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In this paper we classify minimal translation surfaces of certains types in a 3-dimensional strict Walker manifold.

Introduction

Minimal surfaces are the most natural objects in differential geometry, and have been studied during the last two and half centuries since J. L. Lagrange. In particular, minimal surfaces have encountered striking applications in other fields, like mathematical physics, conformal geometry, computer aided design, among others. In order to search for more minimal surfaces, some natural geometric assumptions arise. Translation surfaces were studied in the Euclidean 3-dimensional space and they are represented as graphs z = α(x)+β(y), where α and β are smooth functions. Scherk [START_REF] Scherk | Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen[END_REF] proved in 1835 that, besides the planes, the only minimal translation surfaces are the surfaces given by z = 1 a log cos(ax) cos(ay) ,

where a is a non-zero constant. Since then, minimal translation surfaces were generalized in several directions. For example, the Euclidean space R 3 was replaced with other spaces of dimension 3-usually being 3-dimensional Lie groups and the notion of translation was often replaced by using the group operation (see for example [START_REF] Inoguchi | Minimal translation surfaces in the Heisenberg group Nil3[END_REF], [START_REF] López | Minimal translation surfaces in hyperbolic space[END_REF], [START_REF] Yoon | Weighted minimal translation surfaces in the Galilean space with density[END_REF] and references therein). Another generalizations of Scherk surfaces are: affine translation surfaces in Euclidean 3-space [START_REF] Liu | Affine translation surfaces in Euclidean 3-space[END_REF], affine translation surfaces in affine 3-dimensional space [START_REF] Yang | On affine translation surfaces in affine space[END_REF] and translation surfaces in Galilean 3-space [START_REF] Yoon | Weighted minimal translation surfaces in the Galilean space with density[END_REF]. On the other hand, Scherk surfaces were generalized to minimal translation surfaces in Euclidean spaces of arbitrary dimensions(see [START_REF] Dillen | A generalization of the translation surfaces of Scherk[END_REF], [START_REF] Moruz | Minimal translation hypersurfaces in E 4[END_REF]). In [START_REF] Yoon | Some translation surfaces in the 3-dimensional Heisenberg group[END_REF], the authors introduce and define the notion of translation surfaces in the Heisenberg group H(1; 1) as the formal analogue to those in the Euclidean 3-space.

In this paper, we define and classify minimal translation surfaces in a 3-dimensional strict Walker manifold. Three dimensional geometry plays a central role in the investigation of many problem in Riemannian and Lorentzian geometry. The fact that Ricci operator completly determines the curvature tensor is crucial to these investigations, (for detail see [START_REF] Brozos-Vázquez | The Geometry of Walker Manifolds[END_REF]). The strict Walker manifolds are described in terms of a suitable coordinates (x, y, z) of the manifolds R 3 and their metric depends on an arbitrary function of two variables f = f (y, z) and their metric tensor is given by

g ϵ f = ϵdy 2 + 2dxdz + f dz 2 (1) 
where ϵ = ±1. These manifolds are denoted by (M, g ϵ f ). In [START_REF] Diallo | Minimal graphs on three-dimensional Walker manifolds[END_REF], the authors study a class of minimal surfaces in the three-dimensional Lorentzian Walker manifolds. Their proved the existence of minimal flat and non totally geodesic graphs on three dimensional Lorentizain Walker manifolds. In [START_REF] Calvaruso | Parallel surfaces in Lorentzian three-manifolds admitting a parallel null vector field[END_REF], the authors have found that the strict Walker manifold (M, g ε f ) where f depends only on the variable y are very important. Here we will work with the manifold (M, g ε f ) where f depends only on y and f is not locally a constant.

The paper is organised as follow: in section 2, we recall some preliminaries results for three-dimensional Walker manifold (M, g ϵ f ) and we give some basic formula for immersed surface in (M, g ϵ f ). We consider two families of translation surfaces in (M, g ϵ f ) which are used in the main result. In the last section we classify those which are minimal.

