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Abstract

The Semigeostrophic equations are a frontogenesis model in atmospheric science.
Existence of solutions both from the theoretical and numerical point of view is
given under a change of variable involving the interpretation of the pressure gradi-
ent as an Optimal Transport map between the density of the fluid and its push for-
ward. Thanks to recent advances in numerical Optimal Transportation, the com-
putation of large scale discrete approximations can be envisioned. We study here
the use of Entropic Optimal Transport and its Sinkhorn algorithm companion.
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1. Introduction

The Semigeostrophic (SG) model provided the first mathematical explanation
of frontogenesis, which is the process by which fronts (discontinuities in tempera-
ture and velocity) emerge in the atmosphere out of smooth conditions. The equa-
tions approximates the slow large scale dynamics of rotating fluids, without ex-
plicitly representing rapidly oscillating fast internal waves. This model is valid in
the regime of slow, large scale solutions with small aspect ratio. The SG equations
are not uniformly valid over the whole of Earth’s atmosphere, so they are not used
to make weather forecasts. However, they can be extremely useful in providing
reference solutions to examine more standard un-approximated equations, as was
proposed in [12], and was carried out in [29, 30].

The “Geostrophic coordinate” reformulation [10], later understood in terms of
Optimal Transport (OT) has been instrumental in the study of these equations and
the proof of existence since [2]. For more details, motivations and comprehensive
review of the theory, see [11]. The numerical solution of the OT-SG formulation
requires to solve OT problems at all time to recover the velocity field. Numeri-
cal solutions were obtained in [11] under a Lagrangian discretization but available
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OT solvers at that time were at best of cubic complexity and the resolution was
coarse/costly.

Later advances in Semi-Discrete Optimal transport [22], leading to linear cost
OT solvers have generated a renewed interest in solving numerically the Semi-
geostrophic equations [5] and higher resolution solutions have been obtained in
[14]. Another efficient OT numerical resolution approach based on an Entropic pe-
nalization [13] [20] is developing rapidly, see [25] and also [23]. Our main contribu-
tion is the introduction of a new solver based on Entropic OT. The implementation
uses a GPU back end and provides a fine resolution of the Eady slice test problem.

Outline: Section (2) recalls the optimal transport formulation of the Semi-
geostrophic equations, starting with the Semigeostrophic approximation of the
three dimensional incompressible Boussinesq equations, before also considering
the vertical slice incompressible Eady equations (which are a simplified two di-
mensional model exhibiting frontogenesis). Section 3 provides a minimal presen-
tation of the Entropic regularization of OT and formulates the “Entropic” SG-OT
equations, obtained by replacing standard OT by Entropic OT. Section 4 presents
the discretization of the problem and the Sinkhorn algorithm used to solve the En-
tropic OT problems. We finally provide a numerical study in section 5 and a list of
numerical and mathematical open problems and tasks in the conclusion.

2. The OT formulation of the SG equation

2.1. The Semigeostrophic approximation for the incompressible Boussinesq equations
The incompressible Boussinesq equations in Cartesian coordinates on the f -

plane (constant Coriolis force f approximation) take the form

Du1

Dt
− f u2 = − ∂p

∂x1
, (2.1)

Du2

Dt
+ f u1 = − ∂p

∂x2
, (2.2)

Du3

Dt
= b− ∂p

∂x3
, (2.3)

Db
Dt

= 0, (2.4)

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0, (2.5)

where (u1, u2, u3) is the velocity field, p is the pressure field, f is the (here, constant)
Coriolis parameter, and b is the buoyancy field (due to small density differences
caused by changes in temperature), and where

D
Dt

=
∂

∂t
+ u1

∂

∂x1
+ u2

∂

∂x2
+ u3

∂

∂x3
. (2.6)
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In this paper we consider the solution in a domain Ω with boundary ∂Ω with either
periodic or rigid (or a combination of the two) boundary conditions (u, v, w) · n =
0, where n is the unit outward pointing normal to the boundary.

We make the hydrostatic approximation by neglecting Du3/Dt in 2.3, which is
valid when the flow is slow and the aspect ratio (height of Ω divided by the width)
is small. The geostrophic approximation, which is valid on the large scale when
the flow is slow, also neglects Du1/Dt and Du1/Dt in (2.1-2.2), leading to

− f u2,g = − ∂p
∂x1

, f u1,g = − ∂p
∂x2

. (2.7)

However, this is a purely diagnostic equation that does not predict dynamics. In
the Semigeostrophic approximation of (2.1-2.5) we replace Du1/Dt, Du2/Dt by
Du1,g/Dt, Du2,g/Dt (whilst retaining u1, u2, u3 in 2.6), leading to

Du1,g

Dt
− f u2 = − ∂p

∂x1
, (2.8)

Du2,g

Dt
+ f u1 = − ∂p

∂x2
, (2.9)

0 = b− ∂p
∂x3

, (2.10)

Db
Dt

= 0, (2.11)

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0. (2.12)

To clarify how this equation might be solved, we use 2.7 and 2.10 to eliminate u1,g,
u2,g and b to obtain

