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Abstract

Large regions of suppressed recombination having extended over time occur in many organ-
isms around genes involved in mating compatibility (sex-determining or mating-type genes).
The sheltering of deleterious alleles has been proposed to be involved in such expansions.
However, the dynamics of deleterious mutations partially linked to genes involved in mat-
ing compatibility are not well understood, especially in finite populations. In particular, un-
der what conditions deleterious mutations are likely to be maintained for long enough near
mating-compatibility genes remains to be evaluated, especially under selfing, which generally
increases the purging rate of deleterious mutations. Using a branching process approxima-
tion, we studied the fate of a new deleterious or overdominant mutation in a diploid popu-
lation, considering a locus carrying two permanently heterozygous mating-type alleles, and
a partially linked locus at which the mutation appears. We obtained analytical and numer-
ical results on the probability and purging time of the new mutation. We investigated the
impact of recombination between the two loci and of the mating system (outcrossing, intra
and inter-tetrad selfing) on the maintenance of the mutation. We found that the presence
of a fungal-like mating-type locus (i.e. not preventing diploid selfing) always sheltered the
mutation under selfing, i.e. it decreased the purging probability and increased the purging
time of the mutations. The sheltering effect was higher in case of automixis (intra-tetrad
selfing). This may contribute to explain why evolutionary strata of recombination suppres-
sion near the mating-type locus are found mostly in automictic (pseudo-homothallic) fungi.
We also showed that rare events of deleterious mutation maintenance during strikingly long
evolutionary times could occur, suggesting that deleterious mutations can indeed accumu-
late near the mating-type locus over evolutionary time scales. In conclusion, our results show
that, although selfing purges deleterious mutations, these mutations can be maintained for
very long times near a mating-type locus, which may contribute to promote the evolution of
recombination suppression in sex-related chromosomes.
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1. Introduction

The evolution of sex chromosomes, and more generally of genomic regions lacking recom-
bination, is widely studied in evolutionary biology as it raises multiple, unresolved questions
(Ironside, 2010, Yan et al., 2020, Hartmann, Ament-Veldsquez, et al., 2021, Kratochvil and Stock,
2021, Jay et al., 2022). A striking feature of many sex and mating-type chromosomes is the
absence of recombination in large regions around the sex-determining genes. Recombination
suppression indeed evolved in various groups of plants and animals in several steps beyond the
sex-determining genes, generating evolutionary strata of differentiation between sex chromo-
somes (Nicolas et al., 2004, Bergero and Charlesworth, 2009, Hartmann, Duhamel, et al., 2021,
Kratochvil and Stock, 2021). The reasons for the gradual expansion of recombination cessation
beyond sex-determining genes remain debated (Ironside, 2010, A. E. Wright et al., 2016, Pon-
nikas et al., 2018, Hartmann, Duhamel, et al., 2021). Recombination suppression has extended
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progressively with time not only on many sex chromosomes but also on mating-type chromo-
somes in fungi (Hartmann, Duhamel, et al., 2021) and other supergenes (Yan et al., 2020, Jay
et al., 2021).

