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Abstract

We propose a new ES-BGK model for diatomic gases which allows for translational-rotational
and translational-vibrational energy exchanges, as given by Landau-Teller and Jeans relaxation
equations. This model is consistent with the general definition of the vibrational and rotational
collision numbers that are also commonly used in DSMC solvers. It is proved to satisfy the
H-theorem and to give the correct transport coefficients, up to the volume viscosity.

Contents

1 Introduction 2

2 Internal energies of diatomic gases 3
2.1 The different macroscopic internal energies at equilibrium . . . . . . . . . . . . . 3
2.2 Mathematical properties of the energy functions . . . . . . . . . . . . . . . . . . 4

3 Distribution functions, moments, and temperatures 4
3.1 Distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Internal temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Macroscopic relaxation phenomena . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Some remarks on the collision time τC . . . . . . . . . . . . . . . . . . . . . . . . 6

4 ES-BGK model ant its mathematical properties 6
4.1 Construction of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Definition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Conservation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Discussion on the conditions for positiveness of relaxation energies, positive defi-

niteness of Π, and H-theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Comparison with the ES-BGK model of Andriès et al. [1] . . . . . . . . . . . . . 15

5 Hydrodynamic asymptotics 16
5.1 Euler asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Compressible Navier-Stokes asymptotics . . . . . . . . . . . . . . . . . . . . . . . 17

6 Reduced ES-BGK model 18

1



7 Numerical results 19
7.1 Comparison with analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Comparison with DSMC Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8 Conclusion 22

A Convexity of the vibrational energy 22

B Inequality for det(Θ)/det(Π) 22

C Elements of proof for the Chapman-Enskog expansion 23

1 Introduction

In Rarefied Gas Dynamic problems, it is often useful to replace the complicated Boltzmann
equation by simplified models, both for analytical calculations and numerical simulations. These
model equations describe intermolecular collisions by drift and diffusion in the velocity space
(Fokker-Plank models, see [2, 3, 4]) or by relaxation to a local equilibrium: this latter approach,
first proposed by Bathnagar et al. [5] and Welander [6] leads to the so called BGK equation.

The BGK equation describes the evolution of a rarefied monoatomic flow, and is designed
to satisfy several properties of the Boltzmann equation, like conservation laws, H-theorem, and
correct shear viscosity coefficient in the compressible Navier-Stokes asymptotics as obtained by
the Chapman-Enskog expansion. However, the BGK equation contains a single free parameter
(the relaxation time) which is not sufficient to independently fit the correct value of the heat
transfer coefficient, which leads to a constant Prandtl number equal to 1.

Several modifications of the BGK equation have been proposed to fix this problem, like
the Ellipsoidal-Statistical (ES-BGK) [7] and the Shakhov [8] models that are the most popular
(see [9, 10] for other models). While the ES-BGK model was already extended to polyatomic
gases in [7], this is the more recent extension of Andriès et al. [1] to polyatomic gases with
rotational energy that is mostly used in the litterature [11, 12]. In the same paper, the authors
also proved for the first time that the ES-BGK model satisfies the H-theorem. While the
Shakhov model has also been extended to polyatomic gases [13, 14], it cannot satisfy the H-
theorem, since it is a perturbative model in which the distribution function can take negative
values. Several extensions of the BGK equation have also been proposed for discrete internal
energy levels [15, 16, 17] or thermally perfect gases [18].

In [17], the approach of Andriès et al. [1] was applied to extend the ES-BGK model to
diatomic gases in which a discrete vibrational energy is taken into account. This model was
designed to obtain the correct Prandtl number, as well as the correct relaxation times of internal
energies, as defined by Landau-Teller and Jeans equations. However, first simulations [19]
show some discrepancies with DSMC simulations, especially for the rotational and vibrational
temperature profiles, which suggests that energy exchanges are not taken into account in the
same way in the ES-BGK model and in the DSMC solver.

Recently, Pfeiffer [20] proposed an ES-BGK based particle simulation of diatomic rarefied
flows in which he proposed a specific treatment of internal energy exchanges. His results show
very good agreement with DSMC. However, the algorithm used in [20] is not derived from a
complete kinetic model.

In this paper, we propose an ES-BGK model which is consistent with the numerical method
of [20], and based on the theoretical framework of [17]. The main modifications with respect to
the model of [17] are the following ingredients, taken from [20]:

1. The energy relaxation time scale is proportional to the mean collision time τC rather than
to the relaxation time τ , as opposed to what is done in [17]. This corresponds to the
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common definition of the relaxation time of inner degrees of freedom and the associated
definition of the vibrational and rotational collision numbers [21, 22, 23].

2. The Landau-Teller and Jeans equations are used to define translational-rotational and
translational-vibrational energy exchanges, and induce a relaxation of rotational and vi-
brational temperatures to the translational temperature, as described and discussed in
detail in Haas et al. [23] for the DSMC method. Again, this is different to what is done
in [17], where the model induces a relaxation of internal temperatures to the overall tem-
perature.

Numerical tests in space homogeneous cases illustrate the excellent agreement between our new
model and DSMC simulations.

Note that this new approach can also be used even if the vibration modes are not taken into
account: we obtain an ES-BGK model for diatomic gases in rotational non-equilibrium which
is different from the ES-BGK model of Andriès et al. [1]. However, both models are proved to
be equivalent up to a correction factor of the relaxation time, or equivalently of the collision
number Zrot, but this correction factor can be quite large.

Moreover, our new ES-BGK model is proved to satisfy the H-theorem, with a proof that
is more involved than that for [17]. A Chapman-Enskog expansion gives the corresponding
transport coefficients, and we obtain the following strong result: the volume viscosity is shown
to be the same as that obtained in the Boltzmann equation with two fast and slow energy modes.

The outline of our paper is the following. Sections 2 and 3 are devoted to the definition of
internal energies and temperature, relaxation times, and distribution functions. Our ES-BGK
model is derived and analyzed in Section 4. The results of Chapman-Enskog expansion is given
in Section 5. A reduced model is proposed in Section 6 to reduce its computational complexity.
Finally, the properties of our model are illustrated by some numerical results in section 7.

2 Internal energies of diatomic gases

2.1 The different macroscopic internal energies at equilibrium

In this paper we consider diatomic perfect gases for which each molecule has several degrees of
freedom: translation, rotation and vibration. At the macroscopic level, a gas in thermodynam-
ical equilibrium at temperature T has different specific energies associated to each mode. For
translational, rotational and vibrational (in case of the harmonic oscillator model) modes, the
corresponding specific energies are

etr(T ) =
3

2
RT, erot(T ) =

δ

2
RT, evib(T ) =

RT0

exp (T0/T )− 1
, (1)

where the specific total energy is

e(T ) = etr(T ) + erot(T ) + evib(T ). (2)

Here, δ = 2 is the number of degrees of freedom of rotation, R is the gas constant per unit mass
and T0 is the characteristic vibrational temperature.

Note that polyatomic molecules could be considered here with δ > 2 and a vibration energy
as given by a sum over all harmonic oscillators of the molecule [24]. However, this would change
some details in our mathematical proofs, so that an extension of our approach to polyatomic
molecules is deferred to future work.
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2.2 Mathematical properties of the energy functions

For each energy mode, a temperature can be defined as follows. We denote by e−1
i the function

that maps any given energy E to the corresponding temperature. That is to say the temperature
T corresponding to a given energy E is such that eα(T ) = E, where α stands for tr, rot, and
vib, and is denoted by T = e−1

α (E). Simple computations give

e−1
tr (E) =

2

3R
E, e−1

rot(E) =
2

δR
E, e−1

vib(E) = T0/log

(
1 +

RT0

E

)
. (3)

The total energy function, which is clearly invertible, cannot be inverted analytically, and we
simply set

T = e−1(E) such that E =
3 + δ

2
RT +

RT0

exp (T0/T )− 1
. (4)

For each energy mode, we can also define a specific heat at constant volume cαv (T ) = deα(T )
dT .