− D
Dt

(
∂p
∂x2
− f y

)
= − ∂p

∂x1
, (2.13)

D
Dt

(
∂p
∂x2

+ f x
)
= − ∂p

∂x2
, (2.14)

D
Dt

∂p
∂x3

= 0, (2.15)

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0. (2.16)

In these equations, (u1, u2, u3) must be instantaneously solved for such that (2.13-
2.15) are consistent with the time evolution of the gradient ∇p, subject to the in-
compressibility constraint. The optimal transport formulation aims to avoid the
computational and analytical difficulties with this challenging nonlinear system.
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2.2. Optimal transport formulation
The optimal transport formulation starts from the change of physical variables

X = (x1, x2, x3) ∈ Ω to Geostrophic variables G = (G1, G2, G3), defined by

G1 = x1 + u2,g/ f , G2 = x2 − u1,g/ f , G3 = b/ f 2. (2.17)

The Geostrophic domain is defined as the image of the physical domain under
this map. This means that the Geostrophic domain boundary can move as time
progresses.

We notice that

G = (G1, G2, G3) = ∇P, P =
1
2
(x2

1 + x2
2) +

p
f 2 . (2.18)

The Cullen Stability Principle introduced in [10] notices that P must remain a
convex function in order for the Energy of the system to remain in a minimal state
and (2.13-2.15) to be solvable. It implies in particular that the map X 7→ G(X) =
∇P(X) is well defined. The optimal transport formulation below gives a mathe-
matical framework to this remark.

Returning to (2.8-2.12), and eliminating p for u1,g, u2,g and b, we get

DG1

Dt
= u1,g := f (G2 − x2), (2.19)

DG2

Dt
= u2,g := − f (G1 − x1), (2.20)

DG3

Dt
= 0, (2.21)

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0, (2.22)

which is a closed system when combined with 2.18.
To make further progress we need to consider the Lagrangian description of the

equations. The Lagrangian description of fluid dynamics is formulated in terms
of a time dependent flow map Xt : Ω → Ω such that Xt(a) describes the time
evolution of a moving fluid particle for each fixed a ∈ Ω. Since particles move
with velocity U = (u1, u2, u3), we have

∂

∂t
Xt = Ut ◦ Xt. (2.23)

For simplicity here we define X0 = I but it could be equally defined as any diffeo-
morphism on Ω. The time dependent density µt of particles is the image (or push
forward) measure of the initial distribution µ0 by Xt, denoted Xt#µ0 and defined
as ∫

φ dµt :=
∫

φ d(Xt#µ0) =
∫

φ ◦ Xt dµ0, ∀φ ∈ C(Ω) (2.24)
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The divergence free incompressibility constraint 2.12 directly ensures that ∂
∂t µt = 0,

particles move but their density, usually chosen as the uniform Lebesgue measure
µ0 = L Ω is preserved by the flow.

The image of the particle trajectories in the Geostrophic space in Lagrangian
coordinates is:

Gt = ∇P ◦ Xt (2.25)

Using (2.23) and (2.19-2.21) gives

∂

∂t
Gt = V ◦ Gt, (2.26)

where V is the velocity in Geostrophic coordinates given by

V = f

0 −1 0
1 0 0
0 0 0


︸ ︷︷ ︸

=J

·
(
(∇P)−1 − G

)
. (2.27)

Equation (2.25) couples the Lagrangian systems in physical and Geostrophic
coordinates. The distribution of particles in Geostrophic space is defined as σt =
∇P#µt, the push-forward or image measure of µt. As already mentioned the in-
compressibility constraint implies that the density µt = µ0 is conserved and does
not depend on t. The convexity assumption on P allows to use Brenier’s theo-
rem [6] (see [26] for an extensive presentation) to reformulate the SG equations in
Geostrophic coordinates i.e. in terms of σt or equivalently Gt, for all t.

Proposition 1 (Brenier Th.). With the particular choice of µ0 and assuming σt has a
probability density with finite second moment, there is a unique map onto the support of σt
, X 7→ G∗(X) = ∇P(X) and P convex, solution of the Monge optimal transport problem

OT(µ0, σt) := inf
G, σt=G#µ0

1
2

∫
Ω
‖G(X)− X‖2 µ0(d X). (2.28)

(see (2.24) for the definition of the push forward constraint).

Moreover, one can consider the reverse transport problem and G 7→ X∗(G) = (∇P)−1(G) =
∇Q(G) (Q beeing the Legendre-Fenchel transform of P) is the solution

OT(σt, µ0) := inf
X, X#σt=µ0

1
2

∫
Rd
‖G− X(G)‖2 σt(d G). (2.29)

Equations (2.26-2.27) can therefore be written in in Lagrangian Geostrophic co-
ordinates alone: tƒhe variational problem (2.29) yields X∗ = (∇P)−1 at all times
from σt the density of Gt. In Eulerian Geostrophic coordinates, one can further
eliminate Gt and replace (2.26) by the continuity equation (in Geostrophic G coor-
dinates),

∂

∂t
σt +∇ · (σt V) = 0. (2.30)
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Remark 1 (Existence of solutions in Geostrophic coordinates). Existence and con-
tinuity of the Monge map depends on the convexity of the support of the target measure
[7], i.e. where the density is bounded away from 0. For the Semigeostrophic equations, the
density σt must be supported on the (evolving) Geostrophic domain.
Working in Geostrophic coordinates, as in (2.30 - 2.27 - 2.29) is therefore easier as one
controls µ0. Existence of solutions in this setting was established in [2].

