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Abstract

We propose an extension of the Ellipsoidal-Statistical BGK model to account for discrete
levels of vibrational energy in a rarefied polyatomic gas. This model satisfies an H-theorem
and contains parameters that allow to fit almost arbitrary values for the Prandtl number and
the relaxation times of rotational and vibrational energies. With the reduced distribution tech-
nique, this model can be reduced to a three distribution system that could be used to simulate
polyatomic gases with rotational and vibrational energy for a computational cost close to that
of a simple monoatomic gas.
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1 Introduction

During atmospheric reentry, a space vehicle encounters several atmospheric layers at high ve-
locity so that very large fluxes are generated and may destroy the vehicle: estimating heat
fluxes to design its heat shield becomes critical. At high altitudes, air is in rarefied regime and
usual macroscopic fluid dynamics equations become non valid. Instead the Boltzmann equation
is used to describe transport and collisions of molecules at a microscopic scale. The Direct
Simulation Monte Carlo method (DSMC) [1, 2] is generally used but its computational cost is
known to become very large close to dense regimes (even if accelerated methods like the one in
[3] can partially solve this problem). In this case, it can be more efficient to use deterministic
solvers based on discretizations of BGK like models of the Boltzmann equation: the Boltzmann
collision operator is replaced by a simple relaxation operator towards Maxwellian equilibrium
which satisfies conservation of macroscopic quantities and second principle of thermodynamics.
However, by construction, the simple BGK model [4] (derived for monoatomic gases) induces a
Prandtl number equal to 1 and cannot predict the correct transport coefficients. This can be
corrected by models that include another parameter to uncouple the thermal relaxation from
the viscosity relaxation, like the ES-BGK model [5] and the Shakhov model [6]. Both models
have been extended to polyatomic gases with degrees of freedom of rotation [7, 8]. However,
up to our knowledge, only the ES-BGK model can be proved to satisfy the second principle of
thermodynamics (also called H-theorem in kinetic theory). This was proved and extended to
polyatomic gases with rotational energy by Andries et al. [8]. We also mention another model
where the Boltzmann collision operator is replaced by a Fokker-Planck operator in velocity vari-
able that allows for efficient stochastic simulations: this model has been recently extended for
polyatomic gases by Jenny et al. [9, 10, 11, 12] and also by Mathiaud and Mieussens [13, 14, 15].

Here we want to extend the ES-BGK model of [8] to take into account vibration energy of
molecules. Indeed, at high temperature, there are exchanges of energy between translational,
rotational, and vibration modes. Taking into account vibration energy has a strong influence
on the parietal heat flux and shock position [16, 17]. In recent literature, one can find models
that take into account vibrations of molecules by assuming a continuous distribution of the
vibrational energy [18, 19, 20, 21, 17]. However, up to our knowledge, it is not possible so far
to prove any H-theorem for these models.
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Moreover, while transitional and rotational energies in air can be considered as continuous
for temperature larger than 1K and 10K, respectively, vibrational energy can be considered
as continuous only for much larger temperatures (2000K for oxygen and 3300K for nitrogen).
For flows up to 3000K around reentry vehicles, discrete levels of vibrational energy must be
used [22]. While discrete vibrational energy levels are generally used in Boltzmann equation for
polyatomic gases [23, 24, 25], this is less usual for BGK models. Such BGK model is the one
proposed by Morse [26], but we mention that the idea of discrete internal energy levels have also
been recently used in a BGK model by Bisi and Caceres in [27]. We used the idea of Morse to
derive a new BGK model with discrete vibrational energy levels in [15], as given by the simple
harmonic oscillator model, for which we were able to prove a H-theorem. In this paper, we
use this model and the methodology of [8] to propose an ES-BGK extension, for which we are
also able to prove a H-theorem too. This model contains some free parameters that can be
adjusted to recover any relaxation times for rotation and vibration modes (as given by Jeans
and Landau-Teller equations, for instance), as well as the correct value of the Prandtl number.
Note that since the vibration energy is a non linear function of temperature, this extension is
not trivial: while [8] is based on convex combinations of temperatures, we have found more
natural to work with convex combinations of energies.

At a computational level, note that even if the computational cost of a deterministic solver
based on a model with so many variables (velocity, energy of rotation and vibration) is necessarily
very large, the great advantage of the BGK approach is that this cost can be drastically reduced.
Indeed, like every BGK models, the computational complexity of our new model can be reduced
by the standard reduced distribution technique [30]: this gives a model that has the same
computational cost as a model for monoatomic gas (the only kinetic variable is the velocity),
while it still accounts for rotation and vibration energy exchanges. Moreover, a H-theorem also
holds for this reduced model.

The outline of our paper is as follows. The next two sections are necessary to prepare the
introduction of our model: in section 2 we detail the different energies at macroscopic scale as
functions of temperature, and we give their mathematical properties; the description, at the
kinetic level, of a polyatomic gas with energy of translation, rotation, and vibration is given in
section 3. We define our new ES-BGK model in section 4, in which we also prove a H-theorem.
In section 5, we show how the parameters of our model can be adjusted to fit the correct
relaxation times of rotation and vibration. In section 6 we derive the hydrodynamic limits of
our model by the usual Chapman-Enskog expansion. The reduced ES-BGK model is derived
and analyzed in section 7. Finally, some preliminary numerical results are shown in section 8
to illustrate the capability of our model to capture correct relaxation times.

2 Internal energies of polyatomic gases

2.1 The different macroscopic internal energies at equilibrium

In this paper we consider polyatomic perfect gases for which each molecule has several degrees
of freedom: translation, rotation and vibration. At the macroscopic level, a gas in thermody-
namical equilibrium at temperature T has different specific energies associated to each mode.
For translational and rotational modes, the translational and rotational energies are

etr(T ) =
3

2
RT, and erot(T ) =

δ

2
RT, (1)

where δ is the number of degrees of freedom of rotation and R is the gas constant per unit mass.
For the vibrational mode, in case of the harmonic oscillator model, the vibrational energy is

evib(T ) =
RT0

exp (T0/T )− 1
, (2)
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where T0 is the characteristic vibrational temperature (T0 = 2256K for dioxygen for instance).
The total internal energy is denoted by e(T ) and is simply the sum of the three previous

energies:
e(T ) = etr(T ) + erot(T ) + evib(T ). (3)

Finally, we also define the joint translational-rotational energy function

etr,rot(T ) = etr(T ) + erot(T ) =
3 + δ

2
RT, (4)

that will be useful for the derivation of our model.

2.2 Mathematical properties of the energy functions

For the construction of our model, it is useful to study the specific internal energies defined in the
previous section, as functions of the temperature. The property needed here is the invertibility,
since it will be used to define an equivalent temperature for each mode in non-equilibrium
regimes.

We denote by e−1
i the function that maps any given energy E to the corresponding temper-

ature. In other words, e−1
i (E) = T such that ei(T ) = E, where i stands for tr, rot, vib, and

tr, rot. Since etr, erot, and etr,rot are linear functions of T (see (1) and (4)), they are clearly
invertible, and we have

e−1
tr (E) =

2

3R
E, e−1

rot(E) =
2

δR
E, and e−1

tr,rot(E) =
2

(3 + δ)R
E. (5)

For evib, which is a non linear function of T , it can be proved it is increasing, thus invertible,
and we have

e−1
vib(E) = T0/log

(
1 +

RT0

E

)
. (6)

The total internal energy e is also an increasing function (see (3)), thus invertible, but its inverse
e−1(E) cannot be written analytically. In other words

e−1(E) = T such that E =
3 + δ

2
RT +

RT0

exp (T0/T )− 1
. (7)

3 Distribution functions, moments, and temperatures

3.1 Distribution function

The state of any gas molecule will be described by its position x, its velocity v, its rotational
energy ε, and its discrete vibrational energy. In the case of the usual simple harmonic oscillator
model, this energy is given by iRT0, where i is the ith vibrational energy level and T0 is
the characteristic vibrational temperature of the gas. This model is the simplest model for
vibrations, but extensions for more complex models is more difficult and will be studied in a
future work.

The distribution function of the gas is the mass density f(t, x, v, ε, i) of molecules that at
time t are located in a elementary volume dx centered in x, have the velocity v in a elementary
volume dv, have the rotational energy ε centered in dε and the discrete vibrational energy iRT0.

The macroscopic densities of mass ρ, momentum ρu, and internal energy ρE are defined by
the first five moments of f :

ρ = 〈f〉v,ε,i , ρu = 〈vf〉v,ε,i , ρE(f) =

〈(
1

2
|v − u|2 + ε+ iRT0

)
f

〉
v,ε,i

. (8)
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In this paper, to clarify the notations, the dependence of E on f is made explicit, and we denote
by 〈φ〉v,ε,i (t, x) =

∑+∞
i=0

∫
R3

∫
R φ(t, x, v, ε, i)dεdv the integral of any function φ.

The specific internal energy E(f) can be decomposed into

E(f) = Etr(f) + Erot(f) + Evib(f), (9)

which is the sum of the energy Etr(f) associated with the translational motion of particles, the
energy Erot(f) associated with the rotational mode, and the energy Evib(f) associated with the
vibrational mode, defined by

ρEtr(f) =

〈
1

2
|v − u|2f

〉
v,ε,i

, ρErot(f) = 〈εf〉v,ε,i , ρEvib(f) = 〈iRT0f〉v,ε,i . (10)

We also define the pressure tensor P (f) and the heat flux q(f) by

P (f) = 〈(v − u)⊗ (v − u)f〉v,ε,i , q(f) =

〈(
1

2
|v − u|2 + ε+ iRT0

)
(v − u)f

〉
v,ε,i

(11)

and we denote by Θ the tensor such that P (f) = ρΘ.

