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Cyclic Viscoplastic Constitutive Equations, Part I: A Thermodynamically Consistent Formulation

Cyclic viscoplastic constitutive equations are increasingly used for the inelastic analysis of structures under severe thermomechanical conditions. The purpose of the paper is to show how the classical models can be modified in order to follow the general principles of thermodynamics with internal variables. Using the restrictive framework of standard generalized materials, the state variables associated to various kinds of kinematic and isotropic hardening are selected. The evolution equations for these internal variables are then formulated in a slightly less restrictive form. For each hardening process, the separation of the total plastic work into energy dissipated as heat and energy stored in the material is discussed in detail.

Introduction

Plastic and viscoplastic constitutive equations have been greatly developed over the past 15 years, especially for appli cations under cyclic loadings and high temperatures. Though some of them do not consider directly the notion of back stresses (Bodner and Parton,197 5), the cyclic constitutive equations are generally based on linear and nonlinear kinematic hardening [START_REF] Miller | An Inelastic Constitutive Model for Monotonic Cyclic and Creep Deformation[END_REF][START_REF] Lee | A Generalized Strain Rate Dependent Constitutive Equation for Anistropic Metals[END_REF][START_REF] Walker | Research and Development Program for Nonlinear Structural Modeling with Advanced Time-Temperature Dependent Constitutive Relationships[END_REF][START_REF] Robinson | Constitutive Relationships for Anisotropic High Temperature Alloys[END_REF][START_REF] Lowe | Improved Constitutive Equations for Modeling Strain Softening, Parts I and II[END_REF][START_REF] Yao | Viscoplasticity Theory Based on Overstress. The Prediction of Monotonic and Cyclic Proportional and Non-Proportional Loading Paths of an Aluminum Alloy[END_REF][START_REF] Watanabe | Internal Time, General Internal Variable and Multi-Yield-Surface Theories of Plasticity and Creep: a Unification of Concepts[END_REF]. Among these, the model developed at ONERA [START_REF] Chaboche | Viscoplastic Constitutive Equations for the Descrip tion of Cyclic and Anisotropic Behaviour of Metals[END_REF]Chaboche and Rous selier, 1983;[START_REF] Nouailhas | A Viscoplastic Modelling Applied to Stainless Steel Behaviour[END_REF][START_REF] Nouailhas | Unified Modelling of Cyclic Viscoplasticity: Appli cation to Austenitic Stainless Steels[END_REF]) is based on the initial work of [START_REF] Armstrong | A Mathematical Represen tation of the Multiaxial Bauschinger Effect[END_REF] who have introduced what we called the nonlinear kinematic rule (NLK). It uses the su perposition of several isotropic and kinematic hardening vari ables, each of the corresponding evolution equations being in a hardening/ dynamic-recovery /thermal-recovery format.

On the other hand, thermodynamics with internal variables offers a good framework to introduce constitutive equations. It offers both a guideline and some constraints for the choice of thermodynamically consistent evolution equations. A spe cial form uses the notion of standard generalized materials (Son and Halphen,197 5), where the complete thermoelastic inelastic behavior is defined from the knowledge of two po tentials: the thermodynamic potential to describe the present state and the dissipative potential for the irreversible evolutions (see, for example, [START_REF] Germain | Cours de Mecanique des Milieux Continus[END_REF]Sidoroff, 197 5;[START_REF] Germain | Continuum Thermo dynamics[END_REF]. The constitutive equations that we have developed are thermodynamically consistent. It can be shown, either in the framework of standard generalized materials [START_REF] Chaboche | On the Constitutive Equations of Materials Under Monotonic or Cyclic Loadings[END_REF][START_REF] Lemaitre | Le Mecanique des Materiaux So/ides[END_REF], or without explicitly using a dissipative potential [START_REF] Chaboche | Viscoplastic Constitutive Equations for the Descrip tion of Cyclic and Anisotropic Behaviour of Metals[END_REF][START_REF] Chaboche | Description Thermodynamique et Phenomenolo gique de la Viscoplasticite Cyclique Avec Endommagement[END_REF]. Such a procedure was discussed recently [START_REF] Freed | Viscoplasticity: A Thermodynamic Formulation[END_REF], and is used also in the present paper.