Remark 2 (Semigeostrophic energy). Using (2.17), (2.29) is formally equivalent to
extremising the Semigeostrophic energy,

ESG =
∫ 1

2

(
u2

1,g + u2
2,g

)
− b x3 d X, (2.31)

over P, which is how the optimal formulation was originally derived in [10].

Remark 3 (Going back to physical coordinates and regularity issues). To compute
physical quantities u1,g, u2,g and b we need to solve the forward optimal transport problem
2.28, and then obtain

(u2,g,−u1,g, b/ f ) = G(X)− X. (2.32)

Computing the full velocity u (instead of ug) requires to rewrite (2.8-2.12) in the form

D
Dt

(G1 − x1) = f (u1,g − u1),
D
Dt

(G2 − x2) = f (u2,g − u2). (2.33)

The left hand side can be computed in Geostrophic coordinates G and mapped back to
physical coordinates X using the optimal map. Finally, u3 can be recovered by integrating
the divergence free constraint.

The regularity of σt and its support is however a serious obstacle to give a meaning to
these solutions (in opposition to remark 1). See [19] for a review.

2.3. Optimal transport formulation of the Semigeostrophic Eady vertical slice model
The Eady vertical slice model considers a solution of (2.1-2.5) in a domain with

infinite extent in the y direction. Here, the domain is periodic in the x direction
with periodicity 2L, and the vertical extent of the domain is 0 ≤ z ≤ H. We write
b = −s x2 + b′, where s > 0. This describes a background horizontal temperature
gradient that models the North-South temperature gradient on planet Earth due
to differential solar heating. We then write p = −s x2 (x3 − H/2) + φ so that

b− ∂p
∂x3

= b′ − ∂φ

∂x3
. (2.34)
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Finally, we assume that u1, u2, u3, b′ and φ are all independent of x2. This produces
the following consistent set of equations,

Du1

Dt
− f u2 = − ∂φ

∂x1
, (2.35)

Du2

Dt
+ f u1 = s (x3 − H/2)− ∂φ

∂x2
, (2.36)

Du3

Dt
= b′ − ∂φ

∂x3
, (2.37)

Db′

Dt
+ su2 = 0, (2.38)

∂u1

∂x1
+

∂u3

∂x3
= 0, (2.39)

where now
D
Dt

=
∂

∂t
+ u1

∂

∂x1
+ u3

∂

∂x3
. (2.40)

This system can be solved entirely in two dimensions (x1, x3); this means that it is a
useful system for testing out numerical schemes in a less computationally intensive
framework. It is still very challenging because it exhibits fronts that form in finite
time.

The Semigeostrophic version of this model is intended to describe frontoge-
nesis in the x1 direction, so the scales are different in the x1 and x2 directions.
We assume that we can totally neglect Du1/Dt and Du3/Dt, whilst approximat-
ing Du2/Dt ≈ Du2,g/Dt. This produces the Semigeostrophic vertical slice Eady
model, where

f u2 = f u2,g := − ∂φ

∂x1
, (2.41)

Du2,g

Dt
+ f u1 = s (x3 − H/2), (2.42)

0 = b′ − ∂φ

∂x3
, (2.43)

Db′

Dt
+ su2,g = 0, (2.44)

∂u1

∂x1
+

∂u3

∂x3
= 0, (2.45)

(2.46)

whilst preserving u1 and u3 in D/Dt.
To obtain the optimal transport formulation, we make the change of variables

(G1, G3) = (x1 + u2,g/ f , b/ f 2) = ∇P, P =
x2

1
2
+

φ2

2
. (2.47)
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Following very similar steps to the previous subsection, we obtain

DG1

Dt
= u1,g :=

s
f
(x2 − H/2), (2.48)

DG3

Dt
= u2,g := − s

f
(x1 − X1), (2.49)

∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
= 0. (2.50)

Again, introducing the pushforward measure σ = ∇P#µ0, we obtain the following
optimal transport formulation.

