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Introduction

Modeling of ductile fracture has been essentially focused on void growth process. Constitutive models for plastic voided materials can be either based on micromechanics [START_REF] Rice | On the enlargement of voids in triaxial stress fields[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF], continuum thermodynamics [START_REF] Rousselier | Ductile fracture models and their potential in local approach of fracture[END_REF] or on variational bounds (Ponte [START_REF] Castaneda | Constitutive models for porous materials with evolving microstructure[END_REF][START_REF] Suquet | On bounds for the overall potential of power law materials containing voids with arbitrary shape[END_REF]. However, these models are unable to fu lly represent the actual fracture behavior of struc tural materials. For instance, the original Gurson model (Gur son, 1977 ) largely overestimates ductility. Therefore, these models were empirically modifi ed to account not only for void growth but also for both void nucleation and coalescence. Fol lowing these appr oaches, coalescence is assumed to begin when a critical void growth parameter is reached [START_REF] Mc Clintock | A criterion for ductile fracture by the growth of holes[END_REF]. This has been successfully applied to various problems using the Rice & Tracey growth model [START_REF] Rice | On the enlargement of voids in triaxial stress fields[END_REF] together with a critical void growth ratio (Rf Ro), [START_REF] Beremin | Cavity formation rrom inclusions in ductile fracture[END_REF]Lautridou and Pineau, 198 1;[START_REF] Marini | Experimental study of cavity growth in ductile rupture[END_REF]. Simi larly, (Tvergaard and Needleman, 1984 ) used the Gurson model together with a critical porosity f,. These critical paramete � s were initially considered as material constants. Recent theoreti cal and numerical results [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF][START_REF] Perrin | Contribution a l'etude theorique et numerique de la rupture ductile des metaux[END_REF][START_REF] Zhang | Analyzing ductile fracture using dual dilational constitutive equations[END_REF][START_REF] Brocks | Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic mate rials[END_REF] indicate that fc could be a fu nction of the stress state as previo � sly evidenced in [START_REF] Lautridou | Crack initiation and stable crack growth resistance in a508 steels in relation to inclusion distribution[END_REF]. Moreover, anses the question of the role of evolving microstructure, n ; iainly void spacing and void shape, on the coalescence at a given stress state. Experimental investigations on void coalescence (see e.g. (Garrison and Moody, 1987 a)) showed that, at least, two micro mechanisms, void impingement or void-sheet process, could lead to the final stage of dimpled fracture. In particular, inclu sion distribution has been shown to strongly influence the frac ture toughness of metals (Garrison and Moody,l 987b) for a given volume fraction of inclusions.

In the present study, the emphasis is laid on the determination of fc as a fu nction of stress state and the above microstructural parameter s. The calculated values are then used in a Gurso � like model fo llowing (Tvergaard and Needleman, 1984). It 1s believed that, using this approach, fc can be determined from measured microstructural data, instead of being fi tted from ex perimental macroscopic load-displacement responses. Void coalescence by void-sheet mechanism has been theoretically analyzed in [START_REF] Leblond | Analytical study of the coalescence of cavities in ductile frac ture of 1netals[END_REF]. Thomason (Thom ason, l 985b) used a quite different approach in which coales cence is the result of necking down of the intervoid matrix. The critical porosity is derived from both models as being a fu nction of stress triaxiality.

The present paper first reviews the different micromechanical models for coalescence. Their ability to incorporate void shape and spacing is discussed. The models are then applied to predict the anisotropic fracture of two hot worked steels containing large manganese sulfide inclusions elongated along the primary working direction. Such steels exhibit a strong anisotropic be havior of both plastic fl ow and ductility. Finite element calcula tions were performed to model the behavior of notched speci mens. The constitutive equations are based on a Gurson-like model which incorporates plastic anisotropy [START_REF] Doege | Prediction of necking and wrinkling in sheet-metal forming[END_REF][START_REF] Benzerga | Modele couple comporte ment-endommagement ductile de !Oles anisotropcs[END_REF]. Critical void volume fraction for the onset of coalescence is based on the previous models as a fu nction of stress triaxiality ratio and the mean particle spacing.

Coalescence Modeling

The growth of spherical voids can be described by the widely used Gurson model. This model is defined by a plastic potential (]_) ( :E, f) together with an evolution law of the damage parame ter, namely the porosity f, according to:

ij_)(:E, f) = (X (f ))2 + 2q f cosh (�YX (f )) -1 -(qf)2 = 0 (1) df = � q f (1 -.f) sinh ( � 3' X ( .f) ) ( 2) dEeq 2 X(f)
2 where X = Leql er y, Leq being the macroscopic equivalent stress and er Y the yield stress of the sound material; 3' = "£.ml Leq is the stress triaxiality ratio, "£,,, the hydrostatic stress and q a coeffi cient reflecting void interactions [START_REF] Tvergaard | Influence of voids on shear band instabilities under plane strain conditions[END_REF].

Equation ( 2) is deduced from mass conservation and the macro scopic normality rule. Eeq is the macroscopic equivalent plastic strain.

It is worth emphasizing that the Gurson model, as many others, is not a fu lly predictive approach to fr acture. These models describe the overall behavior of a voided solid. Purely empirical coalescence modeling was attempted (Tvergaard and Needleman, 1984) in or der to incorporate some failure criterion in the Gurson model, by assuming an effective porosity f * 1 which reflects increasing cavitation after the onset of coales cence.