Introducing mechanical constitutive models into a ther modynamic framework allows the partition of the plastic work into the energy stored by the material and the one dissipated as heat. It is well known, from the works of [START_REF] Taylor | The Latent Energy Remaining in a Metal After Cold Working[END_REF] and many others, that the stored energy is only a small part of the total plastic work (between 5 and 50 percent) de pending on the material and on the strain level.

The aim of the present paper is to introduce our constitutive equations into the thermodynamic framework, to discuss the various possibilities for the equations governing the different hardening variables, and to show the corresponding partition ing of the total plastic work between stored energy and energy dissipated as heat. The mechanical form of the considered constitutive equations is recalled in Section 2. The thermo dynamic framework is then described in Section 3 and the consequences of the generalized normality hypothesis are dis cussed about the nature of the hardening state variables.

In Section 4, our viscoplastic constitutive equations are in corporated in the thermodynamic framework and the stored energies associated with the various hardening processes are considered in detail. Moreover, we discuss the form of the constitutive equations in the case of varying temperature.

We shall consider the thermomechanical behavior of vis coplastic materials; in particular, polycrystalline metals and their alloys. Each element of the material is assumed to be isotropic and to carry no stress in its initial virgin state. As the material deforms, however, anisotropies may become in duced. Only kinematic anisotropy is considered in this paper. Small material displacements and rotations shall be considered to make up the deformation of the material. In a Cartesian reference configuration, the strain Eij is taken to be composed of elastic Eij (reversible-includes thermal strain) and inelastic or plastic Et (irreversible) parts such that (1) and there is no inelastic strain in the stress-free virgin state.

In Part II of the paper, a systematic comparison of the constitutive laws with experiments is presented for both their mechanical and dissipative properties.

2 The Constitutive Equations 2.1 The Viscoplastic Potential and the Hardening Vari ables. They are developed in the framework of unified vis coplasticity, considering only one inelastic strain. We suppose the existence of a viscoplastic potential in the stress space. Its position, shape, and size depend on the various hardening variables. We limit ourselves to the case where the potential is a given function of the viscous stress (or overstress):

O=DG (�) =DG ( \ J(u-: )-y)). (2)
The shape of the equi-potentials is given by the distance Ji n the stress space. Though it is not necessary, we consider here the Von-Mises invariant

J(u-X) = [ � (u ' -X '):(u' -X ') J 11 2, (3) 
where u' and X' are the deviators of the stress tensor u and of the back stress tensor X. 1 Such a theory uses a combination of kinematic hardening, represented by X , and isotropic hardening, described by the evolution of the yield stress Y and of the drag stress D. The use of a yield stress introduces an elastic domain, correspond ing to stress states where J( u -X) -Y ::;; 0. The elastic domain can be reduced to a point by choosing Y = 0. In the old version of our model [START_REF] Chaboche | Viscoplastic Constitutive Equations for the Descrip tion of Cyclic and Anisotropic Behaviour of Metals[END_REF] isotropic hardening was present by the yield stress only, with a constant drag stress. On the other hand, many models use an evolutive drag stress with Y = O or a combination, like Y = D, in the viscoplastic theory of Perzyna. In our present developments we also use a combination, with only one independent variable R: Y=k+R D=K+wR.

(4)

k and K are the initial values of, respectively, Yand D. How ever, in Sections 2 and 3 of the present paper we do not consider the restrictions (4) in order to discuss the constraints introduced by the thermodynamic framework. Let us note that, on the mechanical level, the use of one form or another is not without consequences. The isotropic hardening through the drag stress leads to an increase of the strain rate dependency, especially under cyclic conditions. In the applications, the viscoplastic potential, that is the function G, could be particularized in various forms, power function, exponential or hyperbolic sine functions. The pres ently preferred choice is a sum of two power functions (as in Chaboche,19S9) which leads to a good compromise and does not increase the numerical integration difficulties associated with very stiff differential equations. Note that applications of Part II will be performed within the limiting rate-inde pendent case. The viscoplastic strain rate is given by the nor mality assumption
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(6)
Let us note that p is the accumulated plastic strain, its derivative being the modulus of plastic strain rate. Here .

