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Abstract. In this article, we consider weak del Pezzo surfaces defined over a
finite field, and their associated, singular, anticanonical models.

We first define arithmetic types for such surfaces, by considering the Frobe-
nius actions on their Picard groups; this extends the classification of Swinnerton-
Dyer and Manin for ordinary del Pezzo surfaces. We also show that some
invariants of the surfaces only depend on the above type.

Then we study an inverse Galois problem for singular del Pezzo surfaces
having degree 3 ≤ d ≤ 6: we describe which types can occur over a given finite
field (of odd characteristic when 3 ≤ d ≤ 4).

Contents

Introduction 2
1. Weak del Pezzo surfaces 4
1.1. A blow-up model 5
1.2. Roots, exceptional curves and geometric types 6
1.3. Arithmetic types 8
2. Singular del Pezzo surfaces 9
2.1. Anticanonical models: geometric aspects 9
2.2. Divisor class groups and zeta functions 10
3. Construction of weak del Pezzo surfaces of degree at least five 13
3.1. Degrees seven and eight 13
3.2. Degree six 14
3.3. Degree five 15
4. Construction of singular del Pezzo surfaces of degree four. 16
4.1. Pencils of quadrics, their Segre symbols, and geometric types 16
4.2. Morphisms to the projective line 18
4.3. Galois action on the singular quadrics, and arithmetic types 23
4.4. Quadratic module associated to a pencil of quadrics 24
4.5. Construction of degree four del Pezzo surfaces of any arithmetic type 29
5. Construction of singular del Pezzo surfaces of degree three. 38
5.1. Blowing up degree four surfaces 38
5.2. Other constructions 39
5.3. Type 36 42
Appendix A. Arithmetic types for degrees three to six 44
References 48

Date: January 31, 2023.
2020 Mathematics Subject Classification. Primary 11G25, 14J26; Secondary 14G10, 11E12.
Key words and phrases. del Pezzo surfaces over finite fields, zeta functions, quadratic modules.

1



2 R. BLACHE AND E. HALLOUIN

Introduction

In this article, we study certain del Pezzo surfaces defined over a finite field.
Recall that a smooth projective surface X is a weak del Pezzo surface when its
anticanonical divisor −KX is big and nef; its degree is the self-intersection number
d := K ·2

X . If moreover −KX is ample, we call X an ordinary del Pezzo surface.
When a weak del Pezzo surface X is not ordinary, it contains absolutely irreducible
curves with self intersection −2, that we shall call (−2)-curves in the following.

The anticanonical model of a weak, non ordinary del Pezzo surfaceX is a singular
surface, that we denote by Xs, and call a singular del Pezzo surface. Note that
Xs has Du Val singularities, and is Gorenstein; for these reasons such surfaces are
sometimes called Du Val del Pezzo or Gorenstein del Pezzo in the literature.

The study of complex singular cubic surfaces (degree 3 del Pezzo surfaces over
C) dates back to the nineteenth century [6, 23]. It has been generalized to del
Pezzo surfaces along the twentieth century [13]. In particular we know all types of
singularities (sometimes called the Dynkin types) that can occur in characteristic
zero [12, Chapter 8]. Over an algebraically closed field of positive characteristic,
some new types occur, but only in characteristic 2 [16].

The interest on del Pezzo surfaces over finite fields is more recent. If X is an
ordinary del Pezzo surface defined over the finite field Fq, where q = pm is a power

of a prime, the Frobenius action σ∗ on Pic(X⊗Fq) must preserve the anticanonical

class and the intersection product. The group of automorphisms of Pic(X ⊗ Fq)
with these properties is a (finite) Weyl group depending on the degree of the surface.
Thus the image of the Galois group Gal(Fq/Fq) is a cyclic subgroup generated by
the image of the Frobenius morphism σ; its conjugacy class is the arithmetic type
of X . Swinnerton-Dyer [25] and Manin [21] construct tables of conjugacy classes in
these Weyl groups in order to classify ordinary del Pezzo surfaces over finite fields
(the table for degree 3 has been corrected in [2]).

Many invariants of a del Pezzo surface only depend on its arithmetic type; this
is the case for its zeta function [21, Theorem 27.1, Corollary 27.1.2]

(0.1) Z(X,T )−1 = (1− T )(1− q2T ) det
(
I− qTσ∗|Pic(X ⊗ k)

)

The first aim of this paper is to extend the classification of Swinnerton-Dyer and
Manin to weak del Pezzo surfaces, by defining their arithmetic type, and to give an
expression for their zeta functions.

We begin by classifying the possible singularities over the algebraic closure. Fol-
lowing [7, 10], we define a geometric type. This is the configuration of negative
curves on the surface X ⊗ k (corresponding to lines and singularities on the anti-
canonical model), up to the action of the Weyl group. It is finer than the Dynkin
type. The types are orbits of the Weyl action on the root bases in the lattice E9−d

corresponding to the degree d.
Coming back to the surface X , the Galois action must preserve the set Rirr of

(−2)-curves. Thus the Frobenius maps to an element of its stabilizer Stab(Rirr).
We define the arithmetic type of X as the conjugacy class of the Frobenius action
in this last group.

Here again, many properties of a weak del Pezzo surface only depend on its
arithmetic type; this is true for its zeta function from (0.1), and we show that it
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remains true for its anticanonical model Xs (note that its geometric Picard lattice
is the orthogonal of Rirr in the geometric Picard group of X).

Theorem 1. We have the equality

Z(Xs, T )
−1 = (1 − T )(1− q2T ) det

(
I− qTσ∗|Pic(Xs ⊗ k)

)

Our second aim is to construct such surfaces. When the finite field is small, not
all are constructible [26]. For instance, over the field F2, there are no split ordinary
del Pezzo surfaces of degree d ≤ 4 since there are at most four points in general
position in P2(F2).

This is the inverse Galois problem for singular del Pezzo surfaces over finite
fields: in the ordinary case, it asks for which conjugacy classes of the Weyl group
can arise as the conjugacy class of the Frobenius action. It has been solved for
ordinary degree four surfaces in [26, Theorem 1.4], and for ordinary degree three
and two surfaces in [20]. There is also a weaker version of this problem, asking for
which integers can arise as the trace of the Frobenius action. It has been solved for
ordinary del Pezzo surfaces, see [2].

It should be easier for non ordinary del Pezzo surfaces since when we consider
them as blowups of the projective plane, we relax the condition of blowing up points
in general position to almost general position. But when the degree is at most four
and the base field is not algebraically closed, some of the surfaces are no longer
birational to the projective plane, and we have to provides other constructions.

In this paper we solve the inverse Galois problem for singular del Pezzo surfaces
of degree at least 5 over any finite field, and for surfaces of degree 3 or 4 when the
characteristic is odd. We refer to Appendix A for the tables of arithmetic types for
each degree 3 ≤ d ≤ 6.

Theorem 2. There exists a weak, non ordinary del Pezzo surface of degree d and
any arithmetic type T over the finite field Fq in the following cases

1. we have d ≥ 5;
2. we have d = 4 and Fq has odd characteristic.
3. we have d = 3, Fq has odd characteristic and (q,T) /∈ {(3, 1), (3, 12)}.

There does not exist any surface of degree 3 and arithmétic type 1 or 12 over F3.

The types corresponding to the degrees d ≥ 5 are not very difficult to construct.
It turns out that these surfaces are birational to P2, and it is sufficient to blowup
the projective plane at well chosen points, and to contract exceptional curves.

In the case of degree four, we no longer consider a blowup model. We exploit an
idea which is present in [3, 14, 24]. The anticanonical model of a del Pezzo surface
a degree four is the base locus of a pencil of quadrics in P4. To such a pencil we
associate a quadratic Fq|T ]-module (equivalently, a Frobenius algebra). Now fixing
a geometric type, then an arithmetic type for a del Pezzo surface, gives a precise
description of the quadratic module. We construct such modules with prescribed
arithmetic properties, and their existence is sufficient to prove the second assertion
of the above theorem. Note that these quadratic modules are rather different in
even characteristic, since there a bilinear form over an odd dimensionnal vector
space must be degenerate. This is why we do not consider that case here. However,
nice normal forms have been described in this case [11], that should help solving
this problem.
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Note that we have used the mathematical software magma to construct explicit
models (ie a couple of quadrics in P4) for all types of degree four singular del Pezzo
surfaces over a given finite field. The code is freely available on the second author’s
webpage.

Finally, we construct degree three surfaces in different ways. Our main con-
struction is by blowing up a point – not lying on any negative curve – on a well
chosen degree four del Pezzo surface. We count the numbers of such points for each
arithmetic type belonging to degree four; this allows us to show the existence of
many degree three surfaces with given arithmetic type, but also – when there is
no such point – the non existence result stated in the last sentence of the above
Theorem. We also use other types of blow up (of the projective plane, or a degree
four surface at a point lying on one or more exceptional curve) in order to construct
the surfaces belonging to the remaining arithmetic types.

The paper is organised as follows: in section 1, we describe weak del Pezzo
surfaces, and recall their principal properties. This allows us to introduce the
classification and to define the different types (geometric, then arithmetic) that
we use in the rest of the article. Then we turn to the description of singular del
Pezzo surfaces; we briefly describe their different groups of divisors, and we show
Theorem 1 in section 2. The next section is devoted to the proof of the first assertion
in Theorem 2. The fourth section is more technical: we treat the degree four del
Pezzo surfaces over finite fields of odd characteristic; to such a variety, we associate
a quadratic Fq|T ]-module. Then most of the work is devoted to describing the link
between the arithmetic properties of the module and the arithmetic type of the
surface; this allows us to prove the second assertion of Theorem 2. The last section
mainly builds on the preceding one: we blow up the degree four surfaces at well
chosen points in order to construct degree three surfaces. We also use some direct
constructions; this allows us to prove the last two assertions of Theorem 2.

We give the description of the different arithmetic types for degree d ≥ 3 in the
Appendix.

1. Weak del Pezzo surfaces

We first define the smooth surfaces we shall consider in this article

Definition 1.1. A smooth projective surface X defined over a field k is a weak del
Pezzo surface when its anticanonical divisor −KX is

(i) big, i.e. K ·2
X > 0;

(ii) and nef, i.e. for any effective divisor D on X , (−KX) ·D ≥ 0.

It is an ordinary del Pezzo surface when −KX is ample. Its degree is d := K ·2
X .

Note that since −KX is nef, the adjunction formula ensures that for any abso-
lutely irreducible curve C on X , we have C ·C ≥ C · (C+KX) = 2pa(C)− 2 ≥ −2.
Moreover, if for such a curve this inequality is an equality, then we have C ·KX = 0,
and from the Nakai-Moishezon criterion the anticanonical divisor is not ample: the
surface X is a not an ordinary del Pezzo surface.

It is well known [9, 7] that the geometry of del Pezzo surfaces depends to a
large extent of its absolutely irreducible curves with negative self-intersection, the
so-called negative curves. These are the generalization of the celebrated 27 lines on
an smooth cubic hypersurface in P3.
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Definition 1.2. Let X denote a weak del Pezzo surface over the field k.
An element D in the geometric Picard group Pic(X⊗k) is an exceptional divisor

when D·2 = D ·KX = −1.
An absolutely irreducible curve C on X whose class is an exceptional divisor is

an exceptional curve.
An element D in Pic(X⊗k) is a root when it satisfies D·2 = −2 and D ·KX = 0.

We denote by R(X) the set of roots.
When C is a curve on X whose class is a root, we say that C (or its class) is an

effective root. If moreover C is absolutely irreducible, then it is a (−2)-curve.
We denote by A the union of the (−2)-curves on X ; this is a closed subscheme

of X . We denote by U the complementary of A on X .

Remark 1.3. First remark that the negative curves which are absolutely irreducible
are isomorphic to P1 from the adjunction formula.

The sets of exceptional divisors and roots are finite and depend up to isomor-
phism only on the degree of the surface [9, II. Tables 2 et 3].

Note also (contrary to the case of ordinary del Pezzo surfaces) that all exceptional
divisors need not correspond to exceptional curves; see Lemma 1.11 for a numerical
criterion.

Finally, the sets of exceptional and (−2)-curves will be crucial in this article
since they determine (up to an isomorphism) the geometric type.

We first give a construction of weak del Pezzo surfaces as blow-ups of the pro-
jective plane.

1.1. A blow-up model. We assume k algebraically closed in this section.

Definition 1.4. We denote by X(Σ) the surface obtained from the projective plane
by successively blowing up the points in Σ := {p1, . . . , pr}

π : X(Σ)
Blpr−→ Xr → . . .→ X2

Blp1−→ X1 = P2

where each pi, 1 ≤ i ≤ r is a closed point in the surface Xi.
For 1 ≤ i ≤ r, we denote by Ei the total transform in X(Σ) of the exceptional

divisor of the blowing-up Blpi
: Xi+1 → Xi, and we write pi ≺ pi+1 when pi+1 is

infinitely near to pi, ie when it lies on the exceptional divisor of Blpi
in Xi+1.

The Picard lattice of the surface X(Σ) is the group generated by E0 := π∗L, the
total transform of the class L of a line in P2, and the Ei, 1 ≤ i ≤ r

Pic(X(Σ)) = Zr+1 = ZE0 + ZE1 + · · ·+ ZEr

endowed with the intersection product given by E·2
0 = 1, E·2

i = −1 for 1 ≤ i ≤ r
and Ei · Ej = 0 for i 6= j. The canonical class is given by

KX(Σ) = −3E0 + E1 + · · ·+ Er

From [9, III. Theorem 1], the surface X(Σ) is a weak del Pezzo surface of degree
d = 9 − r if, and only if r ≤ 8, and the points in Σ are in almost general position:
at each stage, the point pi does not lie on a (−2)-curve on Xi.

The converse statement is almost true; actually we have the following description
of weak del Pezzo surfaces [7, Proposition 0.4]

Proposition 1.5. Let X denote a weak del Pezzo surface of degree d over an
algebraically closed field k. Then we have 1 ≤ d ≤ 9, and if we set r = 9 − d, we
must have one of the following
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(i) r = 1 and X ≃ P1 ×P1;
(ii) r = 1 and X ≃ F2 the Hirzebruch surface;
(iii) 0 ≤ r ≤ 8, and X ≃ X(Σ), where Σ := {p1, . . . , pr} consists of points in

almost general position.

1.2. Roots, exceptional curves and geometric types. In this section, we con-
sider a weak del Pezzo surface X of degree d ≤ 7 over an algebraically closed field
k, and we set r := 9− d as above. Note that the description of del Pezzo surfaces
of degrees 8 and 9 follows immediately from the preceding result.

There exists some Σ := {p1, . . . , pr} consisting of points in almost general posi-
tion such that X ≃ X(Σ); this choice allows us to identify Pic(X) ≃ Zr+1 as in the
preceding section.

Definition 1.6. Recall that R(X) is the set of roots in Pic(X)

R(X) := {D ∈ Pic(X), D·2 = −2, D.KX = 0}

We denote by Reff(X) ⊂ R(X) (resp. Rirr(X) ⊂ R(X)) the subset of effective
roots (resp. of (−2)-curves) in Pic(X).

Let R(X) denote the root module; it is the sub-Z-module of Pic(X) generated
by Rirr(X).

It is well known [9] that the set R(X) is a root system in the orthogonal (KX)⊥⊗
Q of the canonical divisor KX . Under the identification of Pic(X) and Zr+1, it is
sent on the root system Rd with basis {E0−E1−E2−E3, E1−E2, · · · , Er−1−Er}.
We denote by E9−d the intersection graph of this basis. It is the Dynkin diagram
associated to the degree d, namely

Degree d 6 5 4 3 2 1
Dynkin diagram E9−d A2 ×A1 A4 D5 E6 E7 E8

The group of automorphisms of the Picard group Pic(X) preserving the canonical
divisor and the intersection product is isomorphic to the Weyl group associated to
E9−d, which we denote by W(E9−d). It is generated by the reflections through the
hyperplanes orthogonal to the roots, i.e. the sα : x 7→ x+ (x · α)α, α ∈ Rd.

The following result [9, III Théorème 2] is fundamental for the geometric classi-
fication of weak del Pezzo surfaces

Proposition 1.7. Let X denote a weak del Pezzo surface of degree d ≤ 6. Then
the set Reff(X) ∪ (−Reff(X)) is a closed and symmetric part of R(X).

It is a root system in the space R(X)⊗Q, of which the set Rirr(X) forms a basis
(and we call it a root basis).

As a consequence, the free Z-module generated by Rirr(X) is equal to R(X).

An immediate consequence is that since we have R(X) ⊂ K⊥
X , and this last

module has rank r = 9−d, there are at most r (−2)-curves on X . Their intersection
graph has a strong geometric significance. It is sometimes called the Dynkin type
of X .

We are ready to define the first, geometric part of our classification

Definition 1.8. The geometric type of X is the orbit of the image of its set of
(−2)-curves Rirr(X) under the action of W(E9−d) on the set of bases for closed and
symmetric parts of Rd.

When X is ordinary, we say it has ordinary geometric type.
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Note that two isomorphisms between the lattices Pic(X) and Zr+1 differ by an
element of the Weyl group. This is why we define the type as an orbit under the
action of this group: this makes it independent of the choice of such an isomorphism,
and of the blown-up points. Note also that the geometric type above is equivalent
to the type from [10, Definition 3].

The possible orbits can be deduced recursively from a theorem by Borel and
de Siebenthal that classifies the closed symmetric parts of maximal rank in a root
system up to the action of the Weyl group [22, p 29], [12, p 404]. They are given,
degree by degree, in [12, Chapters 8 and 9]. We recall them in Appendix A as a
column in the table of arithmetic types.

For each orbit, one can choose a root basis in such a way that its intersection
graph is a subgraph of the Dynkin diagram E9−d when d ≥ 5, and of the extended

(or affine) Dynkin diagram Ẽ9−d when 3 ≤ d ≤ 4; this is no longer true when
d ∈ {1, 2}.

Remark 1.9. The geometric type we have just defined is a finer invariant than
the Dynkin type. For instance, if d = 6 there are two orbits of Dynkin type A1,
depending on whether the (−2)-curve lies on the A1 or the A2 component of the
root system: surfaces in the corresponding geometric types differ by the number of
exceptional curves they contain. There are also two orbits for each of the Dynkin
types 2A1 and A3 when d = 4.

Note that for d ≥ 3, the possible geometric types of del Pezzo surfaces are in
bijection with the orbits given by Borel-de Siebenthal theorem. This is no longer
true when d ≤ 2: for instance, the orbits corresponding to certain types for d = 1
or d = 2 only occur as geometric types of del Pezzo surfaces in characteristic 2 [16,
Remark 1.5].