The main hypothesis to explain such stepwise extension of recombination cessation on sex
chromosomes has long been sexual antagonism (D. Charlesworth et al, 2005,
Bergero and Charlesworth, 2009). Theoretical studies have indeed shown that the suppres-
sion of recombination may evolve to link alleles that are beneficial in only one sex to the sex-
determining genes (W. R. Rice, 1987, D. Charlesworth et al., 2005, Ruzicka et al., 2020). However,
this hypothesis has received little evidence from empirical studies despite decades of research
(Ironside, 2010, Dagilis et al., 2022). Moreover, the sexual antagonism hypothesis cannot ex-
plain the evolutionary strata found on fungal mating-type chromosomes. Indeed, in many fungi,
two gametes can form a new individual only if they carry different mating types, but there is
no sexual antagonism or other form of antagonistic selection between cells of opposite mating
types; the cells of different mating types do not show contrasted phenotypes or footprints of
diversifying selection (Bazzicalupo et al., 2019). Yet, evolutionary strata have been documented
on the mating-type chromosomes of multiple fungi, with recombination suppression extending
stepwise beyond mating-type determining genes (Fraser et al., 2004, Menkis et al., 2008, Branco
et al,, 2017, Branco et al., 2018, Hartmann, Duhamel, et al., 2021, Hartmann, Ament-Velasquez,
et al., 2021, Vittorelli et al., 2023). Evolutionary strata have also been reported around other
supergenes, i.e., large genomic regions encompassing multiple genes linked by recombination
suppression, such as in ants and butterflies (Yan et al., 2020, Jay et al., 2021). Several hypotheses
alternative to sexual antagonism have been proposed and explored to explain the stepwise ex-
tension of recombination suppression on sex-related chromosomes (lronside, 2010, Hartmann,
Duhamel, et al., 2021). Theoretical models suggested that recombination suppression could be
induced by a divergence increase in regions in linkage disequilibrium with a sex-determining
locus (Jeffries et al., 2021) or that inversions could be stabilized by dosage compensation on
asymmetric XY-like sex chromosomes (Lenormand and Roze, 2022).

A promising, widely applicable hypothesis is the sheltering of deleterious alleles by inver-
sions carrying a lower load than average in the population (B. Charlesworth and Wall, 1999,
Antonovics and Abrams, 2004, Hartmann, Duhamel, et al., 2021, Jay et al., 2022). Inversions
(or any suppressor of recombination in cis) can indeed behave as overdominant: inversions with
fewer recessive deleterious mutations than average are initially beneficial and increase in fre-
guency, but can then occur in a homozygous state where they express their load, unless they
are linked to a permanently heterozygous allele. In this case, they remain advantageous, and can
reach fixation in the sex-related chromosome on which they appeared (Jay et al., 2022). The
suppression of recombination is thereby selected for, and recessive deleterious mutations are
permanently sheltered. The process can occur repeatedly, leading to evolutionary strata. Impor-
tantly, this is one of the few hypotheses able to explain the existence of evolutionary strata on
fungal mating-type chromosomes and it can apply to any supergene with a permanently het-
erozygous allele (Llaurens et al., 2017, Jay et al., 2022).

A key point for the recombination suppressor to invade is that it must appear in populations
where recessive deleterious mutations segregate near the mating-compatibility genes (Olito et
al., 2022, Jay et al., 2022). We therefore need to understand whether such mutations can persist
in the vicinity of permanently heterozygous alleles (such as those occurring at mating-type loci)
and under what conditions. In particular, it is usually considered that selfing purges deleterious
mutations (Glémin, 2007, Abu Awad and Billiard, 2017), while most evolutionary strata on fungal
mating-type chromosomes have been reported in selfing (automictic) fungi (Branco et al., 2017,
Branco et al., 2018, Hartmann, Ament-Velasquez, et al., 2021, Vittorelli et al., 2023). Indeed,
because mating types are determined at the haploid stage in fungi, mating types do not prevent
selfing when considering diploid individuals (Billiard et al., 2012). Some particular forms of selfing
associated with a permanently heterozygous mating-type locus such as intra-tetrad mating (i.e.
automixis, mating among gametes from the same meiosis) can however favor the maintenance
of heterozygosity (Hood and Antonovics, 2000). Indeed, mating can only occur between haploid
cells carrying different mating-type alleles, which maintains heterozygosity at the mating-type
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locus, and to some extent at flanking regions, thereby possibly sheltering deleterious alleles.
We therefore need to study whether deleterious or overdominant mutations can be maintained
near mating-type compatibility loci, even under selfing, to assess whether the mechanism of
sheltering deleterious mutations can drive extensions of recombination suppression.