3.2 Internal temperatures

When the gas is in a non-equilibrium state, as described by the distribution f , a temperature
can be defined for each mode, by using the specific energy functions and their inverse as defined
in section 2. Indeed, the translational, rotational, and vibrational temperatures are defined by

Ttr = e−1
tr (Etr(f)), Trot = e−1

rot(Erot(f)), Tvib = e−1
vib(Evib(f)), (12)

so that we have the following relations

Etr(f) =
3

2
RTtr, Erot(f) =

δ

2
RTrot, Evib(f) =

RT0

exp(T0/Tvib)− 1
. (13)

The equilibrium temperature Teq is the temperature corresponding to the total internal
energy, that is to say

Teq = e−1(E(f)). (14)

In other words, Teq can be obtained by numerically solving

E(f) =
3 + δ

2
RTeq +

RT0

exp (T0/Teq)− 1
. (15)

Note that (11) and (13) give Tr(Θ) = 3RTtr. Moreover, each diagonal component of Θ can
be associated to a directional translational temperature: indeed, the translational temperature
Tj,j in direction j can be defined by Θjj = RTj,j , where j = 1, 2, 3. Consequently, the previous
relation gives Ttr = (T1,1 + T2,2 + T3,3)/3.

Finally, it is useful for the following to define the intermediate translational-rotational tem-
perature by

Ttr,rot = e−1
tr,rot(Etr(f) + Erot(f))

=
3Ttr + δTrot

3 + δ
.

(16)
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3.3 Vibrational number of degrees of freedom

By analogy with the relation between Erot(f) and Trot (see (13)), a number of degrees of freedom

δv(Tvib) for the vibration mode can be defined such that Evib(f) = δv(Tvib)
2 RTvib, so that we

have

δv(Tvib) =
2T0/Tvib

exp(T0/Tvib)− 1
. (17)

This number is not an integer, is temperature dependent, and tends to 2 for large Tvib.

3.4 Relaxation times

The exchanges of energy between the different modes and their relaxation to equilibrium are
characterized by the relaxation times τ , τrot, τvib. The first one is the translation relaxation
time, that can be written as τ = 1/ν, where ν is the collision frequency of molecules. The two
others are the rotational and vibrational relaxation times. They can be written as functions of
τ by τrot = τZrot and τvib = τZvib, where Zrot and Zvib can be viewed as average numbers of
collisions needed to enforce a change in rotational and vibrational energy.

In most cases 1 < Zrot < Zvib and relaxation processes occur in a specific sequence (see [1]
for empirical laws that are temperature dependent): first, the translational temperatures Tj,j in
the three directions j = 1, 2, 3 relax towards the mean translational temperature Ttr, then the
translational and rotational temperatures Ttr and Trot relax towards the intermediate temper-
ature Ttr,rot, and for longer times this temperature and the vibrational temperature Tvib relax
towards the equilibrium temperature Teq (see figure 1 in section 8 for an illustration).

This type of relaxation model for temperatures is the simplest one and seems the best suited
for BGK models. However, we mention that real energy exchanges are sometimes more complex,
with relaxation times of very different order of magnitude, see [24, 25] for instance.

4 ES-BGK model

In this section, our new ES-BGK model that accounts for vibrations of molecules is presented,
and its main properties are stated and discussed.

4.1 Construction of the model

The evolution of the mass density of a gas in non-equilibrium is described by the Boltzmann
equation (in which Q(f) is the Boltzmann collision operator):

∂tf + v · ∇f = Q(f), (18)

A simpler relaxation BGK like model can be derived, as proposed in [15], where Q(f) is
replaced by 1

τ (M[f ]− f), where τ is a relaxation time and M[f ] is the generalized Maxwellian
in velocity and energy, as defined by

M[f ](v, ε, i) =Mtr[f ](v)Mrot[f ](ε)Mvib[f ](i), (19)

with

Mtr[f ](v) =
ρ

(2πRTeq)3/2
exp

(
−|v − u|

2

2RTeq

)
, Mrot[f ](ε) =

Λ(δ)ε
δ−2
2

(RTeq)δ/2
exp

(
− ε

RTeq

)
,

Mvib[f ](i) = (1− exp(−T0/Teq)) exp

(
−i T0

Teq

)
,
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where Λ(δ) = 1/Γ( δ2 ), with Γ the usual gamma function. This generalized Maxwellian is the
natural equilibrium for an entropy functional H(f), see section 4.3.

However, this model is too simple, since the single relaxation time cannot account for the
various time scales of the original problem. Indeed, such a model gives the same value for
rotational and vibrational relaxation times, and the same value for relaxation times of viscous
and thermal fluxes, leading to the usual incorrect Prandtl number Pr = 1.

This problem can be fixed by using additional parameters in the model (at least 3 in this
case). The correct Prandtl number for a monoatomic gas can be obtained by the ES-BGK
approach [5], which has been extended later in [8] to account for a correct rotational time scale
for polyatomic gases. Here, we extend this model to account for a correct vibrational time scale.
Note that in this case, since the relation between temperature and energy is non linear, we find
it more relevant to make an intensive use of the energy variable, that makes the derivation a bit
different from that of [8]. Our ES-BGK collision operator is the following:

Q(f) =
1

τ
(G[f ]− f) =

1

τ
(Gtr[f ](v)Grot[f ](ε)Gvib[f ](i)− f), (20)

with

Gtr[f ](v) =
ρ√

det(2πΠ)
exp

(
−1

2
(v − u)T Π−1 (v − u))

)
,

Grot[f ](ε) =
Λ(δ)

(RT relrot )
δ/2

ε
δ−2
2 exp

(
− ε

RT relrot

)
,

Gvib[f ](i) = (1− exp(−T0/T
rel
vib )) exp

(
−i T0

T relvib

)
.

(21)

Note that Gtr[f ], Grot[f ] and Gvib[f ] are distributions associated to the energies of translation,
rotation and vibration of the molecules. The covariance matrix Π and the temperatures T relrot

and T relvib are modifications of tensor Θ and temperatures Trot, Tvib so as to fit different relaxation
times.

First, the corrected tensor Π is defined by (with I the identity matrix):

Π = ηRTeqI + (1− η) [θRTtr,rotI + (1− θ)(νΘ + (1− ν)RTtrI)] , (22)

so that the hierarchy of relaxation processes explained in section 3.4 holds: (1) the directional
temperatures Tj,j (diagonal elements of Θ) first relax to Ttr (governed by parameter ν); (2)
the translational temperature Ttr relaxes to the intermediate temperature Ttr,rot (governed by
parameter θ); (3) this temperature relaxes to the final equilibrium temperature Teq, as governed
by parameter η.

Now the relaxation temperatures T relrot and T relvib , used in distributions Grot and Gvib, are
defined with the same idea as the covariance matrix Π, except that we first write the relaxations
in term of energies. Indeed, we define the relaxation energies for rotation and vibration by

erelrot = ηerot(Teq) + (1− η) [θerot(Ttr,rot) + (1− θ)Erot(f)] ,

erelvib = ηevib(Teq) + (1− η)Evib(f),
(23)

and the corresponding relaxation temperatures are

T relrot = e−1
rot(e

rel
rot), and T relvib = e−1

vib(e
rel
vib). (24)

These definitions account for the relaxation of Trot to Ttr,rot then to Teq, and for the relaxation
of Tvib to Teq with rates that are consistent with the definition of Π.

Note that the relaxation rotational temperature T relrot can be equivalently defined by T relrot =
ηTeq + (1 − η) [θTtr,rot + (1− θ)Trot], which is a simple extension of the definition given in [8].
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However, the relaxation vibrational temperature T relvib cannot be defined in the same way: indeed,
the nonlinearity of the function evib would make the simpler definition T relvib = ηTeq + (1− η)Tvib
not consistent with the energy conservation (see section 4.2).

For the analysis of the conservation properties of our model, it is also useful to define the
relaxation energy of translation

ereltr =
1

2
Tr(Π) = η

3

2
RTeq + (1− η)(θ

3

2
RTtr,rot + (1− θ)3

2
RTtr),

and the corresponding relaxation temperature of translation which is

T reltr = e−1
tr (ereltr ), (25)

that will be used later.
This derivation shows that parameter θ is associated with transfers between translational

and rotational energies and η with transfers between translational-rotational and vibrational
energies. It will be shown in section 5.1 that these parameters are related to Zrot and Zvib by
the relations

η =
1

Zvib
, and θ =

1/Zrot − 1/Zvib
1− 1/Zvib

. (26)

where we remind that Zrot and Zvib are defined in section 3.3. Moreover, parameter ν will be
used to fit the correct Prandtl number. It will be shown in section 5.2 that ν has to be set so
that the Prandtl number Pr is

Pr =
1

1− (1− η)(1− θ)ν
. (27)

Finally, the relaxation time τ of the model can be related to the shear viscosity of the gas by a
Chapman-Enskog analysis: it will be shown in section 6.3 that our ES-BGK model is consistent
with the compressible Navier-Stokes equations with shear viscosity µ, if the relaxation time is
set to

τ =
µ

p
(1− (1− η)(1− θ)ν).

Note that a temperature power law dependance of µ is generally chosen, which is related to
the intermolecular collision model of the Boltzmann equation (see [1] for instance).

4.2 Conservation properties

The relation (25) on T reltr and the definition (23) of relaxation energies of rotation and vibration
can be rewritten under the compact formereltrerelrot

erelvib

 = η

 etr(Teq)
erot(Teq)
evib(Teq)

+ (1− η)

1− δθ
3+δ

3θ
3+δ 0

δθ
3+δ 1− 3θ

3+δ 0

0 0 1

Etr(f)
Erot(f)
Evib(f)

 . (28)

Now, we state what are the first moments of G[f ] that can be computed by standard integrals
and series (see appendix A).

Proposition 4.1. The Gaussian G[f ] satisfies

〈G[f ]〉v,ε,i = ρ, (29)

〈vG[f ]〉v,ε,i = ρu, (30)〈
1

2
|v − u|2G[f ]

〉
v,ε,i

= ρereltr , 〈εG[f ]〉v,ε,i = ρerelrot, 〈iRT0G[f ]〉v,ε,i = ρerelvib. (31)
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Then these properties can be used to prove the conservations properties of our kinetic model.