Preliminaries

A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field of null parallel r-planes, with r ≤ n 2 . The canonical forms of the metrics were investigated by A. G. Walker [START_REF] Walker | Canonical form for a Riemannian space with a parallel field of null planes[END_REF]. Walker has derived adapted coordinates to a parallel plan field. Hence, the metric of a three-dimensional Walker manifold (M, g ϵ f ) with coordinates (x, y, z) is expressed as

g ϵ f = dx • dz + ϵdy 2 + f (x, y, z)dz 2 (2) 
and its matrix form as

g ϵ f =   0 0 1 0 ϵ 0 1 0 f   with inverse (g ϵ f ) -1 =   -f 0 1 0 ϵ 0 1 0 0  
for some function f (x, y, z), where ϵ = ±1 and thus D = Span{∂ x } as the parallel degenerate line field. Notice that, when ϵ = 1 and ϵ = -1 the Walker manifold has signature (2, 1) and (1, 2) respectively, and therefore is Lorentzian in both cases. Hence, if (M, g ϵ f ) is a strict Walker manifolds i.e., f (x, y, z) = f (y, z), then the associated Levi-Civita connection satisfies

∇ ∂y ∂z = 1 2 f y ∂ x , ∇ ∂z ∂z = 1 2 f z ∂ x - ϵ 2 f y ∂ y . (3) 
Let now u and v be two vectors in M . Denoted by (e 1 , e 2 , e 3 ) the canonical frame in R 3 . The vector product of u and v in (M, g ϵ f ) with respect to the metric g ϵ f is the vector denoted by u × v in M defined by

g ϵ f (u × v, w) = det(u, v, w) (4) 
for all vector w in M , where det(u, v, w) is the determinant function associated to the canonical basis of R 3 . If u = (u 1 , u 2 , u 3 ) and v = (v 1 , v 2 , v 3 ) then by using (4), we have:

u × v = u 1 v 1 u 2 v 2 -f u 2 v 2 u 3 v 3 e 1 -ϵ u 1 v 1 u 3 v 3 e 2 + u 2 v 2 u 3 v 3 e 3
Let D be an open subset of the plane R 2 satisfying this interval condition: horizontal or vertical lines intersect D in intervals (if at all). A two-parameter map is a smooth map φ : D → M . Thus φ is composed of two interwoven families of parameter curves:

(1) the u-parameter

curves v = v 0 of φ is u → φ(u, v 0 ). ( 2 
) the v-parameter curves u = u 0 of φ is v → φ(u 0 , v).
The partial velocities φ u = dφ(∂ u ) and φ v = dφ(∂ v ) are vector fields on φ. Evidently φ u (u 0 , v 0 ) is the velocity vector at u 0 of the u-parameter curve v = v 0 , and symmetrically for φ v (u 0 , v 0 ). If φ lies in the domain of a coordinate system x 1 , . . . , x n , then its coordinate functions

x i • φ (1 ≤ i ≤ n) are real-valued functions on D and φ u = ∂x i ∂u ∂ i , φ v = ∂x i ∂v ∂ i .
So far M could be a smooth manifold: now suppose it is pseudo-Riemannian. If Z is a smooth vector field on φ, its partial covariant derivatives are: Z u = ∇Z ∂u , the covariant derivative of Z along u-parameter curves, and

Z v = ∇Z ∂v , the covariant derivative of Z along v-parameter curves. Explicitly, Z u (u 0 , v 0 ) is the covariant derivative at u 0 of the vector field u → Z(u, v 0 ) on the curve u → φ(u, v 0 ). In terms of coordinates, Z = Z i ∂ i , where each Z i = Z(x i ) is a real valued function on D. Then Z u = k ∂Z k ∂u + i,j Γ k ij Z i ∂x j ∂u ∂ k (5) 
In the special case Z = φ u , the derivative Z u = φ uu gives the accelerations of u-parameter curves, while φ vv gives v-parameter accelerations. With coordinate notation as above, we have:

φ uv = k ∂ 2 x k ∂v∂u + i,j Γ k ij ∂x i ∂u ∂x j ∂v ∂ k . (6) 
Now we will assume that φ is an isometric immersion. The first fondamental form of the immersion φ is given by

   E = g f (φ * (∂ u ), φ * (∂ u )) F = g f (φ * (∂ u ), φ * (∂ v )) G = g f (φ * (∂ v ), φ * (∂ v )) . (7) 
The coefficients of the second fundamental form of φ are

   L = ε 1 g f (φ uu , ξ) M = ε 1 g f (φ uv , ξ) N = ε 1 g f (φ vv , ξ) (8) 
where ε 1 = g ϵ f (ξ, ξ) the sign of the unit normal ξ along φ. The mean curvature of φ is given by

H = ε 1 1 2 LG -2M F + N E EG -F 2 . ( 9 
)
The idea of translation surface have its origine in the classical text of G. Dardoux [START_REF] Darboux | Lessons on the general theory of surfaces. I[END_REF] where the so-called "surfaces définies par des propriétés cinématiques" is introduced. A Dardoux surface of translation is defined kinematically as the movement of a curve by a uniparameter family of rigid motion of R 3 . Hence, such a surface in locally discribed by φ(s, t) = A(t).α(s) + β(t) where α and β are parametrized curves in R 3 and A(t) is an orthogonal transformation. A(t) being identity is the case which is most investigated. So a surface S in R 3 is called a translation surface if S can be locally discribed as a sum φ(s, t) = α(s) + β(t).

Next, we consider a three-dimensional strict Walker manifold (M, g ε f ), where f is not locally a constant and depends only on the variable y. For any real number a, the following two maps:

R 3 → R 3 (x, y, z) → (x, y, z + a)
and

R 3 → R 3 (x, y, z) → (x + a, y, z)
are isometries of (M, g ε f ). Based in these isometries, we will define two types of translation surfaces.

Definition 2.1. A non-degenerate surface S of sign ε 1 in (M, g ε f ) is a translation surface if it can be discribed locally by an isometric immersion φ : U ⊂ R 2 → (M, g ε f ) of the form φ(u, v) = (u, v, α(u) + β(v)), Type I (10) 
or

φ(u, v) = (α(u) + β(v), u, v), Type II (11) 
where α and β are smooth functions on opens of R.

The aim of this work is to classify the minimal translation surfaces in (M, g ε f ) of the Type I and type II as above.

Main Results

3.1.

Minimal translation surfaces of Type I. Let us consider a translation surface of Type I in (M, g ε f ) parametrized by φ(u, v) = (u, v, α(u) + β(v)). For a function g of one variable u (respectively v) we denote dg du by ġ (respectively dg dv by g ′ ). The tangent plane of S is spanned by

φ u = ∂ x + α∂ z and φ v = ∂ y + β ′ ∂ z . (12) 
The unit normal ξ (up to orientation) is given by

ξ = 1 ∆ [(1 + αf )∂ x -εβ ′ ∂ y -α∂ z ] (13) 
where ∆ = ∥φ u × φ v ∥. We obtain the coefficients of the first fundamental form of φ as

E = 2 α + α2 f, F = β ′ + αβ ′ f, G = ε + β ′2 f. (14) 
And using [START_REF] Inoguchi | Minimal translation surfaces in the Heisenberg group Nil3[END_REF] we have

φ uu =   0 -ε 2 α2 f y α   , φ uv =   1 2 αf y -ε 2 αβ ′ f y 0   , φ vv =   β ′ f y -ε 2 β ′2 f y β ′′   . (15) 
Then the coefficients of the second fundamental form of φ

L = ε 1 ∆ ε 2 β ′ α2 f y + α , M = ε 1 ∆ - 1 2 α2 f y + ε 2 αβ ′2 f y , N = ε 1 ∆ -αβ ′ f y + ε 2 β ′3 f y + β ′′ . (16) 
Consequently, the minimality condition ( 9) may be expressed as follows:

α(ε + β ′2 f ) + α2 (- 1 2 β ′ f y + f β ′′ ) + 2 αβ ′′ = 0. ( 17 
)
Since y = v, we can rewrite the minimal condition for Type I in the form

α(ε + β ′2 f ) + α2 (- 1 2 β ′ f ′ + f β ′′ ) + 2 αβ ′′ = 0. ( 18 
)
We have the following solutions:

(1) Case 1: Assume that α = 0 that is α = α 0 (constant). We get the cylinders:

(s 1 ) : φ(u, v) = (u, v, α 0 + β(v))
for any smooth functions β. (2) Case 2: Assume that α ̸ = 0 and α = 0. Equation (18) becomes

α α (ε + β ′2 f ) + α(- 1 2 β ′ f ′ + f β ′′ ) + 2β ′′ = 0. ( 19 
)
Since α = 0, from (19) we have: 18). Thus we have the plan:

α(u) = au + b with a ∈ R * , b ∈ R (af + 2)β ′′ = 1 2 af ′ β ′ . (20) (a) If β ′ = 0, then β = β 0 is a constant with α(u) = au + b, a ∈ R * satisfy (19) as (
(s 2 ) : φ(u, v) = (u, v, au + b), a ∈ R * , b ∈ R (b) Now assume β ′ ̸ = 0.
An easy integration of the second equation in (20) gives

β(v) = c v v * |2 + af |dv,
where c ∈ R * , v * is a real number such that v and v * belong to interval on which (2 + af > 0) or (2 + af < 0). So we get the solution

(s 3 ) : φ(u, v) = u, v, au + b + c v v * |2 + af |dv , a, c ∈ R * , b ∈ R.
(3) Case 3: Assume that α ̸ = 0 and α ̸ = 0. Then equation ( 18) can be written as (19) anywhere where α ̸ = 0. By differentiating the equation ( 19), we get:

d du α α (ε + β ′2 f ) ′ + α(- 1 2 β ′ f ′ + f β ′′ ) ′ = 0. ( 21 
) (a) Case 3-1: (ε + β ′2 f ) ′ = 0. Since α ̸ = 0, the equation (21) gives (-1 2 β ′ f ′ + f β ′′ ) ′ = 0. So we get ε + β ′2 f = c 1 -1 2 f ′ β ′ + f β ′′ = c 2 , (22) 
where c 1 , c 2 ∈ R. Then the equation( 19) becomes

α α c 1 + αc 2 = -2β ′′ . ( 23 
)
Since the left member depends only on u and the right member depends only on v, then there exist a constant c 3 and we have:

β ′ = -1 2 c 3 v + c 4 α α c 1 + αc 2 = c 3 , (24) 
where c 3 , c 4 ∈ R. If c 3 = 0, then β ′′ = 0 and β ′ = c 4 . From ( 22), one gets ε + c 2 4 f = c 1 . Then c 2 4 f ′ = 0 and c 4 = 0 by the hypothesis on f . So β ′ = 0 implies c 2 = 0 and c 1 = ε. From this and (24) we get α = 0 (contradiction with the hypothesis). So c 3 ̸ = 0. And then β ′ ̸ = 0 and

β ′′ = -1 2 c 3 ̸ = 0. Then (22) becomes f = c1-ε (-1 2 c3v+c4) 2 -1 2 f ′ β ′ + f β ′′ = c 2 . (25) 
So we get

f ′ = c3(c1-ε) (-1 2 c3v+c4) 3 . Thus (25) gives c3(c1-ε) (-1 2 c3v+c4) 2 = c 2 ,
and then we must have c 2 = 0 and c 1 = ε. Then we get f = 0 (a contradiction). So the sub-case (ε

+ β ′2 f ) ′ = 0 is not possible. (b) Case 3-2: (ε + β ′2 f ) ′ ̸ = 0. The equation (21) becomes d du α α α = - (-1 2 β ′ f ′ + f β ′′ ) ′ (ε + β ′2 f ) ′ . ( 26 
)
Since the left member depends only on u and the right member depends only on v, its must be constant c. So we get d du α α = cα and (-