For translational and rotational energies, the specific heats are constant:

ctrv =
3

2
R, crotv =

δ

2
R, (5)

while for vibrational energy, we find

cvibv (T ) = R
T 2

0

T 2

exp(T0/T )

(exp(T0/T )− 1)
2 . (6)

Note that cvibv can be proved to be an increasing function of T which is bounded by R. This
also implies that evib is a convex function (see appendix A).

Finally, we also define for each mode a specific entropy sα such that dsα(E)
dE = 1

e−1
α (E)

. This

gives, up to any arbitrary constant

str(E) =
3

2
R logE, srot(E) =

δ

2
R logE, svib(E) = R

(
log(1 +

E

RT0
) +

E

RT0
log(1 +

RT0

E
)
)
,

(7)
and we define the total entropy (at constant density)

S(E1, E2, E3) = str(E1) + srot(E2) + svib(E3). (8)

3 Distribution functions, moments, and temperatures

3.1 Distribution function

The state of any gas molecule is described by its position x, its velocity v, its rotational energy
ε, and its discrete vibrational energy iRT0, where i is the ith vibrational energy level and T0 is
the characteristic vibrational temperature of the gas, in the case of the usual simple harmonic
oscillator model.

The distribution function of the gas is the mass density f(t, x, v, ε, i) of molecules that at
time t are located in a elementary volume dx centered in x, have the velocity v in a elementary
volume dv, have the rotational energy ε centered in dε and the discrete vibrational energy iRT0.
The macroscopic densities of mass ρ, momentum ρu, and internal energy ρE are

ρ = 〈f〉v,ε,i , ρu = 〈vf〉v,ε,i , ρE(f) =

〈(
1

2
|v − u|2 + ε+ iRT0

)
f

〉
v,ε,i

. (9)
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The dependence of E on f is intentionally made explicit, and we denote by 〈φ〉v,ε,i (t, x) =∑+∞
i=0

∫
R3

∫
R φ(t, x, v, ε, i)dεdv the integral of any function φ. The specific internal energy E(f)

can be decomposed into
E(f) = Etr(f) + Erot(f) + Evib(f), (10)

where specific energies Etr(f), Erot(f) and Evib(f) are respectively associated with translational
motion of particles, rotational mode and vibrational mode through:

ρEtr(f) =

〈
1

2
|v − u|2f

〉
v,ε,i

, ρErot(f) = 〈εf〉v,ε,i , ρEvib(f) = 〈iRT0f〉v,ε,i . (11)

We also define the pressure tensor P (f) and the heat flux q(f) by

P (f) = 〈(v − u)⊗ (v − u)f〉v,ε,i , q(f) =

〈(
1

2
|v − u|2 + ε+ iRT0

)
(v − u)f

〉
v,ε,i

(12)

and we denote by Θ the tensor such that P (f) = ρΘ.

3.2 Internal temperatures

For a given distribution function f , the translational, rotational, and vibrational temperatures
are defined by

Ttr = e−1
tr (Etr(f)), Trot = e−1

rot(Erot(f)), Tvib = e−1
vib(Evib(f)), (13)

so that we have

Etr(f) = etr(Ttr) =
3

2
RTtr, Erot(f) = erot(Trot) =

δ

2
RTrot, Evib(f) = evib(Tvib) =

RT0

exp(T0/Tvib)− 1
,

(14)
see section 2. A number of degrees of freedom δv(Tvib) for the vibration mode can be defined

such that Evib(f) =
δv(Tvib)

2
RTvib, which leads to

δv(Tvib) =
2T0/Tvib

exp(T0/Tvib)− 1
. (15)

This number is not an integer, is temperature dependent, and tends to 2 for large Tvib.
The overall or equilibrium temperature Teq is the temperature corresponding to the total

internal energy, that is to say
Teq = e−1(E(f)), (16)

and Teq can be obtained by numerically solving

E(f) =
3 + δ

2
RTeq +

RT0

exp (T0/Teq)− 1
. (17)

3.3 Macroscopic relaxation phenomena

The common description of the relaxation of internal energies with Jeans and Landau-Teller
equations [21] as also typically used in DSMC codes (see [23, 22, 20]) is given as:

d

dt
erot(Trot) =

1

ZrotτC
(erot(Ttr)− erot(Trot)), (18)

d

dt
evib(Tvib) =

1

ZvibτC
(evib(Ttr)− evib(Tvib)), (19)
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where Zrot and Zvib are the mean number of collisions necessary to have an exchange of rotational
and vibrational energy, respectively, and τC is a characteristic time of collision (see section 3.4).
The equation for translational energy is

d

dt
etr(Ttr) = − (erot(Ttr)− erot(Trot))

ZrotτC
− evib(Ttr)− evib(Tvib)

ZvibτC
. (20)

which is deduced from the conservation of total energy. Our ES-BGK model will be designed
to satisfy these relaxation equations.

Remark 3.1. These equations are different from those used in [17]. Indeed, first, they induce a
relaxation of Trot and Tvib to Ttr, while a relaxation to the overall temperature Teq was imposed
in [17], and second the relaxation time used here is the collision time τC , while the ES-BGK
relaxation time τ was used in [17] (see sections 3.4 and 4.6). The use of τC and the relaxation
to translation temperature Ttr instead of equilibrium temperature Teq corresponds to the most
frequently used definition of the Landau-Teller and Jeans equation. A detailed discussion of the
relaxation to the translation temperature instead of the equilibrium temperature can be found
in Haas et al. [23].

3.4 Some remarks on the collision time τC

The collision numbers Zrot and Zvib describe the average required number of collisions of the
gas during which it undergoes a relaxation process in the rotational and vibratory degrees
of freedom, respectively. Therefore, the characteristic time τC should be chosen at the mean
collision time of the gas [20] and is generally not equal to the relaxation time of the ES-BGK
model which is chosen to represent the correct viscosity (as opposed to what is done in [1]
and [17]). The difference between the relaxation time τ and the collision time τC depends on
the molecular model used. For example, if we look at the Variable Soft Sphere model (VSS)
often used in DSMC, the collision time is given by [25]:

τV SSC =
α(5− 2ω)(7− 2ω)

5(α+ 1)(α+ 2)

µ

p
=
α(5− 2ω)(7− 2ω)

5(α+ 1)(α+ 2)
τPr, (21)

with α the diffusion factor of the VSS model, ω the exponential factor of the temperature
dependency in the viscosity, and Pr is the Prandtl number. Here, we have used the usual
relation τ = µ/(pPr) for ES-BGK, which will be proved below. The variable hard sphere (VHS)
model can simply be achieved by setting α = 1 which gives:

τV HSC =
(5− 2ω)(7− 2ω)

30

µ

p
=

(5− 2ω)(7− 2ω)

30
τPr. (22)

And finally we get the HS model from it when ω = 0.5:

τHSC =
4

5

µ

p
=

4

5
τPr. (23)

4 ES-BGK model ant its mathematical properties

4.1 Construction of the model

The evolution equation for f is the Boltzmann equation

∂tf + v · ∇f = Q(f), (24)

6



where Q(f) is the collision operator (see [26]). The corresponding local Maxwellian equilibrium
in velocity and energy is defined by

M[f ](v, ε, i) =Mtr[f ](v)Mrot[f ](ε)Mvib[f ](i), (25)

with

Mtr[f ](v) =
ρ

(2πRTeq)3/2
exp

(
−|v − u|

2

2RTeq

)
, Mrot[f ](ε) =

Λ(δ)ε
δ−2
2

(RTeq)δ/2
exp

(
− ε

RTeq

)
,

Mvib[f ](i) = (1− exp(−T0/Teq)) exp

(
−i T0

Teq

)
,

where Λ(δ) = 1/Γ( δ2 ), with Γ the usual gamma function.
This Maxwellian distribution can be used to define the BGK approximation [27], where

Q(f) is replaced by 1
τ (M[f ] − f), where τ is a relaxation time. This approximation has the

same conservation and entropy properties as the original Boltzmann operator, but is simpler
for deterministic numerical simulations. However, the single relaxation time cannot account for
the various time scales of the original problem. Indeed, such a model gives the same value for
rotational and vibrational relaxation times, and the same value for relaxation times of viscous
and thermal fluxes, leading to the usual incorrect Prandtl number Pr = 1.

