) ∈ R m , we have

(15) gi(x) = 1 ω ω 0   δii(t)xi cii(t) + xi - n j=1 bij(t)r(xi) - m j=1,j =i δij(t)xj cij(t) + xj + hi(t)xi   dt.
From the definition of g i (x), considering the notation 1 = (1, 1, • • • , 1), it follows that for z ∈ I - i we obtain

gi(z) = 1 ω ω 0   δii(t)ε cii(t) + ε - n j=1 bij(t)r(ε) - m j=1,j =i δij(t)zj cij(t) + zj + hi(t)ε   dt ≤ ε ω ω 0   δii(t) cii(t) + ε - n j=1 bij(t)e -ε - m j=1,j =i δij(t) cij(t) + ε + hi(t)   dt = gi(ε1).
Analogously to the estimates made in the proof of Proposition 2, we obtain

g i (ε1) ≤ max η∈[0,ω]   δ ii (η) c ii (η) - n j=1 b ij (η) - m j=1,j =i δ ij (η) c ij (η) + h i (η) + n j=1 b + ij (1 -e -ε ) + m j=1,j =i δ + ij 1 c ij (η) - 1 c ij (η) + ε   .
From (H2), it follows that there exists some 0 < ε

1 such that max η∈[0,ω]   δ ii (η) c ii (η) - n j=1 b ij (η) - m j=1,j =i δ ij (η) c ij (η) + h i (η) + n j=1 b + ij (1 -e -ε ) + m j=1,j =i δ + ij 1 c ij (η) - 1 c ij (η) + ε   < 0.
Hence, there is ε 1 > 0 such that if ε ≤ ε 1 the above equations become into [START_REF] Hale | Introduction to functional differential equations[END_REF] g i (z) ≤ g i (ε1) < 0 for z ∈ I - i . On the other hand, if z ∈ I + i then

gi(z) = 1 ω ω 0   δii(t)R cii(t) + R - m j=1,j =i δij(t)zj cij(t) + zj - n j=1 bij(t)r(R) + hi(t)R   dt ≥ 1 ω ω 0   δii(t)R cii(t) + R - m j=1,j =i δij(t)R cij(t) + R - n j=1 bij(t)Re -R + hi(t)R   dt = gi(R1).
Since r(R) ≤ 1 e for R ∈ R + and analogously to the estimates made in the proof of Proposition 1, for z ∈ I + i we obtain

g i (R1) > min ξ∈[0,ω]   δ ii (ξ) - 1 e n j=1 b ij (ξ) - m j=1,j =i δ ij (ξ) -δ + ii 1 - R c ii (ξ) + R   .
From (H1), it follows that there exists some R > R 0 such that min

ξ∈[0,ω]   δ ii (ξ) - 1 e n j=1 b ij (ξ) - m j=1,j =i δ ij (ξ) -δ + ii 1 - R c ii (ξ) + R   > 0.
Hence there is R 1 > 0 such that if R ≥ R 1 , we obtain [START_REF] Huang | Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term[END_REF] g i (z) ≥ g i (R1) > 0 for z ∈ I + i . We have proved that if ε < ε 1 and R > R 1 , then g(x) = 0 for x ∈ ∂I, where I = [ , R] m . We claim that g is homotopic to an affine isomorphism. In fact we consider A : R m → R m defined by

A(x) = b + M x,
where b ∈ R m and the diagonal matrix M ∈ M m×m are completely defined by the systems of linear equation

b i + m ii = g i ( 1), b i + m ii R = g i (R1).
It follows immediately that m ii = (g i (R1) -g i ( 1))/(R -ε) > 0, and b i = g i ( 1)m ii < 0. Furthermore, there is a unique vector x = (x i ) with x i ∈ ( , R) satisfying b i + m ii x i = 0, hence x is the unique vector in the interior of I such that A(x) = 0. Next we define the map H : R m × [0, 1] → R m given by