The dynamics of deleterious mutation frequencies in genomes have been extensively stud-
ied independently of the presence of a permanently heterozygous locus. Deterministic models
and diffusion approximations have been used to study the dynamics of deleterious mutations
in a one locus-two allele setup (Kimura, 1980, Ewens, 2004, S. H. Rice, 2004), with the addition
of sexual reproduction and in particular selfing (Ohta and Cockerham, 1974, Caballero and Hill,
1992, Abu Awad and Roze, 2018). Extensions of these models exist to cover the two locus-two
allele case (Karlin, 1975) and multilocus systems (reviewed in Birger, 2020), or to take stochas-
tic fluctuations into account (Coron et al., 2013, Coron, 2014). However, the dynamics of dele-
terious mutations in genomic regions near a permanently heterozygous allele have been little
studied. A deterministic model showed that a lethal allele can be sheltered in an outcrossing
population only when it is completely linked to a self-incompatibility locus (Leach et al., 1986).
Another deterministic model introduced selfing and showed with simulations that a lethal allele
can be sheltered when it is completely linked to a mating-type allele, favored in a heterozygote
state, and if there is intra-tetrad selfing (Antonovics et al., 1998). Assuming a variable recombi-
nation rate between the two loci, Antonovics and Abrams, 2004 showed that an overdominant
allele lethal in a homozygous state could be maintained if recombination was twice as low as the
selection for heterozygotes and mating occurred via intra-tetrad selfing. Stochastic simulations
additionnally showed that a recessive deleterious allele could be maintained completely linked
to a self-incompatibility allele, especially when it is highly recessive, and when the number of
self-incompatibility alleles in the population is large (Llaurens et al., 2009), and that codominant
weakly deleterious alleles could be maintained near loci under balancing selection in the major
histocompatibility complex (MHC) in humans (Lenz et al., 2016).

Here, building on the work of Antonovics and Abrams, 2004, we use a similar though simpli-
fied two locus-two allele framework, taking into account the non-negligible reproductive stochas-
ticity during the early stage of the dynamics of the mutant subpopulation, until it becomes ex-
tinct or reaches some appreciable fraction of the total population. More precisely, we consider
a permanently heterozygous mating-type locus and a genetic load locus, and we assume that
the recombination rate between the two loci is a fixed parameter. Individuals can reproduce via
outcrossing, or via either one of two types of selfing, intra-tetrad mating or inter-tetrad mating.
The two types of selfing depend on whether a given gamete mates with another gamete pro-
duced during the same meiosis event (within a tetrad) or with a gamete from a different meiosis
(from another tetrad, App. B). The distinction is important because intra-tetrad mating maintains
more heterozygosity in some genomic regions than inter-tetrad mating (Hood and Antonovics,
2000). Starting with a continuous-time Moran process, we derive the rates at which individuals
of each genotype are produced. Then, as a new mutation is carried by very few individuals at the
beginning of its evolution, a branching process naturally arises. Indeed, in this initial phase two
individuals carrying the mutant allele have an extremely low probability to mate with each other.
Mutant-carrier individuals can thus be assumed to reproduce independently of each other, lead-
ing to an approximation of the dynamics of the subpopulation of mutant carriers by a branching
process.

The use of branching processes has shown its utility to account for the dynamics of a newly
arised mutant allele in a population. Many estimates of the fixation or purging time of mutants
in stochastic models (Champagnat and Méléard, 2011, Collet et al., 2013) relied on the use of
branching processes to approximate the dynamics of a newly appeared mutant allele and of a
nearly-fixed one. A branching-process approximation was used to study a two locus-two allele
model, with individual fitness depending on the allelic state at both loci (Ewens, 1967, Ewens,
1968). For the diploid case, the framework of a seven-type branching process that can be used to
study the fate of a deleterious mutation has been described, without deriving any analytical re-
sult (Pollard, 1966, Pollard, 1968). A similar branching process approximation was used to study
the fate of a beneficial mutation with selfing (Pollak, 1987, Pollak and Sabran, 1992). Here, we
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use a similar framework but consider deleterious mutations and a permanently heterozygous lo-
cus. Modeling multiple loci suggests the use of multitype branching processes, which have been
widely studied (Harris, 1964, Kesten and Stigum, 1966 , Mode, 1971, Athreya and Ney, 1972,
Sewastjanow, 1975, Pénisson, 2010). However, the multiplicity of types renders the derivation
of analytical results on probabilities of extinction and on extinction times difficult (Heinzmann,
2009). We therefore use an analytical approach to study the probability that a new mutation is
purged from the population, and a numerical approach to study the purging time (when purging
occurs) to assess how long a deleterious or overdominant mutation remains in a population. We
study in particular the impact of the mating system and of the level of linkage to a permanently
heterozygous locus on the long-term maintenance of deleterious mutations near a fungal-like
mating-type locus (i.e. not preventing diploid selfing).