A convenient way to represent the geometric type is to consider a new graph,
containing the intersection graph of the (−2)-curves as a subgraph [7].

Definition 1.10. We define the graph of negative curves associated to the surface
X as the graph whose vertices are circles corresponding to (−2)-curves, and points
corresponding to exceptional curves. Two vertices corresponding to curves C et C′

are joined by n edges if we have C · C′ = n.

Since the Weyl group preserves the intersection product, two surfaces sharing
the same geometric type have the same graph of negative curves. The converse
is true [10, Remark 4]; actually the geometric type of a weak del Pezzo surface
is completely determined by its degree, its Dynkin type and the number of its
exceptional curves. As a consequence, this is the way we will encode it in the tables
of the Appendix.

Here is a criterion for an exceptional divisor to be irreducible [9, Corollaire au
Théorème III.2]

Lemma 1.11. Let D denote an exceptional divisor of X. Then D is the class of
an exceptional curve if, and only if we have D · R ≥ 0 for any effective root (or
(−2)-curve) R.

We end with [9, Lemme IV.2], that will be useful we we decribe the fibers of the
desingularization of a songular del Pezzo surface
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Lemma 1.12. Each connected component B of A is the support of a unique fun-
damental cycle, which is the least effective root C such that for any irreducible
component D of B we have C ·D ≤ 0.

The fundamental cycle depends only on the corresponding connected component
of the Dynkin type. Actually it is the highest root of the root system associated to
this component [12, Section 8.2.7].

1.3. Arithmetic types. We assume here that k = Fq is a finite field. We denote

by σ a generator of the absolute Galois group Γ := Gal(k/k).
Let X denote a weak del Pezzo surface defined over k, having degree d. We

denote by Rirr(X) the set of the (−2)-curves of X ⊗ k, and by Rirr a representative
of the geometric type of X . We fix an isomorphism between Pic(X ⊗ k) and
ZE0 + . . .+ ZE9−d that send Rirr(X) to Rirr.

The automorphism σ induces the automorphism Id×σ of the surface X ⊗ k,
and an automorphism (Id×σ)∗ of the group Pic(X ⊗ k), that we denote by σ∗ in
the following; it preserves the intersection pairing, and the canonical class since X
is defined over k. Under the action of the isomorphism between Pic(X ⊗ k) and
ZE0+ . . .+ZE9−d, the image of σ∗ is an element of the Weyl group W(E9−d), and
we get a morphism from Γ to W(E9−d), whose image is a finite cyclic group.

Finally, σ∗ preserves the set of (−2)-curves, and its image in W(E9−d) must lie
in Stab(Rirr), the stabilizer of Rirr in W(E9−d) which is the subgroup consisting of
the θ such that θRirr = Rirr.

This motivates the following

Definition 1.13. Let X denote a weak del Pezzo surface defined over k, and Rirr

the image of the set of its (−2)-curves described above.
The arithmetic type T ofX is the conjugacy class of the image of σ∗ in Stab(Rirr).

Two isomorphisms between Pic(X ⊗ k) and ZE0 + . . . + ZE9−d sending the
(−2)-curves of X to Rirr differ by an element of the above stabilizer, which is a
subgroup of W (E9−d). Defining the type as a conjugacy class in this group makes
it independent of the choice of such an isomorphism.

Remark 1.14. We will see below that two singular del Pezzo surfaces such that the
Frobenius actions on the Picard groups of their associated weak del Pezzo surfaces
lie in the same conjugacy class inW (E9−d) (not in the stabilizer) can have different
arithmetic properties, in particular different zeta functions. This is easily seen on
the tables given in Appendix A that describe the different arithmetic types for
degrees 3 ≤ d ≤ 6, in particular in degree 4 where we precise the corresponding
conjugacy classes in W (D5).

To end this section, we remark that two weak del Pezzo surfaces sharing the
same arithmetic type have the same zeta function. Actually, since a weak del Pezzo
surface is rational, we have the following [21, Theorem 27.1, Corollary 27.1.2]

Proposition 1.15. For any n ≥ 1, the number of rational points of the weak del
Pezzo surface X over the finite field Fqn is

#X(Fqn) = q2n + qn Tr(σ∗n) + 1

As a consequence, the zeta function of the weak del Pezzo surface X is

Z(X,T )−1 = (1− T )(1− q2T ) det
(
I− qTσ∗|Pic(X ⊗ k)

)
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2. Singular del Pezzo surfaces

In this section, we consider a weak del Pezzo surface X of degree d defined over
the finite field k = Fq.

If X is not ordinary, its anticanonical divisor is no longer ample, and the mor-
phism it (or one of its multiples) defines is no longer an embedding; its image Xs

is singular.
In this section, we first describe the geometry of this image, then we determine

the divisor class groups of X and the associated singular variety in order to prove
Theorem 1.

2.1. Anticanonical models: geometric aspects.

Definition 2.1. The anticanonical model of the surface X is the variety

Xs := Proj

∞⊕

n=0

H0(X,−nKX)

and we denote by ϕ : X → Xs the associated morphism.
The variety Xs just defined is the singular del Pezzo surface associated to X .

Remark 2.2. One can also consider for i ≥ 1, the plurianticanonical linear system
| − iKX | and the image X(i) of the morphism it defines. This variety is isomorphic
to Xs as long as di ≥ 3 [9, V Théorème 1]. As a consequence, the variety Xs can
be identified with the anticanonical image of X when d ≥ 3.

The anticanonical model of a degree d del Pezzo surface is [17, Theorem 3.5]

(i) if d = 4, the complete intersection of two quadrics in P4;
(ii) if d = 3, a cubic in P3;
(iii) if d = 2, a degree four hypersurface in weighted projective spaceP(1, 1, 1, 2);
(iv) if d = 1, a degree six hypersurface in P(1, 1, 2, 3).

We list below some properties of the surface Xs, and of the morphism ϕ [9, IV
Théorème 1, V Proposition 1, V Théorèmes 1 et 2]. Recall that A is the union of
the (−2)-curves on X , and U is its complementary

Theorem 2.3. 1) The schematic fibers of the morphism ϕ are the points of U and
the fundamental cycles. As a consequence, ϕ is birational, and we have ϕ∗OX =
OXs

.
2) for all n ∈ Z, i > 0, we have Riϕ∗O(nKX) = 0.
3) The surface Xs is normal. The singular points of Xs are the images of the

fundamental cycles; they are rational double points.
4) If we set O(KXs

) := ϕ∗O(KX), then O(KXs
) is locally free of rank 1, and

for every integer n we have canonical isomorphisms

O(nKXs
) = ϕ∗O(nKX), O(nKX) = ϕ∗O(nKXs

)

In other words, ϕ is an isomorphism from U on its image Us, and each connected
component of A is sent to a point which is a rational double point on Xs. We obtain
all singular points of Xs in this way. The map ϕ is a minimal resolution of the
singularities of Xs, and the Dynkin type of X is the dual graph to this resolution.
Thus the singularity type of Xs is exactly the Dynkin type of X .

The type of a singularity x of Xs is the type of the connected component corre-
sponding to x in the intersection graph of (−2)-curves of X . Since all singularities
are rational double points, their types fall in the ADE classification.
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Note also that since O(KXs
) is locally free of rank 1, this invertible sheaf corre-

sponds to a Cartier divisor KXs
.

We end by recalling the following result [9, V Corollaire 2].

Theorem 2.4. Let F denote a locally free sheaf on Xs. Then, for any i ≥ 0, we
have

Hi(Xs,F) = Hi(X,ϕ∗F)

Moreover, we have Serre duality

Hi(Xs,F) = H2−i(Xs,O(KXs
)⊗F∨)∨

From this result, we can describe the global sections of the Cartier divisors on
Xs. Moreover we see that the sheaf O(KXs

) is dualizing; since it is locally free, the
surface Xs is Gorenstein.

2.2. Divisor class groups and zeta functions. Let X denote a weak non ordi-
nary del Pezzo surface defined over k = Fq, and Xs its anticanonical model. Then
ϕ and Xs are defined over k since the anticanonical divisor is. In the same way,
the varieties Sing(Xs) of dimension zero, and A of dimension 1 are defined over k.

Recall that the geometric Picard group (the group of classes of Cartier divisors)

Pic(X ⊗ k) identifies to the free Z-module generated by E0 and E1, . . . , Er, with
r = 9− d. It is equal to the group of classes of Weil divisors Cl(X ⊗ k) since X is
smooth. Using this identification, we will no longer mention the dependance on X
of some objects such as the root modules.

We first describe the groups Cl(Xs ⊗ k) and Pic(Xs ⊗ k). Note that since Xs is
normal, the groups of Cartier divisors and of invertible sheaves coincide.

The restriction to U⊗k of Weil divisorsX⊗k is surjective [15, Proposition II.6.5];
its kernel consists of divisors whose support is contained in the complementary of
U ⊗ k, i.e. in A ⊗ k. This last group is R, since it is generated by the irreducible
components of A⊗ k, and these are exactly the (−2)-curves.

No principal divisor on X ⊗ k has support contained in A⊗ k [19, p 225]. Thus

R remains the kernel of the restriction of classes of Weil divisors from Cl(X ⊗ k)
to Cl(U ⊗ k).

The morphism ϕ induces an isomorphism from U to Us, and we have Cl(Us⊗k) =
Cl(U ⊗ k). Now Xs ⊗ k \ Us ⊗ k has codimension 2 in Xs ⊗ k, and we deduce [15,
Proposition II.6.5] that Cl(Us ⊗ k) = Cl(Xs ⊗ k). We get

(2.1) 0 // R // Cl(X ⊗ k) = Pic(X ⊗ k) // Cl(Xs ⊗ k) // 0

We come to the Picard group. The pull-back ϕ∗ : Pic(Xs ⊗ k) → Pic(X ⊗ k)
gives rise to the exact sequence [4, Proposition 1]

(2.2)

0 // Pic(Xs ⊗ k)
ϕ∗

// Pic(X ⊗ k)
θ

// R∨
// Br(Xs ⊗ k)

ϕ∗

// Br(X ⊗ k)

where we have set R∨ := Hom(R,Z), and θ comes from the intersection product:

for any D ∈ Pic(X ⊗ k), θ(D) : R → Z is defined by θ(D)(R) = D · R.
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In other words, the group Pic(Xs ⊗ k) identifies to the following subgroup of
Pic(X ⊗ k)

Pic(Xs ⊗ k) = {D ∈ Pic(X ⊗ k), ∀R ∈ R, D ·R = 0}
= {D ∈ Pic(X ⊗ k), ∀R ∈ Rirr, D ·R = 0}

Since X ⊗ k is a rational surface, its Brauer group is trivial. We deduce the
equality Coker θ = Br(Xs ⊗ k), and we have the following explicit description of
this last group [4, Proposition 4]. The root module R is a subgroup of K⊥

X , and

Br(Xs ⊗ k) is the torsion subgroup of the quotient

Coker θ = Br(Xs ⊗ k) =
(
K⊥

X/R
)
tors

It depends on the geometric type defined above (not only on the Dynkin type in
general: for instance there are two orbits for the Dynkin type 4A1 when d = 2,
one gives a trivial cokernel, the other an order 2 cokernel), and the different cases
are described in [4, Theorem 6]. Note that θ is often surjective (this is always true
when d ≥ 5).

We turn to the study of the zeta function. We first determine the zeta function
of the union A of the (−2)-curves in X .

Since the set Rirr is stable under the action of Γ, the action of σ∗ on Pic(X ⊗ k)
restricts to an action on R. Moreover this action preserves the intersection product,
and it induces an automorphism on the singular graph; as a consequence it permutes
the (−2)-curves. The matrix of the action of σ∗ over R with respect to the basis
Rirr is a permutation matrix.

We can express the zeta function of A in terms of the characteristic polynomial
of this action

Lemma 2.5. We have the equality

Z(A, T ) = Z(Sing(Xs), T ) det(I− qTσ∗|R)−1

Proof. Write A as the disjoint union of its connected components Ax, where for
any x ∈ Sing(Xs)(Fq), Ax is the fiber (seen as a set) ϕ−1({x}).

Let n ≥ 1 an integer; since ϕ is defined over k, we have Axσn = Aσn

x . If we have
x /∈ Sing(Xs)(Fqn), then A

σn

x ∩ Ax = ∅, and we deduce that Ax(Fqn) = ∅.
Now assume x ∈ Sing(Xs)(Fqn), and let us denote by Cx1, . . . , Cxk the absolutely

irreducible components of Ax, whuch form the Coxeter-Dynkin graph associated to
x.

For any two curves Cxi and Cxj defined over Fqn , there is a unique (since the
graph has no cycle) chain with minimal length in the graph between them. As the
extremities of this chain are fixed by σn, the whole chain is fixed. We deduce from
this fact that the subgraph of the Cxi, 1 ≤ i ≤ k defined over Fqn is connected; let
us denote Nnx the number of its vertices. As the (−2)-curves have normal crossings,
we deduce
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#Ax(Fqn) =

Nnx∑

i=1

#Cxi(Fqn)−
∑

1≤i<j≤Nn

#(Cxi ∩ Cxj)(Fqn)

= Nnx(1 + qn)−
∑

1≤i<j≤Nnx

Cxi · Cxj

= 1 +Nnxq
n

where the last equality comes from the fact that the sum of the intersection
products is the number of edges in the subgraph whose vertices are the Cxi defined
over Fqn . Since this graph is connected, has Nnx vertices and type A,D,E, it
contains exactly Nnx − 1 edges.

Finally, if none of the absolutely irreducible components of Ax is defined over
Fqn , then σ

n acts without fixed points over the Coxeter-Dynkin graph associated
to x. The only graphs admitting such an action are the A2k, and the action is the
symmetry around the center of the graph, of order 2. In this case, the unique point
defined over Fqn is the intersection of the effective roots Cxk and Cxk+1.

Summing up, we have

#Ax(Fqn) =

{
1 +Nnxq

n if x ∈ Sing(Xs)(Fqn)
0 else

Thus, for any n ≥ 1 we have

#A(Fqn) = #Sing(Xs)(Fqn) +Nnq
n

where Nn is the number of (−2)-curves on X defined over Fqn .
Replacing this expression in the usual expansion of zeta functions, we get

Z(A, T ) = exp




∑

n≥1

#A(Fqn)
T n

n



 = Z(Sing(Xs), T ) exp




∑

n≥1

Nn

(qT )n

n





Since the matrix of σ∗n with respect to the basis Rirr(X) is a permutation matrix,
its trace is exactly the number of elements in the basis which remain invariant under
the action of σ∗n. We deduce that Nn = Tr(σ∗n|R), and the result comes from
the expansion of the characteristic polynomial of an endomorphism in terms of the
traces of its iterates.

�

We are ready to prove Theorem 1.

Proof. From the above results, the following equalities hold for any n ≥ 1

#Xs(Fqn) = #Us(Fqn) + #Sing(Xs)(Fqn) excision for Xs

= #U(Fqn) + #Sing(Xs)(Fqn) isomorphim U ≃ Us

= #U(Fqn) + #A(Fqn)− qn Tr(σ∗n|R) Lemma 2.5
= #X(Fqn)− qn Tr(σ∗n|R) excision for X

Now from Proposition 1.15, we have #X(Fqn) = q2n + qn Tr(σ∗n) + 1, and

#Xs(Fqn) = q2n + qn (Tr(σ∗n)− Tr(σ∗n|R)) + 1
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If we pass to zeta functions as in the proof of Proposition 1.15, we get

Z(Xs, T )
−1 = (1− T )(1− q2T ) det

(
I− qTσ∗|Pic(X ⊗ k)

)
det(I− qTσ∗|R)−1

Tensoring the exact sequence of Z-modules (2.2) with C, the torsion disappears
and we get the exact sequence of vector spaces

0 // Pic(Xs ⊗ k)⊗C // Pic(X ⊗ k)⊗C // R∨ ⊗C // 0

Finally, the action of σ∗ on R∨⊗C is adjoint to that of σ∗−1 over R⊗C, and they
share the same characteristic polynomial. Finally the matrix of σ∗ in the basis Rirr

of the the Z-module R is a permutation matrix; thus the actions of σ∗−1 and σ∗

also share the same characteristic polynomial. We get the equality

det
(
I− qTσ∗|Pic(X ⊗ k)

)
= det(I− qTσ∗|R) det

(
I− qTσ∗|Pic(Xs ⊗ k)

)

This ends the proof. �

3. Construction of weak del Pezzo surfaces of degree at least five

The aim of this section is to show that for any finite field Fq and arithmetic
type belonging to a degree d ≥ 5, there exists a weak del Pezzo surface of this type
defined over Fq. In order to do this, we give explicit constructions.

These surfaces are birational to the projective plane P2 [7, Lemma 9.3], and our
constructions are sequences of blowups and contractions. The fundamental remark
is that the configurations of points to be blown-up exist over any finite field. For
instance, we will often need three collinear points, but this is possible over any
finite field since a line defined over Fq contains q + 1 rational points.

We will often use the graphs of negative curve from Definition 1.10 in order to
represent the geometric type.

3.1. Degrees seven and eight. First note that in this case, there is only one
geometric type (of Dynkin type A1), and one arithmetic type.

From Proposition 1.5, the only degree 8 weak, non ordinary del Pezzo surface is
the Hirzebruch surface F2; the only degree 8 singular del Pezzo surface is its image
by the contraction of its negative section. We construct these surfaces from degree
7 surfaces below.

Again from Proposition 1.5, all the degree 7 del Pezzo surfaces over an alge-
braically closed field are obtained from the projective plane P2 by two successive
blowups at points p1, p2. Such a surface is not ordinary if and only if the center of
the second blowup is a point p2 ≻ p1 of the exceptional divisor of the first one. In
this case, the effective root is the strict transform of this exceptional divisor, whose
class in the Picard group is E1 −E2. We get the following graph of negative curves

E1 − E2 E2 E0 − E1 − E2

In order to get a non ordinary del Pezzo surface of degree 7 defined over the finite
field Fq, we have to choose rational points p1, p2 for the centers of the blowups.

The Hirzebruch surface can be obtained from the degree 7 non ordinary del Pezzo
surface by contracting the strict transform of the line (p1p2) (the unique line in P2

passing trough p1 and whose strict transform after the first blowup passes trough
p2).
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3.2. Degree six. Recall that the Weyl group is generated by the reflections sE1−E2 ,
sE2−E3 and sE0−E1−E2−E3 . It is isomorphic to the dihedral group of order 12.