Additional relaxation times can be added in this model by using the ES-BGK approach
exposed in [17]: the idea is to modify the equilibrium temperature Teq inMtr,Mrot, andMvib

so as to obtain the correct relaxation times. Indeed, our ES-BGK collision operator is

Q(f) =
1

τ
(G[f ]− f), (26)

with G[f ](v, ε, i) = Gtr[f ](v)Grot[f ](ε)Gvib[f ](i), where

Gtr[f ](v) =
ρ√

det(2πΠ)
exp

(
−1

2
(v − u)T Π−1 (v − u))

)
,

Grot[f ](ε) =
Λ(δ)

(RT relrot )
δ/2

ε
δ−2
2 exp

(
− ε

RT relrot

)
,

Gvib[f ](i) = (1− exp(−T0/T
rel
vib )) exp

(
−i T0

T relvib

)
,

(27)

are distributions associated to the energies of translation, rotation and vibration of the molecules.
The relaxation tensor Π and temperatures T relrot and T relvib are defined as follows.

First, note the following integral properties∫
R3

Gtr[f ](v) dv = ρ,

∫
R3

vGtr[f ](v) dv = ρu,

∫
R3

(v − u)⊗ (v − u)Gtr[f ](v) dv = ρΠ (28)∫ +∞

0

Grot[f ](ε) dε = 1,

∫ +∞

0

εGrot[f ](ε) dε = erot(T
rel
rot ), (29)

+∞∑
i=0

Gvib[f ](i) = 1,

+∞∑
i=0

iRT0Gvib[f ](i) = evib(T
rel
vib ). (30)

Now, T relrot and T relvib are defined so that our ES-BGK model (24)–(27) satisfies (in the space
homogeneous case) the Landau-Teller and Jeans equations (18)–(19). This gives

erot(T
rel
rot ) = erot(Trot) +

τ

ZrotτC
(erot(Ttr)− erot(Trot)), (31)

evib(T
rel
vib ) = evib(Tvib) +

τ

ZvibτC
(evib(Ttr)− evib(Tvib)), (32)
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We also need a relaxation translational temperature T reltr , defined by

ρetr(T
rel
tr ) =

∫
R3

1

2
|v − u|2Gtr[f ](v) dv (33)

which reads etr(T
rel
tr ) = 1

2Trace(Π), or equivalently T reltr = 1
3RTrace(Π). Then, the conservation

of total energy of our model requires
〈
( 1

2 |v − u|
2 + ε+ iRT0)G[f ]

〉
v,ε,i

= ρE(f), which gives the

following definition of T reltr :

etr(T
rel
tr ) = etr(Ttr)−

τ

ZrotτC
(erot(Ttr)− erot(Trot))−

τ

ZvibτC
(evib(Ttr)− evib(Tvib)). (34)

Now, the relaxation tensor Π is defined as follows. In the homogeneous case, our ES-BGK
model makes the heat flux relax exponentially fast to 0 with relaxation time τ . We impose that
the deviation of Θ to its trace value RTtrI relaxes to zero too, with relaxation time τ Pr. This
gives

Π = RT reltr I +
Pr− 1

Pr
(Θ−RTtrI). (35)

The relaxation time τ is defined so that our ES-BGK model is consistent with the compress-
ible Navier-Stokes equations with shear viscosity µ (see section 5): this gives

τ =
µ

ρRTtrPr
. (36)

Moreover, note that a temperature power law dependence of µ is generally chosen, which is
related to the intermolecular collision model of the Boltzmann equation (see [25] for instance).

Finally, note that collision numbers Zrot and Zvib might be temperature dependant (models
of Parker and Millikan-White): in this case, they have to be defined at the translational tem-
perature Ttr. In the same way, µ should also be defined at Ttr in (36), so that τ depends on
Ttr, like τC . However, to make notations simpler, the dependence on Ttr of Zrot, Zvib, τ , and τC
is not made explicit in the remaining of this paper.

4.2 Definition of the model

Our model is not always well defined: indeed, it requires that the relaxation energies are positive,
and that the relaxation tensor Π is positive definite. These constraints are analyzed in the
following two propositions, where it is shown that they depend on the translational temperature
only via values of Zrot, Zvib, τ , τC , and cvibv .

Proposition 4.1 (Positiveness of relaxation energies). For positive Ttr, Trot and Tvib, the
relaxation energies defined by (31), (32), and (34), are positive if

τ

ZrotτC
< 1,

τ

ZvibτC
< 1, and

τ

ZrotτC

crotv
ctrv

+
τ

ZvibτC

cvibv (Ttr)

ctrv
< 1. (37)

Proof. The positivity of erot(T
rel
rot ) and evib(T

rel
vib ) is obtained by writing relations (31) and (32) as

linear combinations that are clearly strictly convex under the necessary and sufficient conditions
τ

ZrotτC
< 1 and τ

ZvibτC
< 1.

For etr(T
rel
tr ), we rewrite (34) as

T reltr = Ttr −
τ

ZrotτC

crotv
ctrv

(Ttr − Trot)−
τ

ZvibτC

1

ctrv
(evib(Ttr)− evib(Tvib)),

8



see (14) and (5). Then we use the mean value theorem applied to the function evib to get

T reltr = Ttr −
τ

ZrotτC

crotv
ctrv

(Ttr − Trot)−
τ

ZvibτC

cvibv (T1)

ctrv
(Ttr − Tvib), (38)

where T1 lies between Ttr and Tvib and is such that evib(Ttr)− evib(Tvib) = cvibv (T1)(Ttr − Tvib),
and we remind we have used cvibv (T ) = devib(T )/dT .

Now, for the positiveness of T reltr , the most restrictive case is when Ttr − Trot ≥ 0 and
Ttr − Tvib ≥ 0, that we assume now. Moreover, the positiveness of T reltr and hence of etr(T

rel
tr ),

is obtained by writing (38) as a linear combination of Ttr, Trot, and Tvib which is strictly convex
under the condition

τ

ZrotτC

crotv
ctrv

+
τ

ZvibτC

cvibv (T1)

ctrv
< 1. (39)

Since cvibv is an increasing function (see section 2.2), and since we assumed Ttr ≥ Tvib, therefore
cvibv (T1) ≤ cvibv (Ttr), which gives the last condition of (37).

For the other cases, it can easily be proved that this condition is sufficient too: in the case
(Ttr − Trot ≤ 0 and Ttr − Tvib ≤ 0), (38) is always true, and in the cases (Ttr − Trot ≥ 0
and Ttr − Tvib ≤ 0) and (Ttr − Trot ≤ 0 and Ttr − Tvib ≥ 0), (38) is true under conditions

1− τ
ZrotτC

crotv

ctrv
≥ 0 and 1− τ

ZvibτC

cvibv (Ttr)
ctrv

≥ 0, respectively.

Proposition 4.2 (Positiveness of tensor Π). Let Ttr, Trot and Tvib be three positive tempera-
tures, and a Prandtl number 2

3 < Pr ≤ 1. We assume (37) holds, then the tensor Π defined
by (35) is positive definite under the assumption

τ

ZrotτC

crotv
ctrv

+
τ

ZvibτC

cvibv (Ttr)

ctrv
<

3

Pr
(Pr− 2

3
). (40)

Proof. First, note that Π and Θ have the same eigenvectors, and hence relation (35) written in
this eigenvector basis reads

λi(Π) = RT reltr + (1− 1

Pr
)(λi(Θ)−RTtr),

where λi(Π) and λi(Θ) are the eigenvalues of Π and Θ for i = 1, 2, 3. By (13) and (12), we
have RTtr = 1

3 (λ1(Θ) +λ2(Θ) +λ3(Θ)), and since the λi(Θ) are positive (note that (12) implies
Θ is positive definite), we get λi(Θ) ≤ 3RTtr. Finally, the assumption Pr ≤ 1 implies

λi(Π) ≥ RT reltr + (1− 1

Pr
)2RTtr. (41)

Consequently, a sufficient condition for Π to be positive definite is that the right-hand side
of (41) is positive.