Definition 1 (Optimal transport formulation of the Semigeostrophic Eady vertical
slice equations). The optimal transport formulation of the Semigeostrophic Eady vertical
slice equations is given by the initial value problem for σ such that

σt +∇G · (Vσ) = 0, (2.51)

where
V(G) =

s
f

J
(

X∗1(G)− G1
X∗3(G)− H/2

)
, J =

(
0 1
−1 0

)
(2.52)

and
X∗ = arg inf

X, X#σ=L

1
2

∫
Ω
‖X(G)− G‖2 d σ(G). (2.53)

As in remark 2, this is in fact equivalent to extremizing the Semigeostrophic
energy

ESG =
∫ 1

2
u2

1,g − b′ x3 d µ0(X), (2.54)

3. Kantorovich formulation and its entropic regularization

3.1. Kantorovich formulation
Kantorovich relaxation relies on optimizing on the larger space of all possi-

ble symmetric couplings (X, G) 7→ π(X, G) instead of maps X 7→ G(X) or G 7→
G(X) in proposition 1. Here π is a probability measure on the product physical ×
Geostrophic space, π(X, G) is the portion of mass transported between µ0(X) and
σ(G) assuming these are densities and its marginals are constrained :∫

Rd
π(X, d G) = µ0(X),

∫
Ω

π(d X, G) = σt(G) (3.1)

Then one has
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Proposition 2. The Kantorovich problem

OT(µ0, σt) := inf
π≥0, s.t. (3.1)

1
2

∫
Ω×Rd

‖G− X‖2 π(d X, d G). (3.2)

has a solution and defines the same (proposition 1) Optimal Transport distance. We sim-
plified the problem by minimizing on positive measures as the normalisations (3.1) enforce
the probability measure property. Moreover one has:

(i) The relaxation is tight when the Monge Problem has a solution, the unique optimal
plan concentrates on the graph of the maps

π∗(X, G) = µ0(X) δX × δG=G∗(X) = σt(G) δG × δX=X∗(G) (3.3)

(δ is here the dirac measure).

(ii) Kantorovich has a simpler dual formulation on (Φ, Ψ), continuous functions with
compact support: OT(µ0, σt) :=

sup
Φ ∈ C(Ω), Ψ ∈ C(Rd) s.t.

Φ(X) + Ψ(G) ≤ ‖G− X‖2, ∀(X, G)

∫
Ω

Φ µ0(d X) +
∫
×Rd

Ψ σt(d G) (3.4)

(iii) the primal π∗ and dual (Φ∗, Ψ∗) (a.k.a. Kantorovich potentials) optimal variables
provide the following barycentric map characterization of the optimal displace-
ment

∇Ψ∗(G) =
∫

Ω
X

π∗(d X, G)

µ0(X)
− G = X∗(G)− G, ∀G, (3.5)

and the symmetric characterization

∇Φ∗(X) =
∫

Rd
G

π∗(X, d G)

σt(G)
− X = G∗(X)− X, ∀X. (3.6)

Remark 4 (Periodic case). In the periodic case (as in the Eady slice problem), we need
to give a meaning to the integrals in (3.5,3.6), because the sum of points has no meaning
except in a cartesian setting, where the points are identified with vectors. To this end, we

write (3.5) under the form ∇Ψ∗(G) =
∫

Ω(X − G)
π∗(d X, G)

µ0(X)
, then it extends to the

periodic setting, with X − G being the smaller vector joining G to X, and the integral
running on vectors (see section 1.3.2 in [26]).

Remark 5 (Wasserstein Hamiltonian Systems). A differential structure on the space of
probability measures known as “Otto calculus” is leveraged in [1] to eliminate V (2.27)
from the SG equations 2.30. In a nutshell: defining the “Hamiltonian” H(σ) = OT(σ, µ0),
its first variation with respect to σ is the dual continuous function (see (3.4) )

δσH = Ψ∗. (3.7)
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Using (3.5), (2.30) can written as a PDE (in the Wasserstein metric) in σt

∂

∂t
σt +∇ · (σt J · ∇(δσH(σt)) = 0. (3.8)

It is easy to check (at least formally) that ∂
∂t H(σt) = 0, hence the Hamiltonian system

denomination. This technique of course applies to other Hamiltonians and in particular to
the Entropic regularization of Optimal Transport below. To get a more detailed introduction
to Wasserstein gradient and hamiltonian flows, see chapter 8 of [28] and especially part
8.3.2 for other examples of Wasserstein hamiltonian dynamics.

3.2. Entropic regularization
Kantorovich relaxation is a landmark theoretical result (see [26] for compre-

hensive presentation) providing a simpler linear programming (LP) formulation
of the non-linear Monge problem. From the computational point of view, however
it does not scale well with large discretization problems. The fundamental obstacle
is the complexity of LP solvers and the size of the primal unknowns or the similar
number of dual constraints.

The relative entropy (a.k.a. Kullback Leibler divergence) between measures q
and r is defined as:

KL(q | r) :=

{∫
log
(

dq
dr

)
dq if q� r

+∞ otherwise.
(3.9)

The q � r (q is absolutely continuous with respect to the reference measure r)
means that q has density dq

dr , a function of q) thus allowing to take its logarithm.
The sum spans the support of q and will be discrete if (as below) q is a discrete
measure. The penalization of (3.2) using relative entropy can be written in the
form OTε(µ0, σt) :=

inf
πε s.t. (3.1)

1
2

∫
Ω×Rd

‖G− X‖2 πε(d X, d G) + ε KL(πε | µ0 × σt) (3.10)

Note that as KL(q|r) is a strictly convex function of q with positive infinite slope at
0, this problem now has a unique solution and most importantly we got rid of the
positivity constraint π ≥ 0. There is some freedom in the choice of the reference
measure, it is customary to choose the tensor product of the marginal measure as
the “best” a priori approximation containing the support of optimal plans.

