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Comparison of Blind Source Separation Methods to Surface
Electromyogram for Extensor Muscles of the Index and Little Fingers

Abilé Magbonde, Franck Quaine and Bertrand Rivet

Abstract— Crosstalk is the result of the propagation of
muscle electrical signals on surface electromyogram channels
simultaneously. The objective of this paper is to study the
behavior of three blind source separation (BSS) methods for
crosstalk reduction during finger extensor muscle contractions:
FastICA, joint diagonalization of covariance matrices and
optimal filtering. These methods have been tested on artificial
mixtures defined by a temporal sum of the real signals from
isolated contraction of two independent biomechanical muscles
for the extension of the index and little finger. Artificial mixtures
display a ground truth for comparison between the methods.
The separation was better using the optimal filtering compared
to the other two methods. The optimal filtering have then
be tested on real mixtures recorded during a simultaneous
contraction of the two muscles. The results are less satisfactory
but open doors to new perspectives.

I. INTRODUCTION

Electromyogram (EMG) relates to the muscular activity
of the muscular fibers when a muscle is in contraction. It is
widely used in biomechanical studies and in medicine [1],
e.g., for the production of prostheses control or the reha-
bilitation of the hand. In this study, we seek to extract the
activity of the extensor muscles of the index and little fingers
in a non-invasive way using the surface electromyogram
(sEMG) by placing electrode matrices on the surface of the
skin. Since these narrow muscles are close to each other,
the sEMG is affected by crosstalk [2], [3] when the two
fingers are in simultaneous contraction. One way to extract
activity for each muscle from the sEMG recordings can be
to apply blind source separation (BSS) methods [4], which
aims at recovering individual sources from mixtures of them.
In this article different BSS methods based on different
assumptions are compared when applied on the sEMG for
extensor muscles of index and little finger.

The article is divided as follows. Section 2 introduced the
separation methods used. Section 3 presents the experimental
protocol before numerical results in Section 4 and discussion
and conclusions in Section 5.

II. METHODS

For the comparison, three methods (FastICA [4], joint
diagonalization of covariance matrices [5] and optimal fil-
tering [6]) have been selected according to the specificity
of the sEMG. Indeed, a classical modeling of the sEMG
is a linear instantaneous mixture of the activation potentials

Authors are with Univ. Grenoble Alpes, CNRS,
Grenoble INP, GIPSA-lab, 38000 Grenoble, France.
firstname.lastname@gipsa-lab.grenoble-inp.fr

generate by each muscle fiber, leading to

x(t) = As(t) + n(t), (1)

where x(t) ∈ RP is the vectors of P signals recorded
by each sensor, s(t) ∈ RN is the vector of N sources
representing the muscle fibers and A ∈ RP×N is the mixing
matrix and n(t) ∈ RP is the additive noise gathering all the
remaining activities such as artefacts or electronic noise.

A. FastICA method
As the first selected method, FastICA [4] is a generic BSS

method which only assumes that the sources s(t) in (1),
considered as stochastic processes, are mutually independent.
FastICA aims at estimating a demixing matrix W ∈ RP×P

so that the estimated components

y(t) = Wx(t) (2)

are as mutually independent as possible, measured by the
mutual information between them using high order statistics
based on the fact that the different sources are thus not
normally distributed.

Applied on sEMG, the underlying assumption is that the
activities of different muscles are independent to each other,
meaning that the considered muscles are biomechanically
independent. Nevertheless, each muscle is composed of a
large number of muscle fibers each of them being thus
considered as a source, si(t). These later are not mutually
independent if they belong to the same muscle.