( 2 . . ) 1 12 p = 3 €µ: fp (7)

2.2 Evolution Equations for Hardening Variables. The rate equations for hardening variables obey a unique format. The back stress X is decomposed into independent variables Xi, each of them being of the same rule. As shown in previous studies (McDowell and Moosbrugger,19S7;Watanabe and Atluri,19S6), two or three of such variables are sufficient to describe, very correctly, the real materials. The whole set of equations is given as follows:
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In this section the yield stress Y and the drag stress D are considered as independent, as in [START_REF] Freed | Viscoplasticity: A Thermodynamic Formulation[END_REF]. In the above rate equations the hardening term is proportional to the strain rate or to its modulus p. The dynamic recovery term is proportional to p and linear in the variable itself. recovery. The temperature does not appear explicitly but all the material coefficients can be temperature dependent, es pecially the ones related to thermal recovery.

In the equation for back stresses Xi, we have introduced a threshold Xu in the dynamic recovery term in order to improve the description of ratchetting effects (see [START_REF] Chaboche | Mod eling of the Cyclic Response and Ratchetting Effects on INCONEL 718 Alloy[END_REF]. Moreover, the function cp (R) is used to describe the change of the tangent modulus as a function of cyclic (iso tropic) hardening. This function was introduced by [START_REF] Marquis | Etude Theorique et Verification Experimentale d'un Modele de Plasticite Cyclique[END_REF]. Its form is taken as the one deduced from the en dochronic theory (Valanis,19SO;Watanabe and Atluri,19S6;Chaboche,19S9).

1 cp (R) = 1 +R/{3 (9)
One of the back stresses, denoted Xp, may have an instan taneous linear hardening term, with 'Yp = X1 p = 0 (Prager's rule). However, the corresponding thermal recovery is present

('Ytp � 0).
For the isotropic hardening, governed by R, we use for some materials the strain range memory concept [START_REF] Chaboche | Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel[END_REF], which introduces an additional variable keeping memory of the maximum plastic strain range. Such an additional pos sibility is not considered in the present paper.

In the practical applications of our model (see Nouailhas, 19S9, 1990), we consider tl;iat yield stress and drag stress are I not independent with Eq. ( 4) which corresponds to the fol lowing values for the coefficients in Eq. ( 8d):

b' =b Q' =K +wQ m; =mr Q; =K+ wQr I'; = ') 'µ 1-"' r .

Let us note that the drag stress rate Eq. ( 8d) is not thermo dynamically consistent, as it will be shown in Section 4. To consider independently the evolutions of the yield and of the drag stress it is necessary to drive the drag stress by the viscous part of the plastic power UvP instead of p.

3 Thermodynamics With Internal Variables

3.1 Generalities.

.1.1

The State Law. The present state of a material ele ment is characterized by the observable variables, thermoelastic strain 2 Ee, temperature T, thermal gradient VT, and the in ternal state variables denoted ak. An inelastic material response brought about by a change in the internal variable ak affects the future response of the material. If the ak are taken to be scalar valued, the nonintersecting subsets of the ak may be taken to be components of higher-order, irreducible, even-rank tensors associated with a reference configuration [START_REF] Geary | Representation of Non-Linear Hered itary Mechanical Behavior[END_REF].

We choose the Helmoltz free energy as the thermodynamic potential

'JI= u -ST (10)
where u is the internal energy, S is the entropy, and 'JI is assumed to depend on all the independent state variables, 'JI= 'Jt(Ee,ak>T, VT). .

. l u:ic -'JI-ST--q• VT?:.0 T Therefore, using ( 11) and (1), Eq. ( 12) becomes If we assume the evolution equations for the plastic strain and the internal variables in the form Eµ="iµ(Ee,aJ,T, VT)

( u _ a'It) : " _ (s + a'Jt) t -a'It • a v T
(14)
where Zh is zero for any instantaneous reversible change, we can follow the classical arguments of [START_REF] Coleman | Thermodynamics With Internal State Variables[END_REF]. Inequality (13) must be valid f9r arbitrary reversible changes in the observable variables ic., T, a VT /at, so that the three first terms must vanish independently:

u = a'Jt s = _ a'Jt a'It = o. aEe aT av T (15)
The free energy does not depend on the thermal gradient. Equation (l 5a) is the expression for the thermoelastic law, which reduces to the Hookes law for isothermal conditions. By analogy, we express ( 16)

' The observable variable is the total strain but for nonviscous elastic strains, provided by the use of Eq. (!), it is sufficient to consider the thermoelastic strain as the independent observable variable.

the thermodynamic forces or affinities conjugate to the ther modynamic displacements ak or fluxes a k• The remaining terms in (13) correspond to the dissipation inequality .