2. Methods and Models

All parameters which will be needed below are listed in App. A.

2.1. Population and stochastic dynamics

We consider diploid (or dikaryotic) individuals, represented by their mating-type chromo-
somes, that harbor two biallelic loci: one mating-type locus, with alleles A and a, and one load
locus, with a wild allele B and a mutant allele b. We model a fungal-like mating-type locus, so that
mating is only possible between haploid cells carrying different alleles at the mating-type locus
(this does not prevent diploid selfing as each diploid individual is heterozygous at the mating-type
locus). Consequently, only four genotypes are admissible, denoted by Gy, ..., G4 in Figure 1. We
follow the evolution of (g(t)),. = (81(t). ..., g4(t)) 5o Where gi(t) is the number of individuals
of genotype G; in the population at time t. We suppose that the reproduction dynamics is given
by a biparental Moran model with selection. In this continous-time model, a single individual is
replaced successively and the total population size, denoted by N, remains constant. A change
in the population state g occurs in three steps.

The first step is the production of an offspring. After a random time following an exponential
law of parameter N, an individual is chosen uniformly at random to reproduce. This means in par-
ticular that all individuals have the same probability to reproduce. Mathematically speaking, this
formulation is equivalent to saying that each individual reproduces at rate 1. The chosen diploid
individual produces haploid gametes, via meiosis, during which recombination takes place be-
tween the two loci with probability r (see Figure 1 (a)). The product of a meiosis is a tetrad that
contains four haploid gametes (Figure 1 (b)). Mating can then occur through three modalities,
illustrated in App. B (recall that two gametes can fuse only if they carry different mating-type
alleles): (i) Intra-tetrad selfing, with probability fp;,: the two gametes are picked from the same
tetrad, only one parent is involved; (ii) Inter-tetrad selfing, with probability (1 — p;,): the two
gametes are picked from two different tetrads produced by the same individual, only one parent
is involved; (iii) Outcrossing, with probability 1 — f: the two gametes are picked from tetrads pro-
duced by two different parents. In this case, the second parent is chosen uniformly at random
in the remaining population, and produces haploid gametes via meiosis with the same recombi-
nation rate r. An offspring is produced following the chosen mating system, its genotype thus
depending on the genotypes of the parents involved and on the occurrence of a recombination
event in the tetrads.

The second step is the offspring survival. We assume that the fitness of a genotype G; is the
probability that an offspring with that genotype survives, and we denote it by S;. We consider
two selection scenarii (Figure 1, left): (i) The partial dominance case, where the mutant allele b is
always deleterious and recessive. Homozygotes bb and heterozygotes Bb at the load locus have
fitness values (i.e. a probability of survival) of 1 — s and 1 — hs, respectively. Homozygotes BB
have fitness 1; (ii) The overdominance case, where heterozygotes Bb are favored over BB and
bb individuals. In this case, the fitness of Bb, bb and BB juveniles are respectively 1, 1 — s3 and
1 — s4, with s3 > s4 so that the fitness of bb individuals is lower than the fitness of wild-type
individuals BB. The mating-type locus is considered neutral regarding survival.
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The third step occurs if the offspring survives, in which case an individual chosen uniformly
at random in the extant population is chosen to die and to be replaced by the offspring. If the
offspring does not survive, the population state (g1, g2, g3, g4) does not change.