The possible geometric types are given in [12, Section 8.4.2] or [7, Proposition
8.3]. Except in one case, we follow the choices made in this last article for the set of
roots representing the corresponding orbit. As a consequence, most of the graphs
of negative curve are already described in the above mentioned article, and we do
not recall them.

We refer to the corresponding table in the appendix for the different arithmetic
types.

A1(4) to obtain the split surface (arithmetic type 1) we blowup three non collinear
points rational points p1 ≺ p2 and p3 (in other words, the strict transform
of the line (p1p3) after the first blowup does not pass through p2).

The stabilizer of the root E1−E2 is the subgroup of order 2 generated by
the reflection sE0−E1−E2−E3 . Its elements fall into two conjugacy classes.

In order to construct a surface of arithmetic type 2, we will contract
a line on a weak degree 5 del Pezzo surface X(Σ) of geometric type A1,
obtained by blowing-up four points p1, . . . , p4 in P2, the first three being
collinear (see the degree 5 surface of geometric type A1 below).

If we contract the exceptional curve E0 −E3 −E4 on such a surface, the
vertices E3 and E4 disappear, and we obtain a degree 6 del Pezzo surface
with the graph of negative curves

E0 − E1 − E2 − E3

E1 E0 − E1 − E4E0 − E2 − E4 E2

Assume that the first two points p1, p2 ∈ P2(Fq2 ) are conjugate over
Fq, and p3, p4 are defined over Fq. The exceptional curve E0 − E3 − E4

is defined over Fq. Contracting it, we get a surface X defined over Fq of
degree 6, of the geometric type under consideration, which is not split: this
is a surface of arithmetic type 2.

A1(3) we blow-up three collinear points in P2; we get the three exceptional curves
E1, E2, E3, and the effective root E0 −E1 −E2 −E3 which corresponds to
the strict transform of the line through the pi.

The stabilizer of the root in the Weyl group W (E6) is the subgroup
generated by the reflections sE2−E1 and sE2−E3 , which is isomorphic to the
symmetric group S3.

There are three conjugacy classes in this group, corresponding to the
three arithmetic types 3, 4, 5. We construct a surface of each type in the
following way
3 : the points p1, p2, p3 are defined over Fq;
4 : the points p1, p2 = pσ1 are defined over Fq2 , and p3 over Fq;

5 : the points p1, p2 = pσ1 , p3 = pσ
2

1 are defined over Fq3 .
2A1 we blowup three collinear points p1 ≺ p2 and p3 (the point p2 is the in-

tersection of the strict transform of the line (p1p3) with the exceptional
curve of the first blowup). The exceptional curves on the resulting surface
are E2, E3, and the (−2)-curves correspond to the classes E1 − E2 and
E0 − E1 − E2 − E3.

The stabilizer of the set {E1−E2, E0−E1−E2−E3} in the Weyl group
is trivial, and there is exactly one arithmetic type, with number 6.
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A2 we blowup three non collinear points p1 ≺ p2 ≺ p3 (the point p3 is not the
intersection of the strict transform of (p1p2) with the exceptional divisor
of the second blowup). The exceptional curves correspond to the classes
E0 − E1 − E2, E3, and the (−2)-curves to E1 − E2, E2 − E3.

The stabilizer of the set {E1−E2, E2−E3} in the Weyl group is generated
by the reflection sE0−E1−E2−E3 , it has order 2. As a consequence, there are
two arithmetic types, one split that can be constructed by choosing rational
points above, the other non-split.

In order to construct the non-split one, we start with a degree 5 del
Pezzo surface of geometric type A2 and arithmetic type 7 (see below). If
we contract the exceptional curve with class E0−E1−E2 (which is defined
over Fq), we get a degree 6 del Pezzo surface of arithmetic type 8.

A1A2 we blowup three collinear points p1 ≺ p2 ≺ p3, where the point p3 is the
intersection of the strict transform of (p1p2) with the exceptional divisor
of the second blowup. We get an exceptional curve of class E3, and (−2)-
curves corresponding to the classes E1 −E2, E2 −E3, E0 −E1 −E2 −E3.

Once again, the stabilizer is trivial and the only arithmetic type (number
9) is split.

3.3. Degree five. Here the Weyl group is generated by the reflections sE1−E2 ,
sE2−E3 , sE3−E4 and sE0−E1−E2−E3 . It is isomorphic to the symmetric group S5.

In this section, we shall not systematically follow the choices made in [7, Propo-
sition 8.5] for the classes of (−2)-curves representing each geometric type (see also
[12, Section 8.5.1] for a list of these types). The reason is that there are many ways
to construct a del Pezzo surface of a given geometric type by playing on the con-
figuration of the points we blow up. Here we adopt the configuration that seems
best adapted to the description of the arithmetic types (in some sense the most
“symmetric ” one), and it need not coincide with the one described in the above
article. We rewrite the graphs when they differ from [7].

We refer to the corresponding table in the Appendix for the different arithmetic
types.

A1 We blowup four points p1, . . . , p4 in P2 with the first three collinear. The
only (−2)-curve is the strict transform of the line through these points, its
class is E0 − E1 − E2 − E3; moreover there exist seven exceptional curves,
and the graph of negative curves is

E0 − E1 − E2 − E3

E1

E2

E3

E0 − E1 − E4

E0 − E2 − E4

E0 − E3 − E4

E4

The stabilizer of the root E0−E1−E2−E3 is generated by the reflections
sE1−E2 , sE2−E3 , and is isomorphic to the symmetric group S3. There are
three conjugacy classes, giving rise to three arithmetic types.

The corresponding surfaces are easily constructed, playing on the defi-
nition fields of the points p1, p2, p3 (we always choose p4 ∈ P2(Fq))
1 : the three points are in P2(Fq);
2 : there are two conjugate points in P2(Fq2 ), and one in P2(Fq);
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3 : the three points are conjugate in P2(Fq3 ).
2A1 Here we follow [7, Proposition 8.5 2.]; we blowup p1 ≺ p2, p3 ≺ p4 such

that the strict transform of the line (p1p3) does not meet the exceptional
divisor of the first blowup at p2 nor of the third at p4. We get two disjoint
(−2)-curves with classes E1 −E2 and E3 −E4, and five exceptional curves.
The stabilizer of the set of negative curves is the order two subgroup of
W (A4) generated by sE1−E3 ◦ sE2−E4 .

We get the two arithmetic types in the following way
4 : if p1 ≺ p2, p3 ≺ p4 are defined over Fq, the surface is split;
5 : we choose couples of conjugate points p1 ≺ p2, p3 = pσ1 ≺ p4 = pσ2

defined over Fq2 .
A2 We blow up p1, p3, p4 collinear, then p2 ≻ p1 which does not lie on the strict

transform of the line (p1p3); we obtain the following graph of negative curves

E1 − E2
E0 − E1 − E3 − E4

E0 − E1 − E2 E2

E3

E4

The stabilizer of the set of (−2)-curves is the subgroup of the Weyl group
generated by sE3−E4 ; it has order 2 and we get two arithmetic types. These
are easily described
6 : if the pi are defined over Fq, the surface is split;
7 : if we choose p4 = pσ3 defined over Fq2 , it is not.

A1A2 We blowup p1 ≺ p2 ≺ p3 collinear and p4 ∈ P2 outside the line (p1p2).
The stabilizer is trivial, and the only arithmetic type is split.

A3 We blowup p1 ≺ p2 ≺ p3 ≺ p4 where p1, p2, p3 are not collinear. The
stabilizer is trivial, and the only arithmetic type is split.

A4 We blowup p1 ≺ p2 ≺ p3 ≺ p4 where p1, p2, p3 are collinear. The stabilizer
is trivial, and the only arithmetic type is split.

4. Construction of singular del Pezzo surfaces of degree four.

We adopt a different point of view in this section. Actually not all weak degree
four del Pezzo surfaces are birational to the projective plane over a finite field, and
the preceding constructions, which use sequences of blowups and contractions, no
longer suffice to describe all types.

We shall mostly use a well known property of these surfaces: their anticanonical
model is the base locus of a pencil of quadrics in projective space P4. The classi-
fication of these objects is different in characteristic two, and we assume that the
characteristic of our base field is odd in this section.

We shall show that singular del Pezzo surfaces of every arithmetic type exist
over any finite field with odd cardinality.

4.1. Pencils of quadrics, their Segre symbols, and geometric types. In
this section, we work over the field k, an algebraic closure of a finite field of odd
characteristic.

We recall [12, Section 8.6.1]. The results there are described over the field of com-
plex numbers, and our aim is to show that they remain valid over any algebraically
closed field of odd characteristic.
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The anticanonical model of a weak del Pezzo surface of degree 4 is the base locus
of a pencil of quadrics in projective space P4 [17, Theorem 3.5]. We denote by Q0

and Q∞ two distinct quadrics of this pencil. This gives us two quadratic forms over
the vector space k5, and two symmetric 5×5 matrices; we denote the characteristic
polynomial of the pencil corresponding to this basis by F (λ, µ) := det(λQ0+µQ∞).

A theorem of Kronecker [27, Theorem 3.1] tells us that the vector space k5 can
be written as an orthogonal direct sum of subspaces of two types:

• a non singular space, say of dimension d, over which the determinant has
degree d;

• some basic singular spaces; here the equations of the quadrics take a very
special form with respect to a well chosen basis.

A direct calculation from such equations shows that the base locus of a pencil of
quadrics has one-dimensional singular locus as long as the space contains a basic
singular space. Thus the space k5 must be non-singular for the pair of quadratic
forms. Note that this is no longer true in characteristic two, even for ordinary
degree 4 del Pezzo surfaces [11], since a quadratic form over an odd dimensional
vector space must be degenerate.

We assume in the following that the quadric Q∞ is non-singular; thus the poly-
nomial P (t) := F (1, t) has degree 5. This is a harmless assumption since we assume
k algebraically closed.

We follow Waterhouse [27, Section 1] and associate to our pair of quadratic forms
a quadratic form Φ on a k[T ]-module of finite length. If ϕ0, ϕ∞ denote the bilinear
forms on k5 associated to Q0 and Q∞, then ϕ∞ is non degenerate, and there is
an unique endomorphism u of k5 such that ϕ∞(u(x), y) = ϕ0(x, y) for any vectors
x, y. Moreover u is symmetric with respect to ϕ∞.

The vector space k5, endowed with the action of u, becomes a k[T ]-module of
finite length that we denote byM . The non degenerate form ϕ∞ defines an isomor-
phism Φ of k[T ]-modules between M and its dual M∗ := Homk[T ](M,k(T )/k[T ]).

Consider the factorisation of P over k, P (T ) =
∏t

i=1(T − θi)
mi ; we get an

isomorphism of k[T ]-modules

M = ⊕t
i=1 ⊕

ei
j=1 (k[T ]/((T − θi)

mij ))
nij

As a consequence, we can associate to M the following Segre symbol

(4.1) [(m11 . . .m11︸ ︷︷ ︸
n11 ×

. . .m1e1 . . .m1e1︸ ︷︷ ︸
n1e1×

) . . . (mt1 . . .mt1︸ ︷︷ ︸
nt1×

. . .mtet . . .mtet︸ ︷︷ ︸
ntet

×

)]

Note that we remove the parentheses around the ith term when it contains exactly
one integer, ie when we have ei = ni1 = 1.

As in [27, Section 2], one can write the restrictions of the quadratic forms to a
submodule of the form k[T ]/(T − θ)m as (here res denotes the residue in the sense
of Laurent series)

Q0(x) = res(T (T − θ)−mx2), Q∞(x) = res((T − θ)−mx2)

since every element in (k[T ]/(T − θ)m)
×

is a square.
In the basis ((T −θ)m−1, . . . , T −θ, 1), the expressions of these forms are exactly

those given in [12, Equation (8.21)]. Now the analytic expressions for the rational
double points of type An or Dn (the only ones occuring for degree 4 singular del
Pezzo surfaces) are exactly the same in characteristic 0 or odd [1], and we deduce
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that the following one to one correspondance between the geometric types and
(some of the) Segre symbols [12, Table 8.6] remains true in our setting

Type Number Segre

of singularity of lines symbol

Ordinary 16 [11111]
A1 12 [2111]
2A1 9 [221]
2A1 8 [(11)111]
A2 8 [311]
3A1 6 [(11)21]
A1A2 6 [32]
A3 5 [41]

Type Number Segre

of singularity of lines symbol

A3 4 [(21)11]
4A1 4 [(11)(11)1]
2A1A2 4 [3(11)]
A1A3 3 [(21)2]
A4 3 [5]
D4 2 [(31)1]
2A1A3 2 [(21)(11)]
D5 1 [(41)]

Some Segre symbols do not give rise to singular degree 4 del Pezzo surfaces. For
instance the symbol [(11111)] gives rise to two collinear quadratic forms over k5,
and the base locus of the pencil is a quadric in P4.

We shall often use the following remark along this section

Remark 4.1. These symbols carry the following informations: the number of differ-
ent terms (ie the number t in (4.1), each couple of parentheses counts for one term)
is equal to the number of singular quadrics in the pencil, and for such a quadric,
its co-rank is the number of terms in the corresponding parenthesis. Actually we
remark that the possible ranks for the singular quadrics in the pencil are 3 or 4.

In the following, we shall often use the Segre symbol instead of the geometric
type for our contructions. Moreover, we always choose the same set of (−2)-curves
as in [7, Proposition 6.1] to represent the orbit.

4.2. Morphisms to the projective line. We continue to work over an alge-
braically closed field of odd characteristic in this section. We keep on with the
notations of the preceding section.

A convenient way to classify the arithmetic types for an ordinary del Pezzo
surface is to visualize the Galois action on a graph consisting of its conic bundles
[18, pages 8 and 9]. A non ordinary del Pezzo surface no longer has conic bundles,
due to the presence of (−2)-curves; the aim of this section is to define a new graph
for each geometric type, which is very close to the original one, whose vertices
represent

• the fibers of rational maps or morphisms from X to the projective line,
• the classes of (−2)-curves.

We will use these graphs in the next sections in order to control the arithmetic
types.

Let ϕ : X → P1 denote a surjective morphism. Since X is a rational surface, the
generic fiber of ϕ is isomorphic to P1. Moreover all its fibers are linearly equivalent.
We deduce from the adjunction formula that their class C satisfies C·2 = 0 and
C ·KX = −2; moreover we have ϕ = ϕ|C|.

Recall [3, Theorem 2]: there exist exactly ten classes in Pic(X) satisfying the
above equations (note that they form complementary couples in the sense that we
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have Ci + C′
i = −KX for each i)

Ci = E0 − Ei, C
′
i = 2E0 −

5∑

j=1

Ej + Ei, 1 ≤ i ≤ 5

Definition 4.2. We set C := ∪5
i=1{Ci, C

′
i} in the following. We represent these

classes in the following graph, in which the couples are materialized by vertical
dashed lines.

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

In the case of singular del Pezzo surfaces, the elements of C no longer correspond
to conic bundles. But they still correspond to rational maps from X to the projec-
tive line, as we shall see below. We will adapt the graph according to the geometric
type, by adding vertices corresponding to (−2)-curves, and an edge between a class
in C and such a curve when they intersect positively.

From the description of the elements in C on one hand, and of the (−2)-curves
(recall that their classes have the form Ei−Ej or E0−Ei−Ej −Ek) on the other,
we see that we must have C · R ∈ {−1, 0, 1}.

Let C ∈ C be such that we have C · R = −1 for some (−2)-curve R; we deduce
that C −R ∈ C . Thus R is a fixed component of the linear system |C|, and ϕ|C| is
a rational map, but not a morphism.

We deduce that there exists at most

NX := #{C ∈ C , ∀R ∈ Rirr(X), C ·R ≥ 0}

morphisms from X to P1.
Our strategy is to construct exactly NX such morphisms by considering the

singular quadrics in the pencil defining the anticanonical model Xs. Recall that
P denotes the characteristic polynomial of the pencil, and that θ1, . . . , θt are its
(pairwise distinct) roots.

Let θi denote a simple root of P , if any; the ith part of the Segre symbol (4.1) is
a 1. From remark 4.1, the quadric Qi := Q0 − θiQ∞ is a singular quadric in P4 of
rank 4. Thus it is a cone whose vertex is a point vi and base a non singular quadric
qi := Qi ∩Hi for some hyperplane Hi not containing vi. Moreover the vertex vi is
not contained in Xs since θi is a simple root of P .

The projection P4 → Hi from vi restricts to a double covering Xs → qi. Now qi
is non singular, thus it is isomorphic to P1×P1, and the projections on the factors
give rise to two morphisms from Xs to P1. Composing them with the anticanonical
morphism gives two morphisms ϕi1, ϕi2 : X → P1.

Note that we have morphisms fromXs toP
1, thus their fibers are Cartier divisors

on Xs, and their classes in Pic(X) satisfy C · R = 0 for all (−2)-curves R on X .
Finally, the fibers of the above morphisms from Xs to P1 are of the form Π∩Q∞,

where Π is some plane containing one of the lines of qi and passing through vi.
These are plane conics. For any point p ∈ Xs, the hyperplane H of P4 tangent
to Qi at p intersects Qi along the union of two planes Π1 and Π2, and we have
H ∩Xs = H ∩Qi ∩Q∞ = (Π1 ∩Q∞)∪ (Π2 ∩Q∞). We deduce that the sum of the
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classes of the fibers of these two morphisms is exactly the class of the anticanonical
divisor: they are complementary.

Now assume that θi is a multiple root of P , and that Qi has rank 4 (this means
that the ith part of the Segre symbol (4.1) satisfies ei = ni1 = 1 andmi1 = mi > 1).
The same construction as in the preceding case yields two morphisms from Xs\{vi}
to P1 (note that the vertex vi of Qi is a singular point of Xs here).

Consider the blowup Blvi(P
4) → P4; then Blvi(Xs) is the strict transform of

Xs [15, Corollary II.7.15], and the two morphisms above become morphisms from
Blvi(Xs) to P1. The fiber of vi in the blowup Blvi(Xs) → Xs contains only (−2)-
curves, and we must have a morphism X → Blvi(Xs) since X is the minimal
desingularization of Xs. Composing, we get two morphisms ϕi1, ϕi2 : X → P1.

The last case to be considered is when θi is a multiple root of P , and Qi has rank
3; here the ith part of the Segre symbol (4.1) contains exactly two terms between
parentheses. In this case Qi is a cone with vertex ℓi ≃ P1 and base a smooth
plane conic ci. The projection with vertex ℓi from P4 \ ℓi to this plane induces a
morphism from Xs \ ℓi ∩Xs to ci ≃ P1 (a rational map Xs 99K P1).