Proposition 4.2. The collision operator of the ES-BGK model satisfies the conservation of
mass, momentum, and energy:〈

(1, v,
1

2
|v − u|2 + ε+ iRT0)

1

τ
(G[f ]− f)

〉
v,ε,i

= 0.

Proof. The conservation of mass and momentum are obvious consequences of relations (29)
and (30). For the conservation of energy, note that (31) and (28) imply〈

(
1

2
|v − u|2 + ε+ iRT0)G[f ]

〉
v,ε,i

= ρ(ereltr + erelrot + erelvib)

= ρη(etr(Teq) + erot(Teq) + evib(Teq)) + ρ(1− η)(Etr(f) + Erot(f) + Eint(f))

= ρηE(f) + ρ(1− η)E(f)

=

〈
(
1

2
|v − u|2 + ε+ iRT0)f

〉
v,ε,i

,

where we have used relations (13)–(15) and (8).

4.3 Entropy

The use of a single rotational energy with δ degrees of freedom requires to define the Boltzmann
entropy functional as

H(f) = 〈f log(f/ε
δ
2−1)− f〉v,ε,i.

For the following, we will consider the set X of non negative and integrable distributions that
realize the same moments as that used to define G[f ], that is to say

X = {φ ≥ 0,
〈

(1 + |v|2 + ε+ i+ | log(φ/ε
δ
2−1)|)φ

〉
v,ε,i

< +∞,

〈mφ〉v,ε,i =
(
ρ, ρu, ρ(u⊗ u+ Π), ρerelrot, ρe

rel
vib

)
},

where m = (1, v, v ⊗ v, ε, iRT0). We can now state our main result.

Proposition 4.3. For parameters −1/2 ≤ ν < 1, 0 ≤ θ < 1, and 0 ≤ η < 1 we have:

1. For symmetric positive definite tensor Θ and positive temperatures Ttr,rot and Ttr, the
tensor Π defined by (22) is symmetric positive definite.

2. (Entropy minimization) The Gaussian distribution G[f ] defined by (20) is the unique min-
imizer of the entropy functional H(f) on the set X .

3. (H-theorem) The ES-BGK model (18)-(20) satisfies

∂tH(f) +∇ ·
〈
v(f log(f/ε

δ
2−1)− f)

〉
v,ε,i

=

〈
1

τ
(G[f ]− f) log(f/ε

δ
2−1)

〉
v,ε,i

≤ 0,

4. (Equilibrium) If f = G[f ], then f =M[f ].

Proof of Property 1.
We first rewrite Π as follows: we define the intermediate tensor A = νΘ+(1−ν)RTtrI associated
to the relaxation phenomenon for the translation mode, and the tensor B = (1−θ)A+θRTtr,rotI
associated to the relaxation of the rotational mode, such that (22) reads Π = (1−η)B+ηRTeqI.
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Since Tr(Θ) = 3RTtr (see section 3.2), then A is positive definite if (1 + 2ν)λi+ (1− ν)(λj +λk)
is nonegative, where λi, λj , λk are the (positive) eigenvalues of Θ. A sufficient condition is
clearly 1 + 2ν ≥ 0 and 1 − ν ≥ 0, which gives ν ∈ [−1/2, 1]. Now, for θ ∈ [0, 1], since B is
a convex combination of A and RTtr,rotI, it is also symmetric and positive definite. Finally,
for η ∈ [0, 1], Π is a convex combination of B and RTeqI, and hence is symmetric and positive
definite too.

Proof of Property 2.
First, note that by construction, G[f ] is in set X . Then, since the functional f 7→ H(f) is convex,
then we have

H(G[f ]) ≤ H(φ)−H′(G[f ])(φ− G[f ])

for every φ in X . Moreover, we have

H′(G[f ])(φ− G[f ]) =
〈

(φ− G[f ]) log(G[f ]/ε
δ
2−1)

〉
v,ε,i

=
〈
(φ− G[f ])αTm

〉
v,ε,i

= 0,

with:

α =

(
log

(
2

δ

ρΛ(δ)(1− exp(−T0/T
rel
vib ))√

det(2πΠ)(RT relrot )
δ/2

)
− 1

2
uTΠ−1u,Π−1u,−1

2
Π−1,− 1

RT relrot

,− 1

RT relvib

)
.

since both G[f ] and φ are in X . Consequently H(G[f ]) ≤ H(φ) for every φ in X , which concludes
the proof.

Proof of property 3.

This proof is decomposed into 4 steps.

Step 1: entropy inequality. First, note that with elementary calculus, (20) implies

∂tH(f) +∇ ·
〈
v(f log(f/ε

δ
2−1)− f)

〉
v,ε,i

=
1

τ
H′(f)(G[f ]− f).

Then, since H is convex, the right-hand side of the previous equality satisfies

H′(f)(G[f ]− f ≤ H(G[f ])−H(f).

Consequently, the H-theorem is obtained if we can prove that

H(G[f ]) ≤ H(f). (32)

Note that this is not obvious, since f is not in X .

Step 2: entropy minima on different sets. It is convenient to define, for every
macroscopic quantities ρ, u, Π, T relrot and T relvib the minimum of entropy H on X , and we set

S(ρ, u,Π, T relrot , T
rel
vib ) = min

{
H(φ), φ ≥ 0 s.t. 〈mφ〉v,I,i =

(
ρ, ρu, ρ(u⊗ u+ Π), ρerelrot, ρe

rel
vib

)}
.

Property 2 implies
S(ρ, u,Π, T relrot , T

rel
vib ) = H(G[f ]).

10



Now we define a second entropy minimization problem, based on the moments of g. Namely

S(ρ, u,Θ, Trot, Tvib) = min
{
H(φ), φ ≥ 0 s.t. 〈mφ〉v,I,i = (ρ, ρu, ρ(u⊗ u+ Θ), ρErot(f), ρEvib(f))

}
.

Here, by definition g belongs to the minimization set, and therefore

S(ρ, u,Θ, Trot, Tvib) ≤ H(f).

Therefore, a sufficient condition to have (32) is S(ρ, u,Π, T relrot , T
rel
vib ) ≤ S(ρ, u,Θ, Trot, Tvib),

which is rewritten as

∆S = S(ρ, u,Π, T relrot , T
rel
vib )− S(ρ, u,Θ, Trot, Tvib) ≤ 0. (33)

This entropy difference is now analyzed in the following.

Step 3: entropy difference A direct calculation gives

S(ρ, u,Π, T relrot , T
rel
vib ) = ρ log

(
ρ

2

δ

Λ(δ)(1− exp(−T0/T
rel
vib ))√

det(2πΠ)(RT relrot )
δ/2

)
− ρ5 + δ + δv(T

rel
vib )

2
.

A similar relation is deduced for S(ρ, u,Θ, Trot, Tvib) and we get

∆S =
1

2
ρ log

(
det Θ

det Π

(
Trot
T relrot

)δ (
(1− exp(−T0/T

rel
vib ))

(1− exp(−T0/Tvib))

)2
)
− ρδv(T

rel
vib )− δv(Tvib)

2
,

=
1

2
ρ log

(
det Θ

det Π

(
Erot(f)

erelrot

)δ (
RT0 + Evib(f)

RT0 + erelvib

)2
)
− ρδv(T

rel
vib )− δv(Tvib)

2

where we have used relations (2), (12), and (23) to obtain the last equality.
First, the following result is admitted (see the proof in appendix B):

det Θ

det Π
≤
(
Etr(f)

ereltr

)3

. (34)

This allows us to write the following inequality, as function of energies only:

∆S ≤ 1

2
ρ log

((
Etr(f)

ereltr

)3(
Erot(f)

erelrot

)δ (
RT0 + Evib(f)

RT0 + erelvib

)2
)
− ρδv(T

rel
vib )− δv(Tvib)

2
.

After expansion, this inequality reads as

∆S ≤ ρ

R

(
S(Etr(f), Erot(f), Evib(f))− S(ereltr , e

rel
rot, e

rel
vib)
)
, (35)

where we have introduced the new energy functional S, defined for every energy triplet (e1, e2, e3)
by

S(e1, e2, e3) = R

(
3

2
log(e1) +

δ

2
log(e2) + log

(
1 +

e3

RT0

)
+

e3

RT0
log

(
1 +

RT0

e3

))
.

Note that to obtain (35), we also have replaced δv by its definition (17) and the temperatures
of vibration have been replaced by their corresponding energies.

Now it is clear that a sufficient condition to have ∆S ≤ 0 is

S(Etr(f), Erot(f), Evib(f)) ≤ S(ereltr , e
rel
rot, e

rel
vib), (36)

which is proved in the last step.
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Step 4: proof of (36) The usual argument to conclude an entropy inequality is a convexity
property. Here, our functional S can easily be seen to be concave (see appendix C). However,
since the right-hand side of (36) is not at equilibrium, a direct use of the convexity inequality
does not work here. Instead, we find it simpler, and physically relevant, to use successively
two paths, based on parameters θ and η. Indeed, note that relaxation energies (ereltr , e

rel
rot, e

rel
vib)

depend on θ and η (see (28)). Then we set

s(θ, η) = S(ereltr , e
rel
rot, e

rel
vib).