In this section, we are interested in predictive models of the onset of coalescence. Two types of models, based on a priori different concepts, are considered. The first one considers the coalescence as a bifurcation behavior in a pressure-sensitive material. The second type of model is also based on an instabil ity condition which expresses that coalescence occurs by a plas tic limit-load mechanism in the ligament between cavities.

To assess the ability of each type of models to incorporate void shape effects, a recently proposed micromechanical model accounting for void shape evolution [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids-case of axisymmetric oblate ellipsoidal cavities[END_REF]Gologanu et al., 1995) was used. This model provides constitu tive equations of transversely isotropic porous plastic materials containing aligned spheroidal voids and subject to axisymmetric loading conditions. The model does not accurately account for cavity rotation in off-axes tension for which the principal stresses are not aligned with the symmetry axes (Benzerga et al., 1997).

The model is formulated in terms of a Gurson-like plastic potential <P w:

with X cosh ( K�h) -(g + 1) 2 -q �v(g + f) 2 (3) I: h = a2(L11 + L22) + (l -2a2)L33 (4)
a Y is the matrix flow stress, :E ' the deviatoric part of :E , 11-11 the von Mises norm, I:h a weighted average of the principal stresses, X a constant tensor, and C, 'f/, g, K and a2 are coefficients which depend only on the porosity f and the void aspect ratio W defined hereafter while a1, af and qw depend on W only. The third direction corresponds to the common axis of the voids.

The evolution law of f is derived using mass conservation and macroscopic normality as in the original Gurson model. Denot ing D the plastic strain rate tensor and D' its deviator, the evolution of the void aspect ratio is governed by:

( 1 -3a1 )

+ 3 f + 3a 2 -1 D,,, (5) 
where D,,, and D 33 are the mean part of D and the D '-component parallel to voids respectively. See (Gologanu et al., 1995) for full expressions of W -functions and h!T ( :Y).

Preliminary studies using this model for different propor tional stress states and initial void aspects ratios are presented elsewhere [START_REF] Benzerga | Anisotropic ductile rupture[END_REF].

2.1 Localization-Based Coalescence Model. Constitu tive models for plastic porous metals [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF][START_REF] Rousselier | Ductile fracture models and their potential in local approach of fracture[END_REF] are primarily attractive for their capability to be used in strain-localization analyses. Attempt was made [START_REF] Yamamoto | Conditions for shear localization in lhe ductile fracture of void-containing materials[END_REF] to investigate the theory of the localization of deforma tion in dilatant materials [START_REF] Rudnicki | Conditions for the localization of defor mation in pressure-sensitive dilatant materials[END_REF] in the case of a Gurson material. Predictions of ductility were, however, well in excess in comparison with experimental values [START_REF] Edelson | The effect of second phases on the mechanical properties of alloys[END_REF]. The previous approach suffers from con sidering an homogeneous distribution of voids during deforma tion. Experimental observations [START_REF] Pineau | Review of fracture micromechanisms and a local approach to predicting crack resistance in low strength steels[END_REF] array of voids (Fig. 1), [START_REF] Leblond | Analytical study of the coalescence of cavities in ductile frac ture of 1netals[END_REF] (see also [START_REF] Perrin | Contribution a l'etude theorique et numerique de la rupture ductile des metaux[END_REF]) proposed a coalescence crite rion with the following assumptions: ( d 1 ) Axisymmetric load ing conditions are assumed (Fig. 1 ) . The stress state is then proportional and characterized by the triaxiality :Y. It is worth noting that (d 2 ) is not restrictive since strain hardening has little effect on critical porosities [START_REF] Perrin | Contribution a l'etude theorique et numerique de la rupture ductile des metaux[END_REF].

Assumption ( d 4) introduces the concept of a local porosity,J;,, that of the highly porous layers. In order to evaluate J;,, Perrin [START_REF] Perrin | Contribution a l'etude theorique et numerique de la rupture ductile des metaux[END_REF] assumed that voids are isotropically distributed when stacking the highly porous layers, which leads to J ;, = f A.

(see Fig. 1). A. is the current height to radius ratio of the unit cell (Fig. 1). ( d4) enforces the localization to occur in a hori zontal plane such that no prediction of the localization direction is done. To write the localization condition, we introduce the mesoscopic stresses in the porous layers I: W = � W and I: W = 1:33 (axial equilibrium). Let 'Y = I: W la Y and sh and c h the hyperbolic sine and cosine of (�(.cl + �) X (f) + 'Y) .

The porous layer is plastically deforming so that the local stress tensor I:if1 obeys the Gurson criterion written using the local porosity f <r'i:

<P(:E<Pl , j <Pl ) = ((:Y + � )X ( f) -y) 2 + 2qffP)ch -1 -q2( . f(p))2 = Q (6)
The coalescence condition then writes [START_REF] Perrin | Contribution a l'etude theorique et numerique de la rupture ductile des metaux[END_REF]:

3( 1 -v) i q2 (1 -f 1fll ) J<Pl sh(ch -qf <Pl ) = ((Y + � )X(f) -'Y -qf<Plsh) 2 (7)
In the case of metallic materials a y! E is small, so that the left-hand side of the previous equation can be neglected. In that case, the localization condition expresses the fact that the lateral flow rate in the plastically deformed layer is equal to zero. This is consistent with the fact that the sound layers become rigid.