A jump in the stochastic process is thus an increase by one of the number of genotype G;
individuals in the population, when an offspring of genotype G; is produced and survives, and a
concomitant decrease by one of the number of genotype G; individuals in the population, when
an adult of genotype G; dies. If i = j, i.e. if the surviving offspring and the individual chosen to
die have the same genotype, the composition of the population does not change. We denote the
jump rate from g to g + e; — ¢; by Q; j(g), where e; is the vector with a 1 in position / and zeros
everywhere else. Q; j(g) is equal to the product of the rate at which an offspring of genotype
G; is produced (first step), which we denote by T,(+G;), of the probability that it survives (S;,
second step), and of the probability that the adult chosen to die is of genotype G; (third step).
Thus, we have

Qij(g) = Te(+G) x S x 2.
The total rates at which individuals of different genotypes are produced are given in App. C.1.
For example, the rate at which an offspring of genotype G; is produced when the current state

of the population is g = (g1, g2, g3, g4) is given by

1 1 r
To(+60) = o (1= 1 (1= 2pn) + 7 (1= i) ) + 2 (o + 7 (1 pin)

+L:qk(LéDQ&—U6b£>+&+a)+&%@2+;&+ﬂﬂ

,
+&@r0—2>+&&}

The first two terms on the right-hand side, with a factor f, correspond to reproduction events
by selfing. The third term, with a factor 1 — f, corresponds to reproduction events by outcrossing.
Each subterm then encompasses the rate at which each genotype is involved in the reproduction
event, and the probability that the offspring produced is of genotype G;, taking into account
possible recombinations. For example, the subterm (1 — f)/(N — 1) x g1(g1 — 1)(1 — r/2)? is the
product of the total rate gy x 1 at which an individual of genotype 1 reproduces, of the probability
1—f that reproduction happens by outcrossing, of the probability (g1 —1) /(N —1) that the second
parent is chosen among the other individuals of genotype Gi, and of the probability (1 — r/2)?
that their offspring has genotype G;.

2.2. Branching-Process approximation

Let us now consider that the population size N is very large. When a mutation appears at the
load locus, it is carried by a single individual. Hence, during the initial phase of the dynamics of
the mutation b, the number of individuals who carry the mutation remains small compared to
the number of wild-type individuals. The number of wild-type individuals is of the same order
of magnitude as the total population size N, and the number of mutation-carrier individuals is
negligible. More precisely, we assume that, when N is large,

(1) ga~N, andgi< N fori=1,23.

Under this assumption, the jump rates Q; j(g) of the process can be approximated by neglect-
ing the terms of the form 1/(N — 1) x g; x gj, with i, j € {1, 2,3}, as they are of order 1/N. This
means that mating by outcrossing between individuals carrying the mutation b can be neglected.
As a consequence, the birth rates of the different genotypes are linear in g;, and a reproduction
law for each genotype that is independent of the number of individuals of all other mutant-
carrier genotypes can be derived. The Moran process can then be approximated by a branching
process that follows the change in genotype counts for the mutation-carrier genotypes only.

We denote this branching process by (Z:):>0, where for each t > 0, we have
Zy = (Zi1, Ze2, Zt 3), with Z; ; the number of individuals of genotype G; in the population at

Peer Community Journal, Vol. 3 (2023), article e14 https://doi.org/10.24072/pcjournal.238



https://doi.org/10.24072/pcjournal.238

Emilie Tezenas et al. 7

Genotype | A a A a A a A a Bﬁ b
B b b B b b B B

Fitness S;

under

Partial | 1—hs  1—hs 1—s 1 A ?
Domi- B b

nance
Fitness S; J
under

Over- 1 1 1-—s3 1—354 A A a 5
domi-
nance B b B b

Figure 1 - Schematic drawings of the genotypes considered and their parameters. (Left)
Description of the possible genotypes in the population and their fitness S; for the two
selection scenarii considered (partial dominance and overdominance). (Right) (a) Position
of a putative event of recombination between the mating-type locus and the load locus.
(b) Example of a tetrad that can be obtained after a meiosis of an individual of genotype
G, with recombination. Four gametes are produced, two of each mating type. In the
second and third gamete from the left, combinations of alleles that did not exist in the
parent are observed (A with b and a with B).