1 2 β ′ f ′ + f β ′′ ) ′ = -c(ε+β ′2 f ) ′ . Then, there exist constants c 1 , c 2 ∈ R such that α α = c α + c 1 and (- 1 2 β ′ f ′ + f β ′′ ) = -c(ε + β ′2 f ) + c 2 . (27) 
If we put the equations ( 27) in (19), we get

c 1 (ε + β ′2 f ) + αc 2 + 2β ′′ = 0.
If we differentiate with respect to u, we obtain αc 2 = 0 i.e., c 2 = 0. So we get:

   c 1 (ε + β ′2 f ) + 2β ′′ = 0 -c(ε + β ′2 f ) = -1 2 β ′ f ′ + f β ′′ α α = c α + c 1 (28) 
And now we have two possibilities: c 1 = 0 and c 1 ̸ = 0.

• Case 3-2-1: c 1 = 0. We have c ̸ = 0 otherwise α = 0. The first equation in (28) gives β ′′ = 0, so β ′ = β ′ 0 ∈ R. And we get

-c(ε + β ′2 f ) = - 1 2 f ′ β ′ 0 . (29) 
If β ′ 0 = 0, then by using (29) we get cε = 0, which is impossible. Therefore β ′ 0 ̸ = 0. An easy integration of (29) gives

f (v) = Ke 2cβ ′ 0 v -ε (β ′ 0 ) 2 and β = β ′ 0 v + β 0 . The equation α α = c α gives α = -1 c log |cu + c 1 |, c ∈ R * and c 1 ∈ R.
Then we get solution of the form (s 4 ) :

φ(u, v) = (u, v, -1 c log |cu + c 1 | + β ′ 0 v + β 0 ) f (v) = Ke 2cβ ′ 0 v -ε (β ′ 0 ) 2 where K, c, β ′ 0 ∈ R * and c 1 , β 0 ∈ R • Case 3-2-2: c 1 ̸ = 0.
The first and the second equations in (28) give:

(f -2c c1 )β ′′ = 1 2 f ′ β ′ β ′2 f = -(2β ′′ + εc 1 ).
If β ′ = 0 then β ′′ = 0 and εc 1 = 0, which is impossible since c 1 ̸ = 0. Therefore we have β ′ ̸ = 0. So we get

f = -2β ′′ +εc1 β ′2 β ′′ β ′ = 1 2 f ′ f -2c c 1 . (30) 
The second equation of (30) gives

β ′ = ±c * f - 2c c 1 with c * ∈ R * + .
Denoted by µ = sign f -2c c1 and we get:

       β ′2 = µc 2 * f -2c c1 β ′′ = ±c * µf ′ 2 µ f -2c c 1 (31) 
The first equation of (31) gives:

β = ± v v * f -2c
c1 dv where v * and v belong to an intervall on which f -2c c1 > 0 or f -2c c1 < 0. The first equation of (30) gives

f = - ±c * µf ′ 2 µ f -2c c 1 + εc 1 µc 2 * f -2c c1 . If we put t = µ f -2c c1 then t = µ f -2c c1 , we have f = µt 2 + 2c c1 and t satisfy -µc 2 * (t 2 + 2c c1 )t 2 ± c * t ′ = εc 1 .
We get the solution:

(s 5 ) : φ(u, v) = (u, v, α(u) + β(v))
where α and β are given by:

(i) α(u) = Ae c1u + B and β(v) = ±c * v v * |f |dv with f = µt 2 (µ = ±1) where t is solution of differential equation -µc 2 * t 4 ± c * t ′ = εc 1 ; (ii) α(u) = u u * du Ke -c 1 u -c c 1 and β(v) = ±c * v v * |f -2c c1 |dv, where K, c, c 1 ∈ R * , c * > 0 with f = µ(t 2 + 2c c1 ) where t is solution of -µc 2 * (t 2 + 2c c1 )t 2 ± t ′ = εc 1 .
We conclude with the following: Theorem 3.1. A translation surface S of Type I in (M, g ε f ) where f depends only on y and not locally a constant, is minimal if and only if there is an interval I (u ∈ I) and an interval J (v ∈ J) such that on I × J the surface take one of the following form . In accordance with this purpose, we have to obtain and solve the minimality equation.