As a summary, coalescence occurs when condition (7) is observed with respect to Eqs. (I) and (2) for the macroscopic behavior and Eq. ( 6) for the mesoscopic behavior. The localiza tion based model described above is referred to as model (£') in the sequel.

Finally, as far as the incorporation of void shape in the previ ous localization fr amework is concerned, one should note that the yield surfaces derived from (Gologanu et al., 1995 ), Eq. ( 3) are not isotropic. The use of the Rudnicki and Rice's analysis is then no longer appropriate. The analysis extending that work to anisotropic materials, due to Ottosen and Runesson (Ottosen and Runesson, 1991), increases the complexity of the model and hence is not addressed in the present study.

2.2 Plastic Limit-Load Coalescence Models. The sec ond model [START_REF] Thomason | A theory for ductile fracture by internal necking of cavities[END_REF][START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] assumes that coalescence initiates when the intervoid ligament reaches its plastic limit-load. At this stage plastic fl ow becomes highly localized. Unit cell calculations [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF] gave further support to Thomason's ideas. The coalescence con-. dition can then be easily written by considering the equilibrium of the ligament (see Fig. l ) :

(8)

The force in the loading direction expressed in the ligament region (left-hand side ) must be equal to the force applied on the cell boundary (right hand-side ). The cavity induces a stress concentration in the ligament thus increasing the ligament stress triaxiality. The load-carrying capacity of the ligament is there fore increased. This effect is described by the plastic constraint fa ctor 'fi1 in the previous equation. In the case of the axisymme tric cell depicted on Fig. 1, 'fi1 can be derived using the upper bound theorem for limit-load analysis (Thomason, 1985b ):

'fi1 = 0.1 ( L �' R J-2 + 1.2 ( �x)-11 2 (9 ) with W = RJ Rx. Noting that I.33 = (� + Y)I.eq• the coalescence condition is expressed as: R� Lz A,,<fl1 = (� + !Y)X (f ) with A,, = 1 ( 10)
A,, is the matrix area fr action in the loading direction and X ( f) is still defi ned as the ratio 'Le/ a Y . Thomason' s criterion for coalescence is purely based on geometrical considerations. It can then be applied noting that:

( 11)

where A = HI L can be derived from the macroscopic deforma tion and the initial value Ao. Evolution of porosity, void shape and remote stress fi eld I.u must be derived using an appropriate model to apply the coalescence criterion.

The model, referred to as ( [J} !t 1), was first applied assuming (Thomason, 1985a ): ( d 2 ) perfect plasticity, ( d 5) that voids are initially spherical, ($6) that the porosity remains constant, ( d 7 ) that the overall behavior is obtained applying the law of mixture Leq = ( If) ay or X ( f) = If. These assumptions are the consequence of the use of a void growth model for isolated voids [START_REF] Rice | On the enlargement of voids in triaxial stress fields[END_REF] assuming incompress ibility. In addition, the cavity shape change was accounted for by Thomason using an integration of the Rice and Tracey equa tions.

However, this model has two major drawbacks: ( 1 (Thomason, 1985a), (81'£2) accounting for com pressibility [START_REF] Zhang | Analyzing ductile fracture using dual dilational constitutive equations[END_REF], (81'£3) accounting for void shape effect (this paper). Equivalent strain• Triaxiality curves.

net decrease of the macroscopic equivalent stress, see e.g., [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF]. This leads to an underestima tion of the ductility. It is worth mentioning that a variant of model ( fY !tl ) has been used to predict the fa ilure of copper notched bars [START_REF] Pardoen | Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars[END_REF]. This version still contains some of the drawbacks mentioned above because of the implicit assumption of incompressibility.

In order to overcome these drawbacks, Zhang and Niemi [START_REF] Zhang | Analyzing ductile fracture using dual dilational constitutive equations[END_REF]) used the Gurson model to compute both f and X (f), from Eqs. (l) and ( 2), as a function of the load history characterized by 3'. The limit-load criterion Eqs. ( 9) to ( 11 ) , is then used (model ( fY !£2)) . In that case, due to the use of the isotropic Gurson model, cavities are necessarily assumed to be initially and to remain spherical (W = R,I R, = l).

Alternatively, a new and original approach is proposed. Void shape effects are fully accounted for using the constitutive model defined by Eqs. (3 ) and ( 5). The limit-load criterion is then applied without any approximation on the void shape. This approach, ( [J} !£3 ), is used in order to emphasize the role of void shape in the coalescence modeling.