time t. To each genotype is associated a reproduction law, that is, a probability distribution on
N3 (vectors with three integer-valued coordinates) that gives the probability for an individual of
that genotype to produce a given number of descendants of each genotype when it reproduces.
Note that the rationale behind the branching process is different from the one for the Moran
process. Indeed, each replacement event in the Moran model that involves an individual carrying
the mutant allele b will be seen in the branching process as a reproduction event, in which the
offspring is the mutant individual that is possibly produced during the first step of the Moran
jump, and the parent is another mutant individual that is either one of the two actual parents
in the replacement event, or the individual chosen to be replaced by the offspring in the Moran
replacement event. A reproduction event of the branching process consists in the replacement of
the parent by its descendants, which will be made of the mutant offspring when there is one, and
of the mutant parent when it remains in the population. More precisely, we will encode three
situations as follows: (i) when the replacement event in the Moran model corresponds to the
reproduction of an individual of genotype G;, i € {1, 2,3} (via selfing or outcrossing with an in-
dividual of genotype Gj), that this reproduction event generates a mutant offspring of genotype
Gj.j € {1,2,3}, and the mutant parent is not chosen to die, we will see the reproduction event of
the branching process as being an individual of genotype G; having descendance vector e; + e¢;;
(if) When the Moran replacement event leads to the reproduction of an individual of genotype G;,
i € {1, 2,3} (via selfing or outcrossing with an individual of genotype G,), that this reproduction
event generates an offspring of genotype G4, and the mutant parent is not chosen to die, we will
see the reproduction event as being an individual of genotype G; having descendance vector ¢;
(as non-mutant individuals are not accounted for in the branching process approximation). Note
that this reproduction event will imply no change in the population state, but for the sake of
completeness we indicate here all Moran replacement events that have non-vanishing rates as
N tends to infinity; (iii) When the Moran replacement event only involves non-mutant parents
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and an individual of genotype G;, i € {1, 2, 3}, is chosen to die, we will see the reproduction event
as being an individual of genotype G; having descendance vector O (corresponding to the parent
being removed from the branching process and no mutant offspring being produced). Other pos-
sible Moran replacement events occur at rates that vanish as N tends to infinity, and therefore
do not contribute to the reproduction events of the branching process. The rates at which repro-
duction events described above occur are directly derived from the rates Q; j(g) of the Moran
model, under the approximation stated in Eq.(1). They are summarized in the matrices A, T, and
D defined as follows:

((fa(r) +(A-Ad(r) S (e(N+(1-F5S (1- f)Sl)
A= ((N+(1-FLHS (A(N+1-AHdr)S 1-1)S],
fb(r)53 fb(r)53 f53
(fb(r) + 155)Sa 0 0
T = 0 (fbo(r) + 55)Ss 0
0 0 0
S 0 0
b (o s o) |
0 0 S
with
(2) an=1-r+7(1--pna-n). b =7(1+1-pu)1-"r)),
(3) o(r) = %(1 —(1=pn)(1-7)), and d(r)=1- %

The entries Aj; of matrix A, Tj; of matrix T and Dj; of matrix D give the rates at which each
individual of genotype j reproduces and gives rise to a descendance vector respectively equal to
ei + ¢ (situation (i), e; (situation (i), and 0 (situation (iii)). An example of derivation of the matrix
coefficients is given in App. C.2.

2.3. Probability of purge and purging time

Under the assumption that the mutation is initially rare (after a mutation or migration event
for example), we can use the branching process approximation described in Section 2.2 to derive
the probability and purging time of the mutation from the population. In particular, our goal is
to analyze the effect of the presence of a mating-type locus near the load locus on the purge
of the deleterious mutant b, i.e. on the extinction of the mutant-carrier population described by
the branching process.