The minimization (3.10) has an equivalent dual maximization formulation:

OTε(µ0, σt) := sup
Φε∈C(Ω),Ψε∈C(Rd)

Jε(Φε, Ψε) (3.11)

11



where

Jε(Φε, Ψε) :=
∫

Ω Φε µ0(d X) +
∫
×Rd Ψε σt(d G)−

ε
∫

Ω×Rd(e
1
ε (Φε(X)+Ψε(G)− 1

2‖G−X‖2) − 1) µ0(d X)× σt(d G)
(3.12)

The entropic regularization method has replaced the dual constraints by a soft
barrier penalization. The new unconstrained problem is downsized to just the dis-
cretization of the dual variables.

We gather properties (similar to prop. 2) for the optimal primal and dual vari-
ables:

Proposition 3. (i) The unique optimal plan has an explicit form as a function of the
dual variable.

π∗ε (X, G) = e
1
ε
(Φ∗ε (X)+Ψ∗ε (G)− 1

2‖G−X‖2)
µ0(X)× σt(G) (3.13)

(ii) The optimal dual variables (Φ∗ε (X), Ψ∗ε ) are unique up to an additive constant C
((Φ∗ε (X) + C, Ψ∗ε − C) is also a solution) and satisfy the optimality system

δΦεJε(Φ
∗
ε , Ψ∗ε ) = 0 δΨεJε(Φ

∗
ε , Ψ∗ε ) = 0 (3.14)

the 0 elements above are in the space of functions, (3.14) gives an explicit represen-
tation of each variable as a function of the other:

Φ∗ε (X) = LSEσt,Ψ∗ε
ε (X), ∀X Ψ∗ε (G) = LSEµ0,Φ∗ε

ε (G), ∀G (3.15)

where we introduced the log/sum/exp operator:

LSEρ,u
ε (X) := −ε log(

∫
e

1
ε (u(X)− 1

2‖G−X‖2)ρ(d G)) (3.16)

(X and G play symmetric roles according on the measure arguments in (3.15).

(iii) The barycentric map characterizations (prop. 2 (iii)) still hold

∇Ψ∗ε (G) =
∫

Ω
X

π∗ε (d X, G)

µ0(X)
− G, ∀G, (3.17)

∇Φ∗ε (X) =
∫

Rd
G

π∗ε (X, d G)

σt(G)
− X, ∀X. (3.18)

but the plan π∗ε is diffuse and has no Monge Map displacement interpretation.

(iv) The Wasserstein first variation equation (3.7) also holds , choosing H = OTε we get

δσH = Ψ∗ε . (3.19)

This paper is based on using the efficient Sinkhorn solver (see section 4) and
replacing ∇Ψ∗ by ∇Ψ∗ε in (3.8).
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(v) The convergence of problem (3.11) towards (3.2) as ε → 0 as been largely studied
both in the continuous and discrete case. We refer to [21] and [25] for comprehensive
ref. and postpone more precise results we use below due to [4] to section 4.

Remark 6 (Assymptotic ε considerations). At the continuous level, first order asymp-
totic expansion as ε→ 0 of the entropic transport cost has been established in [9], [24] :

OTε(µ, ν) = OT0(µ, ν)− ε ln(Λε)−
ε

2
(KL(µ | µ0)) + KL(ν | µ0)) + o(ε) (3.20)

here Λε is a constant and only depends on ε.
The result only holds for smooth and compactly supported measures (µ, ν) with µ0 the
reference Lebesgue measure on both metric spaces. We can always choose µ = µ0 but
using (3.20) with ν = σt remains purely formal. It nevertheless provides an encouraging
view of the entropic bias induced when replacing∇Ψ∗ by∇Ψ∗ε . Indeed taking Wasserstein
variation in the first order terms yields :

δν(−ε ln(Λε)−
ε

2
(KL(µ | µ0)) + KL(ν | µ0))|(µ,ν)=(µ0,σt) = − ln(σt) (3.21)

where we have overloaded the notation and used σt = dσt
dµ0

for its density with respect to
the Lebesgue measure µ0. Only the last term contributes and one readily checks that ∇ ·
(σt J · ∇ ln(σt)) = 0. We can therefore expect that the impact on the dynamics in (3.8) of
the Entropic regularization is weak for small ε.