H(x, σ) = σg(x) + (1 -σ)A(x),
which is a homotopy between A and g. Since sign g(I + i ) = sign A(I + i ) and sign g(I - i ) = sign A(I - i ) it follows that H(•, σ) does not vanish on ∂I for any σ ∈ [0, 1], and we conclude that g is homotopic to the affine isomorphism A. The homotopy invariance property of Brouwer degree implies that

deg B (g, Ω ∩ R m , 0) = deg B (A, Ω ∩ R m , 0),
and by the definition of Brouwer degree it follows that

deg B (A, Ω ∩ R m , 0) = sign (det(DA(x))) = sign m i=1 m ii = 1.
Finally we apply the Lemma 1 to conclude that the system (3) has at least one solution x(t) ∈ Ω.

Remark 1. For the Nicholson scalar equation, different types of delayed harvesting terms have been considered. If in our model we change the harvesting terms h i (t)x i (t) by delayed terms similar to those of the work of Qiyuan Zhou in [START_REF] Zhou | The positive periodic solution for Nicholson-type delay system with linear harvesting terms[END_REF] we obtain the system (18)

x i (t) = - δ ii (t)x i (t) c ii (t) + x i (t) + n j=1 b ij (t)r(x i (t -τ ij (t))) + m j=1,j =i δ ij (t)x j (t) c ij (t) + x j (t) - n j=1 h ij (t)x i (t -τ ij (t)).
Then it is possible to obtain a result analogous to Proposition 2 and Theorem 1 considering (H1) and changing (H2) by: (H2') There exists a positive upper bound R 0 for the solutions of system [START_REF] Khalil | Nonlinear systems[END_REF], such that for i = 1, 2, • • • , m we have:

max η∈[0,ω]   δ ii (η) c ii (η) - m j=1,j =i δ ij (η) c ij (η) + R 0 n j=1 h ij (η) -b ij (η)e -R0   < 0.
Next, we will address the asymptotic and exponential stability of the system (3).

As is common in the literature on Nicholson-type models, our results are obtained by constructing appropriate Lyapunov functions. We define the region of stability of the solutions of our system as the set

(19) B = {(xi(t)) ∈ C(R, R m ) : 0 < xi(t) < Ki, i = 1, 2, • • • , m}.
To achieve our stability results, we assume the following:

(H3) The delays involve in the model ( 3) are continuously differentiable and satisfy:

τ ij (t) ≤ τ * ij < 1, (i, j) ∈ {1, . . . , m} × {1, . . . , n}. (H4) For i = 1, 2, • • • , m we have δ - ii c - ii (c + ii + K i ) 2 > m j=1,j =i δ + ij c + ij (c - ij ) 2 -h - i + n j=1 b + ij 1 -τ * ij .
Now we state and prove our first stability theorem.

Theorem 3. If assumptions (H1)-(H4) hold, then there is a unique asymptotically stable ω-periodic solution of system (3) in B.

Proof. Let x(t) = (x i (t)) and y(t) = (y i (t)) two solutions in B of system (3). We consider the functions:

Vi(t) = |yi(t) -xi(t)| + n j=1 b + ij 1 -τ * ij t t-τ ij (t)
|yi(s) -xi(s)|ds, i = 1, 2, . . . , m.

Calculating the upper right Dini derivative of V i (t) along the solutions of (3), since 0 ≤ x i (t), y i (t) ≤ K i and |r (x)| ≤ 1 for x ∈ [0, +∞), then proceeding similarly to Theorem 2 in [START_REF]Existence and stability of periodic solutions of Nicholson-type system with nonlinear density-dependent mortality[END_REF] we have

D + Vi(t) ≤ - δii(t)cii(t)|yi(t) -xi(t)| (cii(t) + yi(t))(cii(t) + xi(t)) + m j=1,j =i δij(t)cij(t)|yj(t) -xj(t)| (cij(t) + yi(t))(cij(t) + xi(t)) + n j=1 bij(t)|r(yi(t -τij(t))) -r(xi(t -τij(t)))| -hi(t)|yi(t) -xi(t)| + n j=1 b + ij 1 -τ * ij |yi(t) -xi(t)| - n j=1 b + ij 1 -τ * ij |y1(t -τij(t)) -xi(t -τij(t))|(1 -τ ij (t)).
Notice that assumption (H3) implies that