The blowup Blℓi(P
4) → P4 restricts to Blℓi∩Xs

(Xs) → Xs as above, and we
get a morphism Blℓi∩Xs

(Xs) → P1 from the above rational map. Once again,
the fibers above the points in ℓi ∩ Xs in the morphism Blℓi∩Xs

(Xs) → Xs only
contain (−2)-curves, and we get a morphism X → Blℓi∩Xs

(Xs) from the minimal
desingularization, from which we get a morphism ϕi1 : X → P1.

Summing up, we have constructed 2a+ 2b+ c morphisms from X to P1, where
a is the number of simple roots of P , b the number of multiple roots corresponding
to a rank 4 quadric in the pencil, and c the number of rank 3 quadrics in the pencil.

The following table contains the graphs we mentioned at the beginning of the
section. It is sufficient to prove the next proposition for each geometric type.

Note that for each type we use an empty square to denote the classes in C

that intersect negatively a (−2)-curve, and a full square for the other ones; we
also denote by ri the curve with class Ei − Ei+1, and by rijk the curve with class
E0 − Ei − Ej − Ek

Table 1: Conics-(−2)-curves graphs

Geom. Type Conics-(−2) Curves Graph N (a, b, c) (−2)-curves

A1 [2111]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R 8 (3, 1, 0) R = r45

2A1(9) [221]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2

6 (1, 2, 0)
R1 = r23
R2 = r45

2A1(8) [111(11)]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1

R2

7 (3, 0, 1)
R1 = r123
R2 = r45
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Table 1: Conics-(−2)-curves graphs

Geom. Type Conics-(−2) Curves Graph N (a, b, c) (−2)-curves

A2 [311]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2

6 (2, 1, 0)
R1 = r34
R2 = r45

3A1 [(11)21]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2

R3

5 (1, 1, 1)
R1 = r23
R2 = r45
R3 = r123

A1A2 [32]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2 R3

4 (0, 2, 0)
R1 = r12
R2 = r34
R3 = r45

A3(5) [41]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2 R3

4 (1, 1, 0)
R1 = r23
R2 = r34
R3 = r45

A3(4) [(21)11]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R3

R2 R1

5 (2, 0, 1)
R1 = r45
R2 = r34
R3 = r123

4A1 [(11)(11)1]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R4

R1

R2

R3

4 (1, 0, 2)

R1 = r12
R2 = r345
R3 = r45
R4 = r123

2A1A2 [3(11)]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2

R4

R3

3 (0, 1, 1)

R1 = r12
R2 = r23
R3 = r45
R4 = r123

A1A3 [(21)2]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2

R4

R3

3 (0, 1, 1)

R1 = r12
R2 = r34
R3 = r45
R4 = r123

A4 [5]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2 R3 R4

2 (0, 1, 0)

R1 = r12
R2 = r23
R3 = r34
R4 = r45
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Table 1: Conics-(−2)-curves graphs

Geom. Type Conics-(−2) Curves Graph N (a, b, c) (−2)-curves

D4 [(31)1]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R4

R1 R2 R3

3 (1, 0, 1)

R1 = r23
R2 = r34
R3 = r45
R4 = r123

2A1A3 [(21)(11)]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R5

R1 R3 R4

R2

2 (0, 0, 2)

R1 = r12
R2 = r345
R3 = r34
R4 = r45
R5 = r123

D5 [(41)]

C1 C2 C3 C4 C5

C
′

1 C
′

2 C
′

3 C
′

4 C
′

5

R1 R2 R3 R4

R5

1 (0, 0, 1)

R1 = r12
R2 = r23
R3 = r34
R4 = r45
R5 = r123

We summarize the results of this section in the following

Proposition 4.3. Let X denote a degree four weak del Pezzo surface, and P a
characteristic polynomial for the pencil of quadrics defining its anticanonical model
in P4. Denote by aX the number of simple roots of P , bX ( resp. cX) the number
of multiple roots corresponding to a rank 4 ( resp. rank 3) quadric in the pencil.

If NX is the number of classes in C not intersecting any (−2)-curve negatively,
we have NX = 2aX + 2bX + cX , and this is the number of surjective morphisms
from X to the projective line.

For each of these classes C, the morphism ϕ|C| : X → P1 has fibers linearly
equivalent to C, and the type of map ϕ|C| defines on Xs depends on the following
numerical criterion

(a) 2aX of them satisfy C · R = 0 for all (−2)-curves R ∈ Rirr(X); for those
ones ϕ|C| factors through the anticanonical morphism and yields a mor-

phism from Xs to P1; moreover these classes lie in Pic(Xs), and they form
aX couples of complementary classes;

(b) 2bX + cX satisfy C ·R ≥ 0 for all (−2)-curves R and C ·R > 0 for at least
one, and for those ϕ|C| does not define a morphism from Xs to P1.

Remark 4.4. Note that in the ordinary case, we have aX = 5 and bX = cX = 0.
Then the fibers of the 10 morphisms form the conic bundles, and we recover the
original graph.

Remark 4.5. Another consequence of the discussion above is that, for a fixed class
C ∈ C which intersects all the (−2)-curves nonnegatively, we have two possibilities
for the relative position of a (−2)-curve with class R with the fibers of the morphism
ϕ|C|

(i) when we have C ·R = 1, R is transverse to the fibration, and ϕ|C| restricts

to an isomorphism from R to P1. The images in Xs of its fibers all pass
through the singular point which is the image of R;
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(ii) when we have C · R = 0, R is contained in a fiber of the morphism ϕ|C|.

4.3. Galois action on the singular quadrics, and arithmetic types. In this
section we work over the finite field k = Fq, q a power of an odd prime.

It remains to provide information on the arithmetic type of a degree four del
Pezzo surface X from arithmetic information on the rank four singular quadrics
in the pencil defining Xs. We begin by using the results of the preceding section
to describe the Galois action on the morphisms to the projective line from this
information. Later, we will transpose this action to an action on the graph of
conics and (−2)-curves, which will naturally lead to a (“part” of a) conjugacy class
in the Weyl group W (D5), that we describe below, and that is given in the fourth
column of the table for degree four surfaces in the Appendix.

We begin by a definition (note that it is independant of the choice of the sup-
plementary)

Definition 4.6. Let Q denote a rank four quadric in P4, defined over Fqd ; its

restricted discriminant is the discriminant of its base in F×
qd
/F×2

qd
. In other word,

it is the discriminant of the restriction of quadratic form corresponding to Q to a
supplementary of its kernel.

The Weyl group W (D5) can be identified with the group H5 ⋊S5, where H5 is

the subgroup of (Z/2Z)5 which is the kernel of the map ε = (ε1, . . . , ε5) 7→
∑5

i=1 εi,
and S5 acts on H5 by σ · ε = (εσ−1(1), . . . , εσ−1(5)).

Recall from [5, Proposition 25] that the conjugacy classes in W (D5) are even
signed cycle-types; they form a partition of 5 where each integer in the partition is
overlined or not, and there is an even number of overlines. The conjugacy class of
an element (ε, σ) has partition corresponding to the conjugacy class of σ in S5, and
a number in this partition is overlined when the sum of the εi where i describes the
support of the corresponding cycle is 1. Note that if σ is a d-cycle, the conjugacy
class of an element of the form (ε, σ) is d when its d-th power is trivial, and d else.

Note that W (D5) is a subgroup of W (B5) = (Z/2Z)5 ⋊ S5, whose conjugacy
classes can be represented by (even or odd) signed cycle-types.

Note also that an arithmetic type is a conjugacy class in some subgroup of
W (D5). As a consequence, different arithmetic types can be contained in the same
conjugacy class in W (D5), and we will have to be more precise in the last section.

With these notations (and the ones used in the preceding sections) at hand, we
begin by describing the Galois action on the part of the graph coming from the
morphisms associated to the simple roots of P

Lemma 4.7. Let X be a weak degree 4 del Pezzo surface over Fq whose anti-
canonical model is the intersection of two quadrics Q0 and Q∞ in P4, both defined
over Fq. Let G ∈ Fq[T ] be a simple irreducible divisor of degree d of the character-
istic polynomial P (T ) and let θ ∈ Fqd be a root of G.

We denote by ∆(θ) ∈ F×
qd

the restricted discriminant of Q = Q0 − θQ∞, ie the

discriminant of its base q.
To G, one can associate d couples of complementary classes in C , and the action

of the Frobenius on those classes induces a permutation of signed sub-type d or d
depending on whether ∆(θ) is or is not a square in F×

qd
(note that this does not

depend on the choice of the root θ).
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Proof. Let θ1 = θ, θ2 = θq, . . . , θd = θq
d−1

∈ Fqd denote the roots of G. From the
results in the preceding section, we obtain d rank 4 quadrics Qi := Q0 − θiQ∞,
and 2d morphisms ϕij from Xs to P1, 1 ≤ i ≤ d, 1 ≤ j ≤ 2. It follows from
Proposition 4.3 that the classes fij of the fibers of these morphisms form d couples
of complementary classes in C .

The action of Frobenius sends Qi on Qi+1 (the indices are read modulo d), and
the couple {fi1, fi2} to the couple {fi+1,1, fi+1,2}. Thus the permutation associated
to the Frobenius (seen as an element in W (D5)) is the cycle (1 . . . d) of length d.

The base q1 of the quadric Q1 is defined over Fqd ; it is well known that it is either

hyperbolic (isomorphic to P1 ×P1 over Fqd) or elliptic (it becomes isomorphic to

P1 ×P1 only after a quadratic extension of the base field) depending on whether
its discriminant is or is not a square in Fqd .

In the hyperbolic case (then any of the qi is hyperbolic), the d-th power of the
Frobenius stabilizes each one of the two P1, and the fibers f11 and f12; the Galois
action has order d, and type d. Else the d-th power of the Frobenius exchanges the
two P1 and the fibers f11, f12; the Galois action has order 2d, and type d. �

We now describe the Galois action on the morphisms associated to the rank 4
quadrics in the pencil coming from multiple roots of its characteristic polynomial.

Lemma 4.8. Let θ ∈ Fq be a multiple root of P , say of multiplicity m, such that
the associated quadric Q := Q0 − θQ∞ has rank 4. Denote by G the minimal
polynomial of θ over Fq, by d its degree, and by ∆(θ) the restricted discriminant of
Q.

The d vertices of Q and its conjugates Qσ, . . . , Qσd−1

are singular points on Xs,
and these singularities have Dynkin type dAm−1. To these correspond 2d morphisms

from X to P1, whose fibers f1, f2, . . . , f
σd−1

1 , fσd−1

2 form 2d classes in C , and the
following cases occur

(a) d = 1, 2 ≤ m ≤ 4: the Galois action fixes f1 and f2 if ∆(θ) is a square in
F×

q , and exchanges them otherwise;
(b) d = 2, m = 2 and the Galois action acts on the fibers as the bitransposition

(f1f
σ
1 )(f2f

σ
2 ) if ∆(θ) is a square in F×

q2
, and as the four cycle (f1f

σ
1 f2f

σ
2 )

else.

Proof. Since P has degree 5 and Gm is a divisor, we must have md ≤ 5, which
leaves us with the listed possibilities, and d = 1, m = 5. But we see from the
Segre symbols that this case corresponds to a singularity of Dynkin type A4. For
this geometric type, there is only one arithmetic type, and the Galois action is not
relevant: it will be sufficient to construct any del Pezzo surface over Fq with this
singularity.

The assertion on the Dynkin type of the singularities comes from the Segre sym-
bols: the number m appearing as a part of it corresponds to an Am−1 singularity.
The assertion on the fibers comes from Proposition 4.3.

Finally the arithmetic assertions on the Galois action are easily deduced from
the proof of the preceding lemma. �

4.4. Quadratic module associated to a pencil of quadrics. We continue to
work over the finite field k = Fq.

The anticanonical model of a degree four del Pezzo surface is the base locus of a
pencil of quadrics in P4, thus it is defined by the vanishing of a pair of quadratic
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forms. We follow [27] in this section, and define a quadratic module (here a k[T ]-
module of finite length endowed with a non degenerate bilinear form) from the
surface. We give a normal form for such a module and we deduce arithmetic
information on the singular quadrics of the pencil from this normal form.

As usual we denote by {Q0, Q∞} a basis for the pencil of quadratic forms defining
X . We assume Q∞ is non-degenerate. Note that this requires the existence of a
non-degenerate quadric of the pencil which is defined over k. We will have to drop
this assumption farther in some very particular cases when q = 3.

If ϕ0, ϕ∞ denote the bilinear forms on k5 associated respectively to Q0 and Q∞,
then ϕ∞ is non degenerate, and there is an unique endomorphism u of k5 such that
ϕ∞(u(x), y) = ϕ0(x, y) for any vectors x, y. Moreover u is symmetric with respect
to ϕ∞.

The vector space V = k5, endowed with the action of u becomes a k[T ]-module
of finite length that we denote by Vu, and ϕ∞ is a nondegenerate symmetric k[T ]-
bilinear form on Vu.

Definition 4.9. We call the pair (Vu, ϕ∞) a quadratic k[T ]-module in the following.

Since k[T ] is a principal ideal domain, the module Vu decomposes as a direct
sum of primary cyclic components:

Vu =

t⊕

i=1




ni⊕

j=1

k[T ].xij



 , ann (xij) = P
mij

i k[T ],(4.2)

where the xij are elements of Vu, the polynomials P1, . . . , Pt ∈ k[T ] are irreducible
and pairwise distinct, and the exponents mi1, . . .miti are (not necessarily distinct)
positive integers. Note that when k is algebraically closed we recover the Segre
symbol (4.1).

Waterhouse has proved that the cyclic primary components of the decomposition
(4.2) can be chosen in such a way that they are two-by-two ϕ∞-orthogonal.

Moreover, it turns out that each cyclic component can be explicitly described.
To this end, we need to introduce some notations. Let F ∈ k[T ] be a non constant,
unitary polynomial and let us consider the quotient algebra k[T ]/(F ). We put
t = T mod F , we choose some δ ∈ k[T ]/(F ) and we define λF , ΦF , δ ·λF and δ ·ΦF

as

• the linear form λF : k[T ]/(F ) → k defined as the last vector of the dual
basis of (1, t, . . . , tdeg(F )−1);

• the symmetric bilinear form ΦF : k[T ]/(F ) × k[T ]/(F ) → k defined by
ΦF (x, y) = λF (xy);

• the linear form defined by δ · λF (x) = λF (δx) and
• the bilinear form defined by δ · ΦF (x, y) = λF (δxy).

Then the linear form λF is a dualizing form and the algebra k[T ]/(F ) with its du-
alizing form is called a Frobenius algebra; by definition, this means that the bilinear
form ΦF is non degenerate or equivalently that for every λ ∈ Homk (k[T ]/(F ), k),
there exists α ∈ k[T ]/(F ) such that λ(x) = α · λF (x) = λF (αx).

Definition 4.10. The quadratic module [[F, δ]] is the k[T ]-module k[T ]/(F ) en-
dowed with the bilinear form ϕ = δ · ΦF .



26 R. BLACHE AND E. HALLOUIN

This is an example of quadratic module with cyclic underlying k[T ]-module.
Note that the pair of quadratic forms on the corresponding k-vector space is given
by Q∞(x) = λF (δx

2) and Q0(x) = λF (tδx
2).

In fact this is a generic example.

Proposition 4.11. Let (Vu, ϕ) be k[T ]-quadratic module. Suppose that the k[T ]-
module Vu is cyclic, let x ∈ Vu be such that Vu = k[T ] · x, and let F ∈ k[T ] be a
generator of its annihilator. Then there exists δ ∈ k[T ]/(F ) such that for all p, q in
k[T ]/(F ) we have ϕ(p · x, q · x) = δ · ΦF (p, q).

Proof. By definition of F , the map ι defined by p 7→ p · x is an isomorphism of
k[T ]-modules from k[T ]/(F ) to Vu = k[T ] ·x. The map ψ defined by ψ(p, q) = ϕ(p ·
x, q ·x) for every p, q ∈ k[T ]/(F ) is bilinear symmetric. Since u is ϕ-symmetric, the
multiplication by t endomorphism is ψ-symmetric, and we have ψ(tp, q) = ψ(p, tq).
In particular, we get ψ(p, q) = ψ(1, pq). But we know that there exists δ ∈ k[T ]/(F )
such that ψ(1, q) = δ · λF (q) for every q ∈ k[T ]/(F ). We deduce that

ϕ(p · x, q · x) = ψ(p, q) = ψ(1, pq) = δ · λF (pq) = δ · ΦF (p, q)

and the result follows. �

We can use the quadratic modules we have just defined to give a normal form
for all quadratic modules. From [27, Theorem 1.1 and Section 2], we have

Theorem 4.12 (Waterhouse). Let (V, ϕ) be a non-degenerate k[T ]-quadratic mod-
ule of finite length.

Let
(
P

eij
i

)
i,j
, 1 ≤ i ≤ r, 1 ≤ j ≤ nij , be the elementary divisors of u. Then there

exists δij ∈ (k[T ]/(P
eij
i ))× such that the pair (V, ϕ) is isometric to the orthogonal

sum
⊕

i,j [[P
eij
i , δij ]].

Thus we can associate to the anticanonical model of any degree 4 del Pezzo
surface (with at least one non-singular quadric defined over Fq in the pencil) a
k[T ]-quadratic module of the form

⊕
i[[Fi, δi]].

Conversely, to such a module we associate the del Pezzo surface defined by the
vanishing of the following two quadratic forms defined for x = (xi) by

(4.3) Q∞(x) =
∑

i

λFi
(δix

2
i ), Q0(x) =

∑

i

λFi
(Tδix

2
i )

Remark 4.13. Note that this association is in no way an application: we have arbi-
trarily chosen the basis {Q0, Q∞}, and one could replace some δi by x

2δi without
changing the resulting del Pezzo surface. Also replacing all δi by aδi for some
a ∈ F×

q gives the quadratic forms aQ∞, aQ0 and does not change the del Pezzo
surface.

For this reason, we will frequently be able to put additional restrictions on the δi
in the last section, in order to ease the computation of the restricted discriminants
of the singular quadrics of the pencil.

Moreover we have chosen to use the elementary divisors of the k[T ]-module in
the above presentation, but we could have chosen the invariant factors instead, or
any other possible decomposition in cyclic submodules.

We have seen that one of the key tools to compute the arithmetic type of a Del
Pezzo surface of degree 4 is to control the discriminants of the bases of the rank 4
singular quadrics in the pencil. From the Frobenius algebras point of view, we have
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Lemma 4.14. Let F ∈ k[T ] be a unitary polynomial and let δ ∈ k[T ]/(F ).
We denote by NF : k[T ]/(F ) → k the norm.