4. Discretization and Entropic OT solver

4.1. Sinkhorn Algorithm
Sinkhorn algorithm is the iterative coordinate-wise ascent solution of (3.11).

Iterate over k
Φk+1

ε = LSEσt,Ψk
ε

ε , Ψk+1
ε = LSEµ0,Φk+1

ε
ε . (4.1)

This solver has been thoroughly investigated (see the monograph [21] and [25]). It
is known to converge linearly to the solution of (3.15) but the rate of convergence
degrades with ε as aO(1− ε). When µ0 and σt are discrete measures supported on
N Diracs, the two functional equations in (4.1) becomes a 2N system of equations
and the integral in the LSE,

ε operators sums. The naive cost of one iteration of of
orderO(N2). When the discrete problem arises from the discretization of continu-
ous measures for which a Monge (graph) solution exists, it is possible to construct
a continuation multi-scale method increasing N and decreasing ε which requires
a finite number of k iterations at each scale. This heuristic has been followed in
[27] and also [16]. The resulting parallel implementation is numerical shown to
provide a linear solver in term of the fine (N, ε) target.
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In this paper we use the corresponding GPU optimized library Geomloss [15]
as well as the standard Pytorch AutoGrad tool to approximate the displacements
(3.5) (same for (3.6)) by

∇Ψ∗ '
k→ ∞
ε→ 0

∇Ψk
ε (4.2)

the limits in k and ε are of course finite in practice. This is discussed in the next
section.

4.2. Berman convergence
The only (to the best of our knowledge) theoretical convergence result in (N, ε, k)

is given in [4]. Summarizing and simplifying corollary 1.3 [4]:

Theorem 4. Set N = [
1
εd ] . Assume, (µN, νN) → (µ, ν) ∈ P(X) × P(Y) (tech.

assumptions missing) and (µ, ν) ∈ C2,α and bounded below. Then

(i ) There exists positive constants A, C such that :

For k ≥ mε := [−A
log(ε)

ε
] , we have

‖Ψk
ε −Ψ∗‖∞, ‖Φk

ε −Φ∗‖∞ ≤ C ε log(ε) (4.3)

(ii) Setting

πk
ε (X, G) = e

1
ε
(Φk

ε (X)+Ψk
ε (G)− 1

2‖G−X‖2)
µN(X)× νN(G).

There is a constant p depending only on the marginals such that, again for k ≥ mε

and ∀X :

πk
ε (X, G) ≤ p

εp e

1
2 ε p

(‖G−X∗(G)‖2)

µN(X)× νN(G), ∀G (4.4)

and the symmetric result using the other optimal Monge map (X 7→ X∗(G)) (see
proposition 1).

These results depends on the existence and regularity of the Monge Maps and
on fine time convergence of non-linear parabolic equations. We will not discuss
this here but rater give a a few comments allowing to understand this result:

• The results gives a scaling between discretization N, entropic regularization
ε and minimum number of Sinkhorn iterations mε to guarantee joint conver-
gence.

• When running Sinkhorn, equations (4.1) holds on the finite discrete support.
The functions (Φk

ε , Ψk
ε ) in (4.3) are the continuous extensions of their discrete

counterpart using the formula (3.16)
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• Estimate (4.4) is obtained using (4.3) but also relies on the log concavity of
the slices G 7→ πk

ε (X, G). It gives the precious quantitative information that
the support of the entropic plan πk

ε converges to the graph of the Monge
map exponentially fast, actually like a Gaussian of standard deviation

√
pε.

This behavior is the instrument to discard points in multi-scale continuation
method mentioned in subsection 4.1. A theoretical analysis of this strategy is
available in [3].

4.3. Lagrangian Semigeostrophic discretization
We attack the continuous Lagrangian SG equations (2.26-2.27) here rewritten

using (3.5):
∂

∂t
Gt = f J · (X∗(Gt)− Gt) = f J · ∇Ψ∗(Gt) (4.5)

We recall that Ψ∗ is the optimal Kantorovich potential for the OT(µ0, σt) problem.
Let µ0,N be a N point sampling of the Lebesgue measure on Ω, we approximate σt
by a N equi-weighted particles {Gt,i}moving in time

σt,N =
1
N

N

∑
i=1

δGt,i . (4.6)

We will consider the following space discretization of (4.5):

∂

∂t
Gt,i = f J · ∇Ψk∗

ε (Gt,i), ∀i (4.7)

where now the optimal transport part is approximated (see 4.2) using converged
Sinkhorn potentials corresponding to the OTε(µ0,N, σt,N) problem.

At each time, Sinkhorn algorithm is stopped after k∗ iterations. We discuss the
choice of k∗ in subsection 5.4. Finally, we note that proving convergence of the dis-
crete scheme (4.7) towards (4.5) is open as 1) the required regularity assumptions
on σt to use proposition 4) are not available, 2) Convergence estimates are only
available on the potentials and not their gradients.

5. Numerical study

We use an explicit time discretization of (4.7) (mid point rule or 4th order
Runge-Kutta) with constant time step dt. The use of implicit symplectic scheme
are left for later investigations.