Theoretical Fracture Strains and Porosities

The aim of this section is fi rst to present numerical results for a wide range of stress triaxiality ratios and initial void volume fractions, using the four above models. Then, the effect of initial void spacing, characterized in axisymmetric configurations by a single parameter Ao, is also investigated. For that purpose, the sets of equations (1,2,6,7) for model (!£ ) and (1,2,9,10,11) for models ( fY !t 1) and ( fY !£2) were solved numerically using the MAPLE software. Finally, some preliminary results obtained using the new model ( fY !£3 ) accounting for void shape effect are presented. All calculations based on the Gurson model were made with q = 1.35. This value was selected in order to compare the present results with published data [START_REF] Leblond | Analytical study of the coalescence of cavities in ductile frac ture of 1netals[END_REF]. Commonly used values of q range from 1 to 1.6. It was checked that the presented trends are independent on the selected value. 
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Stress lfiaxia l ffy 2•5 3 hand, at high triaxialities or high initial porosities, ( rzfJ 22) pre dicts a higher ductility. This is due to a larger decrease of the macroscopic stress Leq so that the load on the intervoid ligament is smaller thus preventing early coalescence. Note that ( fJ7121) assumes that L,q remains constant as the porosity is not chang ing. This improvement, due to accounting for compressibility, is actually questionable since a spherical void growth is as sumed. One should however notice that for the intermediate triaxiality :Y = 1.5, initially spherical voids do grow spherically without shape change, see for instance [START_REF] Budiansky | Void growth and collapse in viscous solids[END_REF] and [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF]. Hence for that triaxiality, the evolution of the void is exactly described by the Gurson constitutive model. It is then concluded that the obtained results are not an artefact that may be due to a poor description of void shape change, but essentially due to accounting for compress ibility.

A more accurate description of void shape effect is provided by model ( rzfJ 23). Ductilities assessed from this model are also indicated on Fig. 2. At low triaxiliality ( :Y < 1), the new model gives intermediate ductilities. This is due to the fact that: ( 1 ) spherical voids tend to become prolate thus increasing the duc tility [START_REF] Benzerga | Anisotropic ductile rupture[END_REF] in comparison with (,qil22); (2) the evolution of the porosity is accounted for, thus leading to more realistic ductilities in comparison with ( rzfJ 21). For :Y = �. it is worth noting that coalescence does not occur, which is consistent with recent unit cell calculations [START_REF] Gologanu | Etude de quelques problemes de rupture ductile des metaux[END_REF].

Therefore, the use of model ( rzfJ 22) (which neglects shape change effect) leads to a wrong result for that triaxiality. Note that smooth tensile bars ( :Y = �) usually fail after necking, which locally increases the stress triaxiality. In Fig. 2, we can compare the calculated curves with a straight line of slope -�. This value is easily found from the application of growth models (Rice and Tracey, Gurson) assuming that fracture occurs for a constant critical void growth ratio. The results given in Fig. 2 clearly indicate that this assumption does not apply for all values of stress triaxiality. 2) for :Y = 1, 2 and 3 [START_REF] Perrin | Contribution a l'etude theorique et numerique de la rupture ductile des metaux[END_REF] has shown a very good agreement with results obtained from unit-cell calculations [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF]. Further results are shown in Fig. 3 (a), for a wide range of fo values in an initially isotropic material (Ao = 1). Critical porosities are plotted against stress triaxiality. A similar set of curves obtained using model ( rz!J 22) is shown in Fig. 3 ( b).

Comparison of

The general trend is the same for both models. For a given material (j�, Ao), the critical porosity-stress triaxiality curve delimits a domain in which coalescence cannot occur. Each curve exhibits a maximum reached for a value of triaxiality, :Y;, dependent on fo. :Y; increases when the material becomes "cleaner" (i.e., for low fo ).

One should note that Jc-values deduced from (rz!J22) are somewhat lower than those predicted from (2), thus leading to relatively lower predicted ductilities. Note also that for highly clean materials (for instance, for high strength steels containing MnS inclusions, with o/oS < 20 ppm, i.e., fo < 0.01%), the onset of coalescence is almost independent on the stress state for :Y > 1.5.

3.2.2

Effect of Void Spacing. Initial void spacing effect is illustrated in Fig. 4 where predictions from both approaches

(2) and (rz!J22) are compared. There is actually a difference in predicted fc values between ( 2) and ( rz!J 22) models even though the difference becomes less significant for high values of A0• But the main feature evidenced in Fig. 4 remains the drastic effect of void distribution on ductility according to both models. This result suggests that the macroscopically observed anisotropic fracture of rolled plates for instance, may be partly due to an anisotropic distribution of particles nucleating voids. Moreover, Fig. 4 shows that the asymptotic critical porosity value, reached at high triaxialities, and observed in Fig. 3 ( b) is dependent only on the initial distribution of voids Ao. The;; limit value decreases with increasing Ao (Fig. 4).

3.3

Effect of Void Shape. The aim of this part is first to determine the corrections that may be brought by the incorpora tion of void shape change to the results predicted by model (rz!J22). It is then to study, within a representative stress state range, the effect of the initial void shape on strains and porosi ties at coalescence.

This study is made possible using the constitutive model incorporating void shape effects ( Gologanu et al., 1995) to gether with the plastic limit-load coalescence criterion. This model was implemented [START_REF] Benzerga | Anisotropic ductile rupture[END_REF] in the fi nite element code ZeBuLoN7 [START_REF] Besson | Large scale object oriented finite element code design[END_REF]. Details of the fi nite element implementation will be given elsewhere. The coalescence model has also been implemented as a post processor. This implementation allows for a continuous evalua tion of the coalescence criterion with evolving stress, strain and microstructural parameters f and W.