Now, we inject the expression of T reltr (38) into (41), and we find that the right-hand side
of (41) is positive if

3

Pr
(Pr− 2

3
)Ttr −

τ

ZrotτC

crotv
ctrv

(Ttr − Trot)−
τ

ZvibτC

cvibv (T1)

ctrv
(Ttr − Tvib) ≥ 0. (42)

The same analysis as for the proof of proposition 4.1 gives the final condition (40).

Remark 4.1. Condition (40) is clearly not optimal, since the directional temperatures λi(Θ)/R
are generally close to Ttr and the non zero values of Trot and Tvib help in getting (42) (see [4]
for an optimal condition obtained in the monoatomic case).
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4.3 Conservation properties

Proposition 4.3. The collision operator (26) of the ES-BGK model satisfies the conservation
of mass, momentum, and energy:〈

(1, v,
1

2
|v − u|2 + ε+ iRT0)

1

τ
(G[f ]− f)

〉
v,ε,i

= 0. (43)

Proof. This is a simple consequence of the definition of the relaxation variables T relα and Π
(see (31–35)), and of the integral relations (27–30).

4.4 Entropy

The use of a single rotational energy with δ degrees of freedom requires to define the Boltzmann
entropy functional as

H(f) = 〈f log(f/ε
δ
2−1)− f〉v,ε,i.

For any macroscopic values (ρ, u,Θ, Trot, Tvib), we define the following set of distribution func-
tions that realizes these values, namely

Xρ,u,Θ,Trot,Tvib = {φ ≥ 0,
〈

(1 + |v|2 + ε+ i+ | log(φ/ε
δ
2−1)|)φ

〉
v,ε,i

< +∞,

〈(1, v, (v − u)⊗ (v − u), ε, iRT0)φ〉v,ε,i = (ρ, ρu, ρΘ, ρerot(Trot), ρevib(Tvib))}.
(44)

Now we state the H-theorem for our model.

Proposition 4.4. We assume 2
3 < Pr ≤ 1 and conditions (37) and (40) are satisfied. Our

ES-BGK model (24)-(26) satisfies

∂tH(f) +∇ ·
〈
v(f log(f/ε

δ
2−1)− f)

〉
v,ε,i

=

〈
1

τ
(G[f ]− f) log(f/ε

δ
2−1)

〉
v,ε,i

≤ 0, (45)

under the additional condition
τ

ZrotτC
+

τ

ZvibτC
≤ 3

5
. (46)

Moreover, the right-hand side of (45) is zero if, and only if f =M[f ].

Proof. We remind elements of proof already proved in [17] that apply here too:

1. The Gaussian distribution G[f ] defined by (26) is the unique minimizer of the entropy
functional H(f) on the set Xρ,u,Π,T relrot ,T

rel
vib

, defined according to (44).

2. By convexity of H, the right-hand side of (45) is non positive under the sufficient condition

H(G[f ]) ≤ H(f). (47)

This condition is not obvious, since f is not in Xρ,u,Π,T relrot ,T
rel
vib

.

3. For any macroscopic quantities (ρ, u,Θ, Trot, Tvib), we denote by S(ρ, u,Θ, Trot, Tvib) the
minimum value of H on Xρ,u,Θ,Trot,Tvib , and we have

S(ρ, u,Θ, Trot, Tvib) = ρ log ρ+ Cρ− ρ

R
S(

3

2
(det Θ)

1
3 , erot(Trot), evib(Tvib)) (48)

where S is the entropy at constant density defined in section 2, and C is a constant that
depends on δ and R only.
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4. By point 1, we have H(G[f ]) = S(ρ, u,Π, T relrot , T
rel
vib ).

5. Since f is in Xρ,u,Θ,Trot,Tvib , then we have S(ρ, u,Π, T relrot , T
rel
vib ) ≤ H(f).

6. A sufficient condition for (47) is therefore

S(ρ, u,Π, T relrot , T
rel
vib ) ≤ S(ρ, u,Θ, Trot, Tvib). (49)

7. We have
det Θ

det Π
≤
(
etr(Ttr)

etr(T reltr )

)3

. (50)

The proof of this inequality is slightly different from that shown in [17] and is given in
appendix B.

8. With points 3, 6, and 7, a sufficient condition for (49) is

S(etr(Ttr)), srot(erot(Trot)), svib(evib(Tvib))

≤ S(etr(T
rel
tr )), srot(erot(T

rel
rot )), svib(evib(T

rel
vib )),

(51)

The proof of this last inequality is the only part which is different from [17], and a bit more
involved. Our proof is divided into 5 steps.

Step 1: parametrization of S. We consider (etr(T
rel
tr ), erot(T

rel
rot ), evib(T

rel
vib ) as (affine)

functions of parameters Zrot and Zvib, and we set

h(θrot, θvib) = S(etr(T
rel
tr ), erot(T

rel
rot ), evib(T

rel
vib )), (52)

where θrot = τ
ZrotτC

and θvib = τ
ZvibτC

. With these new parameters, we have

etr(T
rel
tr ) = etr(Ttr) + θrot(erot(Trot)− erot(Ttr)) + θvib(evib(Tvib)− evib(Ttr)) (53)

erot(T
rel
rot ) = θroterot(Ttr) + (1− θrot)erot(Trot), (54)

evib(T
rel
vib ) = θvibevib(Ttr) + (1− θvib)evib(Tvib). (55)

Now it it clear that for (θrot, θvib) = (0, 0), the relaxation energies reduce to the initial
energies, that is to say

(etr(T
rel
tr ), erot(T

rel
rot ), evib(T

rel
vib ))|(θrot,θvib)=(0,0) = (etr(Ttr), erot(Trot), evib(Tvib)).

Consequently, our entropy inequality (51) reads

h(0, 0) ≤ h(θrot, θvib). (56)

While the domain of definition of h is given by positiveness condition (37), here we need to
reduce it to condition (46) given in the proposition. With our new parameters, it reads

θrot + θvib ≤
3

5
. (57)

In fact, numerical tests suggest (56) can be false if this condition is not fulfilled.
Finally, note that h is concave, as composed of an affine function and the concave function

S.
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Step 2: relaxation temperatures as convex combinations Here we use the same
argument as used in the proof of proposition 4.1: we linearize (53)–(55) by using the mean value
theorem, and we get

T reltr = (1− θrot
crotv
ctrv
− θvib

cvibv (T1)

ctrv
)Ttr + θrot

crotv
ctrv

Trot + θvib
cvibv (T1)

ctrv
Tvib,

T relrot = θrotTtr + (1− θrot)Trot,

T relvib = θvib
cvibv (T1)

cvibv (T2)
Ttr + (1− θvib

cvibv (T1)

cvibv (T2)
)Tvib,

(58)

where T1 and T2 are some temperatures between Ttr and Tvib, and T relvib and Tvib, respectively,
defined by

cvibv (T1) =
evib(Ttr)− evib(Tvib)

Ttr − Tvib
, and cvibv (T2) =

evib(Tvib)− evib(T relvib )

Tvib − T relvib

. (59)

Step 3: minimization of h. In the plane (θrot, θvib), condition (57) defines a triangle T
of vertices (0, 0), (0, 3

5 ), ( 3
5 , 0). Since h is concave, its minimum on T is reached at one vertex

of T . Therefore

h(θrot, θvib) ≥ min(h(0, 0), h(0,
3

5
), h(

3

5
, 0)).

for every (θrot, θvib) in T .
Then a sufficient condition for (56) is that the minimum is reached at (0, 0), that is to say

h(0, 0) ≤ h(0,
3

5
) and h(0, 0) ≤ h(

3

5
, 0). (60)

Now, we prove the first inequality of (60). In fact, it is simpler to prove a stronger property,
namely

h(0, 0) ≤ h(0, θvib) (61)

for every θvib ≤ 3
5 . We start by using that h is concave but also that it is differentiable to get

h(0, θvib) ≥ h(0, 0) + θvib∂θvibh(0, θvib),

and now a sufficient condition to get (61) is ∂θvibh(0, θvib) ≥ 0. But the chain rule gives

∂θvibh(θrot, θvib) = ∇S(etr(T
rel
tr ), erot(T

rel
rot ), evib(T

rel
vib )) · ∂

∂θvib

 etr(T
rel
tr )

erot(T
rel
rot )

evib(T
rel
vib


=
( 1

T reltr

− 1

T relvib

)
(evib(Tvib)− evib(Ttr)).