B. Joint diagonalization of covariance matrices
The joint diagonalization of covariance matrices [5] also

belongs to the independent component analysis family. As
FastICA, it aims at estimating a demixing matrix W so that
the estimated sources (2) are as independent as possible.
Unlike FastICA, this method only use second order statistics
based on the assumption that the sources are non-stationary.
Especially, this method assumes that the power of the sources
is time-varying and that these variations are not the same for
the different sources. Several covariance matrices, Ci, of the
recordings x(t) are computing using a sliding window. The
set {Ci}i of these matrices is then joint-diagonalized by a
single demixing matrix W so that

∀i, WCiW
T = Λi, (3)

where Λi is a diagonal matrix.
The assumption of this method is quite accurate for sEMG

as long as the intensities of the muscles involved in a
movement do not evolve in the same way (up to a scaling
factor).



C. Optimal filtering

Optimal filtering [6] is a semi-blind source separation
method in the sense that it requires a reference signal
corresponding to the recording of the sEMG when only the
target muscle is in contraction in addition to the record-
ings when several muscles are involved simultaneously. Let
x1(t) denote the sEMG when only the target muscle is
in contraction and x2(t) the sEMG when several muscles
are in contraction simultaneously. The optimal filtering aims
at estimating a demixing matrix W so that the estimated
sources (2) maximize the signal to signal-plus-noise ratio
(SSNR) defined as

SSNR(W) =
WΣ1 W

T

WΣ2 WT
, (4)

where Σ1 (resp. Σ2) is the covariance matrix of s1(t) (resp.
s2(t)). This method is quite similar to the joint diagonal-
ization method (Section II-B) since it is based on joint
diagonalization of only two covariance matrices. The main
difference is that the optimal filtering requires that one of the
two matrices is related to a time window during which only
the target muscle is in contraction. Moreover, the estimated
components with the highest SSNR are related to the target
muscles but the components with the lowest SSNR remain
mixtures of the other muscles. It is also worth noting that this
method needs a calibration in the sense that the sEMG must
be recorded when the target muscle is in contraction alone
to compute Σ1 in (4). This later requirement can be a major
drawback if the studied muscles are not biomechanically
independent.

III. EXPERIMENTAL PROTOCOL

The protocol was based on the Extensor Digitorum Com-
munis (EDC) muscle analysis for the index and the little
fingers (EDCI and EDCL). These muscles are in a close
area and are biomechanically independent [7], meaning it
is possible to isolate their respective involvement during
specific task requirements [8]. In the current paper, EDCI

and EDCL sEMG signals are acquired during extension
movements in given sequences.

A. Subjects

EMG signals were recorded on 10 healthy subjects includ-
ing 08 men and 02 women volunteers who signed a consent
form. These subjects are in good health and do not present
pathologies in the forearm. The average age is (28.5 ± 11.7)
years.

B. sEMG acquisition

The signals were recorded using an 8x8 size matrix
with an interelectrode distance of 10mm. The array was
placed on the forearm (Fig. 1.) following the instructions
in [9]. The skin had to be prepared by shaving it and then
applying the abrasive paste. The signals were amplified with
the Quattrocento (OT Bioelectronica, Torino, Italy) acquired
in monopolar mode at a frequency of 2048 Hz, digitally

converted (16 bit A/D converter) and bandpass filtered 10-
500 Hz. Two reference electrodes were placed on the distal
part of the ulna and radius, next to the wrist joint.

Each subject performed 10 extension movements with a
maximum amplitude for different finger tasks. Three tasks
were performed: 15s individual index extensions for EDCI ,
15s individual little extensions for EDCL, and simultaneous
30s finger extensions for both EDCI or EDCL. For simul-
taneous extensions, the task began with 5s rest, then 15s
of contraction of EDCI (versus EDCL) followed by 15s
contraction of EDCL (versus EDCI ) with 10s overlaping.
The recording stopped after 5s rest at the end.

Fig. 1. The 64-channel electrode grid (8x8 channels, 10 mm inter-electrode-
distance) used to record the sEMG activity from extensors of index and little
finger

C. Artificial Signal

Artificial sEMG signals were obtained from the real sig-
nals gathered from the individual contraction of EDCI and
EDCL. The different artificial mixtures are made by a tem-
poral sum of the signals of muscles of both fingers Fig. 2).