(1) The discriminant of the bilinear form δ · ΦF equals

(−1)
deg(F )(deg(F )−1)

2 NF (δ)

(2) Let θ ∈ k be a root of F . Then the bilinear form (θ−T )δ ·ΦF is degenerate
of rank degF − 1 and its restricted discriminant equals

(−1)
deg(F )(deg(F )−1)

2 NF (δ)δ(θ)

Proof. (1) Put n = deg(F ). Let C = (1, . . . , tn−1) be the canonical basis of k[T ]/(F ),
and let D = (f1, . . . , fn) be its dual basis with respect to λF , i.e. such that
λF (t

i−1fj) = δij , 1 ≤ i, j ≤ n. The coordinates of the elements of D in the
basis C are given by the columns of the matrix:

P =




a1 · · · an−1 1
...

... 1

an−1
...

1




where the ai’s are the coefficients of F = T n+an−1T
n−1+ · · ·+a1T+a0. Moreover,

for any x ∈ k[T ]/(F ), one has x =
∑n

i=1 λF (xfi)ei. Let us compare the matrices
of the bilinear form δ · φF and of the linear map mδ (multiplication by δ) in the
basis C; by definition they are equal to

Mat (δ · ΦF , C) = (λF (δeiej))1≤i,j≤n
and Mat (mδ, C) = (λF (δfiej))1≤i,j≤n

.

Thus they are related by the formula Mat (mδ, C) = tP Mat (δ · ΦF , C) and the
result follows from the equality of the determinants.

(2) Let e denote the multiplicity of the root θ for F , and set F = (T − θ)eG;
there exist U, V ∈ k[T ] satisfying U(T − θ)e+V G = 1. Then for any x ∈ k[T ]/(F ),
we have

λF (x) = λF (xU(T − θ)e) + λF (xV G)

= λF ((xU mod G)(T − θ)e) + λF ((xV mod (T − θ)e)G)

= λG(xU) + λ(T−θ)e(xV )

where the last equality holds since G and (T − θ)e are unitary. We deduce the
following orthogonal decomposition

(4.4) (θ − T )δ · ΦF = (θ − T )V δ · Φ(T−θ)e ⊕ (θ − T )Uδ · ΦG.

In order to compute the restricted discriminant of the first component, we note
that (θ− T )V δ · λ(T−θ)e((T − θ)a) = −λ(T−θ)e((T − θ)a+1δV ) is equal to 0 as long
as a ≥ e− 1, and to −δ(θ)V (θ) when a = e− 1. We get

Mat
(
(θ − T )V δ · Φ(T−θ)e,

(
(T − θ)e−1, . . . , 1

))
=




0
... −V (θ)δ(θ)

...
...

...
0 −V (θ)δ(θ) · · · ⋆



.
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This form has rank e − 1; its kernel is generated by (T − θ)e−1, and its restricted
discriminant equals:

(−1)
(e−1)(e−2)

2 × (−1)e−1 × V (θ)e−1δ(θ)e−1 = (−1)
e(e−1)

2
δ(θ)e−1

G(θ)e−1

because V (θ)G(θ) = 1.
For the second component of the decomposition (4.4), putting d = deg(G), and

using (1), its discriminant equals

(−1)d(d−1)NG ((θ − T )Uδ) = (−1)
d(d−1)

2 +ed NG(δ)

NG(θ − T )e−1

since U(θ − T )× (−1)e(θ − T )e−1 = 1 mod G.
We have NG(θ − T ) = G(θ), and the product of these two discriminants gives

the result as NF (δ) = NG(δ)N(T−θ)e(δ) = NG(δ)NT−θ(δ)
e = NG(δ)δ(θ)

e. �

Remark 4.15. At this point, we make the following observation: when the underly-
ing k[T ]-module is cyclic, all singular quadrics in the correspondong pencil (defined
by equations (4.3)) have corank one.

The converse is true: when the underlying k[T ]-module is not cyclic, it admits
at least two invariant factors, and for all roots of the one of smallest degree the
above result shows that the corresponding singular quadric has corank equal to the
number of invariant factors.

We end this section with a criterion that determines the field of definition of
certain singular points of the del Pezzo surface. We will use it in the next section in
order to determine the arithmetic types when the pencil contains a rank 3 quadric.

Lemma 4.16. Let X be a degree four del Pezzo surface over Fq such that for some
θ ∈ Fq, the non-degenerate quadratic k[T ]-module associated to X can be written
as an orthogonal sum [[T − θ, δ1]]⊕ [[T − θ, δ2]]⊕M , where the annihilator P of the
k[T ]-module M satisfies P (θ) 6= 0.

Then the quadric of the pencil with equation Q0 − θQ∞ = 0 has rank 3, and
if ℓ ≃ P1 is its vertex, the singular del Pezzo variety Xs meets ℓ at two distinct
points, which are defined over Fq if −δ1δ2 is a square in F×

q , and conjugate over
Fq else.

Proof. We choose a basis (e1, . . . , e5) of k5 which is adapted to the orthogonal
decomposition. In this basis, from the expressions (4.3) of the forms Q0, Q∞, their
matrices can be written in block diagonal form as respectively

Mat(Q∞) =




δ1 0 0
0 δ2 0
0 0 A∞



 ., Mat(Q0) =




θδ1 0 0
0 θδ2 0
0 0 A0



 .

Since the annihilator P of the k[T ]-module M satisfies P (θ) 6= 0, the matrix A0 −
θA∞ is invertible, and the quadric with equation Q0 − θQ∞ has rank 3.

Its vertex is the line (x1 : x2 : 0 : 0 : 0) in P4, the intersection of which with the
quadric Q∞ = 0 is defined by the equation δ1x

2
1 + δ2x

2
2 = 0. Now we have δ1δ2 6= 0

since the form Q∞ is assumed non degenerate, and we get two solutions since the
characteristic is odd. The last assertion is classical.

�
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4.5. Construction of degree four del Pezzo surfaces of any arithmetic

type. We are ready to show Theorem 2 2. Our strategy is the following : in order
to construct a surface of a given arithmetic type, we construct a quadratic module
as a sum of cyclic modules in normal form. We proceed geometric type by geometric
type, and for each one we do the following

1. the Segre symbol gives the factorisation of the characteristic polynomial
over Fq, and we deduce from it a decomposition of a quadratic k[T ]-module
associated to X . We choose it cyclic when this is possible, but in general
we choose the decomposition that have seemed us best adapted to the com-
putation of the restricted discriminants from lemma 4.14, and of the infor-
mation needed in lemma 4.16. We sometimes put additional restrictions on
the δi in order to ease this computation.

2. we describe all possible Galois actions on the graph of conics and (−2)-
curves given in Table 4.2; they give the possible arithmetic types. For each
one, we use lemmas 4.7, 4.8 and 4.16 to describe the factorization type of
the characteristic polynomial over Fq, the restricted discriminants of rank
4 singular quadrics and the squareness of certain invariants;

3. we choose some δi in the cyclic quadratic submodules such that the invari-
ants associated to the singular quadrics in the pencil satisfy the conditions
listed at the second point above.

The existence of a polynomial with this factorization, and of some δi with the
claimed properties, is sufficient to ensure that the del Pezzo surface associated to
the quadratic k[T ]-module we have constructed has the arithmetic type we need.

Remark 4.17. As already mentioned in the introduction, we have used the math-
ematical software magma to construct a couple of quadrics in P4 for each type of
degree four singular del Pezzo surfaces over a given finite field. There is a slight
difference between the procedure used in this program and the description of the
quadratic modules presented below: here we decompose the modules using a biggest
possible cyclic module. In the program we use another decomposition, with more
terms. There is a Chinese remainder theorem for quadratic modules –not presented
here– that gives an equivalence between the two descriptions.

4.5.1. Ordinary geometric type. The factorization of P over Fq is P (T ) =
∏5

i=1(T−
θi) with distinct θi, 1 ≤ i ≤ 5.

All singular quadrics in the pencil have rank four, and we can associate to the
del Pezzo surface X a cyclic quadratic module [[P, δ]]. We will construct δ such
that NP (δ) is a square in F×

q ; then from lemma 4.14, the restricted discriminants

of the four singular quadrics are the ∆(θi) = NP (δ)δ(θi) ∈ Fq(θi)
× and we have

∆(θi) ≡ δ(θi) mod Fq(θi)
×2.

Applying lemma 4.7, we see that the signed types representing the conjugacy
classes in W (D5) (which are the arithmetic types of ordinary degree four del Pezzo
surfaces) give

• the degrees of the irreducible factors of P in Fq[T ] just by removing the
bars;

• the reduced discriminants ∆(θi) mod Fq(θi)
×2, ie the classes δ(θi) mod

Fq(θi)
×2 from our convention on NP (δ);
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For each geometric type, we present the correspondance between signed types
and properties of P and δ in a table. In the last column, we write {�, · · · ,�︸ ︷︷ ︸

d times

} when

the corresponding d roots θi, . . . , θi+d−1 are conjugate over Fq and δ(θi) is a square
in F×

qd
, and {⊠, · · · ,⊠︸ ︷︷ ︸

d times

} when δ(θi) is not a square in F×
qd
.

Signed type (δ(θ1), . . . , δ(θ5))

11111 (�,�,�,�,�)

11111 (�,�,�,⊠,⊠)
11111 (�,⊠,⊠,⊠,⊠)
2111 ({�,�},�,�,�)
2111 ({�,�},�,⊠,⊠)
221 ({�,�}, {�,�},�)
311 ({�,�,�},�,�)
221 ({�,�}, {⊠,⊠},⊠)
41 ({�,�,�,�},�)

2111 ({⊠,⊠},�,�,⊠)
2111 ({⊠,⊠},⊠,⊠,⊠)
221 ({⊠,⊠}, {⊠,⊠},�)
5 ({�,�,�,�,�})
32 ({�,�,�}, {�,�})
311 ({�,�,�},⊠,⊠)
311 ({⊠,⊠,⊠},�,⊠)
41 ({⊠,⊠,⊠,⊠},⊠)

32 ({⊠,⊠,⊠}, {⊠,⊠})

Note that a polynomial P and an element δ with the desired properties exist as
long as we have q ≥ 5. But when we have q = 3, one cannot construct a polynomial
with five roots over Fq, and some types do not exist [26].

4.5.2. Geometric type A1. The factorization of P over Fq is P (T ) =
∏3

i=1(T −
θi)(T − θ4)

2 with distinct θi, 1 ≤ i ≤ 4, and θ4 ∈ Fq.
All singular quadrics in the pencil have rank four, and we can associate to the

del Pezzo surface X a cyclic quadratic module [[P, δ]]. For each arithmetic type, we
will choose some δ such that NP (δ) is a square in F×

q ; then from lemma 4.14, the
restricted discriminants of the four singular quadrics are the ∆(θi) = NP (δ)δ(θi) ∈
Fq(θi)

× and we have ∆(θi) ≡ δ(θi) mod Fq(θi)
×2.

An element of Stab(Rirr) must act on the last two couples of complementary
conics as the identity (of signed type 11) or the bitransposition (C4C

′
5)(C5C

′
4) (of

signed type 2); note that both have even signed types. Since it is an element of
W (D5), it must act on the first three couples as an element of even signed type, ie
as an element of H3 ⋊S3, where H3 is the subgroup of Z/2Z3 which is the kernel

of the map ε = (ε1, . . . , ε3) 7→
∑3

i=1 εi. We get the following ten conjugacy classes
in Stab(Rirr)

111 · 11 111 · 11 21 11 21 · 11 3 · 11 111 · 2 111 · 2 21 · 2 21 · 2 3 · 2.
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Write P (T ) = F (T )(T − θ4)
2; applying lemma 4.7, we see that the first part of

the above signed types give

• the degrees of the irreducible factors of F in Fq[T ] just by removing the
bars;

• for 1 ≤ i ≤ 3, the reduced discriminants ∆(θi) mod Fq(θi)
×2, ie the classes

δ(θi) mod Fq(θi)
×2 from our convention on NP (δ);

Then, from lemma 4.8, the classes C4 and C′
5, which correspond to the fibers of the

morphisms defined by the last singular quadric Q0 − θ4Q∞, are fixed by Frobenius
when δ(θ4) is a square in F×

q , and exchanged else. This gives us the second part of
the signed type. We obtain the following table

N◦ Cl. Stab. Cl. Weyl (δ(θ1), . . . , δ(θ4))

1 111 · 11 11111 (�,�,�,�)
2 111 · 2 2111 (�,�,�,⊠)
3 21 · 11 2111 ({�,�},�,�)

4 111 · 11 11111 (⊠,⊠,�,�)
5 21 · 2 221 ({�,�},�,⊠)
6 111 · 2 2111 (⊠,⊠,�,⊠)
7 3 · 11 311 ({�,�,�},�)
8 21 · 2 221 ({⊠,⊠},⊠,⊠)
9 21 · 11 2111 ({⊠,⊠},⊠,�)
10 3 · 2 32 ({�,�,�},⊠)

Note that we can always construct a polynomial with the claimed factorization,
except when q = 3 in cases 1, 2, 4 and 6 since then P needs to have four distinct
roots in Fq. Elements δ ∈ k[T ]/(P ) with the required properties always exist.
Finally note that we have NP (δ) ∈ F×2

q in all cases, as required.
It remains to construct surfaces of types 1,2,4 and 6 over F3. We mimic the above

construction: we consider the quadratic forms with the following block diagonal
matrices

Mat(Q0) =




δ∞
1

1
0 0
0 δ0



, Mat(Q∞) =




0
1

−1
0 δ0
δ0 0




The four quadrics of the pencil which are defined over F3 (namely Qt = Q0 +
tQ∞, t ∈ F3 and Q∞) are singular of rank four, and the vertex of Q0 –here (0 : 0 :
0 : 1 : 0)– is the unique singular point of the base of the pencil. We deduce that
Xs has geometric type A1.

The restricted discriminants are, modulo squares

∆(Q0) ≡ δ0δ∞, ∆(Q1) ≡ ∆(Q2) ≡ δ∞, ∆(Q∞) ≡ 1

and we get the types 1, 2, 4 and 6 respectively choosing (δ0, δ∞) of the form (�,�),
(⊠,�), (⊠,⊠) and (�,⊠).

4.5.3. Geometric type 2A1 with 9 lines. The factorization of P over Fq is P (T ) =
(T − θ1)(T − θ2)

2(T − θ3)
2 with distinct θi, 1 ≤ i ≤ 3, and θ1 ∈ Fq.
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All singular quadrics in the pencil have rank four, and we can associate to the
del Pezzo surface X a cyclic quadratic module [[P, δ]]. We will always choose some
δ such that NP (δ) (or equivalently δ(θ1)) is a square in F×

q ; then we have the

congruence ∆(θi) ≡ δ(θi) mod Fq(θi)
×2 for the restricted discriminants.

An element of Stab(Rirr) can

• fix the (−2)-curves, and the sets {C2, C
′
2, C3, C

′
3} and {C4, C

′
4, C5, C

′
5}; in

this case it acts on the last four couples of complementary conics as
– the identity, of signed type 11 · 11 or
– a bitransposition such as (C2C

′
3)(C2C

′
3), of signed type 2 · 11 or

– four transpositions such as (C2C
′
3)(C2C

′
3)(C4C

′
5)(C4C

′
5), of signed type

2 · 2 ;
• exchange the (−2)-curves, and the sets {C2, C

′
2, C3, C

′
3} and {C4, C

′
4, C5, C

′
5};

in this case it acts on the last four couples of complementary conics as
– four transpositions such as (C2C4)(C

′
2C

′
4)(C3C5)(C

′
3C

′
5), of signed type

we note here {2 · 2} or
– a permutation such as (C3C5C

′
2C

′
4)(C

′
3C

′
5C2C4), of signed type 4.

Note that all have even signed types, and the action must be trivial on the remaining
couple of conics. We get the following five conjugacy classes in Stab(Rirr)

1 · 11 · 11, 1 · 2 · 11, 1 · 2 · 2, 1 · {2 · 2}, 1 · 4.

Applying lemma 4.8, we get the following table

N◦ Cl. Stab. Cl. Weyl (δ(θ1), δ(θ2), δ(θ3))
11 1 · 11 · 11 11111 (�,�,�)
12 1 · 2 · 11 2111 (�,⊠,�)
13 1 · 2 · 2 221 (�,⊠,⊠)
14 1 · {2 · 2} 221 (�, {�,�})
15 1 · 4 41 (�, {⊠,⊠})

4.5.4. Geometric type 2A1 with 8 lines. The factorization of P over Fq is P (T ) =∏3
i=1(T − θi)(T − θ4)

2 with distinct θi, 1 ≤ i ≤ 4, and θ4 ∈ Fq.
There is a rank three singular quadric in the pencil, corresponding to the root

θ4, and we can associate to the del Pezzo surface X a quadratic module of the form

[[F, δ]]⊕ [[T − θ4, δ1]]⊕ [[T − θ4, δ2]], where F (T ) =
∏3

i=1(T − θi).
With the help of lemma 4.14, and using a block diagonal form as in the proof of

lemma 4.16, we get that the rank four singular quadrics in the pencil have restricted
discriminants

∆(θi) = (θi − θ4)
2δ1δ2(−1)3NF (δ)δ(θi) ≡ −δ1δ2NF (δ)δ(θi) mod Fq(θi)

×2

for 1 ≤ i ≤ 3. We shall construct quadratic modules satisfying δ2 = −1 and
δ1NF (δ) ∈ F×2

q , so that ∆(θi) ≡ δ(θi) mod Fq(θi)
×2 for 1 ≤ i ≤ 3.

An element of Stab(Rirr) must act on the last two couples of complementary
conics as the identity or as (C5C

′
5) of signed type 11. In the first case it acts on

the first three couples as an even signed type permutation, ie as an element of
H3 ⋊ S3, and in the second as an odd signed type permutation, ie as an element
of Z/2Z3

⋊S3 \H3 ⋊S3. We get the following conjugacy classes in Stab(Rirr)
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111 · 11, 111 · 11, 21 · 11, 21 · 11, 3 · 11, 111 · 11, 111 · 11, 21 · 11, 21 · 11, 3 · 11.

The second part of the signed type is 11 exactly when the singular points are
defined over Fq; lemma 4.16, applied with our convention δ2 = −1, tells us that
this happens exactly when δ1 is a square in F×

q .
It remains to use lemma 4.7 to determine the factorization pattern of F and the

δ(θi) mod Fq(θi)
×2 from the signed type of the action on the first three couples.