Now for θrot = 0 this reads

∂θvibh(0, θvib) = (
1

T rel,0tr

− 1

T relvib

)(evib(Tvib)− evib(Ttr)), (62)

where the exponent 0 indicates that T rel,0tr is defined by (53) with θrot = 0.

This quantity can be proved to be non negative if we are able to show that T relvib − T
rel,0
tr =

α(Tvib − Ttr) with α ≥ 0. Indeed, if the second bracket of (62) is positive, then Tvib − Ttr ≥ 0

since evib is an increasing function, and hence T relvib −T
rel,0
tr ≥ 0 too, and the first bracket of (62)
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is positive as well, which gives the sign of ∂θvibh(0, θvib). The proof is the same in the opposite
case.

The relation T relvib−T
rel,0
tr = α(Tvib−Ttr) is obtained with (58). With θrot = 0, these relations

give

T relvib − T
rel,0
tr =

(
1− θvib

cvibv (T1)

cvibv (T2)
− θvib

cvibv (T1)

ctrv

)
(Tvib − Ttr).

Our coefficient α is clearly non negative under the condition

θvib
cvibv (T1)

cvibv (T2)
+ θvib

cvibv (T1)

ctrv
≤ 1. (63)

Now, this condition is analyzed with two different cases.

First case: Ttr ≤ Tvib. Since T relvib is a convex combination of Ttr and Tvib, we have Ttr ≤
T relvib ≤ Tvib. Then the intermediate temperatures T1 and T2 are in intervals [Ttr, Tvib] and
[T relvib , Tvib], respectively. Now, the convexity of evib implies cvibv (T2) ≥ cvibv (T1) (see appendix A).
Consequently, the first term of the left-hand side of (63) satisfies

θvib
cvibv (T1)

cvibv (T2)
≤ θvib.

Moreover, the second term satisfies θvib
cvibv (T1)
ctrv

≤ 2
3θvib (since cvibv is bounded by R, see sec-

tion 2.2). Finally, the left-hand side of (63) satisfies

θvib
cvibv (T1)

cvibv (T2)
+ θvib

cvibv (T1)

ctrv
≤ 5

3
θvib

which is indeed lower than 1, since θvib ≤ 3/5. Therefore (63) is satisfied.

Second case: Ttr ≥ Tvib. Now we have Tvib ≤ T relvib ≤ Ttr. This case is more delicate, since

in the first term of (63),
cvibv (T1)
cvibv (T2)

now is greater than 1. Thus we must work on the product

θvib
cvibv (T1)
cvibv (T2)

. By using (59), we have

θvib
cvibv (T1)

cvibv (T2)
= θvib

(
evib(Ttr)− evib(Tvib)
evib(Tvib)− evib(T relvib )

)(
Ttr − Tvib
Tvib − T relvib

)
=
T relvib − Tvib
Ttr − Tvib

= 1− Ttr − T relvib

Ttr − Tvib
,

(64)

where we have used (55) to simplify the energy ratio.
Now, note that evib(Ttr)−evib(T relvib ) ≤ cvibv (Ttr)(Ttr−T relvib ), since cvibv is bounded by cvibv (Ttr)

in [Tvib, Ttr], and hence

Ttr − T relvib ≥
evib(Ttr)− evib(T relvib )

cvibv (Ttr)

=
(1− θvib)(evib(Ttr)− evib(Tvib))

cvibv (Ttr)
= (1− θvib)

cvibv (T1)

cvibv (Ttr)
(Ttr − Tvib),

from (55) and (59). Consequently, we go back to (64) and we get

θvib
cvibv (T1)

cvibv (T2)
≤ 1− (1− θvib)

cvibv (T1)

cvibv (Ttr)
,
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which is now clearly lower than 1. Therefore, a sufficient condition for (63) is

1− (1− θvib)
cvibv (T1)

cvibv (Ttr)
+ θvib

cvibv (T1)

ctrv
≤ 1,

which is equivalent to

θvib ≤
1

1 +
cvibv (Ttr)
ctrv

.

Now, since the ratio
cvibv (Ttr)
ctrv

is lower than 2/3, this last inequality is satisfied if θvib ≤ 1/(1 +

2/3) = 3/5, which is what we wanted to prove, and hence (63) is now proved for every cases.
This proves (61) for every θvib ≤ 3

5 and hence the first inequality of (60) is proved.
The second inequality of (60) is proved in a similar way, but much more easily, since erot

is linear. Indeed, the ratio crotv (T1)/crotv (T2) in the equivalent of (63) is equal to 1, and the
inequality is obviously satisfied for every θrot ≤ 3/5.

This long analysis proves (60), and hence (56) and in turn (51). The proof of the proposition
is now almost complete: the equilibrium part is proved like in [17] and is left to the reader.

4.5 Discussion on the conditions for positiveness of relaxation ener-
gies, positive definiteness of Π, and H-theorem

Hierarchy of conditions. Propositions 4.1, 4.2, and 4.4 hold for different conditions that
are in fact not completely independent.

For instance condition (40) for positive definiteness of Π implies the third constraint of
condition (37) for the positiveness of relaxation energies: indeed, the right-hand side of (40) is
lower than 1 for Pr ≤ 1.

Moreover, in proposition 4.4, condition (46) clearly implies the first two constraints of (37).
However, it does not always implies the third constraint of (37), since it is temperature depen-
dent.

This means that the number of conditions could be reduced in our propositions. Nevertheless,
we find that the current redundancy is clearer, since there is a clear hierarchy: for the H-theorem
to hold, we should first assume that the relaxation energies are positive, and then that Π is
positive definite.

Physical validity. Now, we discuss the physical validity of these conditions. As an example,
we consider a flow of nitrogen, for which the characteristic vibrational temperature is T0 =
3.371K, and the molecular VSS parameters are ω = 0.74 and α = 1.36. With the Eucken
formula Pr = 2(5 + δ+ δv)/(15 + 2(δ+ δv)) and definitions (6) and (21), we can compute all the
terms of conditions (37), (40), and (46), for any arbitrary temperature, and hence we can check
for what range of temperature these conditions are satisfied. For Zvib, we use the Millikan-White
formula as given in [25, 28]. For Zrot, its usual value in aerodynamics is Zrot = 5, but we also
use its value as given by the Parker formula [25, 21]. Our observations are as follows.

For Zrot = 5, all the conditions are satisfied up to a temperature of 40.000 K. For larger
temperatures, the constraint τ/ZvibτC < 1 of (37) fails, and the vibrational energy becomes
negative. This upper bound is clearly sufficient here, since the model is not designed for so large
temperatures, for which other physical phenomenon have to be taken into account (dissociation
for instance). In addition, the model of Millikan and White [28] is an empirical model which in
the original paper itself is only defined in a temperature range between 280 K < T < 8000 K, so
that the physical suitability at T = 40.000 K may be doubted. In general, the physical suitability
of the model for very high temperatures is doubtful, since Zvib then approaches 0. However, a

14



Zvib < 1 would be problematic from a purely physical point of view, since the relaxation time
would then be smaller than the collision time itself.