. l u:Eµ-Ak aky q•'VT?:.0.

(17

)
Classically it is considered as separated into the intrinsic and thermal dissipation inequalities l -q• VT:50. T

(18)

Usually the evolution of heat flux is represented by Fourier's equation

q= -k•VT (19)
where the symmetric tensor for thermal conductivity k must be positive definite in order to satisfy the thermal dissipation inequality.

Remark: The choice of evolution equations of the form (14b) is important. In some theories, reversible changes pro duce instantaneous changes of the internal variables (in the viscoplasticity theory based on overstress by [START_REF] Yao | Viscoplasticity Theory Based on Overstress. The Prediction of Monotonic and Cyclic Proportional and Non-Proportional Loading Paths of an Aluminum Alloy[END_REF], for example). The nonconventional definition of elastic strain corresponding lo the introduction of a stress rate term in the evolutionary equations for the internal variables coplasticity, leading to the normality to the equi-potential sur face.

Considering thermoviscoplasticity, it is possible to generalize such a postulate in order to check the second principle auto matically. Materials (or constitutive theories) obeying such a principle are called "standard generalized materials. " In the dissipation inequality (17), we observe the duality between rates of dissipative variables ( £ P • -a k> -q!T) and the correspond ing thermodynamic forces (u, Ah VT). Following Germain (1973), we assume the existence of a potential of dissipations in the space of rate of dissipative. variables <1>=<1>(£p, a k).

Here the space does not incorporate the heat flux, which was already taken into account leading to the Fourier's Eq. ( 19). </> is supposed to be positive, convex in its variables, and con (

) 26 
u Ak

Remark: In fact, the convexity of</>* is not necessary. A sufficient condition is the convexity of the domains </> :5 </> * (u, Ak) :5 </> ; , for every positive value</> ; .

Some Consequences of the Generalized Normality

Hypothesis.

In the framework of classical viscoplasticity, the notion of standard generalized materials implies some inter esting consequences about the nature of internal state variables. For the purpose of simplicity, we do not consider here the recovery effects (both dynamic and static) in the evolution equations of hardening variables. Then we assume the dissi pative potential of the same form that the viscoplastic potential used for developing the mechanical part of the constitutive equations: where we have denoted uv = J( u -X) -R -k the viscous stress. Therefore the internal variable associated to the kine matic hardening is the plastic strain and the one corresponding to isotropic hardening described by the evolution of the yield stress is the accumulated plastic strain. For the isotropic hard ening through the drag stress evolution a simple answer is only possible if we assume Gas a power function G( x) = x11 +1;

(n + 1). In that case we obtain

b = -n -U v P n+l D' ( 30 
)
where uvp represents the plastic power associated to viscosity.

When neglecting recovery effects, we have seen that the generalized normality hypothesis, applied to the classical form of the viscoplastic potential (which is needed to give a ther modynamic structure to the classical theories), proves that the internal state variables associated to the kinematic, isotropic (yield), and isotropic (drag) hardening are, respectively, the plastic strain, the accumulated plastic strain, and the accu mulated plastic work corresponding to the viscous stress. For the last one, if we choose the free energy as quadratic in the internal variables (as it will be done below), we can easily prove that o 2 is proportional to this accumulated viscoplastic work.

Let us remark that several theories not considering the yield stress are based on the plastic work for describing isotropic hardening (for example, the constitutive equations developed by [START_REF] Bodner | Constitutive Equations for Elastic Viscoplastic Strain-Hardening Materials[END_REF]. For a more complete description it is necessary to introduce dynamic and static recovery terms, which can be done by modifying the dissipative potential (27) (see Lemaitre and Cha boche, 1990).

The Cyclic Viscoplastic Constitutive Equations in the Thermodynamic Framework

To some extent, it is possible to incorporate the constitutive equations of Section 2. 2 into the thermodynamic approach presented. In Section 3, using two single potentials: the free energy, for example, and the potential of dissipations (see [START_REF] Chaboche | On the Constitutive Equations of Materials Under Monotonic or Cyclic Loadings[END_REF][START_REF] Lemaitre | Le Mecanique des Materiaux So/ides[END_REF]. However, the use of the potential of dissipations and of the generalized normality assumption is not a necessary condition to meet the thermodynamic principles. Often it introduces constraints that are too severe. As in a recent paper [START_REF] Freed | Viscoplasticity: A Thermodynamic Formulation[END_REF] we do not consider it systematically but impose the second principle by proper choices for the evolution equations of state variables.