Extinction Probability

The probability of extinction of the branching process can be determined by looking at the
eigenvalues of the matrix C such that E[Z;|Zy = z] = z0e“* for t > 0, where zy € N3 is the initial
state of the branching process (Z;):>o (Sewastjanow, 1975 in German, and Pénisson, 2010 for
a statement of these results in English). Under the assumption of irreducibility of the matrix C,
results relying on the theory of Perron-Froebenius (see for example Athreya and Ney, 1972) state
that the process almost surely dies out (i.e. the mutation is purged with probability 1) if and only
if p, the maximum eigenvalue of C, satisfies p < 0. When C is not irreducible, which occurs for
example if f = 0 or f = 1, the result still holds but requires the use of the theory of final classes
(Sewastjanow, 1975, cited in Pénisson, 2010). Details are given in App. C.4.

We follow a method described in Bacaér, 2018, to compute the matrix C mentioned above
and obtain

A,‘j-f-T,'j if i £ j,
CGi=\A;j— % Ty—D; ifi=j
=y
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This gives

r\) \

(fe(r) + (1 —f)3) S2 (fa(r) + (1 = £)d(r)) 5 -5, (1-1F)S

C_((fa() (L= 4(0) 51 =S4 (fe(r) + (1— )Z) i (1—f)51)
- b(r)Ss () S5 55— S4

where the functions a, b, ¢, d were defined in Egs. 2 and 3 (see details in App. C.3).

We derived the dominant eigenvalue using Mathematica (Wolfram Research, 2015) and study
its sign analytically when possible, or numerically otherwise.

Comparison with previous results

Our results can be compared to the work of Ewens, 1967, who used a similar framework to
study a random-mating population with two biallelic loci under selection, one of which carried a
new allele. Assuming that the frequency of the gametes that carried a new allele was negligible
compared to the frequencies of wild-type gametes, he used a branching process approximation
to study the probability that the new allele was purged from the population. He considered a
recombination rate R between the two loci, and fitnesses w;; for each genotype (where / and j
take the value 1 or 3 when loci are homozygous, and the value 2 when heterozygous). Setting
wii = w;z = 0 fori = 1,2,3 allows to force heterozygosity at the locus that does not carry
the new allele in his model, and to compare his findings with our results on the fate of a new
allele appearing near a permanently heterozygous locus. The dominant eigenvalue of the matrix
driving the dynamics of the new allele in Ewens, 1967, is

(4) A =2

w32
with wy, being the fitness of individuals heterozygous for the new allele, and ws, the fitness
of homozygous wild-type individuals. As Ewens, 1967, considered a discrete-time branching
process, this dominant eigenvalue must be compared to one to deduce information on the new
allele survival probability.

Sheltering effect of the mating-type locus

We investigate now to the potential effect of the presence of a mating-type locus on the
maintenance of a mutant allele in a population: as mating-type alleles are always heterozygous,
any mutation appearing completely linked to one mating-type allele is maintained in a heterozy-
gous state as well. The load of the mutant allele is then less expressed when the mutation is
recessive, and the mutation is said to be "sheltered".

This potential sheltering effect can be explored by looking at the variation of the dominant
eigenvalue p when the recombination rate r is close to 0.5. Indeed, the quantity |p| can be seen
as the rate of decay of the deleterious mutant subpopulation (see the results on the probability
of survival of a multitype branching process, Th. 3.1 of Heinzmann, 2009), and its value gives
a rough approximation of the inverse of the mean time to extinction of this subpopulation, i.e.
of the mean purging time of the mutant allele b. Moreover, setting the recombination rate to
r = 0.5 in our model allows us to consider a load locus completely unlinked to the mating-type
locus, while decreasing the value of r introduces some loose linkage between the two loci. We
thus look at the derivative % |—0.5 to obtain the variation of the dominant eigenvalue of C when
departing from this unlinked state.

The sign of the derivative gives information on the existence of a sheltering effect due to
the mating-type locus: if % |r—0.5< 0, then when r decreases from 0.5 to lower values, i.e. when
linkage between the two loci appears, the (negative) value of p increases, which means that the
purging of the mutation becomes slower. In this case, the mating-type locus has a sheltering
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effect. Otherwise, if % |-—05> 0, the presence of a mating-type locus accelerates the purging
of a deleterious allele.