For Zrot as given by Parker formula, note that Zvib and Zrot behave very differently, since
Zrot increases with the temperature, while Zvib decreases very fast, and is infinitely large for
small temperatures. Then we observe that all the conditions are satisfied for temperatures
between 60 and 42.000 K. Again, the upper bound is clearly sufficient. The lower bound is due
to the constraint τ/ZrotτC < 1 of (37): for lower temperatures, this constraint is not satisfied,
and the rotational energy becomes negative (the other conditions fail for small temperatures a bit
smaller, between 20 and 32, which is less restrictive). Here the same problem arises as already
described for the vibration, since Zrot goes towards 0 for decreasing temperatures. Again,
Zrot < 1 is difficult from a purely physical point of view. The model is therefore not suitable
for such low temperatures. There is another problem: the characteristic rotational temperature
of N2 is T0,rot = 2.88 K. For hydrogen H2, for example, this is already T0,rot = 87.6 K. At such
low temperatures, one can no longer necessarily assume that the rotational degree of freedom is
fully excited, which means that the number of degrees of freedom of the rotation and thus crotv
also become temperature-dependent for very low temperatures, comparable with the vibration
in the considered temperature range. In the model proposed here, however, this effect was not
taken into account, as these temperatures are lower than the smallest temperatures generally
met in aerodynamics. Therefore, this effect is typically also neglected in DSMC codes and
the rotational temperature is assumed to be continuous. In general, very little information
can be found in the literature about the relaxation time of rotation at very low temperatures.
However, in Riabov [29] one can find a discussion about the discrepancy between the classical
consideration of Parker’s model and the technique of Lebed and Riabov [30] for the relaxation
times of rotation for T < 100 K. It becomes clear that the Parker model can no longer be used
for these low temperatures.

4.6 Comparison with the ES-BGK model of Andriès et al. [1]

If the vibration modes are neglected, our model reduces to the following translation-rotation
ES-BGK model:

∂tf + v · ∇xf =
1

τ
(G[f ]− f), (65)

where now f does not depend on i, while the Gaussian is G[f ] = Gtr[f ]Grot[f ], with Π and T relrot

are still defined by (35) and (31), and T reltr is now defined by

etr(T
rel
tr ) = etr(Ttr)−

τ

ZrotτC
(erot(Ttr)− erot(Trot)), (66)

while T relvib is not used anymore. The macroscopic quantities are defined as in (9)–(12) without
the series in i. Here, the model is not restricted to diatomic gases anymore, and δ can take any
integer values greater than or equal to 2.

For such polyatomic gases, the first ES-BGK model was proposed by Andriès et al [1], and
is often used in the literature (see for instance [12]). This model reads as above with relaxation
tensor

Π = (1− θ)((1− ν)RTtrI + νΘ) + θRTeq, (67)

and the relaxation rotational temperature is

T relrot = θTeq + (1− θ)Trot, (68)

where the equilibrium temperature is

Teq =
3Ttr + δTrot

3 + δ
. (69)
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Note that in [1], Trot is denoted by Tint, T
rel
rot by T relrot , and Π by T . Moreover, the variable

I = εδ/2 is used instead of ε, which does not change our analyzis and conclusions below. Finally,
the parameters θ and ν are defined by

θ =
1

Zrot
, and (1− θ)ν =

1

Pr
− 1. (70)

First, we show that our model can be written under the same form as the Andriès et al.
model, with modified coefficients.

Proposition 4.5. The relaxation tensor Π and rotational temperature of model (65)-(66) can
be written under form (67) and (68) with modified coefficients θ̃ and ν̃ defined by

θ̃ =
3 + δ

3

τ

τC
θ and (1− θ̃)ν̃ =

1

Pr
− 1.

This proposition is readily proved with a direct calculation in which Ttr is written as a
function of Teq and Trot by using (69). This is left to the reader.

It is interesting to compare coefficients θ and θ̃ of both models. For instance, for a diatomic
gas (δ = 2) with a ratio τ/τC ≈ 1.7 in case of the HS collision model (see section 3.4 with the
value Pr ≈ 0.74 for a diatomic gas without vibration modes), we find θ̃ is approximately 3θ.
This shows that these two models have very different coefficients.

Another way to compare these models is to look at energy relaxations. The following propo-
sition compares relaxation times for both models.

Proposition 4.6. For both ES-BGK models, in the space homogeneous case, the rotational
temperature relaxes according to

d

dt
Trot =

1

τrot
(Ttr − Trot). (71)

where the relaxation time is

τrot = ZrotτC for our model (65)–(66), and

τrot = Zrotτ(3 + δ)/3 for Andriès et al. model.

This proposition is proved by a direct integration of the homogeneous kinetic equation times
ε, and then by using the definition of T relrot . This result shows that both models give different
exchange rates of energy between rotational and translational modes. This can be seen more
clearly with the previous example of a diatomic gas, since we find τrot|Andries ≈ 3τrot, which
means that the rotational energy of Andriès et al. model relaxes three times as fast as with our
model. If the correct relaxation rate is τrot (as it is used in some DSMC codes, see [22, 20, 23, 21]),
then the energy exchange rate as given by Andriès et al. model is much too large.

5 Hydrodynamic asymptotics

To obtain the conservation laws, we multiply (24) by the vector 1, v, and 1
2 |v|

2 + ε+ iRT0 and
we integrate to get:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇ · P (f) = 0,

∂tE +∇ · (Eu) +∇ · (P (f)u) +∇ · q(f) = 0,

(72)
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where E = 〈( 1
2 |v|

2 + ε + iRT0)f〉v,ε,i = 1
2ρ|u|

2 + ρE(f) is the total energy density, while the
pressure tensor P (f) and the heat flux q(f) have been defined by (12). If we have some charac-
teristic values of length, time, velocity, density, and temperature, our ES-BGK model (24)–(26)
can be non-dimensionalized. This equation reads

∂tf + v · ∇f =
1

Kn τ
(G[f ]− f), (73)

where Kn is the Knudsen number which is the ratio between the mean free path and a macro-
scopic length scale. For simplicity, we use the same notations for the non-dimensional and
dimensional variables. Note that we assume here that the three relaxation times have the same
asymptotic order of magnitude with respect to Kn (even if their values can be very different).

The Chapman-Enskog analysis consists in approximating the pressure tensor and the heat
flux at zero and first order with respect to the Knudsen number, leading to compressible Euler
equations and compressible Navier-Stokes equations, respectively.

5.1 Euler asymptotics

We get the following proposition, that can be proved as in [17].

Proposition 5.1. The moments of f , solution of the ES-BGK model (24), satisfy the com-
pressible Euler equations up to O(Kn):

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = O(Kn),

∂tE +∇ · ((E + p)u) = O(Kn),

(74)

where p = ρRTeq is the pressure at equilibrium. The non-conservative form of these equations
is

∂tρ+ u · ∇ρ+ ρ∇ · u = 0,

∂tu+ (u · ∇)u+
1

ρ
∇p = O(Kn),

∂tTeq + u · ∇Teq + (γ − 1)Teq∇ · u = O(Kn),

(75)

where γ = cp(Teq)/cv(Teq) is the ratio of specific heats, with cp(Teq) = cv(Teq)+R and cv(Teq) =
de(Teq)
dT = ctrv + crotv + cvibv (Teq) is the specific heat at constant volume.

5.2 Compressible Navier-Stokes asymptotics

Our main result is the following.