From (28), it is clear that s(0, 0) = S(Etr(f), Erot(f), Evib(f)) since the relaxation energies
reduce to the internal energies of f for such values of θ and η. Consequently, inequality (36)
reduces to

s(0, 0) ≤ s(θ, η). (37)

The idea is now to decompose inequality (37) into two embedded inequalities

s(0, 0) ≤ s(θ, 0) ≤ s(θ, η). (38)

We start with the second inequality and consider the variation of s with respect to η. Ele-
mentary calculus shows that

∂s

∂η
(θ, η) =

1

T reltr

(
etr(Teq)−

(
1− δθ

3 + δ

)
Etr(f)− 3θ

3 + δ
Erot(f)

)
+

1

T relrot

(
erot(Teq)−

(
1− 3θ

3 + δ

)
Erot(f)− δθ

3 + δ
Etr(f)

)
+

1

T relvib

(evib(Teq)− Evib(f)) ,

(39)

and

∂2s

∂η2
(θ, η) = ∂1,1S(ereltr , e

rel
rot, e

rel
vib)

(
etr(Teq)−

(
1− δθ

3 + δ

)
Etr(f)− 3θ

3 + δ
Erot(f)

)2

+ ∂2,2S(ereltr , e
rel
rot, e

rel
vib)

(
erot(Teq)−

(
1− 3θ

3 + δ

)
Erot(f)− δθ

3 + δ
Etr(f)

)2

+ ∂3,3S(ereltr , e
rel
rot, e

rel
vib) (evib(Teq)− Evib(f))

2
,

and the reader is referred to appendix C for the computation of the partial derivatives of S.
The previous relation shows that s is a concave function of η. Moreover, note that for η = 1,
relation (28) shows that all the relaxation energies are equal to the equilibrium energy, and
hence all the relaxation temperatures are equal to Teq. When this is used into (39), we find that
∂s
∂η (θ, 1) = 0. With the concavity property, this proves that s is an increasing function of η on

the interval [0, 1], and this proves the second inequality of (38).
For the first inequality of (38), we set η to 0, and we study the variation of s(θ, 0) with

respect to θ. Again, elementary calculus shows that ∂2s
∂θ2 (θ, 0) ≤ 0, and hence s(θ, 0) is a concave

function of θ. Moreover, we find

∂s

∂θ
(θ, 0) = − 3δ

2(3 + δ)
R(Ttr − Trot)

(
1

(1− θ)Ttr + θTtr,rot
− 1

(1− θ)Trot + θTtr,rot

)
, (40)

and hence ∂s
∂θ (1, 0) = 0, which implies that s(θ, 0) is a non decreasing function of θ. Consequently,

this gives the first inequality of (38) which concludes the proof of (36), and hence of (32), and
the proof of the H-theorem is now complete.
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Proof of property 4. At equilibrium f = G[f ] and hence Θ = Π, Erot(f) = erelrot, and Evib(f) =
erelvib. Then it is easy to see that relations (22)–(23) imply Ttr = Trot = Tvib = Ttr,rot = T relrot =
T relvib = Teq and then Θ = RTeqI. Consequently, G[f ] =M[f ] and then f =M[f ].

5 Relaxation phenomena

In this section, we solve the local relaxation equations for energies, pressure tensor, and heat
flux. This give us the relations between parameters η, θ, and ν of our model and the vibrational
and rotation collision numbers Zvib, Zrot, and the Prandtl number.

5.1 Relaxation rates of translational, rotational and vibrational ener-
gies

The energy of translation, rotation and vibration are transferred from one mode to another one
during inter-molecular collisions. These transfers are described by local relaxations obtained as
moments of our ES-BGK model (in a space homogeneous case). Indeed, our model (18)–(20) is
multiplied by 1

2 |v−u|
2, ε, iRT0, and integrated w.r.t v, ε, and i, and we use closure relations (28)

to find

d

dt

Etr(f)
Erot(f)
Evib(f)

 =
η

τ

 etr(Teq)− Etr(f)
erot(Teq)− Erot(f)
evib(Teq)− Evib(f)

+
1− η
τ

− δθ
3+δ

3θ
3+δ 0

δθ
3+δ − 3θ

3+δ 0

0 0 0

Etr(f)
Erot(f)
Evib(f)

 (41)

The last equation has to be consistent with the Landau-Teller relaxation equation that describes
the relaxation of the macroscopic energy of vibration to equilibrium, at a relaxation rate τvib =
τZvib. The second equation has to be consistent with the Jeans relaxation equation, which plays
the same role for rotational energy, at the rate τrot = τZrot. Moreover, this equation should
also be consistent with the fast relaxation of Ttr and Trot towards Ttr,rot (see section 3.4).

Now we assume parameters τ , η, and θ are constant, and we solve these equations to find
the relaxation times of this system.

The third equation of (41) directly shows that Evib(f) relaxes to its equilibrium value with
time scale τ/η. This relaxation time is indeed τvib = τZvib if η is such that

Zvib =
1

η
, (42)

that is to say η = 1/Zvib.
Since the equations for Etr(f) and Erot(f) are coupled, their relaxation to equilibrium involve

two time scales. Instead of solving these equations separately, we find it more relevant to derive
the relaxation of Ttr,rot to Teq, that should be with time scale τvib, and of Ttr and Trot to Ttr,rot,
that should hold with time scale τrot = τZrot. By combining the first two equations of (41), we
get

d

dt
Ttr,rot =

η

τ
(Teq − Ttr,rot), (43)

which shows that Ttr,rot indeed relaxes to Teq with time scale τ/η = τvib if η = 1/Zvib, which is
coherent with the relaxation found for Evib.

Then we use (43) and the first equation of (41) to find

d

dt
(Ttr − Ttr,rot) = −1− (1− η)(1− θ)

τ
(Ttr − Ttr,rot), (44)
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which shows that Ttr relaxes to Ttr,rot with relaxation time τ/(1− (1− η)(1− θ)) = τrot if θ is
such that

Zrot =
1

1− (1− η)(1− θ)
, (45)

which gives θ = (Zvib − Zrot)/((Zvib − 1)Zrot). With the same analysis, we also find that Trot
relaxes to Ttr,rot with the same relaxation time.

Since we want the rotational and vibrational collision numbers such that 1 < Zrot < Zvib
(see section 3.4), then the previous definition gives the restriction 0 ≤ θ < 1 and 0 ≤ η < 1.
Case θ = 0 gives Zrot = Zvib which means that vibration modes relax as fast as rotation modes.

Note that even if the relations on Zrot and Zvib have been obtained under the assumption of
constant parameters η, θ, and τ , they will be used to define our model in a general case. More
precisely, once we know the (temperature) laws for Zrot and Zvib, then parameters θ and η are
defined so that (42) and (45) hold.

5.2 Relaxation of pressure tensor and heat flux

Relaxation equations for pressure tensor and heat flux are obtained by multiplying the kinetic
equation (18) by (v − u) ⊗ (v − u) and ( 1

2 |v − u|
2 + ε + iRT0)(v − u) and integrating w.r.t v,ε

and i to get, in the space homogeneous case :

d

dt
Θ =

1

τ
((1− η)(1− θ)(1− ν)(RTtrI −Θ) + (1− η)θ(RTtr,rotI −Θ) + η(RTeqI −Θ)), (46)

d

dt
q = −1

τ
q. (47)

Since Tr(Θ) = 3RTtr, taking the trace of (46) gives

d

dt
RTtr =

1

τ
((1− η)θ(RTtr,rot −RTtr) + η(RTeq −RTtr)) .

This equation is subtracted to (46) to get

d

dt
(Θ−RTtrI) = −1

τ
(1− (1− θ)(1− η)ν)(Θ−RTtrI).

This shows that for large times, tensor Θ tends to RTtrI, while the heat flux tends to 0. More
precisely, for ν, θ, η and τ constant, we have the analytic solutions:

Θ(t)−RTtr(t)I = (Θ(0)−RTtr(0)I) exp

(
−(1− (1− η)(1− θ)ν)

t

τ

)
,

q(t) = q(0) exp

(
− t
τ

)
.

The Prandtl number can be viewed as the ratio between the relaxation times of these two
processes, and we get:

Pr =
1

1− (1− η)(1− θ)ν
.

Incidentally, this value will be checked numerically in section 8 by computing the ratio

log(|qi(t)/qi(0)|)
log(|(Θii(t)−RTtr(t))/(Θii(0)−RTtr(0))|)

(48)

for i = 1, 2, 3.
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6 Chapman-Enskog analysis

The conservation laws are obtained by multiplying (18) by the vector 1, v, and 1
2 |v|

2 + ε+ iRT0

and then by integrating we get:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇ · P (f) = 0,

∂tE +∇ · (Eu) +∇ · (P (f)u) +∇ · q(f) = 0,

(49)

where E = 〈( 1
2 |v|

2 + ε + iRT0)f〉v,ε,i = 1
2ρ|u|

2 + ρE(f) is the total energy density, while the
pressure tensor P (f) and the heat flux q(f) have been defined by (11).

If we have some characteristic values of length, time, velocity, density, and temperature, our
ES-BGK model (18)–(20) can be non-dimensionalized. This equation reads

∂tf + v · ∇f =
1

Kn τ
(G[f ]− f), (50)

where Kn is the Knudsen number which is the ratio between the mean free path and a macro-
scopic length scale. For simplicity, here we use the same notations for the non-dimensional
variables as for the dimensional ones. Note that we assume here that the three relaxation times
have the same asymptotic order of magnitude with respect to Kn (even if their values can be
very different).

The Chapman-Enskog analysis consists in approximating the pressure tensor and the heat
flux at zero and first order with respect to the Knudsen number, which gives compressible Euler
equations and compressible Navier-Stokes equations, respectively.

6.1 Euler asymptotics

At equilibrium, f is equal to the equilibrium Maxwellian distribution. Even in non-equilibrium,
when Kn is very small the gas is very close to its equilibrium state: indeed, (50) induces

f = G[f ] +O(Kn), (51)

if in addition f and its time and space derivatives are O(1) w.r.t Kn (we exclude any initial
layer and assume that the gradients lengths are larger than the mean free path). Then by using
the same argument as in the proof of proposition 4.3 and the regularity of energy functions, we
get

P (f) = pI +O(Kn), q(f) = O(Kn), (52)

where we denote by p = ρRTeq the pressure at equilibrium, and we also get

Ttr = Teq +O(Kn), Trot = Teq +O(Kn), Tvib = Teq +O(Kn), Ttr,rot = Teq +O(Kn). (53)

These relations show that (51) finally gives

f =M[f ] +O(Kn). (54)

Relations (52) are then used into conservation laws (49) to get the compressible Euler equa-
tions with first order reminder:

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = O(Kn),

∂tE +∇ · ((E + p)u) = O(Kn).