We get the following table

N◦ Cl. Stab. Cl. Weyl (δ(θ1), δ(θ2), δ(θ3), δ1)
16 111 · 11 11111 (�,�,�,�)
17 21 · 11 2111 ({�,�},�,�)

18 111 · 11 11111 (⊠,⊠,�,�)
19 111 · 11 11111 (⊠,�,�,⊠)
20 21 · 11 2111 ({�,�},⊠,⊠)

21 111 · 11 11111 (⊠,⊠,⊠,⊠)
22 3 · 11 311 ({�,�,�},�)
23 21 · 11 2111 ({⊠,⊠},�,⊠)
24 21 · 11 2111 ({⊠,⊠},⊠,�)

25 3 · 11 311 ({⊠,⊠,⊠},⊠)

Note that we can always construct a polynomial over Fq with the claimed factor-
ization, except when q = 3 in cases 16, 18, 19 and 21. Elements δ ∈ k[T ]/(F ) with
the required properties always exist. Finally note that we have δ1NF (δ) ∈ F×2

q in
all cases.

It remains to construct surfaces of types 16, 18, 19 and 21 over F3. We mimic
the above construction: we consider the quadratic forms with the following block
diagonal matrices

Mat(Q0) =




δ∞
δ1

1
0

0



, Mat(Q∞) =




0
δ1

−1
δ0

−1




The quadrics with equations Q∞, Q0 +Q∞ and Q0 −Q∞ have rank 4, and the
quadric Q0 has rank 3. The singular points of Xs are the intersections of the vertex
of Q0 with Q∞, that is the points (0 : 0 : 0 : a : b) with δ0a

2 − b2 = 0. We get
a surface of geometric type 2A1 with 8 lines as above, since the line joining the
singularities is not contained in Xs.

Computing the restricted discriminants, and applying lemma 4.16, we see that
we get the types 16, 18, 19 and 21 respectively choosing (δ0, δ1, δ∞) of the form
(�,�,�), (�,⊠,⊠), (⊠,⊠,⊠) and (⊠,�,�).

4.5.5. Geometric type A2. The factorization of P over Fq is P (T ) = (T − θ1)(T −
θ2)(T − θ3)

3 with distinct θi, 1 ≤ i ≤ 3, and θ3 ∈ Fq.
All singular quadrics in the pencil have rank four, and we can associate to the

del Pezzo surface X a cyclic quadratic module [[P, δ]]. We will construct δ such that
NP (δ) is a square in F×

q ; then we have the congruence ∆(θi) ≡ δ(θi) mod Fq(θi)
×2

for the restricted discriminants.
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An element of Stab(Rirr) must act on the last three couples of complementary
conics as the identity (of signed type 111) or the permutation (C5C

′
3)(C3C

′
5)(C4C

′
4)

(of signed type 21). It will act on the first two couples as en even signed permutation
in the first case, as an odd signed one in the second. We get the following five
conjugacy classes in Stab(Rirr)

11 · 111, 11 · 111, 2 · 111, 11 · 21, 2 · 21.

Note that the signed type is completely determined by its first part, and we just
have to describe the action on it via lemma 4.7. We get the following table, where
we have chosen δ(θ3) so that the convention NP (δ) = δ(θ1)δ(θ2)δ(θ3)

3 ∈ F×2
q holds

N◦ Cl. Stab. Cl. Weyl (δ(θ1), δ(θ2), δ(θ3))
26 11 · 111 11111 (�,�,�)
27 2 · 111 2111 ({�,�},�)

28 11 · 111 11111 (⊠,⊠,�)
29 11 · 21 2111 (⊠,�,⊠)
30 2 · 21 221 ({⊠,⊠},⊠)

4.5.6. Geometric type 3A1. The factorization of P over Fq is P (T ) = (T − θ1)(T −
θ2)

2(T − θ3)
2 with distinct θi, 1 ≤ i ≤ 3. We assume that the rank three conic in

the pencil corresponds to θ3. We can write the quadratic k[T ]-module [[F, δ]]⊕ [[T −
θ3, δ1]]⊕ [[T − θ3, δ2]] where F (T ) := (T − θ1)(T − θ2)

2.
With the help of lemma 4.14, and using a block diagonal form as in the proof of

lemma 4.16, we get that the rank four singular quadrics in the pencil have restricted
discriminants

∆(θi) = (θi − θ3)
2δ1δ2(−1)3NF (δ)δ(θi) ≡ −δ1δ2δ(θ1)δ(θi) mod F×2

q , 1 ≤ i ≤ 2

We shall construct quadratic modules satisfying δ2 = −1 and δ1δ(θ1) ∈ F×2
q , so

that ∆(θi) ≡ δ(θi) mod F×2
q for 1 ≤ i ≤ 2.

An element of Stab(Rirr) must act on the last two couples of complementary
conics as the identity (of signed type 11) or the permutation (C5C

′
5) (of signed type

11). On the second and third couples, it acts as the identity (of signed type 11) or
as the bitransposition (C2C

′
3)(C3C

′
2) of signed type 2. We then have to “complete”

the action by fixing C1 and C′
1 if C5 and C′

5 are fixed, and by transposing them
else. We get the following four conjugacy classes in Stab(Rirr)

1 · 11 · 11, 1 · 11 · 11, 1 · 2 · 11, 1 · 2 · 11.

As above, we use lemma 4.8 (a) to read the restricted discriminant ∆(θ2) from
the action on the second and third couples, and lemma 4.16 to get δ1 from the
action on the last couple. We get

N◦ Cl. Stab. Cl. Weyl (δ(θ1), δ(θ2), δ1)
31 1 · 11 · 11 11111 (�,�,�)
32 1 · 2 · 11 2111 (�,⊠,�)
33 1 · 11 · 11 11111 (⊠,�,⊠)

34 1 · 2 · 11 2111 (⊠,⊠,⊠)
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4.5.7. Geometric type A1A2. The factorization of P over Fq is P (T ) = (T −
θ1)

2(T − θ2)
3 with distinct θi, 1 ≤ i ≤ 2. There is no rank three conic in the

pencil, and we can write the quadratic k[T ]-module in cyclic form [[P, δ]].
Lemma 4.14 tells us that the restricted discriminants are ∆(θi) = NP (δ)δ(θi) =

δ(θ1)
2δ(θ2)

3δ(θi) ≡ δ(θ2)δ(θi) mod F×2
q for 1 ≤ i ≤ 2. We shall construct quadratic

modules satisfying δ(θ2) ∈ F×2
q , so that ∆(θi) ≡ δ(θi) mod F×2

q for 1 ≤ i ≤ 2.
An element of Stab(Rirr) must act on the first two couples of complementary

conics as the identity (of signed type 11) or a bitransposition (of signed type 2).
On the last three couples, it acts as the identity in order to have en even signed
type (recall that the non trivial action on these three couples has signed type 21).
We get two conjugacy classes in Stab(Rirr), namely 11 · 111 and 2 · 111, and using
lemma 4.8 (a), we get the table

N◦ Cl. Stab Cl. Weyl (δ(θ1), δ(θ2))
35 11 · 111 11111 (�,�)
36 2 · 111 2111 (⊠,�)

4.5.8. Geometric type A3 with five lines. The factorization of P over Fq is P (T ) =
(T − θ1)(T − θ2)

4 with distinct θi, 1 ≤ i ≤ 2. There is no rank three conic in the
pencil, and we can write the quadratic k[T ]-module in cyclic form [[P, δ]].

Lemma 4.14 tells us that the restricted discriminants are ∆(θi) = NP (δ)δ(θi) ≡
δ(θ1)δ(θi) mod F×2

q for 1 ≤ i ≤ 2. We shall construct quadratic modules satisfying

δ(θ1) ∈ F×2
q , so that ∆(θi) ≡ δ(θi) mod F×2

q for 1 ≤ i ≤ 2.
An element of Stab(Rirr) must act on the last four couples of complementary

conics as the identity (of signed type 1111) or as (C2C
′
5)(C

′
2C5)(C3C

′
4)(C

′
3C4) (of

signed type 22). Thus it must act as the identity on the first couple in order to have
en even signed type. We get two conjugacy classes in Stab(Rirr), namely 1 · 1111
and 1 · 22, and using lemma 4.8 (a), we get the table

N◦ Cl. Stab. Cl. Weyl (δ(θ1), δ(θ2))
37 1 · 1111 11111 (�,�)
38 1 · 22 221 (�,⊠)

4.5.9. Geometric type A3 with four lines. The factorization of P over Fq is P (T ) =
(T − θ1)(T − θ2)(T − θ3)

3 with distinct θi, 1 ≤ i ≤ 3. We can write the quadratic
k[T ]-module [[F, δ]]⊕ [[T − θ3, δ1]]⊕ [[(T − θ3)

2, δ2]] where F (T ) := (T − θ1)(T − θ2).
With the help of lemma 4.14, and using a block diagonal form as in the proof of

lemma 4.16, we get that the rank four singular quadrics in the pencil have restricted
discriminants

∆(θi) = (θi − θ3)
3δ1δ

2
2NF (δ)δ(θi) ≡ (θi − θ3)δ1δ(θ1)δ(θ2)δ(θi) mod F×2

q , 1 ≤ i ≤ 2

We shall construct quadratic modules satisfying δ1 = (θ1 − θ3)(θ2 − θ3), so that
∆(θi) ≡ (θj − θ3)δ(θj) mod F×2

q for 1 ≤ i 6= j ≤ 2.
An element of Stab(Rirr) must act on the last three couples of complementary

conics as the identity (of signed type 111) or the transposition (C5C
′
5) (of signed

type 111). We deduce the possible actions on the first two couples, and the following
five conjugacy classes in Stab(Rirr)

11 · 111, 11 · 111, 2 · 111, 11 · 111, 2 · 111.
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The type is completely determined by the action on the first two couples: it is
sufficient to use lemma 4.7 to obtain the table

N◦ Cl. Stab. Cl. Weyl ((θ1 − θ3)δ(θ1), (θ2 − θ3)δ(θ2))
39 11 · 111 11111 (�,�)
40 2 · 111 2111 ({�,�})
41 11 · 111 11111 (⊠,⊠)

42 11 · 111 11111 (�,⊠)
43 2 · 111 2111 ({⊠,⊠})

4.5.10. Geometric type 4A1. The factorization of P over Fq is P (T ) = (T −θ1)(T −
θ2)

2(T − θ3)
2 with distinct θi, 1 ≤ i ≤ 3. We can write the quadratic k[T ]-module

[[T − θ1, δ]] ⊕ [[F, δ1]] ⊕ [[F, δ2]] where F (T ) := (T − θ2)(T − θ3). We will construct
such a module satisfying the additional assumption δ2 = −1.

An element in Stab(Rirr) acts on the four (−2)-curves, and we deduce from this
its action on the couples {Ci, C

′
i}, i ∈ {1, 2, 4, 5}

(a) it fixes the four (−2)-curves, and the eight conics classes; then its signed
type is 1111;

(b) it fixes two (−2)-curves (necessarily corresponding to the same rank 3
quadric of the pencil, thus in the same “component” of the graph), and
permutes the other ones; for instance the transposition (R3R4) corresponds
to (C5C

′
5), of signed type 1111;

(c) it acts as the bitransposition (R1R2)(R3R4) on (−2)-curves, and on conic
classes as (C2C

′
2)(C5C

′
5), its signed type is 1111

(d) it acts as the bitransposition (R1R3)(R2R4) on (−2)-curves, and on conic
classes as (C1C4)(C2C5)(C

′
1C

′
4)(C

′
2C

′
5) of signed type 22;

(e) it acts as the four-cycle (R1R3R2R4) on (−2)-curves and on conic classes
as (C1C4)(C

′
1C

′
4)(C2C5C

′
2C

′
5) of signed type 22;

Then we complete with the correct action on {C3, C
′
3} in order to get an even signed

permutation. We get five conjugacy classes

1 · 1111, 1 · 1111, 1 · 1111, 1 · 22, 1 · 22.

The two rank three conics can be defined over Fq (we have θ2, θ3 ∈ Fq), or over
Fq2 , and conjugate over Fq. Applying lemma 4.16 to X in the first case, and to
X ⊗ Fq2 in the second, we get the following table under the assumption δ2 = −1

N◦ Cl. Stab. Cl. Weyl (δ1(θ2), δ1(θ3))
44 1 · 1111 11111 (�,�)
45 1 · 1111 11111 (⊠,⊠)
46 1 · 22 221 ({�,�})
47 1 · 1111 11111 (⊠,�)
48 1 · 22 221 ({⊠,⊠})

4.5.11. Geometric type 2A1A2. The factorization of P over Fq is P (T ) = (T −
θ1)

3(T − θ2)
2 with distinct θi, 1 ≤ i ≤ 2. We can write the quadratic k[T ]-module

[[(T −θ1)3, δ]]⊕ [[T −θ2, δ1]]⊕ [[T −θ2, δ2]]. We will construct such a module satisfying
the additional assumptions δ = 1, δ2 = −1.

We have already seen that an element in Stab(Rirr) can act on the first three
couples with a signed type 111 or 21, and on the last two with a signed type 11 or
11. This leaves us with two conjugacy classes, namely 11 · 111 and 21 · 11, which
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are determined by the action on the last couple, ie on the two A1-singularities.
Applying lemma 4.16, and from our assumption δ2 = −1, we get the table

N◦ Cl. Stab. Cl. Weyl δ1
49 111 · 11 11111 �

50 21 · 11 2111 ⊠

4.5.12. Geometric type A1A3. The factorization of P over Fq is P (T ) = (T −
θ1)

2(T − θ2)
3 with distinct θi, 1 ≤ i ≤ 2. We can write the quadratic k[T ]-module

[[(T − θ1)
2, δ]] ⊕ [[(T − θ2)

2, δ1]] ⊕ [[T − θ2, δ2]]. We will construct such a module
satisfying the additional assumptions δ1 = δ2 = 1. The restricted discriminant of
the rank four quadric in the pencil (corresponding to root θ1) is

∆(θ1) = δ(θ1)(θ1 − θ2)
3δ21δ2 ≡ δ(θ1)(θ1 − θ2) mod F×2

q

An element in Stab(Rirr) acts on the first two couples with a signed type 11 or
2, and on the last three with a signed type 111 or 111. This leaves us with two
conjugacy classes, namely 111 ·11 and 2 ·111, and they are determined by the action
on the first two couples. Applying lemma 4.8 (a), and from our assumptions, we
get the table

N◦ Cl. Stab Cl. Weyl (θ1 − θ2)δ(θ1)
51 111 · 11 11111 �

52 2 · 111 2111 ⊠

4.5.13. Geometric type A4. The factorization of P over Fq is P (T ) = (T − θ1)
5,

and we can consider the cyclic quadratic k[T ]-module [[(T − θ1)
5, δ]].

An element in Stab(Rirr) can only act on the graph trivially (the other automor-
phism of this graph is (C1C

′
5)(C

′
1C5)(C2C

′
4)(C

′
2C4)(C3C

′
3) which has odd signed

type 221). Thus for any choice of δ we get the arithmetic type 53.

4.5.14. Geometric type D4. The factorization of P over Fq is P (T ) = (T − θ1)(T −
θ2)

4 with distinct θi, 1 ≤ i ≤ 2. We can write the quadratic k[T ]-module [[T −
θ1, δ]] ⊕ [[(T − θ2)

3, δ1]] ⊕ [[T − θ2, δ2]]. We will construct such a module satisfying
the additional assumptions δ = δ2 = 1. In this case the restricted discriminant of
the rank four quadric in the pencil (corresponding to root θ1) is

∆(θ1) = −(θ2 − θ1)
4δ31δ2 ≡ δ1 mod F×2

q

An element in Stab(Rirr) acts on the last four couples with a signed type 1111
or 1111, and on the first one with a signed type 1 or 1. This leaves us with two
conjugacy classes, namely 1 · 1111 and 1 · 1111, and they are determined by the
action on the first couple. Applying lemma 4.7 to the value of ∆(θ1) above, we get
the table

N◦ Cl. Stab Cl. Weyl δ1
54 1 · 1111 11111 �

55 1 · 1111 11111 ⊠
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4.5.15. Geometric type 2A1A3. The factorization of P over Fq is P (T ) = (T −
θ1)

2(T − θ2)
3 with distinct θi, 1 ≤ i ≤ 2. We can write the quadratic k[T ]-module

[[T − θ1, δ1]]⊕ [[T − θ1, δ2]]⊕ [[(T − θ2)
2, η1]]⊕ [[T − θ2, η2]]. We will construct such a

module satisfying the additional assumptions δ2 = −1 and η1 = η2 = 1.
An element in Stab(Rirr) acts on the first two couples with a signed type 11

or 11, and on the last three with a signed type 111 or 111. This leaves us with
two conjugacy classes, namely 11 · 111 and 11 · 111, and they are determined by
the action on the first two couples, ie by the action on the two A1-singularities.
Applying lemma 4.16 with δ2 = −1, we get the table

N◦ Cl. Stab. Cl. Weyl δ1
56 11 · 111 11111 �

57 11 · 111 11111 ⊠

4.5.16. Geometric type D5. The factorization of P over Fq is P (T ) = (T −θ)5. We
can write the quadratic k[T ]-module [[(T − θ)4, δ1]]⊕ [[T − θ, δ2]].

An element in Stab(Rirr) can only act on the graph trivially (the other auto-
morphism of this graph is (C5C

′
5) which has odd signed type 11111). Thus for any

choice of δi we get the arithmetic type 58.

5. Construction of singular del Pezzo surfaces of degree three.

The aim of this section is to prove the last two assertions of Theorem 2.
We blow up the degree four surfaces from the preceding section at well chosen

rational points in order to construct degree three surfaces, but we also use some
direct constructions by blowing up some well chosen configurations of points in the
projective plane.

5.1. Blowing up degree four surfaces. Our first construction of degree three
del Pezzo surfaces is by blowing up a rational point not lying on any of the negative
curves of a degree four del Pezzo surface. In this way we get a surface of the same
Dynkin type (note that for degree three, the geometric type coincides with the
Dynkin type), whose zeta function is the one of the degree four surface, divided
by 1 − qT . This (and the Galois action on the (−2)-curves) makes it very easy to
control the arithmetic type of the new surface.