Proposition 5.2. The moments of f , solution of the ES-BGK model (24), satisfy the com-
pressible Navier-Stokes equations up to O(Kn2):

∂tρ+∇ · (ρu) = O(Kn2),

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ∇ · σ +O(Kn2),

∂tE +∇ · (E + p)u = −∇ · q +∇ · (σu) +O(Kn2),

where, in dimensional form, the viscous stress tensor and the heat flux are given by

σ = µ

(
∇u+ (∇u)T − 2

3
∇ · uI

)
+ ζ∇ · uI, q = −κ∇T,
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and the viscosity, heat transfer and volume viscosity coefficients are

µ = τpPr, κ =
µcp(Teq)

Pr
, ζ = pR

(
τrot

crotv
cv(Teq)2

+ τvib
cvibv (Teq)

cv(Teq)2

)
,

with τrot = ZrotτC and τvib = ZvibτC, while Zrot, Zvib, τC, and τ are defined at Teq.

For the proof of proposition 5.2, most of the calculations are very similar to that given
in [17]. The only difference is the first order expansion of the temperatures and of the tensor Π
required to compute the Chapman-Enskog expansion. The corresponding procedure and results
are given in appendix C.

Remark 5.1. The volume viscosity ζ is the same as that found by Bruno and Giovangigli
in [31] for a one temperature Navier-Stokes asymptotics derived from a Boltzmann equation for
a diatomic gas with two internal modes. Indeed, in [31], when we assume that the vibrational
and rotational modes are independent and that τvib and τrot are of the same order as τC , then
equation (A2) of [31] with rap = vib, sl = rot, Kvib,rot = 0, and τvib and τrot as given by
relation before (70) of [31] (with equilibrium temperatures), we find exactly ζ.

Our second result is the Chapman-Enskog distribution for our model.

Proposition 5.3. The first order expansion of f is

f =M[f ]− τKnM[f ]

(
A(V, J,K) · ∇(RTeq)√

RTeq
+B(V, J,K) : ∇u

)
+O(Kn2),

with

V =
v − u√
RTeq

, J =
ε

RTeq
, K =

iT0

Teq
,

A = Atr +Arot +Avib =

(
|V |2

2
− 5

2

)
V +

(
J − δ

2

)
V +

(
K − δv(Teq)

2

)
V,

B = Btr +Brot +Bvib,

Btr(V ) = Pr

(
V ⊗ V −

((
|V |2

2
− 3

2

)
(
2

3
− ζ

µ
) + 1

)
I

)
,

Brot(V, J) = −
(
τC
τ
Zrot(γ − 1)− ζ

µ
Pr

)(
J − δ

2

)
I,

Bvib(V,K) = −
(
τC
τ
Zvib(γ − 1)− ζ

µ
Pr

)(
K − δv(Teq)

2

)
I.

This result can be obtained exactly as in [17].

6 Reduced ES-BGK model

For numerical simulations with a deterministic solver, our ES-BGK model may be too expensive,
since it depends on many variables: time t ∈ R, position x ∈ R3, velocity v ∈ R3, rotational
energy ε ∈ R+ and discrete levels of the vibrational energy i ∈ N. For aerodynamic problems,
it is generally sufficient to compute the macroscopic velocity and temperatures fields: a reduced
distribution technique [32] (by integration w.r.t rotational and vibrational energy) permits to
drastically reduce the computational cost, without any approximation (as long as boundary
conditions are compatible with this reduction, like usual equilibrium inflow boundary conditions
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and Maxwell reflection at a solid wall, for instance) . We define the three marginal distributions:F (t, x, v)
G(t, x, v)
H(t, x, v)

 =

+∞∑
i=0

∫
R

 1
ε

iRT0

 f(t, x, v, ε, i) dε.

The macroscopic quantities defined by (9)–(12) now depend on F , G and H through:

ρ = 〈F 〉v , ρu = 〈vF 〉v ,

ρEtr(f) =

〈
1

2
|v|2F

〉
v

, ρErot(f) = 〈G〉v , ρEvib(f) = 〈H〉v ,

ρΘ = 〈(v − u)⊗ (v − u)F 〉v , q =

〈
(
1

2
|v − u|2F +G+H)(v − u)

〉
v

,

(76)

where 〈.〉v denotes integrals with respect to v only. The reduced ES-BGK is obtained by multi-
plying our kinetic model (24)-(26) by the vector (1, ε, iRT0)T and by summing and integrating
w.r.t to i and ε, respectively: it is written

∂tF + v · ∇F =
1

τ
(G[F]− F). (77)

with F = (F,G,H) and G[F] = (Gtr[f ], erot(T
rel
rot )Gtr[f ], evib(T

rel
vib )Gtr[f ]).

By using the same argument as in [17] and the result of proposition 4.4, we can prove the
following H-theorem for this reduced model. The proof is left to the reader.

Proposition 6.1. The functional H(F) = 〈h(F)〉v, where

h(F) = F

[(
1 +

δ

2

)
log

(
F

G
δ

2+δ

)
+ log

(
RT0F

RT0F +H

)]
+

H

RT0
log

(
H

RT0F +H

)
(78)

is an entropy for the reduced ES-BGK system (77) and we have

∂tH(F) +∇ · 〈vh(F)〉v =

〈
∇Fh(F) · ( 1

τ
G[F]− F)

〉
v

≤ 0, (79)

under conditions of propositions 4.1, 4.2, and 4.4. The equilibrium is reached (the right-hand
side of (79) is zero) if, and only if,

F = (Mtr[f ], erot(Teq)Mtr[f ], evib(Teq)Mtr[f ]),

where Mtr[f ] is the Maxwellian for translation modes (see section 4.1).

7 Numerical results

To test the ES-BGK model presented here, we will choose a Monte Carlo approach. For this
purpose, relaxation processes to the equilibrium state in an adiabatic box will be investigated
and compared with analytical solutions and results of the DSMC method. In the homogeneous
test cases, the equation to be solved simplifies to

∂tf =
1

τ
(G[f ]− f). (80)

In the Monte Carlo method, the distribution function is represented by a linear combination
of N delta functions in phase space with a numerical weighting w. The points in the phase space
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are often interpreted as particles, where w corresponds to the number of real particles that a
simulation particle represents. For the Monte Carlo method, (80) is integrated analytically for
a time step ∆t = tn+1 − tn [33]:

fn+1 = (1− exp (−∆t/τ))G[fn] + exp (−∆t/τ)fn. (81)

The idea is that each of the N particles relaxes with probability (1 − exp (−∆t/τ)), i.e. a
new state is sampled from the distribution function G[fn]. Different ways to efficiently sample
velocities from the ES-BGK distribution are described in [33]. The new rotational energy is
sampled using an exponential distribution depending on T relrot . The new vibrational quantum
state is sampled using a standard Acceptance-Rejection method as described in [25] depending
on T relvib . Since energy and momentum are only preserved in the mean here, we choose a large
number of particles N and small time steps ∆t/τ < 0.1. This reduces the statistical noise and
ensures stability.

7.1 Comparison with analytical Results

To compare the model with an analytical solution, the translational-rotational and translational-
vibrational relaxation are first considered separately, i.e. Zvib =∞ and Zrot =∞ respectively.
If one also assumes an isothermal relaxation (Ttr(t) = Ttr(t =∞)), i.e. the thermal velocities do
not relax, the characteristic time τC is constant (since it depends on the translation temperature)
and it is possible to define an analytical solution of the Landau-Teller equation

Ei(t =∞)− Ei(t)
Ei(t =∞)− Ei(t = 0)

= e−t/ZiτC (82)

with i being the rotational or vibrational part.
The simulations are done with nitrogen N2 with a characteristic vibrational temperature

of TN2
0 = 3395 K using a VHS collision model. This means an exponential ansatz is used for

the viscosity depending on the VHS parameters TV HSdref = 273 K, dV HSdref = 4.17 · 10−10 m and
ωV HS = 0.74 as described in [20]. Thus, the analytical value for τC can be calculated with the
fixed translational temperature as described in Sec. 3.4.