The cases of kinematic hardening, isotropic hardening with the yield evolution, and isotropic hardening with a drag stress evolution are considered successively. In every case a visco plastic potential n of the form (2) is assumed, so that the plastic strain rate is given by .

3 . u' -X' Ep= 2 p J(a-X) . =G' ('!!!.) = G' (J(u-X)-y) = (� . " ) i12 p D D 3 Ep• Ep • (31) 
. a<1>* a=-ax'

From the classical choice ( 27) we obtain 4.1 Evolution Equations for Kinematic Hardening. The (28) choice given by the normality assumption (28b) is not ac ceptable: it leads to linear kinematic hardening. Introducing nonlinearity through a nonquadratic dependency of the free O<Qr<R<Q.

The second principle is verified if the above condition is ob served. Let us note the importance of such a restriction. It eliminates the possibility for conditions such that

O<R<Qr<Q,

which could be used to describe some aging effects-that is hardening of the material due to time.

For this first option we observe that the stored energy as sociated to isotropic hardening corresponds to the whole work done by the variable R, that is the increase of the yield stress.

Neglecting static recovery, we have Ws='Irp=Rr=Rp.

(

) 43 
The work done by the viscous stress and by the initial yield is entirely dissipated as heat (Fig. 3 (a) ) .

•

The second option consists in choosing the free energy as quadratic in the internal variable r 1 2 '¥ p=2 bQr , and the rate equation for r as

. ( R ) . 'Yr r= 1- Q p- bQ IR-Qrlm r Sg(R-Qr).
The variable R is related to r by air R= a ,=bQr

and its evolution equation is still identical to (Sc).

Now the dissipation rate writes

. . R1 . 'Yr i if>=l( u)p-Rp+ Q p+ bQ IR-Qrlm r -R(R-Qr)
The sum of the three first terms reduces to

. . R1 . avp+kp+ Q p (44) (45) (46) (47)
which is always positive, though the last one is positive if

O<Qr<R.

Here also it elimin'!-tes the possibility for aging effects where the static term of R is positive.

In that second option only a part of the work done by the variable R is stored in the material (neglecting static recovery) .

.

. ( R 2 ) . Ws='Irp=Rr= R- Q p. ( 4 

S)

As for the nonlinear kinematic model, the ratio Ws!W P is first increased then decreased as a function of the accumulated plastic strain (Fig. 3(b)). However, contrary to the kinematic model, the stored energy is not released under cyclic loadings (p is always positive). It can only be reached by the static recovery effect.

To conclude for the yield stress, the second principle is easy to verify with a restriction for Eq. (Sc) which is that the static recovery term must be negative (a pure recovery effect)

R=b(Q-R)p 'YrlR-Qrlm r .

(49)

4.3 Evolution Equations for the Drag Stress. Here also we have two possibilities in order to respect thermodynamic restrictions. The first one can be used only if we accept a nonzero initial yield stress k. In the discussion below we neglect the static recovery terms.

•

The first option considers the evolution equation for the state variable o and the free energy is taken as quadratic in 8:

1 b'Q' '¥ = ---02 p 2 c D=� b'Q'o. c
(5 0)

(5 1)

Combining (5 0) and (5 lb), we easily find the evolution equa tion (Sd) for D (without the static recovery terms). The dis sipation rate is (with R = X = 0): . . . . D1 .

if>= u:tp-Do=J(a)p-cDp+c Q' p

which can be always positive only if the following condition applies.

Considering the viscous stress as av = J( u) -k we obtain

if>=avp+ [ k-c ( D-��) lp
k-cD?:.0 .

(

) 53 
The parameter c can be chosen freely. Taking c :::::; k!Q' is sufficient to meet the restriction. This option needs at least the .use of a nonzero elastic domain (k > 0) but k can be chosen as small as we want. Let us note in that case the very small value of the stored energy associated to the drag stress evolution which is obtained from (with c = k!Q'):

. . .