For each subject, 30 mixtures are obtained by summing
the index and little finger signals randomly selected from the
10 extension movements recorded separately.
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Fig. 2. Artificial mixture of one electrode on the 64. Top left (res. right):
signal sI(t) (resp. sLF (t)) corresponds to the extension of the index (resp.
little finger) alone. Bottom: artificial mixture x(t = sI(t) + sLF (t).

D. Choice of components

By applying each method on artificial mixtures, since
we have P = 64 sensors, we estimate 64 components
(i.e. y(t) ∈ R64). However, only a subset belong to the
signal subspace and the others to the noise subspace. We
are obviously interested in the first type of component that
we will have to select.
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Fig. 3. Four components yIk (t), k ∈ {1, . . . , 4}, of the index that
maximizes the signal to signal-plus-noise ratio (SSNR) out of the 64
estimates provided by the optimal filtering.

The interest of the artificial mixture is that we know its
composition precisely. As a result, from the power profile of
the target source that we would like to estimate, we are able
to choose the different estimated components. A comparison
is then made between the power profiles of the target with
those of the 64 components, leading to select those related
to the target signal. Let yI(t) ∈ RNI and yLF (t) ∈ RNLF

refer to the selected components when the index (NI ) and
the little finger (NLF ) are the target muscles, respectively.
Figure 3 shows 4 components selected after estimation by
optimal filtering applied on mixture presented Fig. 2 when
trying to extract activity related to index.

IV. RESULTS

In this section, the criteria used to numerically evaluate the
performance of the extraction methods are described before
the numerical results obtained on the data.

A. Metrics of evaluation

Classically to evaluate the performance of source separa-
tion methods, one can refer to the widely used criteria such
as signal to interference ratio or signal to distortion ratio [10].
However, they cannot be used on actual data such as sEMG
since they depend on the true sources si(t) which remain
unknown on actual sEMG (it would require to record the
electrical activity of all muscle fibers which is impossible).

To overcome this difficulty, we propose two numerical
criteria to quantify the performance of separation based on
the fact that in our experiment we have access to the sEMG
when single finger was in contraction (Section III). These
signals are denoted zI(t) ∈ RP and zLF (t) ∈ RP when
respectively the index and the little finger are in contraction
alone. Thus, the quality of separation is defined as the min-
imal θmin and maximal θmax principal angles [11] between
the subspace spanned by the selected components ytarget(t)
and the subspace spanned by the reference signals ztarget(t),
target refers to I (resp. LF ) if the index (resp. the little
finger) is the target muscle

θmin = min
k

acos(σk) (5a)

θmax = max
k

acos(σk) (5b)
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(a) Little finger (EDCL)
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Fig. 4. Performance of separation to extract the little finger (Fig. 4(a)) and
index (Fig. 4(b)). In each figure, the minimum (left) and maximum (right)
angles are presented for each method. Each box plot shows the median as
central red line, the bottom and top edges are the 25th and 75th percentiles,
respectively. The whiskers extend to extreme values and the outliers are
plotted as red crosses.

with {σk}k are the singular values of QT
y Qz , where Qy

(resp. Qz) defines an orthonormal base of the subspace
spanned by the selected components ytarget(t) (resp. the
reference signals ztarget(t)).

These two metrics are such that 0 ≤ θmin ≤ θmax ≤ 90◦,
and measure the closeness between the estimated compo-
nents and the reference signals. Indeed, an angle of 0◦ means
that the estimated components lies in the subspace spanned
by the reference signals while an angle of 90◦ means that
the estimated components are uncorrelated with the reference
signals. Consequently, θmin (resp. θmax) refers to the best
(resp. worst) estimated components: the closer to 0, the
better.