1 < 1 -τ ij (t) 1 -τ * ij ,
hence we obtain the following estimate

D + Vi(t) ≤ - δ - ii c - ii |yi(t) -xi(t)| (c + ii + Ki) 2 + m j=1,j =i δ + ij c + ij |yj(t) -xj(t)| (c - ij ) 2 + n j=1 b + ij |y1(t -τij(t)) -xi(t -τij(t))| + h - i |yi(t) -xi(t)| + n j=1 b + ij |yi(t) -xi(t)| 1 -τ * ij - n j=1 b + ij |yj(t -τij(t)) -xi(t -τij(t))| ≤ - δ - ii c - ii (c + ii + Ki) 2 -h - i + n j=1 b + ij 1 -τ * ij |yi(t) -xi(t)| + m j=1,j =i δ + ij c + ij (c - ij ) 2 |yj(t) -xj(t)|.
Now, we define the Liapunov functional V (t) := m i=1 V i (t), and by a straightforward computation of the corresponding sums it follows

D + V (t) ≤ m i=1   - δ - ii c - ii (c + ii + Ki) 2 -h - i + n j=1 b + ij 1 -τ * ij + m j=1,j =i δ + ij c + ij (c - ij ) 2   |yi(t) -xi(t)|.
Hypothesis (H4) ensure the existence of a positive constant µ such that

D + V (t) ≤ -µ m i=1 |y i (t) -x i (t)|, t ≥ 0,
then we get 

V (t) + µ t 0 m i=1 |y i (s) -x i (s)|ds ≤ V (0) < +∞, t ≥ 0, and (20) 
t 0 m i=1 |y i (s) -x i (s)|ds ≤ V (0) µ < +∞, t ≥ 0. It follows that H i (s) := |y i (s)-x i (s)| ∈ L 1 ([0, +∞]), 1 ≤ i ≤ m
|y i (t) -x i (t)| = 0.
Therefore, all solution of the system (3) in B converge to an ω-periodic solution, hence there is a unique periodic solution of (3) in B.

In order to state and prove our second stability theorem we define, for i

= 1, • • • , m, the continuous functions G i : R → R given by (21) G i (ε) = δ - ii c - ii (c + ii + K i ) 2 -ε - m j=1,j =i δ + ij c + ij (c - ij ) 2 + h - i - n j=1 b + ij 1 -τ * ij e ετ + ij . D + Wi(t) ≤ e λt   |yi(t) -xi(t)|λ - δ - ii c - ii |yi(t) -xi(t)| (c + ii + Ki) 2 + m j=1,j =i δ + ij c + ij |yj(t) -xj(t)| (c - ij ) 2 + n j=1 b + ij |yi(t -τij(t)) -xi(t -τij(t))| -h - i |yi(t) -xi(t)| + n j=1 b + ij |yi(t) -x1(t)| 1 -τ * ij e λτ + ij - n j=1 b + ij |yi(t -τij(t)) -xi(t -τij(t))| ≤ -e λt   -λ + δ - ii c - ii (c + ii + Ki) 2 + h - i - n j=1 b + ij e λτ + ij 1 -τ * ij   |yi(t) -xi(t)| +e λt m j=1,j =i δ + ij c + ij (c - ij ) 2 |yj(t) -xj(t)| = -e λt     -λ + δ - ii c - ii (c + ii + Ki) 2 + h - i - n j=1 b + ij e λτ + ij 1 -τ * ij   |yi(t) -xi(t)| - m j=1,j =i δ + ij c + ij (c - ij ) 2 |yj(t) -xj(t)|   .
Extending the sum for i = 1 to m and grouping terms we obtain that the Liapunov functional W (t) = G i (λ 0 )|y i (t) -x i (t)| < 0, ∀t ∈ (0, ∞).