1) φ(u, v) = (u, v, α 0 + β(v)) for any smooth functions β where α 0 ∈ R. 2) φ(u, v) = (u, v, au + b), where a ∈ R * , b ∈ R. 3) φ(u, v) = u, v, au + b + c v |2 + af |dv , where a, c ∈ R * , b ∈ R. 4) φ(u, v) = (u, v, -1 c log |cu + c 1 | + β ′ 0 v + β 0 ) where the function f (v) = Ke 2cβ ′ 0 v -ε (β ′ 0 ) 2
Let us consider a translation surface S of Type II in (M, g ε f ) parametrized by φ(u, v) = (α(u) + β(v), u, v). For a function g of one variable u (respectively v) we denote dg du by ġ (respectively dg dv by g ′ ). The tangent plane of S is spanned by φ u = α∂ x + ∂ y and

φ v = β ′ ∂ x + ∂ z , (32) 
while the unit normal ξ (up to orientation) is given by

ξ = 1 ∆ [(-β ′ -f )∂ x -ε α∂ y + ∂ z ] ( 33 
)
where ∆ = ∥φ u × φ v ∥. We obtain the coefficients of the first fundamental form of φ as

E = ε, F = α, G = 2β ′ + f. (34) 
And we have by using ( 6)

φ uu =   α 0 0   , φ uv =   1 2 f y 0 0   , φ vv =   β ′′ -ε 2 f y 0   . (35) 

c1 )t 2 εc 1 . 3 . 2 .

 132 and K, c, β ′ 0 ∈ R * and c 1 , β 0 ∈ R. 5) φ(u, v) = (u, v, α(u) + β(v))where α and β are given by(i) α(u) = Ae c1u + B, A ∈ R * , B ∈ R and β(v) = ±c * v |f |dv, with f = µt 2 where t is solution of differential equation ±c * t ′ = µc 2 * t 4 +εc 1 ; (ii) α(u) = u du Ke -c 1 uc c 1 and β(v) = ±c * v |f -2c c1 |dv; K, c, c 1 ∈ R * , c * > 0 with f = µ(t 2 + 2c c1 ) where t is solution of ±c * t ′ = µc 2 * (t 2 +2c Minimal translation surfaces of Type II. In this part, we endeavor to obtain all the minimal translation surfaces of Type II in (M, g ε f )

Then the coefficients of the second fundamental form of φ

Consequently, the minimality condition (9) may be expressed as follows:

Taking the derivatives with respect to v, we get

We will consider the following cases:

(1) Case 1: Assume that α = 0. Since (38), we get β ′′ = β ′′ 0 ∈ R and α = α0 ∈ R. And the equation (37) becomes -1 2 α0 ḟ + εβ ′′ 0 = 0. We have the following two subcases: (a) Case 1-1: α0 = 0. If α0 = 0 then β ′′ 0 = 0. Thus we get α = α 0 and β(v) = av + b. We get the plane

(2) Case 2: Assume that α ̸ = 0. We will consider the following two sub-cases.

(a) Case 2-1:

where u * and u belong to an interval on which (f +2a > 0) or (f +2a < 0). We get the solution

Thus we have

where c 1 , c 2 ∈ R. And the equation in (37) becomes

And then we have the solution

We have the following result: Theorem 3.2. A translation surface S of Type II in (M, g ε f ) where f depends only on y and not locally a constant, is minimal if and only if there is an interval I (u ∈ I) and an interval J (v ∈ J) such that on I × J the surface take one of the following form
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