A series of calculations have been performed on a representa tive volume element. In order to keep a given stress triaxiality ratio, the stress state was controlled using Riks' algorithm [START_REF] Riks | An incremental approach to the solution of snapping and buckling problems[END_REF]. As mentioned above, no coalescence is predicted by the new model for a triaxiality of �. Classical approaches similar to ( .9 £'2) give a wrong prediction because they still consider that void growth is governed by the mean stress since they assume that voids grow spherically. The explanation of this particular behavior for Y = �. is that voids elongate along the principal straining direction and tend to become cylindrical ( W ---> oo ) .

Since the growth of cylindrical voids is governed by the mean lateral stress [START_REF] Mc Clintock | A criterion for ductile fracture by the growth of holes[END_REF][START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] , which is equal to zero in uniaxial tension, porosity remains constant. As a consequen,ce, the coalescence condition ( 10) is no longer reached. More generally, the influence of void shape change seems, as expected, to be significant at low triaxiality Y < 1.

By assuming spherical void growth, model ( fl' £'2), one under estimates both the critical porosity and the strain at coalescence.

However, for a triaxiality Y "" 3 frequently encountered at a blunted crack tip in plane strain conditions, the evolution of void shape has little effect.

Effect of Initial Void Shape.

As an extension of the finite element simulations of unit-cells containing spherical voids [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF][START_REF] Brocks | Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic mate rials[END_REF]Golo ganu, 1997) , Sovik and Thau low ( 1997) performed analogous simulations with different initial void aspect ratios ranging from Wo = ± to Wo = 3, and an initial porosity of 0.02%. Two stress triaxialities were considered Y = 1 and Y = �. These simula tions are a reference to investigate the ability of the new model ( fl' £'3) to correctly predict the onset of coalescence. Our pre dictions are given using a q parameter of 1.6. This value was recommended in the use of the constitutive model incorporating void shape effects [START_REF] Gologanu | Etude de quelques problemes de rupture ductile des metaux[END_REF]. Table 2 shows the com parison between the predictions of model ( fl' £'3) and the unit cell results. For Y = 1, a small increase in predictedf;.-values with Wo is observed, whereas results of Sovik and Thaulow [START_REF] Sovik | Growth of spheroidal voids in elastic plastic solids[END_REF] suggest a moderate decrease of.fc. This small difference may be due to the difficulty to determine the porosity value when coalescence occurs in the cell calcula tions. It is worth noting the excellent correspondance between the macroscopic equivalent strains at coalescence. This is ob tained without any adjustment of the model parameters.

Further results are presented in Fig. 5 for a wider range of initial void aspect ratio W0• Three triaxiality values are consid ered: Y = 0.8 and Y = 1 that prevail in moderately (severely, resp.) notched bars and Y = � for a crack tip. At high triaxiality, it appears that the effect of inclusions morphology is negligible, whereas the influence of inclusions spacing is not. At Y = 0.8 however, a net increase in the strain at coalescence with W0 is observed for both values of the inclusion spacing ratio.

Table 2 Coalescence parameters "i�l and f0 for various initial shapes.

Comparison between unit-cell FE-calculations [START_REF] Sovik | Growth of spheroidal voids in elastic plastic solids[END_REF] and our model with q = 1.6.

Coalescence

T-1 
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Initial void shape, ln (W o ) Materials. Two materials were investigated. The first one, labeled A, is a ferritic-pearlitic steel of grade X52 cut from a rolled sheet of lO mm thickness. The main elements of the chemical composition are (C = 0. 17, S = 0.009, Mn = 1.23, Nb = 0.0038 wt%). The second material, B, is a forged A508 steel (C ""'0.15, S = 0.010, Mn= 1.47, Al= 0.029 wt%) used in nuclear pressure vessel construction [START_REF] Lautridou | Crack initiation and stable crack growth resistance in a508 steels in relation to inclusion distribution[END_REF] . Its microstructure is essentially tempered bainite. Both materials were given different hot working schedules leading to different anisotropic behavior. These materials contain similar amounts of sulfur and manganese. Steel A exhibits an aniso tropic plastic fl ow whereas B is isotropic. A and B also differ in the morphology of MnS inclusions they contain. Of interest are both materials since MnS particles have a low interfacial strength, thus nucleating voids at very low strains. This allows to circumvent some of the problems related to void nucleation [START_REF] Beremin | Cavity formation rrom inclusions in ductile fracture[END_REF] and to concentrate on issues of void growth and coalescence. In the following, L will denote the primary working direction which is either the rolling direction (steel A) or the longitudinal forging direction (steel B), T and S the transverse and the short transverse directions respectively. L, T and S represent the three principal directions of orthotropy of material A. LT corresponds to the orientation at 45 deg to L axis in L-T plane. The tensile properties of both materials are summarized in Table 3.

Inclusion Characterization.
High resolution optical micro scope images of polished sections taken at lOOOx were analyzed to determine the inclusion volume fraction and mean inclusion dimensions. For both materials, the observed plane sections, denoted (L), (T) and (S), were perpendicular to the three principal directions of the materials, L, T and S respectively.

Most of the observed inclusions were elongated MnS particles.