We tested the numerical method on the 2D Eady slice model (section 2.3) which
shares the same mathematical structure (2.51-2.52) as the 3D problem used in the
above sections. This is the test case used in the few existing numerical studies [10]
[14]. The initial conditions are exactly the same as in [14] section 5.1 (table 1 column
1) and corresponds to an unstable perturbation of a stationary solution (stationary
means u2,g = 0 in (2.47)). The perturbation generates the non convex deformation
observed on the left frame figure 1.
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5.1. Frontogenesis dynamics
Figure 1 to 7, show the time evolution of the Geostrophic particles over a period

of approximately 20 days. We used N = 65536,
√

ε = 0.0625 and 320 time steps.
It ran for 8 hours on a single AMD EPIC 7302 GPU with 16 cores, 3-3.3GHz and
192 GBytes of RAM. The left column shows the uniform weighted samples σt,N
(4.6) in the Geostrophic space (dubbed Geoverse in the figures), µ0,N is not shown
and remains an unchanged sample of µ0 = L Ω. The middle and right column
position in the physical space (dubbed the Universe) the image of the Gt,i particles
by the approximate entropic barycentric map (see (3.17)):

Xt,i ' Gt,i +∇Ψk∗
ε (Gt,i). (5.1)

We use as a color code the temperature, i.e the second coordinate of Gt,i, as a color
code in the middle column and the geostrophic speed u2,g, i.e. the first coordinate
of Gt,i − Xt,i (see (2.47)) in the right column. Remember that in the the Eady Slice
model the temperature of the particles is not preserved in time.

The results show a vertical shear developing associated to moving temperature
and geostrophic speed discontinuities. This is precisely the expected behavior of
the model: generating “fronts” from smooth perturbation. Note that the “map”
∇Ψk∗

ε remains continuous unlike its inverse∇Φk∗
ε . The “front” formation is gener-

ated by the discontinuity of the transport map, well understood when the support
of the target measure, here σt is non convex (see [18] for a discussion and a review
of transport maps between non convex domains).

Our results are consistent with [14] but our resolution catches finer detail, in
particular on figure 2 the apparition of 2 fronts from top and bottom boundaries.
They will move in and merge. The choice of using a fixed weight sampling gen-
erates the line artifacts in the Geoverse and seem to contribute the propagation of
errors in the Universe.

Figure 1: 0.1 Days.
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Figure 2: 3.1 Days.

Figure 3: 6.2 Days.

Figure 4: 9.4 Days.

Figure 5: 12.5 Days.
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Figure 6: 15.6 Days.

Figure 7: 18.8 Days.

5.2. Convergence
We first study the convergence of the computed solutions depending on ε and

Nε = [O( 1
ε2 )] linked by the Berman rule (Theorem 4). We compare, at time t2 =

2 days, for different values of ε, σt0,Nε with the finest solutions (larger Nε) obtained
for εmin = 10−4.

The comparison uses Wasserstein 1 and 2 distancesW1,2 (actually their Sinkhorn
Divergence approximation which are also implemented in Geomloss [15] see [17]
for details). To sum up figure 8 left shows the “pseudo-residual error” curves

√
ε 7→ W1,2(σt2,Nεmin

, σt2,Nε) (5.2)

in log− log scale as well as a slope 2 line. This is an indication of first, respectively
second, order convergence inW1, respectivelyW2 distance.

We also investigate the dependance on the time step dt for two time discretiza-
tion: mid-point rule and Runge-Kutta 4. We compare, at time t2 = 2 days, dif-
ferent values of dt, σt2,dt with the finest solution obtained with a discretization
dtmin = 0.037 days. We keep a fixed ε = 10−4 and corresponding Nε. Figure 8 right
shows the “pseudo-residual error” curves

dt 7→ W1(σt2,dtmin , σt2,dt) (5.3)
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in log− log scale as well as a slope 1 line. This is an indication of first order conver-
gence inW1 for both(second and fourth order) time integrators. The speed∇Ψ∗ε is
probably no better that C1 in time.

Figure 8: Left: ε convergence study, see (5.2). Right: dt convergence study, see (5.3).

5.3. Energy conservation
As solutions of the Hamiltonian system (3.8), the SG solutions conserve in time

t the Hamiltonian/Energy, in our case OTε(σt, µ0) solution of the primal (3.10) and
dual (3.11) problem. Convex duality ensures in particular (see [8] section 6.4) that
for admissible plans πε the dual cost is less that the primal:∫

Ω Φε µ0(d X) +
∫
×Rd Ψε σt(d G)−

ε
∫

Ω×Rd(e
1
ε (Φε(X)+Ψε(G)− 1

2‖G−X‖2) − 1) µ0(d X)× σt(d G)

≤
1
2

∫
Ω×Rd ‖G− X‖2 πε(d X, d G) + ε KL(πε | µ0 × σt)

(5.4)

and is equal at optimality :∫
Ω Φ∗ε µ0(d X) +

∫
×Rd Ψ∗ε σt(d G)

=

1
2

∫
Ω×Rd ‖G− X‖2 π∗ε (d X, d G) + ε KL(π∗ε | µ0 × σt)

(5.5)

(the dual entropic part vanishes

ε
∫

Ω×Rd
e

1
ε (Φ

∗
ε (X)+Ψ∗ε (G)− 1

2‖G−X‖2) µ0(d X)× σt(d G) = 0). (5.6)

In the Semi-Geostrophic/OT dictionary the energy ESG (2.54) is splited into the
Kinetic Energy

EK =
∫ 1

2
u2

1,g d µ0(X) =
1
2

∫
Ω×Rd

‖G1 − X1‖2 π∗ε (d X, d G) (5.7)
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and the Potential Energy