B. Numerical results on artificial mixtures of actual data

The three methods of extracting the target muscle, referred
to as ‘ ‘FastICA” for FastICA (Sec. II-A), “JDiag” for the
joint diagonalization of covariance matrices (Sec. II-B) and
“FiltOpt” for the optimal filtering (Sec. II-C), respectively,
are applied on artificial mixtures of actual sEMG as described
in Section III-C. 30 random mixtures of little finger and
index signals are created for each subject, leading thus to
270 artificial mixtures for each target muscle.

Figure 4 shows the quality of separation to extract the
little finger (Fig. 4(a)) or the index (Fig. 4(b)). As one can
see from the best estimation (θmin), for both index and little
finger as target muscle, the methods are ranked as FiltOpt
< JDiag < FastICA when looking at the median values,
where A < B means that A is better than B. It is also worth
noting that the consistency of the methods, measured by their
dispersion of performance (i.e. distance between the 25th and
75th percentiles), ranks the methods as FiltOpt < FastICA
< JDiag. As expected, FiltOpt leads to the best results but it
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Fig. 5. Number of selected components. Fig. 5(a): the little finger is the
target muscle. Fig. 5(b): the index is the target muscle. Each box plot shows
the median as central red line, the bottom and top edges are the 25th and
75th percentiles, respectively. The whiskers extend to extreme values and
the outliers are plotted as red crosses.

requires a calibration as detailed in Sec. II-C, while FastICA
and JDiag are fully blind methods.

When looking at θmax the optimal filtering still leads to
the best values. The larger values for JDiag compared to
FastICA can be explained by the number of components
selected by the different methods (Figure. 5). Indeed, as one
can see, the number of selected components is larger for
JDiag than for FastICA reflecting a better selectivity of the
latter method. As a consequence, it leads to incorporate more
noise than signal by selecting additional components. This
aspect can be improved by proposing a better selection of
components.

From these results, one can conclude that the optimal
filtering the best choice if a calibration session is possible. On
the contrary, the joint diagonalization of covariance matrices
should be used but the selection of the most accurate number
of components must be improved.

C. Illustration on actual mixtures

In this section, we are interesting in analyzing the per-
formance of the optimal filtering for actual mixtures of
several muscles. Indeed, in the original paper [6] presenting
the optimal filter for sEMG, only validation on artificial
simulated signals are presented.

In this section, the calibration data used to compute Σ1

(Sec. II-C) is different than the one used in the mixture
to compute Σ2. As illustrating in Figure 6, the optimal
filtering provides slightly disappointed results compared to
the artificial mixtures presented in the previous section.
Indeed, the power of the best component computed using
a sliding window of 100ms does not highlight a clear profile
in relation to the experimental protocol: the index (resp. little
finger) was in extension between 6s to 16s (resp. 11s to 21s).
One can see that the activities related to the index and to the
little finger are not well separated. If during the first part, the
activity of the index is well estimated, this is clearly not the
case during the period when the two fingers are in extension
(i.e. 11s to 16s).

V. CONCLUSIONS

In this paper, three source separation methods (Fas-
tICA [4], joint diagonalization of covariance matrices [5]
and optimal filtering [6]) have been compared to estimate
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Fig. 6. Illustration of estimated index activity from actual sEMG signal. On
top: best estimated component. On bottom: its related instantaneous power.

the activity of extensor digitorium communis muscle for the
index and little fingers.

The performance of these separation methods on real
sEMG signals but on artificial mixtures has shown that
optimal filtering lead to the best estimation, while JDiag is
slightly better than FastICA (FiltOpt < JDiag < FastICA).
However the optimal filter requires a calibration phase during
which the target muscle must be in contraction alone: this
can be difficult to achieve in real situation if the involved
muscles are not biomechanically independent to each other
as the muscles in the leg.

Applied on actual mixtures, the separation of the optimal
filtering does not clearly separate the muscles activities.
Some preliminary studies would tend to show that could
come from some inconsistency of the subspaces related
to the two muscles or from their proximity. This will be
investigated in future researches.
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