In steel A, some Niobium carbides of size lying between 0.1 µm and 5 µm were also observed. In addition to MnS particles, steel B contained also a small amount of tiny oxides. Both carbides and oxides differ from MnS inclusions in both size and shape. They are spherical as they do not deform during hot working.

Only particles greater than 2 µm were analyzed. The volume fraction was determined using the methodology followed by others [START_REF] Mudry | Etude de la rupture ductile et de la rupture par clivage d'aciers faiblement allies[END_REF][START_REF] Batisse | Ductile fracture of A508 Cl3 steel in relation with inclusion content: the benefit of the local approach of fracture and continuum damage mechanics[END_REF]. The results are summarized in Table 4. The mean area fraction f;,, averaged from the values of the inclusion surface per unit area in each plane, .S!(,, can be compared to the volume fraction, Vu, inferred from the chemical composition using Franklin's relationship [START_REF] Franklin | Comparison between a quantitative microscope and chemical methods for assessment of non-metallic inclusions[END_REF]. Average 3D dimensions, D; , and the volume fraction of inclusions,.fu, were determined by stereological for mulae, see [START_REF] Lautridou | Crack initiation and stable crack growth resistance in a508 steels in relation to inclusion distribution[END_REF]. On this basis, it is noted that the voids associated with MnS inclusions of steel A are more elongated than those in steel B .

Ductility Measurement on Notched Bars. In order to study ductility anisotropy in proportional loading conditions, tensile tests on axisymmetric notched bars, cut in several orientations, were carried out. These samples are labeled AERx with x being equal to ten times the ratio of the notch radius to the nominal minimum diameter. Three geometries corresponding to three different notch radii were used. The most severely notched spec imen, AER2, exhibits the higher stress triaxiality. For each test, both principal diameters in the minimal section, iP, and iP2, were measured. <I>1 was the actual diameter along the short transverse direction S. The mean strain is defi ned as: € = In (iP6/(iP1<I>2)), where <Po is the initial diameter. Mean strains to failure €1 are reported in Table 3. For steel A, it is worth noting that the decrease in €1 with increasing stress triaxiality is much slower for L-loading than for T-or LT-loading. On the other hand, the comparison between A and B shows that ( 1) A is more ductile than B and ( 2) in L-loading, the decrease in ductility with stress triaxiality for steel B is more rapid. For instance, €1 in AERlO specimens is more than twice higher in comparison with €1 in AER2 specimens. These results can be explained by the synergistic effects of both inclusion spacing and inclusion shape.

Observations. In steel A, longitudinal cross-sections of tested AER specimens were performed to characterize damage by void growth to coalescence. For loading along T, all the observed coalescence situations occurred by void impingement. Figure 6 (a) illustrates a knifedge separation between two cavit ies as being the final stage of a coalescence by internal necking (Thomason,l 985b). For L-loading, elongated voids tend to at the center of the specimen where the stress triaxiality is the highest. Clearly, the coalescence mode depends on the loading direction. One should note however that, whatever the loading direction, fi nal failure in a notched bar occurs by the propagation of a macroscopic crack initiated at the center of the specimen.

Finite Element Simulation

Input Data. In this section, we try to predict the failure of AER specimens in steel A using models accounting for inclu sion spacing. The Gurson model is used together with critical porosities inferred from coalescence models ( £') and ( .1P £'2).

Accounting for• void shape would require additional develop ment of our finite element software. For that purpose, further assumptions have to be made to use models ( £') and ( .1P .22) restricted to axisymmetric void distributions, Fig. 1. We use a constant initial porosity characteristic of the material, equal to the volume fraction of inclusions j; (Table 4). Here, the idea is to assume a A.6Xl value related to the tensile direction X. We adopt the following empirical extension to non-axisymmetric cases of the spacing ratio: Ab x J = dxlV(dydz), where dx is the mean distance between inclusions along X-direction and Y -Z is the plane of normal X. Figure 7 illustrates a typical idealized distribution of MnS inclusions in the investigated materials. Based on preliminary observations, we assume that the ratios drl dL and dLI ds in steel A are of the order of 4. Indeed, align ments of MnS inclusions are frequently observed along L direc tion, which suggests that 1) the inclusions are more closely packed in the thickness of the plate and 2) di < dr although inclusions have larger L dimensions (DL > Dr). A.bx) values inferred from this assumption are reported in Table 5. Critical porosities were calculated using the triaxiality values existing in the center of the specimen, for both coalescence models. For instance, :Y = 0.8 for AERlO specimens and :Y = 1.4 for AER2 specimens. j� values are also reported on Table 5. After the onset of coalescence, the phenomenological modification of the Gurson model (Tvergaard and Needleman, 1984) was used with f * = .f + f; (f -.f.) where f; = 8. However, results on AER specimens were found to be almost independent on the value off; for 8 > 10.

Si mulation. Fully 3D calculations of AER specimens ac counting for plastic anisotropy were made using ZeBuLoN7 software [START_REF] Besson | Large scale object oriented finite element code design[END_REF]. Quadratic quadrilaterals subintegrated elements with updated Lagrangian finite strain formulation were used. Figure 8 shows the meshes of two calcu lated specimens: a mildly notched one AER lO and a severely notched one AER2. In order for the elements in the minimal section to be roughly square at the initiation of fracture, the element size was 0.5 X 0.5 X 0.25 mm3.