It follows that W (t) is decreasing for all t > 0 along the solutions of system (3), consequently we have and the exponential convergence it is obtained for solutions of (3) in B.

Examples

In this section we show an example of the asymptotic stability of the solution and include numerical simulations performed in R software using the library PBSddesolve, see for instance [START_REF] Couture-Beil | PBSddesolve: solver for delay differential equations[END_REF]. In this example x i is the density of biomass in patch i, s(t) = sin(2πt/365), c(t) = cos(2πt/365), and i ∈ {1, 2, 3}.

Example 1. We consider the system of differential equations with delay,

x 

then B = {(x i (t)) ∈ C(R, R m ) : 0 < x i (t) < K i , i = 1, 2, 3}.
The corresponding graph of the numerical simulation is presented in Figure 1. 

m

  i=1 W i (t) satisfiesD + W (t) ≤ -e -λt m i=1 G i (λ)|y i (t) -x i (t)|.We fix λ = λ 0 = min 1≤i≤m {r i }, since (21) and (22) we obtainD + W (t) ≤ -e -λ0t m i=1

  t) -x i (t)|e λ0t ≤ W (t) ≤ W (0), whence m i=1 |y i (t) -x i (t)| ≤ W (t)e -λ0t < W (0)e -λ0t ,

Figure 1 .

 1 Figure 1. Numerical simulation of (23) for five years. Initial conditions: (x 1 (θ), x 2 (θ), x 3 (θ)) ≡ (0.05, 0.287, 0.02), θ ∈ [-60, 0] (solid curve), (x 1 (θ), x 2 (θ), x 3 (θ)) ≡ (0.075, 0.2, 0.015), θ ∈ [-60, 0] (dashed curve), (x 1 (θ), x 2 (θ), x 3 (θ)) ≡ (0.1, 0.15, 0.01), θ ∈ [-60, 0] (dotted curve).

  Hypotheses (H1) -(H4)are verified and K 1 < 1.087, K 2 < 1.2814, K 3 < 1.1086,

	1 (t) = -	(6 + 0.5c(t))x 1 (t) 2 + x 1 (t)	+ 3(1 + 0.5s(t))r(x 1 (t -60))
	+	(1 + 0.125c(t))x 2 (t) 5 + x 2 (t)	+	1 + 0.125c(t))x 3 (t) 5 + x 3 (t)	-0.1x 1 (t),
	x 2 (t) = -	(4 + 0.5c(t))x 2 (t) 1.5 + x 2 (t)	+ 3(1 + 0.5s(t))r(x 2 (t -60))
	+	(1.5 + 0.125c(t))x 1 (t) 35 + x 1 (t)	+	0.75 + 0.0625c(t))x 2 (t) 35 + x 2 (t)	,
	x 3 (t) = -	(5 + 0.5c(t))x 3 (t) 1 + x 3 (t)	+ 3(1 + 0.5s(t))r(x 3 (t -60))
	+	(1.5 + 0.125c(t))x 1 (t) 12 + x 1 (t)	+	(0.75 + 0.0625c(t))x 2 (t) 12 + x 2 (t)	-0.2x 3 (t),
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Notice that hypothesis (H4) ensures that G i (0) > 0 for each i = 1, • • • , m, furthermore, the continuity of G i guarantees the existence of positive constants r i , such that [START_REF] Liu | Global exponential stability of almost periodic solutions for Nicholson's blowflies system with nonlinear density-dependent mortality terms and patch structure[END_REF] G i (ε) > 0, for 0 ≤ ε ≤ r i , and we define Proof. We consider x(t) = (x i (t)) and y(t) = (y i (t)) two arbitrary solutions in B of system (3) and we define the functions:

Calculating the upper right Dini derivative of W i (t) along the solutions of model

(3) we have

Replacing x i and y i given in the system, applying triangular inequality, considering

) and grouping we obtain