In order to do this, we count the number of rational points not lying on any
negative curve on a degree four weak del Pezzo surface of a given arithmetic type.
If a rational point lies on a negative curve, then the curve must be defined over Fq,
or the point is the intersection of two Galois conjugate curves (thus defined over
Fq2). We deduce that the number we are looking for is (note that there is no 3-cycle
in any graph of negative curves, and such three curves cannot be concurrent)

N = #X(Fq)− (#N (Fq)(q + 1)− I1)− I2

= q2 − tq + 1− (#N (Fq)(q + 1)− I1)− I2

where t is the trace of the action of the Frobenius operator on Pic(X⊗Fq), N (Fq) is
the number of negative curves defined over Fq, I1 is the number of their intersection
points (which is readily computed as an intersection number from the N (Fq) curves
above), and I2 is the number of couples of conjugate negative curves intersecting
themselves.
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We compute these data and present them in table 5.1, which is constructed as
follows. For each geometric type of degree four del Pezzo surfaces, we consider the
graph of negative curves given in [7, Proposition 6.1]. We denote the curves in the
same way, except for the (−2)-curves : recall that we denote by ri the curve with
class Ei − Ei+1, and by rijk the curve with class E0 − Ei − Ej − Ek.

For each arithmetic type in degree four, we give in the second column an element
of the Weyl group in the conjugacy class corresponding to the Frobenius action.
We present it as a composite of reflections, where we denote by sij (resp. sijk) the
reflection around the root Ei −Ej (resp. E0 −Ei −Ej −Ek). In the third column
we present the action of this element on the negative curves, as a product of cycles.
As explained above, this is sufficient to determine the numbers t,N (Fq), I1, I2 and
N ; they are given in the following columns.

The last column gives the type of the degree three surface obtained by blowing
up a rational point not lying on any negative curve, if any.

Note that this is sufficient to prove the existence of a degree three del Pezzo
surface of the type given in the last column over the finite field Fq as long as the
number given in the last but one column is positive for the given q.

Assume that there exists a weak del Pezzo surface of degree three and arithmetic
type 1, defined over Fq; the Galois action on the Picard group is trivial, and all its
negative curves are defined over Fq. It contains an exceptional curve that does not
meet the (−2)-curve. Contracting this curve gives a degree three del Pezzo surface
of arithmetic type 1, and the image of the curve is a point that does not lie on any
negative curve. But such a point does not exist when q = 3 from the first line of
the above table.

One shows in the same way that a weak del Pezzo surface of degree three and
arithmetic type 12 does not exist over F3. The only difference is that contracting
an exceptional curve that does not meet the (−2)-curve gives a point outside the
negative curves on a weak del Pezzo surface of degree four and arithmetic type 11
or 16; such a point does not exist when q = 3.

5.2. Other constructions. There remains 77− 48 = 29 types to be constructed
over any finite field with odd characteristic.

For those we give an alternative contruction: we often present them as blow ups
of the projective plane at well-chosen rational points, and sometimes as blow ups of
a degree four del Pezzo surface at some point lying on one or two negative curve(s).

First remark that we get all arithmetic types for the geometric type A1 over Fq

by blowing up the points of a degree 6 zero-dimensional subscheme of a smooth
conic, everything being defined over Fq, when q is large enough. Note that the only
(−2)-curve is the strict transform of the conic. Playing on the fields of definition
of the points in the subscheme, we get all partitions of the integer 6, and all types
(note the stabilizer here is S6). In this way we construct a surface for each of
the remaining types. We get type 5 by blowing up two points defined over Fq3 ,
type 10 by blowing up one point defined over Fq and one over Fq5 , and type 5 by
blowing up one point defined over Fq6 . Since a smooth conic defined over Fq has

qk + 1 points over Fqk , such configurations exist over any finite field (also of even
characteristic).
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Type Frobenius in W (D5) Galois action on neg. curves (t,#N (Fq), I1, I2) N Type

1 A1(12) Id (6, 13, 24, 0) q2 − 7q + 12 1
2 s12 (ℓ1ℓ2)(ℓ13ℓ23)(ℓ14ℓ24) (4, 7, 6, 0) q2 − 3q 2
3 s123 (ℓ45q)(ℓ1ℓ23)(ℓ2ℓ13)(ℓ3ℓ12) (4, 5, 0, 0) q2 − q − 4 2
4 s12 ◦ s345 (ℓ12q)(ℓ1ℓ2)(ℓ3ℓ45)(ℓ5ℓ34)(ℓ14ℓ24)(ℓ13ℓ23) (2, 1, 4, 0) q2 + q + 4 3
5 s12 ◦ s123 (ℓ3q)(ℓ2ℓ13)(ℓ1ℓ23)(ℓ5ℓ34)(ℓ12ℓ45) (2, 3, 2, 2) q2 − q − 2 3
6 s12 ◦ s345 ◦ s123 (ℓ1ℓ13)(ℓ3q)(ℓ2ℓ23)(ℓ5ℓ34)(ℓ12ℓ45)(ℓ14ℓ24) (0, 1, 0, 4) q2 − q − 4 4
7 s12 ◦ s23 (ℓ1ℓ2ℓ3)(ℓ13ℓ12ℓ23)(ℓ14ℓ24ℓ34) (3, 4, 3, 0) q2 − q 6
8 s13 ◦ s23 ◦ s145 ◦ s123 (ℓ1qℓ3ℓ13)(ℓ2ℓ23ℓ45ℓ12)(ℓ14ℓ5ℓ34ℓ24) (0, 1, 0, 0) q2 − q 8
9 s345 ◦ s23 ◦ s12 (ℓ23qℓ12ℓ13)(ℓ2ℓ1ℓ45ℓ3)(ℓ14ℓ5ℓ34ℓ24) (2, 1, 0, 0) q2 + q 9
10 s12 ◦ s23 ◦ s123 (ℓ14ℓ24ℓ34)(ℓ45q)(ℓ1ℓ13ℓ3ℓ23ℓ2ℓ12) (1, 2, 1, 0) q2 − q 7

11 2A1(9) Id (6, 11, 16, 0) q2 − 5q + 6 12
12 s123 (qℓ45)(ℓ1ℓ23)(ℓ3ℓ12) (4, 5, 4, 0) q2 − q − 2 13
13 s123 ◦ s145 (qℓ1)(ℓ3ℓ12)(ℓ5ℓ14)(ℓ45ℓ23) (2, 3, 2, 2) q2 − q − 2 15
14 s24 ◦ s35 (ℓ3ℓ5)(ℓ45ℓ23)(ℓ14ℓ12)(r2r4) (2, 3, 1, 1) q2 − q − 2 14
15 s145 ◦ s24 ◦ s35 (qℓ23ℓ1ℓ45)(ℓ3ℓ14ℓ12ℓ5)(r2r4) (2, 1, 0, 0) q2 + q 19

16 2A1(8) Id (6, 10, 12, 0) q2 − 4q + 3 12
17 s12 (ℓ1ℓ2)(ℓ14ℓ24) (4, 6, 6, 0) q2 − 2q + 1 13
18 s345 ◦ s12 (ℓ1ℓ2)(ℓ14ℓ24)(ℓ3ℓ45)(ℓ34ℓ5) (2, 2, 0, 0) q2 − 1 15
19 s15 ◦ s234 (ℓ1ℓ5)(ℓ2ℓ34)(ℓ3ℓ24)(ℓ45ℓ14)(r123r4) (2, 0, 0, 0) q2 + q + 1 14
20 s134 ◦ s245 ◦ s25 (ℓ1ℓ34)(ℓ2ℓ24)(ℓ3ℓ14)(ℓ45ℓ5)(r123r4) (0, 0, 0, 2) q2 − 1 16
21 s145 ◦ s234 ◦ s15 ◦ s23 (ℓ1ℓ14)(ℓ2ℓ24)(ℓ3ℓ34)(ℓ45ℓ5)(r123r4) (−2, 0, 0, 4) q2 − 2q − 3 17
22 s12 ◦ s23 (ℓ1ℓ2ℓ3)(ℓ14ℓ24ℓ34) (3, 4, 3, 0) q2 − q 18
23 s134 ◦ s15 ◦ s25 (ℓ1ℓ5ℓ2ℓ34)(ℓ3ℓ14ℓ45ℓ24)(r123r4) (2, 0, 0, 0) q2 + 2q + 1 19
24 s145 ◦ s12 ◦ s23 (ℓ1ℓ2ℓ3ℓ45)(ℓ5ℓ14ℓ24ℓ34) (2, 2, 0, 0) q2 − 1 20
25 s124 ◦ s15 ◦ s35 ◦ s23 (ℓ1ℓ5ℓ3ℓ14ℓ45ℓ34)(ℓ2ℓ24)(r123r4) (1, 0, 0, 1) q2 + q 21

26 A2(8) Id (6, 10, 13, 0) q2 − 4q + 4 22
27 s12 (ℓ1ℓ2)(ℓ13ℓ23) (4, 6, 5, 0) q2 − 2q 23
28 s345 ◦ s12 (ℓ1ℓ2)(ℓ13ℓ23)(ℓ5ℓ34)(ℓ12q) (2, 2, 1, 0) q2 24
29 s235 ◦ s124 ◦ s14 (ℓ1ℓ12)(ℓ2q)(ℓ5ℓ23)(ℓ13ℓ34)(r3r4) (0, 0, 0, 3) q2 − 2 25
30 s135 ◦ s124 ◦ s14 ◦ s24 (ℓ1ℓ12ℓ2q)(ℓ5ℓ13ℓ34ℓ23)(r3r4) (0, 0, 0, 1) q2 28

31 3A1(6) Id (6, 9, 10, 0) q2 − 3q + 2 31
32 s145 (ℓ1ℓ45)(ℓ5ℓ14) (4, 5, 4, 0) q2 − q 32
33 s234 ◦ s15 (ℓ5ℓ1)(ℓ3ℓ24)(ℓ45ℓ14)(r4r123) (2, 1, 0, 0) q2 + q 33
34 s234 ◦ s145 ◦ s15 (ℓ1ℓ14)(ℓ5ℓ45)(ℓ3ℓ24)(r4r123) (0, 1, 0, 2) q2 − q − 2 34

35 A1A2(6) Id (6, 9, 10, 0) q2 − 3q + 2 37
36 s345 (ℓ5ℓ34)(qℓ12) (4, 5, 4, 0) q2 − q 38

37 A3(5) Id (6, 8, 8, 0) q2 − 2q + 1 40
38 s125 ◦ s134 (ℓ5ℓ12)(qℓ1)(r2r4) (2, 2, 1, 1) q2 − 1 42

39 A3(4) Id (6, 7, 6, 0) q2 − q 40
40 s345 (ℓ5ℓ34) (4, 5, 4, 0) q2 − q 41
41 s345 ◦ s12 (ℓ1ℓ2)(ℓ5ℓ34) (2, 3, 2, 0) q2 − q 43
42 s234 ◦ s15 (ℓ1ℓ5)(ℓ2ℓ34)(r123r4) (2, 1, 0, 0) q2 + q 42
43 s134 ◦ s15 ◦ s25 (ℓ1ℓ5ℓ2ℓ34)(r123r4) (2, 1, 0, 0) q2 + q 44

44 4A1(4) Id (6, 8, 8, 0) q2 − 2q + 1 45
45 s134 ◦ s25 (ℓ2ℓ5)(ℓ3ℓ14)(r1r345)(r4r123) (2, 0, 0, 0) q2 + 2q + 1 46
46 s14 ◦ s25 (ℓ2ℓ5)(r1r4)(r123r345) (2, 2, 0, 0) q2 − 1 46
47 s124 ◦ s35 (ℓ2ℓ14)(ℓ3ℓ5)(r4r123) (2, 2, 0, 0) q2 − 1 47
48 s145 ◦ s14 ◦ s25 ◦ s35 (ℓ2ℓ14ℓ5ℓ3)(r1r4r345r123) (0, 0, 0, 0) q2 − 1 49

49 2A1A2(4) Id (6, 8, 8, 0) q2 − 2q + 1 50
50 s134 ◦ s245 ◦ s25 (ℓ3ℓ14)(ℓ5ℓ45)(r1r2)(r123r4) (0, 0, 0, 2) q2 − 1 51

51 A1A3(3) Id (6, 7, 6, 0) q2 − q 52
52 s345 (ℓ34ℓ5) (4, 5, 4, 0) q2 − q 53

53 A4(3) Id (6, 7, 6, 0) q2 − q 60

54 D4(2) Id (6, 6, 5, 0) q2 62
55 s234 ◦ s15 (ℓ5ℓ2)(r4r123) (2, 2, 1, 0) q2 63

56 2A1A3(2) Id (6, 7, 6, 0) q2 − q 67
57 s134 ◦ s25 (ℓ5ℓ2)(r1r345)(r123r4) (2, 1, 0, 0) q2 + q 68

58 D5(1) Id (6, 6, 5, 0) q2 72

Table 4. Galois action on negative curves in degree 4

We get all arithmetic types for the geometric type A2 over Fq by blowing up
the points of two degree 3 zero-dimensional subschemes lying on two different lines,
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but not containing their intersection point, everything being defined over Fq for q
large enough. Note that the (−2)-curves are the strict transforms of the two lines.
As above, the fields of definitions of the points, and the lines, give the arithmetic
type. We get types

26 when we choose the two lines to be defined over Fq, with three points
defined over Fq on one, and three conjugate points defined over Fq3 on the
other line.

27 when we choose the two lines to be defined over Fq, with three conjugate
points defined over Fq3 on the both lines.

29 when we choose the two lines to be defined over Fq, with one point defined
over Fq and two defined over Fq2 on one, and three conjugate points defined
over Fq3 on the other line.

30 when we choose the two lines to be conjugate, defined over Fq2 , with one
point defined over Fq6 on one, and all its conjugates points.

We get type 35 by blowing up three conjugate points defined over Fq3 in the
projective plane, then three infinitely near conjugate points. Note that the (−2)-
curves are the strict tranforms of the exceptional divisors of the first blow up.

In order to construct a surface of type 39, we start from a degree four del Pezzo
surface of arithmetic type 22. Such a surface contains two exceptional curves defined
over Fq, that meet together and each one meets exactly one (−2)-curve. We blow
up a point defined over Fq on one of these exceptional curve, different from their
intersection point and not lying on a (−2)-curve. This is possible for any q, and we
get the desired surface.

In order to get a degree three surface of geometric type 4A1, we start with four
lines in general position in the projective plane, their union being defined over
Fq. Then we blow up their six intersection points; the (−2)-curves are the strict
transforms of the lines. Then we get the arithmetic types by playing on the fields
of definition of the lines. For instance we get type 48 by choosing three conjugates
lines defined over Fq3 and the last one defined over Fq.

If we start from a degree four surface of geometric type 2A1 defined over Fq,
and we blow up a rational point which lies at the intersection of two exceptional
curve (ie corresponding to a “middle” edge of the graph of negative curves), we
get a degree three surface of geometric type 2A2 over Fq. In this way we get
types 54, 55, 56, 57, 58 59 in degree three respectively from types 16, 17, 20, 21, 22
et 25 in degree four. Note that in any case these degree four surfaces contain two
intersecting exceptional curves which are either defined over Fq, or defined over
Fq2 and conjugate over Fq: their intersection point is always a rational point.

We get type 61 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 four infinitely near points with
the first three not collinear, and a point of degree 2 on a line passing through p1
but whose strict transform by the first blow up does not contain p2.

We get a degree three surface of type 64 by blowing up three collinear points
p1, p2, p3 defined over Fq3 and conjugate over Fq then three conjugate points
p4, p5, p6 with pi ≺ pi+3.

We get a degree three del Pezzo surface of geometric type A12A2 when we blow
up the point ℓ1 ∩ ℓ14 on a degree four del Pezzo surface of type 3A1. This point is
defined over Fq when the degree four surface has one of the types 31 or 34, and we
get a surface of type 65 or 66 in this way.
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Most of the remaining constructions are completely geometric and can be found
in [12, pp 493-494]. Namely we get type

69 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 with p1, p2, p3 not collinear and p6
on the (smooth) conic defined by the first five ones;

70 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 with p1, p2, p3 not collinear;
73 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 with p1, p2, p3 not collinear

and p6 on the conic defined by the first five ones;
77 by blowing up p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 with p1, p2, p3 collinear.

Type 71 in degree three is obtained by blowing up a rational point lying on the
exceptional curve ℓ2 (but not on any (−2)-curve) in a degree four del Pezzo surface
of arithmetic type 52.

We end with the geometric type 3A2; we blow up three points p1, p2, p3 in
general position in the projective plane. Then, on the resulting degree 6 ordinary
del Pezzo surface, we blow up the intersection points ℓ1 ∩ ℓ12, ℓ2 ∩ ℓ23 and ℓ3 ∩ ℓ13.
The (−2)-curves on the corresponding degree three del Pezzo surface are the strict
transforms of these six lines. Finally, we get a surface of type 74 when the pi are
rational points, of type 75 when one is rational and the two other ones defined over
Fq2 and conjugate over Fq, and of type 76 when the three points are defined over
Fq3 and conjugate over Fq.

5.3. Type 36. It remains to construct a del Pezzo surface of degree three and
arithmetic type 36. Such a surface has geometric type 3A1, and the inverse of the
weight two part of its zeta function is Φ2

1Φ2Φ
2
3.

We start with a degree one del Pezzo surface S obtained by blowing up two

degree three points p1, p2 = pσ1 , p3 = pσ
2

1 and q1, q2 = qσ1 , q3 = qσ
2

1 in P2(Fq3 ) and
a degree two point r1, r2 = rσ1 in P2(Fq2), such that there exists a conic passing
through p1, p2, q1, q2, r1, r2 and defined over Fq3 , but there are no other (−2)-curve
on the resulting degree one surface than the strict transforms of this conic and its
conjugates. We report the proof of the existence of such a configuration.

The surface S has geometric type 3A1 by our hypothesis on its (−2)-curves
(note that the strict transforms are separated by the blowups), and the inverse of
the weight two part of its zeta function is (X−1)(X2−1)(X3−1)2 = Φ4

1Φ2Φ
2
3. We

can contract the strict transform of the line (r1r2), and of the conic (q1q2q3r1r2):
these are disjoint exceptional curves that do not meet the (−2)-curves, both defined
over Fq. In this way we get a degree three surface with geometric type 3A1 and
the desired zeta function.

It remains to show the existence of such a configuration of points over any finite
field of odd characteristic.

We start with two elements θ ∈ Fq3 \Fq, η ∈ Fq2 \Fq, whose respective minimal
polynomials over Fq are πθ(x) := X3 + aX2 + bX + c and πη(X) = X2 + tX + n.

We consider the points p1 = (θ : θ2 : 1), q1 = (θ : θ2 : u) and r1 = (η : 1 : 0) for
some u ∈ Fq3 \ {0, 1}.