(55)
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The non-conservative form of these equations is

∂tρ+ u · ∇ρ+ ρ∇ · u = 0,

∂tu+ (u · ∇)u+
1

ρ
∇p = O(Kn),

∂tTeq + u · ∇Teq + TeqC∇ · u = O(Kn),

(56)

with C = R
cv(Teq)

, and cv(Teq) =
∂e(Teq)
∂Teq

is the heat capacity at constant volume of the gas,

which is temperature dependent here due to vibration modes (see equations (14) and (15)).
The Navier-Stokes equations are obtained by looking for a first order expansion of f . In the

following section, we first derive useful first order expansions of energies and tensor Π that are
used in our model.

6.2 Energy and tensor relations at first order

First, (18) is multiplied by 1
2 |v|

2, ε, and iRT0 and integrated w.r.t v, ε, and i. We use rela-
tions (52), (56), and (28) to get

∂t

Etr(f)
Erot(f)
Evib(f)

+u·∇

Etr(f)
Erot(f)
Evib(f)

+

RTeq∇ · u0
0

+O(Kn) =
η

Knτ

 etr(Teq)
erot(Teq)
evib(Teq)

+
1

Knτ
D

Etr(f)
Erot(f)
Evib(f)


(57)

with

D =

− (1−η)δθ
3+δ − η 3(1−η)θ

3+δ 0
δ(1−η)θ

3+δ − 3(1−η)θ
3+δ − η 0

0 0 −η

 . (58)

Note that the eigenvalues of D are −η, −η, and −η− (1−η)θ so that (57) is indeed a relaxation
process, and also that D is invertible.

Moreover, from (12), we deduce the differential relation dEα(f) = e′α(Tα)dTα, for α =
tr, rot, vib. Then, using (53) and the last equation of (56), we get

∂t

Etr(f)
Erot(f)
Evib(f)

+ u · ∇

Etr(f)
Erot(f)
Evib(f)

 = −

 e′tr(Teq)CTeq
e′rot(Teq)CTeq
e′vib(Teq)CTeq

∇ · u+O(Kn). (59)

Finally, relations (57) and (59) give the following system

η

 etr(Teq)
erot(Teq)
evib(Teq)

+D

Etr(f)
Erot(f)
Evib(f)

 = −Knτ

e′tr(Teq)CTeq −RTeqe′rot(Teq)CTeq
e′vib(Teq)CTeq

∇ · u+O(Kn2) (60)

that has to be solved to get first order expansion of energies as functions of the equilibrium
temperature and of the divergence of u. We only write here the relations that will be useful to
derive the Navier-Stokes hydrodynamics:

Etr(f) = etr(Teq) +
Knτ

η

(
3

2
C − 1

η + (1− η)θ

(
η +

3(1− η)θ

3 + δ

))
RTeq∇ · u+O(Kn2),

Etr,rot(f) = etr,rot(Teq) +
Knτ

η

(
3 + δ

2
C − 1

)
RTeq∇ · u+O(Kn2).
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Similar relations are readily derived for temperatures Ttr and Ttr,rot by using (12) and (16), and
therefore, (22) can now be used to derive the first order expansion of tensor Π:

Π =(1− (1− η)(1− θ)ν)RTeqI + (1− η)(1− θ)νΘ

+ (1− η)θ
Knτ

η

(
C − 2

3 + δ

)
RTeq∇ · uI

+ (1− η)(1− θ)(1− ν)
Knτ

η

(
C − 1

η + (1− η)θ)

2

3

(
η +

3(1− η)θ

3 + δ

))
IRTeq∇ · uI

+O(Kn2).

(61)

Finally, we find it convenient to define the following three quantities

γtr =
5

3
, γtr,rot =

5 + δ

3 + δ
, γ = 1 +

R

cv(Teq)
(62)

that are nothing but heat capacity ratios for a monoatomic gas, a polyatomic gas with rotational
modes only, and the present gas with rotational and vibrational modes, respectively. Then Π
can be rewritten as

Π =(1− (1− η)(1− θ)ν)RTeqI + (1− η)(1− θ)νΘ

−
(

(1− η)(1− θ)(1− ν)

1− (1− η)(1− θ)
(γtr − γtr,rot) +

(1− η)(1− (1− θ)ν)

η
(γtr,rot − γ)

)
KnτRTeq∇ · uI

+O(Kn2).

(63)

6.3 Navier-Stokes limit

We first state our main result.

Proposition 6.1. The moments of f , solution of the ES-BGK model (18), satisfy the com-
pressible Navier-Stokes equations up to O(Kn2):

∂tρ+∇ · (ρu) = O(Kn2),

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ∇ · σ +O(Kn2),

∂tE +∇ · (E + p)u = −∇ · q +∇ · (σu) +O(Kn2),

where, in dimensional form, the viscous stress tensor and the heat flux are given by

σ = µ

(
∇u+ (∇u)T − 2

3
∇ · uI

)
+ ζ∇ · uI, q = −κ∇T,

the viscosity and heat transfer coefficients are

µ =
τp

1− (1− η)(1− θ)ν
, κ = (1− (1− η)(1− θ)ν)µcp,

the volume viscosity coefficient is ζ = µ
(

2
3 − α

)
, with

α = (γ − 1)− (1− η)(1− θ)(1− ν)

1− (1− η)(1− θ)
(γtr − γtr,rot)−

(1− η)(1− (1− θ)ν)

η
(γtr,rot − γ),

and the Prandtl number is

Pr =
µcp
κ

=
1

1− (1− η)(1− θ)ν
,

while cp = ∂h
∂Teq

is the heat capacity at constant pressure, where h = e(Teq)+p/ρ is the enthalpy.

The heat capacity ratios γ, γtr, γtr,rot are defined in (62).
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Proof. First, (50) and (54) give

f = G[f ]− τKn(∂tM[f ] + v · ∇M[f ]) +O(Kn2) (64)

By linearity, the pressure tensor and the heat flux are

P (f) = P (G[f ])− τKnP (∂tM[f ] + v · ∇M[f ]) +O(Kn2)

q(f) = q(G[f ])− τKn q(∂tM[f ] + v · ∇M[f ]) +O(Kn2)
(65)

We first deal with the expansion of the pressure tensor. For the first term, note that (21)
and (22) imply P (G[f ]) = ρΠ. Therefore the expression above reads

P (f) = ρΠ− τKn 〈(v − u)⊗ (v − u)(∂tM[f ] + v · ∇M[f ])〉v,ε,i +O(Kn2). (66)

For the second term, tedious but standard calculations show that time derivatives can be written
as functions of the space derivatives only by using Euler equations (55), and then suitable integral
formula give

P (f) = ρΠ− τKnρRTeq(∇u+ (∇u)T − C∇ · uI) +O(Kn2), (67)

see some details in appendix D and A. Then combining this equation with (63) one finally gets

P (f) = ρRTeqI −KnτρRTeq
1

1− (1− η)(1− θ)ν
(∇u+ (∇u)T − α∇ · uI) +O(Kn2),

where α takes the value given in the proposition. Now we use the equilibrium pressure p = ρRTeq
and we define the viscosity coefficient µ = τp/(1− (1−η)(1−θ)ν) to get the value of the viscous
stress tensor given in the proposition.

For the heat flux, a simple parity argument shows that q(G[f ]) = 0, so that

q(f) = −τKn

〈
(
1

2
|v − u|2 + ε+ iRT0)(v − u)(∂tM[f ] + v · ∇M[f ])

〉
v,ε,i

+O(Kn2).

Using the same tools as for the pressure tensor, we find

q(f) = −τKnp

(
5

2
R+

δ

2
R+

∂

∂Teq
(
δv(Teq)

2
RTeq)

)
∇Teq +O(Kn2)

= −τKnp
∂

∂Teq

(
5 + δ + δv(Teq)

2
RTeq

)
∇Teq +O(Kn2).

Now we notice that
5+δ+δv(Teq)

2 RTeq = e(Teq) +RTeq = e(Teq) + p/ρ = h(Teq). Consequently,

q(f) = −τKnp
∂h

∂Teq
∇Teq +O(Kn2) = −Knτpcp∇Teq +O(Kn2),

which gives the Fourier law with the value of the heat transfer coefficient κ = τpcp in dimensional
variables. Then using the value of µ found above leads to the value of κ given in the proposition.

Finally, note that with this analysis, if the Prandtl number is defined as Pr = µcp/κ, then
we find Pr = 1

1−(1−η)(1−θ)ν , which is the same result as found in section 5.2.

Remark 6.1. Note that by writing ν, η and θ as functions of the Prandtl number and of Zrot
and Zvib (see section 5.1), the volume viscosity can be simply written

ζ = µ

(
Zrot
Pr

(γtr − γtr,rot) +
Zvib
Pr

(γtr,rot − γ)

)
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The volume viscosity appears to be driven by relaxation processes due to rotations and vibra-
tions of molecules characterized by Zrot and Zvib. It can also be written as

ζ = pR

(
τrot

crotv
ctrv (ctrv + crotv )

+ τvib
cvibv

cv(ctrv + crotv )

)
where ctrv , crotv , and cvibv are the specific heat of translation, rotation, and vibration energy,
respectively.

It seems that this expression has some similarities with the volume viscosity obtained in a
Boltzmann equation with two fast and slow internal energy modes by Bruno and Giovangigli
in [29]. However, further studies are necessary to correctly compare these results, since the
definition of the characteristic times of vibration and rotation are not exactly the same.