The particle density in the simulations was chosen to be n = 2 · 1022 m−3 which corresponds
to about 4 million particles in our simulation. The translational temperature is fixed to Ttr =
Teq = 16000 K, the initial temperatures of the rotational and vibrational states are Trot =
Tvib = 8000 K. The collision numbers are chosen to Zrot = 5 and Zvib = 10. The results for the
normalized energy difference (left hand side of (82)) are depicted in Fig. 1 showing a very good
agreement for the rotational as well as vibrational relaxation.

7.2 Comparison with DSMC Results

In this test case, a simultaneous relaxation of the translational, rotational and vibrational tem-
perature is demonstrated and compared with DSMC. Furthermore, the difference is shown when
it is assumed that there is only one relaxation time, i.e. τC = τ . For this simulation the same
parameters have been used as before with the exception of Ttr = 16000 K, Tvib = 8000 K,
Trot = 12000 K, Zrot = 5 and Zvib = 50. The DSMC simulation was carried out with the
identical VHS parameters. In addition, the prohibiting double relaxation method was used to
reproduce the Landau-Teller equation as described in various studies [34, 35]. The results are
depicted in Fig. 2 and excellent agreement is found between DSMC and the proposed ES-BGK
model. Furthermore, it is easy to see that the model with only one relaxation time does not
produce the correct Landau-Teller relaxation curves when the same Zrot and Zvib are used: this
clearly proves the improvement of our new model.
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Figure 1: Comparison of ES-BGK simulation results with analytical Landau-Teller solution.
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Figure 2: Comparison of relaxation process of Ttr, Trot and Tvib between DSMC and ES-BGK as
well as ES-BGK with only one relaxation time τC = τ .
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8 Conclusion

In this paper, we have proposed an ES-BGK model for diatomic gases that accounts for
translational-rotational and translational-vibrational energy exchanges. It is consistent with the
general definition of the vibrational and rotational collision numbers that are also commonly
used in DSMC solvers to reproduce the Landau-Teller and Jean equations.

Our model is based on a correction of a previous model [17] and is induced by the numerical
method of [20]. We have proved this model satisfies the H-theorem and fits the correct transport
coefficients. Even the volume viscosity is consistent with that obtained for a Boltzmann equation
with two internal energy modes in [31].

In the purely translational-rotational case, our model also gives a correction of the standard
ES-BGK model of Andriès et al. [1] with a correction factor of the collision number that can be
as large as 3.

A reduced version of our model has been derived to eliminate the dependency to the internal
energy variables: the reduced model should make it possible numerical simulations of diatomic
gas flows with a computational cost of same order of magnitude as for a monoatomic gas.

This model will be extended to polyatomic molecules with more than two atoms in a forth-
coming work.

A Convexity of the vibrational energy

Differentiation of (6) with respect to T gives

d

dT
cvibv (T ) =

2RT 2
0

T 3eT0/T (eT0/T − 1)2

(
T0

2T
coth(

T0

2T
)− 1

)
,

which is positive, from the known inequality coth(x) ≥ 1/x for every positive x. This proves
that cvibv is an increasing function, and hence that evib is convex. Passing to the limit T = 0
in (6) shows that cvibv is bounded by R.

We come to the proof of the assertion made in first case of step 3 for the proof of proposi-
tion 4.4. We have Ttr ≤ T1 ≤ Tvib and T relvib ≤ T2 ≤ Tvib, while T relvib is between Ttr and Tvib,
and we want to prove that cvibv (T2) ≥ cvibv (T1). This is a simple consequence of the convexity of
evib, as it is shown below.

It is well known that for for every convex function φ, the ratio (φ(y) − φ(x))/(y − x) is
increasing in x for every fixed y. This result applied to φ = evib, y = Tvib and x = Ttr then
x = T relvib gives

(evib(Tvib)− evib(T relvib ))/(Tvib − T relvib ) ≥ (evib(Tvib)− evib(Ttr))/(Tvib − Ttr).

Then we remind that T1 and T2 are defined by (59): the previous inequality is then exactly
cvibv (T2) ≥ cvibv (T1).

B Inequality for det(Θ)/det(Π)

This proof is very close to that given in [1]. First, note that (50) is equivalent to

det(
Θ

RTtr
) ≤ det(

Π

RT reltr

). (83)

Then as remarked in the proof of proposition 4.1, we can work in the same basis in which Θ and
Π are diagonal tensors, and we denote by µi the three positive eigenvalues of Θ/RTtr, whose
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sum is 3. Then by using definition (35) of Π, (83) reads

3∏
i=1

µi ≤
3∏
i=1

(1 + α(µi − 1)), (84)

where we set α = Pr−1
Pr

Ttr
T reltr

. We remind that Π is positive definite under assumption (40), so

that each terms in the product of the right-hand side of (84) is positive. Therefore, we can apply
the log function to this inequality to get

3∑
i=1

logµi ≤
3∑
i=1

log(1 + α(µi − 1)). (85)

This is the inequality we prove now.
As usual, the idea is to use convexity properties. However, since α is negative for Pr between

2/3 and 1, the right-hand side of (85) is rewritten by using (µ1 + µ2 + µ3)/3 = 1. Indeed, we
get

3∑
i=1

log(1 + α(µi − 1)) =

3∑
i=1

log(
1

3
(µ1 + µ2 + µ3) + α(µi −

1

3
(µ1 + µ2 + µ3)))

=

3∑
i=1

log(
1

3
(1− α)(µi1 + µi2) +

1

3
(1 + 2α)µi),

(86)

where i1 and i2 are the indices that follow i in the circular permutation of {1, 2, 3}. Now we
assume α > −1/2 (see below), so that the argument of the log function above is a convex
combination of the µi. Since log is concave, the Jensen inequality gives

3∑
i=1

log(
1

3
(1− α)(µi1 + µi2) +

1

3
(1 + 2α)µi) ≥

3∑
i=1

1

3
(1− α)(log(µi1) + log(µi2)) +

1

3
(1 + 2α) log(µi)

=

3∑
i=1

logµi = det(
Θ

RTtr
).

(87)

This proves (85).
It remains to prove α > −1/2: this is actually a consequence of assumption (40) that

garantees that Π is positive definite (see the proof of proposition 4.2: the positivity of α is
equivalent to that of the right-hand side of (41), which is given by (42), and hence by (40)).

C Elements of proof for the Chapman-Enskog expansion

Integration of (73) multiplied by 1
2 |v|

2, ε, and iRT0, respectively, gives macroscopic evolu-
tion equations of etr(Ttr), erot(Trot), and evib(Tvib). Linearization of these equations by using
∂teα(Tα) = cαv (Tα)∂tTα give first order expansions of etr(T

rel
tr ), erot(T

rel
rot ), and evib(T

rel
vib ). The

definition of the relaxation energies (31)–(34) and other successive linearizations lead to the
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following first order expansions:

T relrot = Teq

(
1−KnτC(γ − 1)

(
Zrot

(
crotv

cv(Teq)
− 1

)
+ Zvib

cvibv (Teq)

cv(Teq)
+

τ

τC

)
∇ · u

)
+O(Kn2),

T relvib = Teq

(
1−KnτC(γ − 1)

(
Zvib

(
cvibv (Teq)

cv(Teq)
− 1

)
+ Zrot

crotv
cv(Teq)

+
τ

τC

)
∇ · u

)
+O(Kn2),

T reltr = Teq

(
1−KnτC(γ − 1)

(
Zvib

cvibv (Teq)

cv(Teq)
+ Zrot

crotv
cv(Teq)

+
τ

τC

(
1− cv(Teq)

ctrv

))
∇ · u

)
+O(Kn2).

These relations give the first order expansion of the relaxation tensor

Π =
RTeq
Pr

I +
Pr− 1

Pr
Θ

+KnτR(γ − 1)Teq

((
cv(Teq)

ctrv
− 1

)
− 1

Pr

τC
τ

(
Zvib

cvibv (Teq)

cv(Teq)
+ Zrot

crotv
cv(Teq)

))
∇ · uI

+O(Kn2).

The other calculations are standard and can be found in [17].
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