A recent theoretical extension of the Gurson criterion to the case of orthotropic materials [START_REF] Benzerga | Modele couple comporte ment-endommagement ductile de !Oles anisotropcs[END_REF] was used.

Matrix yielding obeys Hill's criterion while the isotropic hard ening law is fitted for L-direction. [START_REF] Benzerga | Modele couple comporte ment-endommagement ductile de !Oles anisotropcs[END_REF]. However, Fig. 9 shows that numerical simulations tend to overestimate the load, in particular at high triaxialities. The results shown in Fig. 9 are those obtained using .f. values inferred from the plastic limit-load model ([17>£'2).

The correspondance between calculated and experimental re sponses is reasonable, whatever the loading orientation. It is worth emphasizing that no adjustment of micromechanical pa rameters is done; predicted critical porosities values are only used. These encouraging results strongly suggest that account ing for void spacing could, even partially, explain the aniso tropic fracture properties of steel A.

Finally, Fig. 10 shows the correspondance between experi mental and calculated mean strains to failure obtained using 9 ( b). This suggests that the effect of inclusion shape, and not only particle spacing, remains central in anisotropic ductile frac ture [START_REF] Benzerga | Anisotropic ductile rupture[END_REF].

Concluding Remarks and Discussion

(1) From a practical point of view, the anisotropic ductile fracture evidenced in both materials A and B can be explained by synergistic effects of inclusion shape and inclusion spacing. In this paper, the emphasis was laid on the inclusion spacing effect represented by the parameter A. 0 • This effect was studied separately from the void shape effect since its influence is only on the onset of coalescence and not on the cavity growth stage.

An approach was proposed to model the anisotropic ductile rupture by considering different coalescence loci in relation to loading direction. However, in spite of the good agreement between experimental and predicted results, we are aware of the numerous limitations of this approach. The most important is the void shape effect neglected in predictions of models(£') and (PJ£'2). The observed discrepancy, in T-loading at high triaxiality, between experimental and calculated results is likely due to the inclusion shape effect. Indeed, the observed decrease in €1 values with stress triaxiality, Table 3, is not well repre sented by the applied approach. Recently, inclusion shape effect on void growth was analyzed using a micromechanical model [START_REF] Benzerga | Anisotropic ductile rupture[END_REF]. It was shown that the decrease in ductility is actually more rapid when the macroscopic loading is perpendicular to the common axis of the voids. This is in agreement with the data of Table 3 for both steels A and B.

Further evidence of the influence of inclusion shape can be deduced from the comparison between the fracture properties of steels A and B. Both of them contain comparable amounts of sulfur and manganese elements and have similar hardening exponents (""0.13 ). They essentially differ in the mean inclu sion shape. Of course inclusions distributions may also be dif ferent. An attempt was made to predict "E1 in notched bars of steel B using different values of the spacing ratio parameter. No convenient values have been found using an estimation of :>-.i/l from the material processing data [START_REF] Lautridou | Crack initiation and stable crack growth resistance in a508 steels in relation to inclusion distribution[END_REF].

It is felt that if the differences in particle shape between both materials (Table 4) were properly taken into account, then a better agreement would be achieved, as suggested from the theoretical results given in Fig. 5. In a fu ture work, we will use model ( 2'9P3) to perform fi nite element simulation of notched bars.

( 2) From a theoretical point of view, two main ideas in the work on coalescence modeling should be underlined. The first one arises from the crucial role of stress triaxiality not only on void growth but also on coalescence. In addition, in both approaches (£') and (9P 2'2), the idea of a deformation-induced cavitation inhomogeneity is introduced. This is expressed by the achievement of a. plastic limit-load in the ligament between cavities (model ( 9P 2'2 )) or by the rigidity of some compact zones that separate porous layers (model ( £')) . A mathematical evidence of the theoretical equivalence of both approaches was made [START_REF] Gologanu | Etude de quelques problemes de rupture ductile des metaux[END_REF] . The observed differences between both of them are mainly due to different geometrical assump tions.