Remark 6.2. We can also obtain the following first order expansion of f with respect to the
Knudsen number (see details in appendix D and E):

f =M[f ]− τKnM[f ]

(
A(V, J,K) · ∇(RTeq)√

RTeq
+B(V, J,K) : ∇u

)
+O(Kn2), (68)

with

V =
v − u√
RTeq

, J =
ε

RTeq
, K =

iT0

Teq
,

A = Atr +Arot +Avib, B = Btr +Brot +Bvib,

Atr(V ) =

(
|V |2

2
− 5

2

)
V, Btr(V ) = Pr

(
V ⊗ V −

((
|V |2

2
− 3

2

)
α+ 1

)
I

)
,

Arot(V, J) =

(
J − δ

2

)
V, Brot(V, J) = −

(
ZvibC −

2

3 + δ
(Zvib − Zrot)

)(
J − δ

2

)
I,

Avib(V,K) =

(
K − δv(Teq)

2

)
V, Bvib(V,K) = −ZvibC

(
K − δv(Teq)

2

)
I.

7 Reduced ES-BGK model

7.1 The reduced distribution technique

For numerical simulations with a deterministic solver, our ES-BGK model is much too expensive,
since the distribution f depends on many variables: time t ∈ R, position x ∈ R3, velocity v ∈ R3,
rotational energy ε ∈ R+ and discrete levels of the vibrational energy i ∈ N. For aerodynamic
problems, it is generally sufficient to compute the macroscopic velocity and temperatures fields:
a reduced distribution technique [30] (by integration w.r.t rotational and vibrational energy)
permits to drastically reduce the computational cost, without any approximation (as long as
boundary conditions are compatible with this reduction, like usual equilibrium inflow boundary
conditions and Maxwell reflection at a solid wall, for instance) . We define the three marginal
distributions F (t, x, v)

G(t, x, v)
H(t, x, v)

 =

+∞∑
i=0

∫
R

 1
ε

iRT0

 f(t, x, v, ε, i) dε.
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The macroscopic quantities defined by (8)–(11) can now be computed through F , G and H only
by

ρ = 〈F 〉v , ρu = 〈vF 〉v ,

ρEtr(f) =

〈
1

2
|v|2F

〉
v

, ρErot(f) = 〈G〉v , ρEvib(f) = 〈H〉v ,

ρΘ =

〈
1

2
(v − u)⊗ (v − u)F

〉
v

, q =

〈
(
1

2
|v − u|2F +G+H)(v − u)

〉
v

,

(69)

where 〈.〉v denotes integrals with respect to v only.
The reduced ES-BGK is obtained by multiplying our kinetic model (18)-(20) by the vector

(1, ε, iRT0)T and by summing and integrating w.r.t to i and ε, respectively. We get:

∂tF + v · ∇F =
1

τ
(G[F]− F), (70)

where F = (F,G,H) and G[F] = (Gtr[f ], erelrotGtr[f ], erelvibGtr[f ]).

7.2 Reduced entropy

In this section, we again use the change of variable ε = I2/δ. To prove the H-theorem for our
reduced model, it is convenient to view it as an entropic moment closure (w.r.t variables I and
i), see for instance [31, 32, 33]. Then we define gF such that H(gF) is the minimum of H on

the set χF = {φ ≥ 0 such that
〈

(1, I
2
δ , iRT0)φ

〉
I,i

= F}, and we set H(F) = H(gF). It is now

possible to prove that H(F) is an entropy for our reduced system.

Proposition 7.1 (Reduced entropy). An explicit form of H is given by H(F) = 〈h(F)〉v, where
h is the strictly convex function defined by

h(F) =F

[(
1 +

δ

2

)(
log

(
F

G
δ

2+δ

)
− 1

)
+ log

(
RT0F

RT0F +H

)
+
δ

2
log

δ

2
+ log Λ(δ)

]
+

H

RT0
log

(
H

RT0F +H

)
.

(71)

Proof. First, we compute gF by solving the minimization problem H(gF) = minχF
H. Since χF

is convex, we use a Lagrange multiplier method to find the minimum of the functional L defined
as follows:

L(φ, α, β, η) = 〈φ log φ− φ〉I,i + α
(
〈φ〉I,i − F

)
+ β

(〈
I2/δφ

〉
I,i
−G

)
+ η

(
〈iRT0φ〉I,i −H

)
,

where the Lagrange multipliers α, β and η are functions of v. The minimum satisfies
∂L
∂φ

(gF, α, β, η) =

0, which leads to
gF = exp(−α− βI2/δ − ηiRT0). (72)

With the linear constraints
〈
(1, I2/δ, RT0i)gF

〉
I,i

= (F,G,H), we find explicit values for α, β,

and η as functions of F , G, and H. Consequently, by using H(F) = H(gF) and these values of
α, β, and η, we find (71).

Remark 7.1. The convexity property of h could also be proved without any explicit computa-
tion: indeed, it can be viewed as the Legendre transform of h∗(α, β, η) =

〈
exp(−α− βI2/δ − ηiRT0)

〉
v

(where α, β, and η are such that F =
〈
(1, I2/δ, iRT0) exp(−α− βI2/δ − ηiRT0)

〉
I,i

), which is

clearly strictly convex (see details for a similar argument in [31]).
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Proposition 7.2 (H-theorem). The reduced ES-BGK system (70) satisfies the following local
entropy dissipation law

∂tH(F) +∇ · 〈vh(F)〉v =

〈
DFh(F)(

1

τ
G[F]− F)

〉
v

≤ 0, (73)

and the equilibrium is reached (the right-hand side of (70) is zero) if, and only if,

F = (Mtr[f ], erot(Teq)Mtr[f ], evib(Teq)Mtr[f ]),

where Mtr[f ] is the Maxwellian for translation d.o.f (see section 4.1).

Proof. The equality in (73) is obtained with elementary calculus. Since h is convex, the right-
hand side of this equality satisfies〈

DFh(F)(
1

τ
G[F]− F)

〉
v

≤ 〈h(G[F])− h(F)〉v = H(G[F])−H(F)

Therefore, the H-theorem is proved if we can prove that this entropy difference is non-negative.
First, we prove that H(G[F]) ≤ H(G[g]). Indeed, G[g] is clearly in χG[F], and since H(G[F])

is the minimum value of H on this set, we have H(G[F]) ≤ H(G[g]). It is easy to prove that we
have in fact equality, but this is not necessary here.

Now it is sufficient to prove that H((G[g])) ≤ H(F). First, remind that in the proof of
Proposition 4.3 (step 2), we have obtained

H((G[g])) = S(ρ, u,Π, T relrot , T
rel
vib ) ≤ S(ρ, u,Θ, Trot, Tvib).

Then we remind thatH(F) = H(gF), where gF is in χF. Consequently, gF has the same moments
as g, and hence S(ρ, u,Θ, Trot, Tvib) ≤ H(gF) = H(F), which concludes the proof.

Remark 7.2. The reduced entropy can be simplified by dropping out some terms that are
proportional to F : if we set

H̃(F) = F log

(
F

G
δ

2+δ

)
− F + F log

(
RT0F

RT0F +H

)
+

H

RT0
log

(
H

RT0F +H

)
,

then H̃ is also strictly convex. The previous proof also leads to an entropy production term
lower than H̃(G[F]) − H̃(F). This entropy difference is the same as that obtained with the
original reduced entropy H up to an integral of G[F] − F which is zero (mass conservation).
This simplified reduced entropy is similar to that of [8, 33] with, in addition, the effects of
vibrations ([15]).

8 Numerical test

In this section, we study the relaxation process to equilibrium in a space homogeneous poly-
atomic vibrating gas by using Monte Carlo simulations of the ES-BGK model presented in
section 4. Our results will be used to confirm that the relaxation rates of translational, rota-
tional, and vibrational degrees of freedom can indeed be obtained by adjusting the parameters
θ and η. Moreover, we will also check that the correct Prandtl number can be obtained by
adjusting the parameter ν.

In this space homogeneous case, the ES-BGK model reads

∂tf =
1

τ
(G[f ]− f). (74)

Note that by conservation property 4.1, the mass density, velocity, and equilibrium temperature,
are constant in time here.
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8.1 The Monte Carlo method

To observe the process of relaxation we enforce a non-equilibrium initial condition, for instance
a gap between the mean of the velocities of the particles and the velocity of the gas: the model
should relax velocities and internal energies towards equilibrium state. We use a large number
N of numerical particles related to the real molecules by a distribution function associated to
a constant numerical weight ω = 1/N . We use an explicit Euler scheme for time discretization
and get:

fn+1 =

(
1− ∆t

τ

)
fn +

∆t

τ
G[fn], (75)

with ∆t = tn+1 − tn and we consider ∆t/τ ≤ 0.1 to ensure stability [34]. Equation (75) models
the effects of collisions on the distribution functions of velocities and energies: at time tn+1 the
distribution function is a convex combination of the distribution function at time tn and its
corresponding local Gaussian distribution. This can be simulated with a Monte Carlo algorithm
as follows: at each time step, for each particle, we decide if its velocity has to be modified by a
collision (with a probability ∆t/τ). In such case, the components of its velocity v are modified
by

vk = uk +A(B1, B2, B3)T , ekrot = B4, ekvib = B5, (76)

where u is macroscopic velocity of the gas, B1, B2, B3 are three random numbers generated from
a standard normal law and the matrix A needs to satisfy the condition: Π = AAT (generally, A
is given by the Cholesky decomposition due to its simplicity and its low computational cost). B4

is generated through an exponential distribution depending on RT relrot and B5 through a Poisson
distribution of parameter RT relvib .

8.2 Numerical results

We consider N = 107 numerical particles of velocities initially distributed according to a Gaus-
sian distribution of variance 500 and of mean 0 for the second and the third components and 50
for the first. The initial rotational energy is set to 1000 r1 and the initial vibrational energy is
set to 10 r2 where the random numbers r1 and r2 follow an uniform law between 0 and 1. The
parameters θ and η are defined by (26), so that collision numbers Zrot and Zvib are respectively
equal to 5 and 20. Finally, we set ν according to (27) so that the Prandtl number is equal
to 0.73, which is close to the tabulated value for air at 2000K. These non-equilibrium initial
conditions create energy exchanges between modes and a heat flux.