( D2 ) D ( D ) Ws='Irp=Do=c D- Q , p=k Q , 1- Q , p. ( 54 
)
The work done by the viscous stress is dissipated as heat and only a part of the work done by the initial yield k is stored into the material (Fig. 3(c) for tension). •

The second option consists in using in the evolution equa tion for o a driving term proportional to the work done by the viscous stress, as obtained from the generalized normality as sumption

The free energy is taken as

'lr = ! b ' Q' o2 p 2 D=b'Q'o
and we obtain the dissipation rate (with R = X = 0):

(55) (56) 
. . D . . D . if>=l(u)p-u vP + Q ' UvP=kp+ Q ' UvP, (57) 
which is clearly positive. Now the stored energy is defined by a small part of the work done by the viscous stress, the re maining being dissipated as heat.

W.='lr =Do= 1--up

• . . . ( D ) s p Q' v ( 58 
)
Figure 3(d) illustrates this process for pure tension. Now the elastic domain may be reduced to a point (k = 0).

Concerning the static recovery terms, the same remarks ap ply than for the yield stress. Aging effect, that is static increase of the drag stress as a function of time (with p "' 0), is not thermodynamically acceptable. Let us consider now the behavior of the models under varying temperature. In the present thermodynamic framework, the independent state variables are considered to be the "strain like'' variables appearing in the thermodynamic potential. They are independent of temperature in the following sense: if we consider a rapid temperature evolution that does not produce viscoplastic strains and where thermal recovery has not suf ficient time to take place, the internal state variables (a;, r, o) do not change. However, the (dependent) associated ther- X;= 3 C;t -<I>(R)['Y;X;P + 'Y1 ; (J(X; )), J + C; ar X;T.

(60)

Such an additional term was already considered in our first publication on constitutive models [START_REF] Chaboche | Viscoplastic Constitutive Equations for the Descrip tion of Cyclic and Anisotropic Behaviour of Metals[END_REF]. It is also present in the Walker's model (1981) and, implicitly, in several other ones (as in the Miller's model (1983) where the back stress is implicitly proportional to the Young's modulus). 60),

(b) with t term in Eq. ( 60).

The presence of these additional terms has led to some dis cussions (see, for instance, [START_REF] Hartmann | Comparison of the Uniaxial Behavior of the Inelastic Constitutive Models of Miller and Walker by Numerical Experiments[END_REF] and [START_REF] Ohno | Constitutive Modeling of Anisothermal Cyclic Plasticity of 304 Stainless Steel[END_REF]). It is the reason why we do insist on this point here. In fact, we may develop several arguments for the present way of writing the constitutive equations:

• On the physical level the true state is defined by the dislocation arrangements and the plastic strain incompatibil ities (from grain to grain) are all quantities directly associated to the plastic strain. For the same dislocation state, if we rapidly change the temperature, we do change the Young's modulus, which immediately changes the stress fields associated to the various strain incompatibilities.

• On the phenomenological point of view we know that a great dependency of the 0.2 percent proof stress as a function of temperature is possible so that, for example, ao.2 (Ti) >> Urupt ( T2) if Ti << T2.

If we imagine now a 0.2 percent monotonic tensile plastic strain at T = Ti, then a rapid unloading and a rapid temperature change to T = T2 (without any new plastic flow) upon re loading, it is impossible to accept that the plastic flow will not begin before a0.2 (Ti). Clearly the correct behavior will be to begin plastic flow for a stress around a0.2 ( T2), as indicated schematically on Fig. 4 for ak being the state variables.

•

The last argument is given by a simple and schematic counter example where we assume only a linear kinematic hardening in the limit case of time-independent plasticity. Un der uniaxial (tension compression we have I a -XI -k( T) ::; 0) we consider a cyclic strain control (mechanical strain) between EM and -EM• The strain increase is applied at the constant temperature Ti. Then strain is kept constant and the temperature changed to T2 > Ti (which produces plastic flow because k2 < ki). The strain is decreased to -EMat temperature T2, then maintained during the temperature change. The re sponses corresponding to the two hypotheses are easily ob tained and shown on Fig. 5(b) and 5(c), In the first case, X = C(T)Ep is the state variable, though in the second one the state variable is et = E p and X changes during the temperature change. Clearly the first assumption leads to the ridiculous result involving a "stress ratchetting," illustrated in Fig. 5(b) by oa = a5 -ai = a9 -a5 ... ' though the first cycle is correctly closed with the second assumption. Figure 6 shows a more realistic comparison where two NLK models .are su perposed to the linear one. The coefficients at Ti are indicated on the figure and the ratio between values of k and C; at T2 and at Ti is 0.6 (the ratio between values of 'Yi is 1.8). Here also we observe the nonadmissible result given by the first hypothesis.