EP = −
∫

b′ x3 d µ0(X) = −1
2

∫
Ω×Rd

G2 X2 π∗ε (d X, d G) (5.8)

As we are using OTε and not OT0 we have a third Energy component correspond-
ing the the relative Entropy of the OT plan:

EE = ε KL(π∗ε | µ0 × σt) (5.9)

Figure 9 left shows these Energie as well as their sum EK + EP + EE corresponding
to the primal cost, the first line of (5.5). The second line of (5.5), the dual cost is
natively returned by Geomloss [15] The simulation used the mid-point rule time
integration, dt = 0.0635 days , ε = 10−4 and N = 65536. Energy conservation is
conserved and the Kinetic Potential separation consistent with [14]). As expected
the convergence error places the dual cost below the primal cost. We also note that
the relative Entropy seems to be conserved, this is consistent with the asymptotic
analysis developed in remark 6: the Entropy of σt is conserved and is a first order
approximation of (5.9). Figure 9 center shows the same in log scale.

We now focus on the time evolution of another preserved quantity this time in
the physical space: using (5.1) we can define

µt,N =
1
N

N

∑
i=1

δXt,i , (5.10)

an approximate sampling of the imcompressible fluid density µ0 = L Ω. Figure
9 right shows (in log scale) the “imcompressibilty default” of the solver.

t 7→ W1(µt,N, µ0,N) (5.11)

which is well preserved.

Figure 9: Left: the energies over time, Cin.=(5.7), Pot.=5.8, Ent. = 5.9, Geomloss is the dual cost in
(5.5). Center: same in log scale. Right: incompressibility default (5.11).
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5.4. Performance and choice of k∗

Berman’s convergence (theorem 4) suggests to choose an ε dependent k∗ = mε

but Geomloss implementation is turned towards performance and does not allow
for this. It relies on and ε downscaling strategy to overcome the O(1

ε ) number of
iteration curse. Given a Scaling parameter 0 < Scaling < 1, it runs a finite num-
ber of Sinkhorn iterations for a sequence of n scales εn = Scalingn decreasing to
the prescribed finest ε. The algorithm then stops after k∗ = O( log ε

log Scaling ) itera-
tions. The number of points Nεn increases as in Berman’s theorem 4. The poten-
tials (Φε, Ψε) are interpolated from coarse n to fine level. This algorithm guarantees
speed (we indeed observed a linear time cost w.r.t. to the number of samples for
large problems) but the user needs to experiment with Scaling to obtain conver-
gence. Geomloss documentation suggest Scaling = .99 to ensure “good” conver-
gence and we used this number in the results presented above. We also compared
with Scaling = .999, this increases run time by an order of magnitude.

Figure 10 tests, on a two days simulation, the conservation of the Semi-Geostrophic
energy (also discussed in subsection 5.3). We used mid-point rule time integration
and a uniform dt = 0.0635 days. We show the normalised energy for different
values of ε and for Scaling = .99 or = .999 (Dashed or Solid lines). We gain an or-
der of magnitude in accuracy. As a consequence of poorer Sinkhorn convergence
(Scaling = .99) the auto-grad differentiation is not returning and accurate gradient
of the Energy and conservation is lost.

Figure 10: Energy conservation. Scaling = .99 or = .999 (Dashed or Solid lines).
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6. Conclusion

These first experiments show that Entropic OT is an efficient and computation-
ally relevant solution method. On the implementation side, a possible improve-
ments would be to introduce a control on the convergence of Geomloss (this is
possible using the lower level Keops library). Thanks to the the good scalability
of the GPU implementation we also plan to design and solve a frontogenesis test
case for the 3D SG equations.

We finally list open theoretical questions that are left for further investigations:

• For a fixed ε, this paper focus on the “Entropic” SG equations obtained by
replacing ∇Ψ∗ by its smoother Entropic version ∇Ψ∗ε in (3.8). Existence
(in the Brenier sense) obtained using a time discretization (as in [2]) seems
straightforward. Uniqueness (still open for standard SG equations) would
also probably be enforced by the Entropic penalization. The interpretation of
the Entropic SG model in the physical domain is unclear.

• Letting ε → 0 and using the current OT ε asymptotic results (remark 6) in-
dicates that the Entropic penalization impact the dynamics only at second
order. This is probably important to perform a joint dt and ε convergence
study.

• The Lagrangian space discretization (4.7) has been used (in the standard
ε = 0 case, see [5]) to prove existence of solutions (in the Aleksandrov sense).
A more general result would be to used Berman convergence framework
(theorem 4) to prove the joint convergence in space, time and ε of the so-
lutions of (4.7).

The OT background used in the last two bullets currently rely on the assumption
that the prescribed marginal remains smooth on both side (say C2,α) with compact
support. This is true for µ0 but questionable for σt. Whether these conditions can
be relaxed (one one side) or the use of the Entropic transport map confers sufficient
regularity is not known.
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[20] Alfred Galichon and Bernard Salanié. Cupid’s invisible hand: Social surplus
and identification in matching models, 2021.
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