In the present study, an attempt was made to investigate the effect of some microstructural parameters. The first metallurgi cal parameter investigated is the volume fraction of inclusions f0• The obtained values off,. lead to realistic values of ductility, in accordance with experimental results [START_REF] Edelson | The effect of second phases on the mechanical properties of alloys[END_REF]. Moreover, the influence of the initial void distribution characterized by the particle spacing ratio Ao was shown to be prevalent at high triaxialities where a relative insensitivity to fo is evidenced. It was also shown that the corrections brought by the incorporation of the void shape effect are mainly useful for low and intermediate stress triaxialities. These results suggest that, for crack modeling, the most important metallurgical pa rameter is the void spacing. For low triaxiality however, the effect of void shape is crucial. The attempt to derive a unique critical porosity, for instance, through the simulation of a smooth specimen using classical models assuming spherical void growth is vain. Two reasons can be given: ( 1) in the general case, the critical porosity at coalescence evolves with stress state. ( 2) classical approaches based on the Gurson model lead to wrong predictions at triaxialities close to �• It is worth noting that the effect of particle spacing has re ceived less attention in the literature. This effect has been, in particular, studied in modeling crack initiation, see [START_REF] Rice | Inelastic behavior of solids, The role of large crack tip geometry changes in plane strain fracture[END_REF] , [START_REF] Lautridou | Crack initiation and stable crack growth resistance in a508 steels in relation to inclusion distribution[END_REF] , Garrison and Moody ( 1987b) . The influence of the particle spacing itself instead of a dimensionless parameter, as defined here by :>-., is questionable. Some elegant experimental studies (Garrison and Moody, 1987b;[START_REF] Garrison | Effects of inclusion distributions on the fracture toughness of structural steels[END_REF] have actually shown an effect of the void spacing itself. However, limitations in the correlation between fracture toughness and mean inter-particle distance in a plane perpendicular to the crack front have been underlined [START_REF] Lautridou | Crack initiation and stable crack growth resistance in a508 steels in relation to inclusion distribution[END_REF] . Clearly this indicates that further studies are necessary to show if only nondimen sional distance parameters can be used to model coalescence in ductile fracture. In addition, in many materials, coalescence is driven by the formation of a second population of cavities lead ing to void-sheet mechanism. The models presented in this study do not strictly apply to this situation.
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  Fig. l. This introduces the concept of a deformation-induced heterogeneity. Coalescence occurs when the localization condi tion (Rudnicki and Rice, 1975) is fulfilled in the porous layers which correspond to the mesoscopic scale of the model.
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 2 Fig.2Numerical results using plastic limit load models: (81' £1) original model of Thomason(Thomason, 1985a), (81'£2) accounting for com pressibility[START_REF] Zhang | Analyzing ductile fracture using dual dilational constitutive equations[END_REF], (81'£3) accounting for void shape effect (this paper). Equivalent strain• Triaxiality curves.
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 1 Comparison of the Plastic Limit-Load Models. Fig ure 2 illustrates the first drawback of the original Thomason' s model ( fY !tl ) for triaxialities between � and 3 and /0 = 0. 13% which is commonly used in unit-cell calculations. Accounting for compressibility improves results at low triaxialities for which model (fY!tl ) predicts infinite ductilities. On the other0
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 3 Fig. 3 Critical porosity-Triaxiality curves using (a} model(£'} and (b} model (lli'£'2)

  Localization, And Limit Load, Based Models 3.2.1 Effect of Inclusion Volume Fraction. Numerical in tegration of the equations of model (
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 4 Fig. 4 Critical porosity-Triaxiality curves for various initial void distri butions
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 5 Fig. 5 Equivalent plastic strain at coalescence E i�1 versus initial void shape W o for various stress states and two inclusion spacing ratios
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 4 Quantitative metallography. (*)refers to MnS only;(**) data taken from(Lautridou and Pineau, 

Fig. 6

 6 Fig. 6 Typical coalescence modes observed in steel A (a) T-loading (b) and (c) L-loading. Arrows indicate the loading direction.

Fig. 7

 7 Fig. 7 Schematic representation of MnS inclusions distribution in steel A impinge along the vertical direction as illustrated in Fig. 6 ( b) and ( c). The situation in the micrograph Fig. 6 ( b) is observed

Fig. 8

 8 Fig. 8 Finite element meshes. (a) AER10; (b) AER2for L-and T-loading; (c) AER2 for LT-loading

Results.Fig. 9

 9 Fig. 9 Mean stress versus mean strain £. Experimental and calculated curves. (a) L, (b) T, (c) LT.

  Fig. 10 Calculated (E'�"1) and measured (E';xP) mean strains to failure

  both models ( £') and ( [!} £'2). Predictions of model ( [!} £'2) are closer to the experimental values. Nevertheless, poor results are obtained in T-loading when the triaxiality increases, Fig.

Table 1

 1 Void shape effect on predicted "i�l and f0 for initially spherical voids, W 0 = 1. q = 1.35

	(PC3) (PC2j	Coa\1:1sccncc le(%) £pq (r) 1<(%)	T=2/3 11.1 0.95 1.75 5.34 4.21 0.26 0.627 2.34	8.16 0.629 4.22 0.357	1.30 1.87 0.57 1.48	--• 0.29 5.0 3.75 0.204	1.34 0.97 0.91 0.93	1.6 0.02 1.76 0.024	0.001% 1.40 0.09 1.36 0.11

Td

T= 4/3 T=3 parameters fii-1% 0.001% fo-1% 0.001% fo-1% 0 ...: 001% Jo -1% £ (<') --�-_,_':!L.__ _� ered. The obtained results for various stress triaxialities are gathered in Table

I .

Table 3

 3 Tensile properties and mean strains to failure (E' 1) in notched bars

	Steels Tensile	Yield Stress	Ultimate Strength	Fracture strain

<1 (AER) (3)

Table 5

 5 Inclusion spacing ratios and critical porosities f0 used in the finite element calculations. (*) corresponds to ll.�LTl = 2.

	Loading Spacing ratio direction Ao(X) L Ao(L)"" 1	f,(3) specimen ('PC2) AERlO 1.74 AER2 2.08	(C) 2.3 3.15
	T	Ao(T) == 8	AERlO AER2	0.41 0.3	0.59 0.47
	LT	Ao (LT) == I.5	AERlO AER2	1.31 1.39	1.4' 1.52*
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