We first show in figure 1 that the temperature relaxes as expected (see section 3.4). First,
the translational directional temperatures converge to the mean translational temperature Ttr
at time τ . Then, at time 20τ , this temperature and the rotational temperature converge towards
the translational-rotational temperature Ttr,rot. Finally, at time 100τ , Ttr,rot and the vibrational
temperature Tvib converge to the equilibrium temperature Teq.

In figure 2, we show the distribution of velocities, rotational energy, and vibrational energy,
obtained at steady state. This distributions are compared to the components of the Maxwellian
distribution (19), and we observe a prefect agreement between them, which proves that the
correct equilibrium is captured by the model.

Now we plot in figure 3 the temperature differences Ttr − Ttr,rot, Trot − Ttr,rot, Ttr,rot − Teq,
and Tvib − Teq. We observe that this functions converge exponentially, as expected (even if
a numerical noise is observed for t > 20τ which corresponds to machine accuracy when the
translational and the rotational temperatures are converged). Moreover, according to section 5.1,
the slopes of these convergence curves can be used to compute Zrot and Zvib, a posteriori. We
find Zrot = 4.878 and Zvib = 19.61, which is very close to the expected values.
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Finally, we plot in figure 4 the evolution of the difference of the first directional temperature
T11 and the mean translational temperature Ttr, as well as the evolution of the first component
of the heat flux q1. According to equation (48), it is possible to estimate the Prandtl number by
evaluating the slopes of the of these quantities: we find 0.71, which is close to the input value
0.75.

9 Conclusion

In this paper, we have proposed an extension of the original polyatomic ES-BGK model to take
into account discrete levels of vibrational energy. For a gas flow in non-equilibrium, for instance
for a high enthalpy flow, we expect this model to capture the shock position and the parietal heat
flux with more accuracy. This model satisfies the conservation properties and the H-theorem
and allows to adjust correct transport coefficients and relaxation rates. It has been illustrated
by numerical simulations for an homogeneous problem. Finally, a reduced model which also
satisfies the conservation laws and the H-theorem has been obtained: with this model, it should
be possible to make simulations at a computational cost which is of same order of magnitude
as for a monoatomic gas.

A Gaussian integrals and other summation formulas

In this section, we give some summation and integrals formula that are used in the paper. First,

we have
∑+∞
i=0 e

−iθ = 1
1−e−θ and

∑+∞
i=0 ie

−iθ = e−θ

(1−e−θ)2
, which can be used to obtain

+∞∑
i=0

Mvib(i)[f ] = 1, and

+∞∑
i=0

iRT0Mvib(i)[f ] =
δv(Teq)

2
RTeq.

Then, we remind the gamma function Γ(x) =
∫ +∞

0
sx−1e−s ds, which is such that Γ(x+1) =

xΓ(x) and Γ(1) = 1. This is used to get∫ +∞

0

Mrot[f ](ε) dε = 1 and

∫ +∞

0

εMrot[f ](ε) dε =
δ

2
RTeq.

Finally, we remind the definition of the absolute Maxwellian M0(V ) = 1

(2π)
3
2

exp(− |V |
2

2 ). We

denote by 〈φ〉V =
∫
R3 φ(V ) dV for any function φ. It is standard to derive the following integral

relations (see [35], for instance), written with the Einstein notation:

〈M0〉V = 1,

〈ViVjM0〉V = δij , 〈V 2
i M0〉V = 1, 〈|V |2M0〉V = 3,

〈ViVjVkVlM0〉V = δijδkl + δikδjl + δilδjk, 〈V 2
i V

2
j M0〉V = 1 + 2 δij

〈ViVj |V |2M0〉V = 5 δij , 〈|V |4M0〉V = 15,

〈ViVj |V |4M0〉V = 35 δij , 〈|V |6M0〉 = 105,

while all the integrals of odd power of V are zero. Note that the first relation of each line implies
the other relations of the same line: these relations are given here to improve the readability of
the paper. From the previous Gaussian integrals, it can be shown that for any 3× 3 matrix C,
we have

〈ViVjCklVkVlM0〉V = Cij + Cji + Ciiδij .

23



B Inequality for det(Θ)/det(Π)

Here we prove the result for inequality (34) which is: det Θ
det Π ≤

(
Etr(f)

ereltr

)3

. We establish the result

in a basis where Θ can be diagonalized and we note Θ1,Θ2,Θ3 its eigenvalues. Note that Π is
diagonal in the same basis. Then we have

det Θ

det Π
=

∏3
i=1 Θi∏3

i=1(ηRTeq + (1− η)(θ(RTtr,rot) + (1− θ)(νΘi + (1− ν)RTtr)))
.

The proof is based on convexity arguments. However, since parameter ν can be negative (we
remind that ν lies in [− 1

2 , 1]), we first want to obtain an lower bound for det Π that does not
depend on ν.

First, we consider det Π as a function of ν, and we take its logarithm denoted by φ(ν):

φ(ν) =

3∑
i=1

log(ηRTeq + (1− η)(θ(RTtr,rot) + (1− θ)(νΘi + (1− ν)RTtr))).

By computing their second derivatives, it can easily be seen that each component of this sum
is a concave function of ν, and so is the function φ. Moreover, a simple derivation and relation∑3
i=1 Θi = 3RTtr (see section 3.2) show that φ′(0) = 0. These two properties imply that φ

necessarily reaches its minimum on [− 1
2 , 1] at ν = − 1

2 or at ν = 1.
Now we have to determine what is the minimum between φ(− 1

2 ) and φ(1). In order to
simplify the notations, we introduce X = ηRTeq + (1 − η)θRTtr,rot, which is positive, and
Y = (1− η)(1− θ), which is in [0, 1). Then we find

φ(−1

2
) = log(

3∏
i=1

(X + Y
Θj + Θk

2
)) and φ(1) = log(

3∏
i=1

(X + YΘi)),

where j and k in the first expression denote the two other indices different from i. A convex
inequality (which is nothing but the usual inequality between arithmetic and geometric means)
implies

φ(−1

2
) ≥ log(

3∏
i=1

(
√

(X + YΘj

√
(X + YΘk)) = log(

3∏
i=1

(X + YΘi)) = φ(1).

Consequently, φ(ν) ≥ φ(1) for every ν in [− 1
2 , 1]: this implies det Π ≥

∏3
i=1(X + YΘi) and we

deduce this upper bound

det Θ

det Π
≤

3∏
i=1

Θi

X + YΘi
, (77)

that does not depend on ν anymore, as announced above.
In the last part, we analyze the logarithm of the right-hand side of the previous inequality:

we denote by

g(Θ) = log

3∏
i=1

Θi

X + YΘi
=

3∑
i=1

f(Θi),

where f(s) = log
(

s
X+Y s

)
is clearly a concave function. Then we use the Jensen inequality to

get

1

3
g(Θ) =

1

3

3∑
i=1

f(Θi) ≤ f

(
1

3

3∑
i=1

Θi

)

= f(RTtr) = log

(
RTtr

X + Y RTtr

)
.
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Now we note that X + Y RTtr = RT reltr (see the definition of X and Y above and the def-
inition (25)) of T reltr , so that g(Θ) ≤ log(( RTtr

RT reltr
)3). Finally, we use this estimate in (77) to

find
det Θ

det Π
≤
(
RTtr
RT reltr

)3

,

and this gives the result, since we remind that Etr(f) = 3
2RTtr and ereltr = 3

2RT
rel
tr .

C First and second order partial derivatives of S
We remind that

S(e1, e2, e3) = R

(
3

2
log(e1) +

δ

2
log(e2) + log

(
1 +

e3

RT0

)
+

e3

RT0
log

(
1 +

RT0

e3

))
.

The first order derivatives of S are

∂1S =
3

2
R

1

e1
, ∂2S =

δ

2
R

1

e2
, ∂3S =

1

T0
log

(
1 +

RT0

e3

)
.

At (e1, e2, e3) = (ereltr , e
rel
rot, e

rel
vib), with the corresponding definitions (23) and (25) of the relax-

ation temperatures, the relations above give

∂1S =
1

T reltr

, ∂2S =
1

T relrot

, ∂3S =
1

T relvib

,

while the second order derivatives are

∂1,1S = − 3R

2(ereltr )2
, ∂2,2S = − δR

2(erelrot)
2
, ∂3,3S = − R

erelvib
(
RT0 + erelvib

) ,
and are clearly negative, while the cross derivatives are zero.

D First order expansion of ∂tM[f ] + v · ∇M[f ]

Since M[f ] = Mtr[f ]Mrot[f ]Mvib[f ], the expansion of ∂tM[f ] + v · ∇M[f ] requires the ex-
pansion of the transport operator applied to each component of M[f ]. We first detail how we
proceed for the translation component Mtr[f ]. The chain rule gives

∂tMtr[f ] + v · ∇Mtr[f ] =

[
∂tρ+ v · ∇ρ

ρ
+ (∂tu+ (v · ∇)u) · v − u

RTeq

+(∂tTeq + v · ∇Teq)
(
|v − u|2

2RTeq
− 3

2

)
1

Teq

]
Mtr[f ].

Euler equations (56) are used to replace time derivatives of ρ, u, and Teq by their space deriva-
tives, and finally, we use the changes of variables V = v−u√

RTeq
, J = ε

RTeq
, and K = iT0

Teq
to get

∂tMtr[f ] + v · ∇Mtr[f ] =
ρ

(RTeq)3/2
M0(V )

(
Atr(V ) · ∇(RTeq)√

RTeq
+ B̃tr(V ) : ∇u

)
+O(Kn),

with

Atr(V ) =

(
|V |2

2
− 5

2

)
V, B̃tr(V ) = V ⊗ V −

((
|V |2

2
− 3

2

)
C + 1

)
I, C =

R

cv(Teq)
.
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The same kind of computations give

∂tMrot[f ] + v · ∇Mrot[f ] = (∂tTeq + v · ∇Teq)
[(

ε

RTeq
− δ

2

)
1

Teq

]
Mrot[f ],

∂tMvib[f ] + v · ∇Mvib[f ] = (∂tTeq + v · ∇Teq)
[(

iT0

Teq
− evib(T )

RTeq

)
1

Teq

]
Mvib[f ],

so that

∂tMrot[f ] + v · ∇Mrot[f ] =
Λ(δ)J

δ−2
2

RTeq
e−J

(
Arot(V, J) · ∇(RTeq)√

RTeq
+ B̃rot(V, J) : ∇u

)
+O(Kn),

with

Arot(V, J) =

(
J − δ

2

)
V, B̃rot(V, J) = −C

(
J − δ

2

)
I,

and

∂tMvib[f ]+v·∇Mvib[f ] =

(
1− e−

T0
Teq

)
e−K

(
Avib(V,K) · ∇(RTeq)√

RTeq
+ B̃vib(V,K) : ∇u

)
+O(Kn),

with

Avib(V,K) =

(
K − evib(Teq)

RTeq

)
V, B̃vib(V,K) = −C

(
K − evib(Teq)

RTeq

)
I.