We may conclude this section by a short discussion about the temperature history effects. They are of two different na tures:

• If coefficients in the dynamic recovery terms ('Y; for kin ematic hardening, b for isotropic hardening) are depending on temperature, we may observe temperature history effects in the sense that the values of the internal variable (a and r) are different for two identical plastic strains with two different temperatures, provided ix; = € P -r;a; p r=p-brp.

(6la) (61b) However, this history effect is rapidly evanescent for the kinematic hardening and do not modify the asymptotic con ditions for isotropic hardening. Wang and Ohno (1991) have used such a dependency, together with the "memory of max imum strain range" to describe some temperature history ef fects in stainless steels.

•

If temperature history effects are significant and not evanescent they may be described by modifying the temper ature rate terms in equations like (60), which is not consistent with the thermodynamic framework. Another way is to intro duce such history effects with specific internal variables having the purpose to describe the corresponding changes in the mi crostructure.

Conclusion

In this paper we have shown how a set of cyclic viscoplastic constitutive equations may be incorporated into a general ther modynamic framework. Thermodynamics with internal vari ables uses the free energy to describe the present state of the material. From the second principle and classical arguments we deduce the constitutive equations for reversible processes.

• The dissipative processes may be described by using a dis sipative potential and a generalized normality hypothesis within the framework of the standard generalized materials. In that case we show that the independent state variables associated to the various hardening processes are, respectively, the plastic strain tensor for kinematic hardening, the accumulated plastic strain for the isotropic hardening based on a yield stress ev olution, and the accumulated viscoplastic work for isotropic hardening with the drag stress.

The unified viscoplastic constitutive equations developed at ONERA have been introduced in the thermodynamic frame work without using the constraints of the standard generalized materials. Several options are possible for the various hard ening equations. In each case we have checked the second principle and we have shown qualitatively what part of the plastic work is stored in the material. Let us point out here the following interesting result: the constitutive assumption for the free energy and the corresponding thermoelastoplastic coupling plays an important role in specifying the stored en ergy. In fact, for an isotropic hardening description, there are conceptually many different ways to construct the thermo dynamic framework and define the free energy function and dissipation potential, all being consistent with the phenome nological evolution equations and satisfying the second law.

The systematic comparison with experimental results is the subject of the Part II of the present paper.

  The static recovery term (or thermal recovery) is a nonlinear function of the variable. The material coefficients C;, bQ, b' Q' indicate the rapidity of hardening (initial tangent modulus), the coef ficients'}';, b and b' play for the relative importance of dynamic recovery though 'Yr.. 'Yr and ,,; stands for the static thermal

  the conservation of energy, the second principle of thermodynamics reduces to the Clausius-Duhem inequality.

  yq• VT?:.0. (13)

  Fig. 1The nonconventional definition of elastic strain corresponding lo the introduction of a stress rate term in the evolutionary equations for the internal variables

  taining the origin-that is </>( O, 0) = 0Applying to</> the Legendre-Fenchel transform, we obtain the complementary dissipative potential</>* in the generalized space of thermodynamic forces (u, Ak) <1>*= . Min. [u:ep-Ak ak-<f>(ep,-adJ=</>* (u, Akl. Ep, -ak Equations (23) are then replaced by normality, in the space (u, Ak), confers interesting properties to the constitutive equations. In partic ular, the Second Principle is automatically verified due to the positiveness and convexity of </> *. Provided </> *(O, 0) = 0, the intrinsic dissipation (18. a) writes as

  forces Ak are, respectively, the back stress X, the increase of the yield stress R, and the drag stress D. If we assume k > 0, D > 0 and G( O) = 0, and G convex, we can easily check that </> * is positive, convex, and contains origin. Let us note, respectively, a, r, o, the internal state variables • associated to the three hardening variables X, R, D. The gen eralized normality hypothesis writes .