From Pascal’s theorem, the points p1, p2, q2, r2, r1, q1 are conconic if and only if
the pairs of opposite sides of the hexagon meet in three collinear points (p1p2) ∩
(r1r2), (p2q2) ∩ (r1q1) and (p1q1) ∩ (q2r2); we get the points

(θ − θq : θ2 − θ2q : 0), (θq : θ2q : α), (θ : θ2 : β)
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where we have set

α := u
ηθ2q − θq

ηθ2 − θ
, β := uq

ηqθ2 − θ

ηqθ2q − θq

The points are collinear if and only if we have (uβ − uqα)θ3(θq−1 − θ2(q−1)) = 0, if
and only if uβ − uqα = 0 (note that θq−1 6= 1). We easily check that the preceding
equality gives

u ∈ (ηθ2 − θ)(ηqθ2 − θ)F×
q = (nθ4 + tθ3 + θ2)F×

q

In other words, for our choice of the points, there are exactly q−1 values of u in Fq3

such that the points p1, p2, q2, r2, r1, q1 are conconic; note that using the Frobenius
action, we also get that the points p2, p3, q3, r2, r1, q2 are conconic, so as the points
p1, p3, q3, r2, r1, q1.

We remark that the conic C1 passing through p1, p2, q2, r2, r1, q1 must be irre-
ducible. Else it would be the union of two lines d and d′. If d contains r1, it cannot
contain r2 = rσ1 : it would be the line Z = 0 and the other line would contain the

four remaining points; this is impossible since p2 does not lie on (p1q1). Thus dσ
3

contains r2, d is not defined over Fq3 , and we get d′ = dσ
3

. In this case both d and

dσ
3

would contain p1, p2, q1, q2, this is impossible.
It remains to verify that one can choose u such that there is no other (−2)-curve

on the degree one surface obtained by blowing up the eight points. In other words,
no three points can be collinear, no six can lie on a conic, and there is no cubic
passing through the eight points which is singular at one of them.

We first check that no three of the eight points can be collinear. If such a subset
contains r1 and r2, this is clear. If it contains r1, then the line joining r1 to any
degree three point is defined over Fq6 , and cannot contain any other point defined
over Fq3 .

We are reduced to the subsets of three points among the p1, p2, p3, q1, q2, q3. Any
subset of the form {pi, pj, qk} or {qi, qj , pk} with k ∈ {i, j} cannot be collinear; else
the corresponding line would cross one of the three irreducible conics conjugate
to C1 above at three points. We are reduced to consider the subsets {p1, p2, p3},
{q1, q2, q3}, and (up to Galois action) {p1, p2, q3}, {q1, q2, p3}.

Note that a point (x : y : z) ∈ P2(Fq3) and its conjugates over Fq are collinear
if and only if the Fq subspace generated by x, y, z is strictly contained in Fq3 . As
a consequence, it follows from the definition of p1 that the points p1, p2, p3 are not
collinear. Now write

u = m(nθ4 + tθ3 + θ2) = m
(
(1− nb− a(t− na))θ2 − (nc+ t− na)θ − (t− na)c

)

for some m ∈ F×
q . From the above criterion, we get that the points q1, q2, q3 are

collinear if and only if t = na (of course we have c 6= 0).
The points p1, p2, q3 are collinear if and only if

∣∣∣∣∣∣

1 θ θ2

1 θq θ2q

uq
2

θq
2

θ2q
2

∣∣∣∣∣∣
= 0

This equation is (semi)-linear in the variable u, and admits a unique solution.
In the same way, the points q1, q2, p3 are collinear if and only if

u(θ2q
2+q − θq

2+2q)− uq(θ2q
2+1 − θq

2+2) + θ2q+1 − θq+2 = 0
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Setting U = u(θ2q
2+q − θq

2+2q), we can rewrite the equation U + U q + θ2q+1 −

θq+2 = 0. Since gcd(T q + T, T q3 − T ) = T , the map U 7→ U q + U is an Fq-linear
automorphism of Fq3 , and this equation admits exactly one solution.

Now choose six of the eight points, and assume they lie on a conic. If ri is one
of these points, then among the five remaining points, four must lie on one of the
conjugates of C1; from Bezout theorem, the conic must be one of these, and the
subset of six conconic points is among the three we already constructed. It remains
to consider the six points p1, p2, p3, q1, q2, q3; any conic passing through these points
should be defined over Fq, et thus have an equation of the form

eX2 + hXY + iY 2 + jXZ + kY Z + lZ2

Plugging the coordinates of p1 and q1, substracting and factoring 1− u, we get

jθ + kθ2 + l(1 + u) = 0

so that the family (θ, θ2, 1 + u) does not generate the Fq-vector space Fq3 . This
happens if, and only if 1 +mc(t− na) = 0 – with u = m(nθ4 + tθ3 + θ2).

It remains to show that there is no cubic passing through the eight points and
singular at one of them. If such a cubic C exists, it has exactly one singular point,
which is not defined over Fq. So it is distinct from Cσ. Now these two cubics have
at least ten intersection points (counted with multiplicities), which is impossible.

Summing up, we have to choose η and θ as above, such that the coefficients of
their minimal polynomials satisfy t− na 6= 0; then we get q − 1 possible values for
u such that the three prescribed subsets of six points are conconic. We remove one
possible value to verify that the six points pi, qi do not lie on a conic, then at most
one for each of the assertions p1, p2, q3 non collinear, and q1, q2, p3 non collinear.
We get a least q − 4 possible values for u, and the problem is settled for q ≥ 5.

For q = 3, one can verify that if θ is a root of T 3 + T 2 + 2, and η a root of
T 2 + T + 2, then for m = −1 the points defined above have the required position.

Appendix A. Arithmetic types for degrees three to six

We give below the lists of arithmetic types for degrees 3 ≤ d ≤ 6. The tables are
organized as follows

• in the first column, we fix a number for each type; there are also three
types (one in degree four and two in degree three) for which we add an
asterisk. This means that the invariant H1(Γ,Pic(X ⊗ Fq)) is non trivial
(it is isomorphic to the Klein four-group Z/2Z × Z/2Z in each case), and
that a surface of this type is not birational to the projective plane [21,
Section 29].

• in the second one, we describe the geometric types for the given degrees, in
other words the closed and symmetric parts of a root system of type E9−d

up to the action of the Weyl group; they come from [7], except for degree
3 where they are given in [8, Table IV (iv)]. We give the Dynkin types of
the singular points and (between parentheses) the number of exceptional
divisors on the surface;

• in the third column, we give the stabilizer attached to the geometric type;
• in the fourth one, we give the characteristic polynomial of the action of any
element w in the conjugacy class of the stabilizer on the geometric Picard
group Pic(X) of a weak del Pezzo surface of the type;
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• finally, we give the characteristic polynomial of the action of any element
w in the conjugacy class of the stabilizer on the geometric Picard group
Pic(Xs) of a singular del Pezzo surface of a type.

Moreover, in the table for degree 4, we add a column, in order to describe each
conjugacy class in W (D5) by its signed cycle type.

Table 5: Arithmetic types in degree 6

Type T Geometric type Stab χw,Pic(X) χw,Pic(Xs)

1 A1 (4) Z/2Z Φ4
1 Φ3

1

2 Φ3
1Φ2 Φ2

1Φ2

3 A1 (3) S3 Φ4
1 Φ3

1

4 Φ3
1Φ2 Φ2

1Φ2

5 Φ2
1Φ3 Φ1Φ3

6 2A1 (2) {e} Φ4
1 Φ2

1

7 A2 (2) Z/2Z Φ4
1 Φ2

1

8 Φ3
1Φ2 Φ1Φ2

9 A2A1 (1) {e} Φ4
1 Φ1

Table 6: Arithmetic types in degree 5

Type T Geometric type Stab χw,Pic(X) χw,Pic(Xs)

1 A1 (7) S3 Φ5
1 Φ4

1

2 Φ4
1Φ2 Φ3

1Φ2

3 Φ3
1Φ3 Φ2

1Φ3

4 2A1 (5) Z/2Z Φ5
1 Φ3

1

5 Φ3
1Φ

2
2 Φ2

1Φ2

6 A2 (4) Z/2Z Φ5
1 Φ3

1

7 Φ4
1Φ2 Φ2

1Φ2

8 A2A1 (3) {e} Φ5
1 Φ2

1

9 A3 (2) {e} Φ5
1 Φ2

1

10 A4 (1) {e} Φ5
1 Φ1

Table 7: Arithmetic types in degree 4

Type T Geometric type Stab W (D5) χw,Pic(X) χw,Pic(Xs)

1 A1 (12) S4 × Z/2Z 11111 Φ6
1 Φ5

1

2 2111 Φ5
1Φ2 Φ4

1Φ2

3 2111 Φ5
1Φ2 Φ4

1Φ2

4 11111 Φ4
1Φ

2
2 Φ3

1Φ
2
2

5 221 Φ4
1Φ

2
2 Φ3

1Φ
2
2

6 2111 Φ3
1Φ

3
2 Φ2

1Φ
3
2

7 311 Φ4
1Φ3 Φ3

1Φ3

8 221 Φ2
1Φ

2
2Φ4 Φ1Φ

2
2Φ4

9 1121 Φ3
1Φ2Φ4 Φ2

1Φ2Φ4

10 32 Φ3
1Φ2Φ3 Φ2

1Φ2Φ3
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Table 7: Arithmetic types in degree 4

Type T Geometric type Stab W (D5) χw,Pic(X) χw,Pic(Xs)

11 2A1 (9) D8 11111 Φ6
1 Φ4

1

12 2111 Φ5
1Φ2 Φ3

1Φ2

13 221 Φ4
1Φ

2
2 Φ2

1Φ
2
2

14 221 Φ4
1Φ

2
2 Φ3

1Φ2

15 41 Φ3
1Φ2Φ4 Φ2

1Φ4

16 2A1 (8) S4 × Z/2Z 11111 Φ6
1 Φ4

1

17 2111 Φ5
1Φ2 Φ3

1Φ2

18 11111 Φ4
1Φ

2
2 Φ2

1Φ
2
2

19 11111 Φ4
1Φ

2
2 Φ3

1Φ2

20 2111 Φ3
1Φ

3
2 Φ2

1Φ
2
2

21∗ 11111 Φ2
1Φ

4
2 Φ1Φ

3
2

22 311 Φ4
1Φ3 Φ2

1Φ3

23 2111 Φ3
1Φ2Φ4 Φ2

1Φ4

24 2111 Φ3
1Φ2Φ4 Φ1Φ2Φ4

25 311 Φ2
1Φ

2
2Φ6 Φ1Φ2Φ6

26 A2 (8) D8 11111 Φ6
1 Φ4

1

27 2111 Φ5
1Φ2 Φ3

1Φ2

28 11111 Φ4
1Φ

2
2 Φ2

1Φ
2
2

29 2111 Φ3
1Φ

3
2 Φ2

1Φ
2
2

30 221 Φ2
1Φ

2
2Φ4 Φ1Φ2Φ4

31 3A1 (6) (Z/2Z)2 11111 Φ6
1 Φ3

1

32 2111 Φ5
1Φ2 Φ2

1Φ2

33 11111 Φ4
1Φ

2
2 Φ2

1Φ2

34 2111 Φ3
1Φ

3
2 Φ1Φ

2
2

35 A1A2 (6) Z/2Z 11111 Φ6
1 Φ3

1

36 2111 Φ5
1Φ2 Φ2

1Φ2

37 A3 (5) Z/2Z 11111 Φ6
1 Φ3

1

38 221 Φ4
1Φ

2
2 Φ2

1Φ2

39 A3 (4) D8 11111 Φ6
1 Φ3

1

40 2111 Φ5
1Φ2 Φ2

1Φ2

41 11111 Φ4
1Φ

2
2 Φ1Φ

2
2

42 11111 Φ4
1Φ

2
2 Φ2

1Φ2

43 2111 Φ3
1Φ2Φ4 Φ1Φ4

44 4A1 (4) D8 11111 Φ6
1 Φ2

1

45 11111 Φ4
1Φ

2
2 Φ2

1

46 221 Φ4
1Φ

2
2 Φ2

1

47 11111 Φ4
1Φ

2
2 Φ1Φ2

48 221 Φ2
1Φ

2
2Φ4 Φ1Φ2

49 2A1A2 (4) Z/2Z 11111 Φ6
1 Φ2

1

50 2111 Φ3
1Φ

3
2 Φ1Φ2

51 A1A3 (3) Z/2Z 11111 Φ6
1 Φ2

1

52 2111 Φ5
1Φ2 Φ1Φ2

53 A4 (3) {e} 11111 Φ6
1 Φ2

1

54 D4 (2) Z/2Z 11111 Φ6
1 Φ2

1
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Table 7: Arithmetic types in degree 4

Type T Geometric type Stab W (D5) χw,Pic(X) χw,Pic(Xs)

55 11111 Φ4
1Φ

2
2 Φ1Φ2

56 2A1A3 (2) Z/2Z 11111 Φ6
1 Φ1

57 11111 Φ4
1Φ

2
2 Φ1

58 D5 (1) {e} 11111 Φ6
1 Φ1

Table 8: Arithmetic types in degree 3

Type T Geometric type Stab χw,Pic(X) χw,Pic(Xs)

1 A1 (21) S6 Φ7
1 Φ6

1

2 Φ6
1Φ2 Φ5

1Φ2

3 Φ5
1Φ

2
2 Φ4

1Φ
2
2

4 Φ4
1Φ

3
2 Φ3

1Φ
3
2

5 Φ3
1Φ

2
3 Φ2

1Φ
2
3

6 Φ5
1Φ3 Φ4

1Φ3

7 Φ4
1Φ2Φ3 Φ3

1Φ2Φ3

8 Φ3
1Φ

2
2Φ4 Φ2

1Φ
2
2Φ4

9 Φ4
1Φ2Φ4 Φ3

1Φ2Φ4

10 Φ3
1Φ5 Φ2

1Φ5

11 Φ2
1Φ2Φ3Φ6 Φ1Φ2Φ3Φ6

12 2A1 (16) S4 × Z/2Z Φ7
1 Φ5

1

13 Φ6
1Φ2 Φ4

1Φ2

14 Φ5
1Φ

2
2 Φ4

1Φ2

15 Φ5
1Φ

2
2 Φ3

1Φ
2
2

16 Φ4
1Φ

3
2 Φ3

1Φ
2
2

17∗ Φ3
1Φ

4
2 Φ2

1Φ
3
2

18 Φ5
1Φ3 Φ3

1Φ3

19 Φ4
1Φ2Φ4 Φ3

1Φ4

20 Φ4
1Φ2Φ4 Φ2

1Φ2Φ4

21 Φ3
1Φ

2
2Φ6 Φ2

1Φ2Φ6

22 A2 (15) S3 ≀ Z/2Z Φ7
1 Φ5

1

23 Φ6
1Φ2 Φ4

1Φ2

24 Φ5
1Φ

2
2 Φ3

1Φ
2
2

25 Φ4
1Φ

3
2 Φ3

1Φ
2
2

26 Φ5
1Φ3 Φ3

1Φ3

27 Φ3
1Φ

2
3 Φ1Φ

2
3

28 Φ3
1Φ

2
2Φ4 Φ2

1Φ2Φ4

29 Φ4
1Φ2Φ3 Φ2

1Φ2Φ3

30 Φ2
1Φ2Φ3Φ6 Φ1Φ3Φ6

31 3A1 (12) D12 Φ7
1 Φ4

1

32 Φ6
1Φ2 Φ3

1Φ2

33 Φ5
1Φ

2
2 Φ5

1Φ2

34 Φ4
1Φ

3
2 Φ2

1Φ
2
2

35 Φ3
1Φ

2
3 Φ2

1Φ3

36 Φ2
1Φ2Φ

2
3 Φ1Φ2Φ3
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Table 8: Arithmetic types in degree 3

Type T Geometric type Stab χw,Pic(X) χw,Pic(Xs)

37 A1A2 (11) S3 Φ7
1 Φ4

1

38 Φ6
1Φ2 Φ3

1Φ2

39 Φ5
1Φ3 Φ2

1Φ3

40 A3 (10) D8 Φ7
1 Φ4

1

41 Φ6
1Φ2 Φ3

1Φ2

42 Φ5
1Φ

2
2 Φ3

1Φ2

43 Φ5
1Φ

2
2 Φ2

1Φ
2
2

44 Φ4
1Φ2Φ4 Φ2

1Φ4

45 4A1 (9) S4 Φ7
1 Φ3

1

46 Φ5
1Φ

2
2 Φ3

1

47 Φ5
1Φ

2
2 Φ2

1Φ2

48 Φ3
1Φ

2
3 Φ1Φ3

49 Φ3
1Φ

2
2Φ4 Φ2

1Φ2

50 2A1A2 (8) Z/2Z Φ7
1 Φ3

1

51 Φ4
1Φ

3
2 Φ2

1Φ2

52 A1A3 (7) Z/2Z Φ7
1 Φ3

1

53 Φ6
1Φ2 Φ2

1Φ2

54 2A2 (7) D12 Φ7
1 Φ3

1

55 Φ6
1Φ2 Φ2

1Φ2

56 Φ4
1Φ

3
2 Φ2

1Φ2

57∗ Φ3
1Φ

4
2 Φ1Φ

2
2

58 Φ5
1Φ3 Φ1Φ3

59 Φ3
1Φ

2
2Φ6 Φ1Φ6

60 A4 (6) Z/2Z Φ7
1 Φ3

1

61 Φ6
1Φ2 Φ2

1Φ2

62 D4 (6) S3 Φ7
1 Φ3

1

63 Φ5
1Φ

2
2 Φ2

1Φ2

64 Φ3
1Φ

2
3 Φ1Φ3

65 A12A2 (5) Z/2Z Φ7
1 Φ2

1

66 Φ4
1Φ

3
2 Φ1Φ2

67 2A1A3 (5) Z/2Z Φ7
1 Φ2

1

68 Φ5
1Φ

2
2 Φ2

1

69 A1A4 (4) {e} Φ7
1 $Phi31

70 A5 (3) Z/2Z Φ7
1 Φ2

1

71 Φ6
1Φ2 Φ1Φ2

72 D5 (3) {e} Φ7
1 Φ2

1

73 A1A5 (2) {e} Φ7
1 Φ1

74 3A2 (3) S3 Φ7
1 Φ1

75 Φ4
1Φ

3
2 Φ1

76 Φ3
1Φ

2
3 Φ1

77 E6 (1) {e} Φ7
1 Φ1

References

1. M. Artin, Coverings of the rational double points in characteristic p, Complex analysis and
algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 11–22.



CLASSIFICATION OF SINGULAR DEL PEZZO SURFACES OVER FINITE FIELDS 49
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