Finally we get

∂tM[f ] + v · ∇M[f ]

M[f ]
=

(
A(V, J,K) · ∇(RTeq)√

RTeq
+ B̃(V, J,K) : ∇u

)
+O(Kn), (78)

with
A = Atr +Arot +Avib, B̃ = B̃tr + B̃rot + B̃vib. (79)

E First order expansion of G[f ]

Here we detail how G[f ] can be expanded up to O(Kn2), which is required to obtain the first
order expansion of f , as given by (64).

First, since Π and the relaxation temperatures are equal to their equilibrium values up to
O(Kn) (see (53)), a standard Taylor expansion gives

G[f ]

M[f ]
= 1 +

(v − u)T
(

Π
RTeq

− I
)

(v − u)

2RTeq

− 3

2

(
T reltr

Teq
− 1

)
+

(
ε

RTeq
− δ

2

)(
T relrot

Teq
− 1

)
+

(
iRT0

RTeq
− evib(Teq)

RTeq

)(
T relvib

Teq
− 1

)
+O(Kn2).

(80)

Now, we need to expand Π and the relaxation temperatures up to O(Kn2). For Π, we use (66)
and (67) to get

Π

RTeq
− I = τKn

(
(∇u+ (∇u)T − C∇ · uI)− Pr(∇u+ (∇u)T − α∇ · uI)

)
+O(Kn2). (81)
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For the relaxation temperatures, we first write them as functions of the relaxation energies

T reltr

Teq
=

ereltr
etr(Teq)

,
T relrot

Teq
=

erelrot
erot(Teq)

,
cvibv (Teq)Teq
evib(Teq)

(
T relvib

Teq
− 1

)
=

erelvib
evib(Teq)

− 1 +O(Kn2),

(82)
where a first order expansion is used in the last expression, due to the non linearity of the
vibration energy.

Now, we just have to expand the relaxation energies. In order to shorten this derivation, we
introduce the following vectorial notations:

E =

Etr(f)
Erot(f)
Evib(f)

 , Eeq =

 etr(Teq)
erot(Teq)
evib(Teq)

 , Erel =

ereltrerelrot
erelvib

 , and X =

e′tr(Teq)CTeq −RTeqe′rot(Teq)CTeq
e′vib(Teq)CTeq


Then relation (28) reads

Erel = ηEeq + (I +D)E , (83)

where I stands here for the unit 3× 3 matrix and D is defined in (58). Moreover, (60) gives

E = −ηD−1Eeq −KnτD−1X +O(Kn2). (84)

It can also be seen that Eeq is an eigenvector of D with eigenvalue −η, and then (84) is simply

E = Eeq −KnτD−1X +O(Kn2). (85)

Then relations (83) and (85) give the following expansion of the relaxation energies

Erel = Eeq −Knτ(I +D−1)X +O(Kn2).

To make this relation explicit, we rewrite D as

D =


− δ

3+δ
1

Zrot
− 3

3+δ
1

Zvib
3

3+δ

(
1

Zrot
− 1

Zvib

)
0

δ
3+δ

(
1

Zrot
− 1

Zvib

)
− 3

3+δ
1

Zrot
− δ

3+δ
1

Zvib
0

0 0 − 1
Zvib

 .

so that

D−1 =

− δ
3+δZrot −

3
3+δZvib

3
3+δ (Zrot − Zvib) 0

δ
3+δ (Zrot − Zvib) − 3

3+δZrot −
δ

3+δZvib 0

0 0 −Zvib

 .

Then we obtain

Erel = Eeq −Knτ

(1− Zvib)C

 ctrv
crotv
cvibv

−R
1− δ

3+δZrot −
3

3+δZvib
δ

3+δZrot −
δ

3+δZvib
0

Teq∇ · u+O(Kn2).

It remains to use (82) to get the first order expansion of the relaxation temperaturesT reltr /Teq − 1
T relrot/Teq − 1
T relvib /Teq − 1

 = Knτ

− 2δ
3(3+δ)Zrot + (C − 2

3+δ )Zvib − C + 2
3

(C − 2
3+δ )Zvib + 2

3+δZrot − C
(Zvib − 1)C

∇ · u+O(Kn2),
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that can now be used with (81) in (80) to get the first order expansion of G[f ]:

G[f ]

M[f ]
= 1 + Knτ

([
(1− Pr)V ⊗ V −

(
(C − αPr)

( |V |2
2
− 3

2

)
+ 1
)
I

]
+ (J − δ

2
)

[
(C − 2

3 + δ
)Zvib +

2

3 + δ
Zrot − C

]
I

+(K − δv(Teq)

2
) [(Zvib − 1)C] I

)
: ∇u+O(Kn2).

(86)

This last relation and (78) readily lead to (68).

References

[1] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford
Engineering Science Series, 2003.

[2] I. Boyd and T. E. Schwartzentruber. Nonequilibrium Gas Dynamics and Molecular Simu-
lation. Cambridge Aerospace Series. Cambridge University Press, 2017.

[3] R. Caflisch. Accelerated simulation methods for plasma kinetics. AIP Conference Proceed-
ings, 1786(1):020001, 2016.

[4] E.P. Gross, P.L. Bhatnagar, and M. Krook. A model for collision processes in gases. Physical
review, 94(3):511–525, 1954.

[5] Jr. Lowell H. Holway. New statistical models for kinetic theory: Methods of construction.
Physics of Fluids, 9(9):1658–1673, 1966.

[6] E. M. Shakhov. Generalization of the Krook relaxation kinetic equation. Izv. Akad. Nauk
SSSR. Mekh. Zhidk. Gaza, pages 142–145, 1968.

[7] V. A. Rykov. A model kinetic equation for a gas with rotational degrees of freedom. Fluid
Dynamics, 10(6):959–966, 1975.

[8] P. Andries, P. Le Tallec, J.-P. Perlat, and B. Perthame. The Gaussian-BGK model of
Boltzmann equation with small Prandtl number. Eur. J. Mech. B-Fluids, pages 813–830,
2000.

[9] P. Jenny, M. Torrilhon, and S. Heinz. A solution algorithm for the fluid dynamic equations
based on a stochastic model for molecular motion. Journal of Computational Physics,
229(4):1077–1098, 2010.

[10] M.H. Gorji, M. Torrilhon, and P. Jenny. Fokker-Planck model for computational studies
of monatomic rarefied gas flows. Journal of fluid mechanics, 680:574–601, August 2011.

[11] H. Gorji and P. Jenny. A Kinetic Model for Gas Mixtures Based on a Fokker-Planck
Equation. Journal of Physics: Conference Series, 362(1):012042–, 2012.

[12] M. H. Gorji and P. Jenny. A Fokker–Planck based kinetic model for diatomic rarefied gas
flows. Physics of Fluids, 25(6):062002, 2013.

[13] J. Mathiaud and L. Mieussens. A Fokker–Planck model of the Boltzmann equation with
correct Prandtl number. Journal of Statistical Physics, 162(2):397–414, Jan 2016.

[14] J. Mathiaud and L. Mieussens. A Fokker–Planck model of the Boltzmann equation with
correct Prandtl number for polyatomic gases. Journal of Statistical Physics, 168(5):1031–
1055, Sep 2017.

[15] J. Mathiaud and L. Mieussens. BGK and Fokker-Planck models of the Boltzmann equa-
tion for gases with discrete levels of vibrational energy. Journal of Statistical Physics,
178(5):1076–1095, 2020.

28



[16] J. Mathiaud. Models and methods for complex flows: application to atmospheric reentry and
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Figure 1: Relaxation of temperatures (top), and zoom between t = 0 and t = 25τ (bottom): (◦)
T11, (�) T22 and (4) T33 are the components of Θ/R, Ttr (green), Trot (red) and Tvib (blue) are

respectively the temperatures of translation, rotation and vibration, while Ttr,rot (purple) and Teq
(black) are the translational-rotational temperature and temperature at equilibrium, respectively

30



200 150 100 50 0 50 100 150 200
Velocity

0.000

0.002

0.004

0.006

0.008

0.010

Di
st

rib
ut

io
n

Direction 1
Direction 2
Direction 3

0 2000 4000 6000 8000 10000 12000 14000 16000
Energy of rotation

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Di
st

rib
ut

io
n

Numerical result
Maxwellian function

0 1 2 3 4 5 6 7 8
Vibrational energy levels

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
st

rib
ut

io
n

Numerical result
Maxwellian function

Figure 2: Top left: Distribution function of velocities at equilibrium: x direction (blue), y
direction (red) and z direction (green). Top right: Distribution of the energy of rotation:
numerical result (blue) and theoretical equilibrium distribution (red). Bottom: discrete

distribution of the vibrational energy: numerical result (blue) and theoretical result (red).
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Figure 3: Relaxation of temperatures differences: (Ttr − Ttr,rot) (green), (Trot − Ttr,rot) (red),
(Ttr,rot − Teq) (blue), (Tvib − Teq) (black).
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Figure 4: Relaxation of the difference of temperatures (T11 − Ttr) (green) and first component of
the heat flux q1 (red).
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