Fig. 2 Fig. 3

 23 Fig. 2 Heat dissipated and stored energies for kinematic hardening; (a) linear kinematic hardening, (b) nonlinear kinematic hardening, (c) NLKH first compression in the rate independent case (k = C/'"'I)

Fig. 4

 4 Fig. 4 Two hypothesis for the state variables after prior plastic flow under tension and a rapid temperature change from T1 lo T2

4. 4

 4 Constitutive Equations Under Varying Tempera ture. Until now the constitutive equations were considered under constant temperature. Their determination can be done at several temperature levels by isothermal tests. The coeffi cients of the model can depend explicitly on temperature. It is not the purpose here to define what kind of dependency. Some of the coefficients can be considered as constants and others must depend on temperature, especially the ones playing the role in the viscosity function G in (2) and in the thermal recovery terms of Eqs. (8b-d). Often these terms involve tem perature explicitly through an Arhennius dependence.

Fig. 5 A

 5 Fig. 5 A schematic example in the rate-independent case and for a linear kinematic hardening; (a) mechanical strain and temperature con• trols, (b) the cyclic respons11 when considering the back stress as the state variable (without the T term in Eq. (60)), (c) the cyclic response when the state variables is a (with the T term in (60)). modynamic forces (X;, R, D) can change instantaneously. In fact, the constitutive equations under varying temperature are easily deduced from the thermodynamic potential by the de rivative of Eq. (16): . al'lr . az'lr . Ak=--aj+ --T. (59) oakaa1 oakoT That introduces an additional temperature term in the rate equation for back stresses (with Xu = 0):. 2. p

Fig. 6

 6 Fig.6The same simulations as in Fig.5for the supe . rposition of two NLK variables to the linear kinematic hardening; (a) no T term in Eq. (60),

.1.2 The Dissipative Potential. Standard Generalized Ma terials. In standard associated plasticity, the Hill's postulate

OI; = fp-2----c;-[') ' ;X;P+'Y1 ; (J(X; l X; ].

Moreover, the plastic part of the free energy is taken as 1 'lrp= 3 � C; Ol; :OI; and Eq. (Sb) is obtained for the back stress rate, at least for isothermal conditions (see Section 4.4 for the nonisothermal case). In Eq. (32) we have neglected the threshold X1 for sim plicity, which does not alter the generality in that ' concerns dissipative aspects (when J(X;) < X1 ; the rule (Sb) works like the linear rule, already considered in Section 3.2).

In the case of pure kinematic hardening, the dissipation rate writes iI> = u: iop-X;:ix;= (u-X): io P � il>(R) . m•-1 + L.J ---C:-['Y;P+'Y1 ; (J(X;) ' ]J (X;). The dissipation rate indicates the part of the plastic power that is dissipated as heat. The difference is the stored energy rate that is also obtained by the time derivative of (33) and the use of (32). Neglecting the static recovery effects we have, for pure tension (X1 1 = 2/3X):

(36)

Figure 2 shows schematically the parts of the plastic work which are dissipated as heat and stored in the material in simple individual cases. For a theory with one nonlinear kinematic variable (Fig. 2(b) ), the stored energy is very small. First, its rate is increasing then decreasing, so that the ratio W5/W P of the stored energy to the total plastic work is increasing then decreasing. Here the total plastic work is given by integrating Wp=op=oup+kp+Xp.

(37)

We observe that the work done by the viscous stress and by the initial yield are dissipated as heat. In the case of the linear kinematic hardening ('Y = 0) we have Ws = l/2C t�, and the ratio W5/Wp is always increasing (Fig. 2( a) ).

If now we consider a nonlinear kinematic rule with a tensile loading, followed by a compressive one, we observe the release of the previously stored energy when X is decreasing to zero (Fig. 2( c) drawn for time-independent plasticity with X0 = Cl')' = k). In that case, the plastic work (area A' B 'B) is smaller than energy dissipated as heat (area A' B' B + area AA' BM + area AA' BN). Under cyclic loadings, the energy stored by kinematic hardening is released every half cycle. • The first option is to consider the state variable r as identical to the accumulated plastic strain for the instantaneous hardening as it is for a standard generalized material. In that case, the nonlinearity of the relationship between R and r is given by the choice of the free energy 'lrp =Qr+� (e-br -1).

(3S)

The thermodynamic force is given by aw