The absolute value of the derivative also gives information on the strength of the sheltering
effect of the mating-type locus. The closer to 0 the derivative is, the smaller the impact of the
mating-type locus. We compute the derivative and study its sign analytically. We then study the
values of the derivative numerically in order to identify the impact of each parameter on the
sheltering effect of the mating-type locus.

We also look at the strength of the sheltering effect on mutations close to the mating-type
locus, by studying the eigenvalue variation around r = 0. Setting the recombination ratetor =0
models a situation where the load locus is completely linked to the mating-type locus. Hence,
the mutation is completely linked to one mating-type allele, and maintained in a heterozygous
state. Looking at the derivative % |0 allows us to quantify the impact of departing from this
situation by loosening the linkage between the two loci. We study the difference between the
derivative at r = 0.5 and the derivative at r = 0 to compare the effect of adding a small amount
of linkage between completely unlinked loci (r = 0.5) and the effect of adding a small amount of
recombination between completely linked loci (r = 0).

Extinction time

The mean time to extinction in a multitype branching process is finite for a subcritical process
(that is, when the principal eigenvalue p of C is less than 0), and infinite for a critical process
(i.e. when p = 0, see Pétscher, 1985, for the proof of existence and finiteness of extinction time
moments). Previous work, in particular Theorem 4.2 in Heinzmann, 2009, showed that a Gumbel
law gives a good approximation of the law of the extinction time, provided that the initial number
of individuals in the branching process and the absolute value of the dominant eigenvalue are
both large. In our case, however, the mutation appears in a single individual, and the dominant
eigenvalue is close to zero, which prevents the use of the Gumbel law approximation. Therefore,
we performed computer simulations to study the empirical distribution of the time to extinction
of the process, i.e. the purging time of the b mutant allele.

The branching process was simulated with a Gillespie algorithm to obtain an empirical distri-
bution for the time to extinction. More precisely, the Gillespie algorithm produces realizations of
the stochastic process by iteratively updating the number of individuals of each genotype within
the multitype branching process (Gillespie, 1976). To circumvent the problem of exponential in-
crease of the population size in the supercritical case, the parameters were chosen so that the
branching process was subcritical. The probability of extinction was thus equal to 1 and the mean
time to extinction was finite. For each scenario, we looked at different values of the recombina-
tion rate r, in order to study the impact of linkage between the load locus and the mating-type
locus on the purging time of the mutant allele. We also chose different values for the selfing rate
f in order to assess the impact of the mating system on the purging time of the mutant allele. For
each set of parameters, 100,000 independent simulation runs were performed with the same
initial condition (a single individual heterozygous at the load locus was introduced). The scripts
used to simulate the process and display the figures are available at Tezenas, 2022.

Probability of a new mutation apparition before the first one is purged

As a first step towards the study of the accumulation of deleterious mutations near a mating-
type locus, we studied the probability that the deleterious mutation can be maintained long
enough in the population so that a second mutation can appear before the first one is purged.
We considered that a second mutation could appear during a reproduction event occurring in
the population of mutation carriers (described by the branching process), on a region of a given
length d = 10° base pairs, at a rate of 1« = 10~8 mutations per base pairs per reproduction event.
The mean number of reproduction events needed for a new mutation to appear in a region of
length d, ne,, is the inverse of the mutation rate . multiplied by the length d:
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We then estimated the probability that a new mutation appears in such a genomic region
before the first one is purged by counting the number of independent simulations in which the
number of reproduction events exceeded n., before the branching process went extinct (i.e.
before the purging of the first mutation), over 100,000 simulation runs. Note that we did not take
into account the genotype of the individual on which the second mutation appears, and therefore
we did not distinguish whether the second mutation appears on a chromosome that carries the
first one or not. Our estimate thus does not exactly equals the probability to have two mutations
on the same chromosome, but this gives an order of magnitude of the probability of deleterious
mutation accumulation and of the impact of the mating system. The length of the genomic region
on which a second mutation can appear was chosen arbitrarily, and changing it can also change
the probability. However, the important point for the deleterious-mutation mechanism to work
is that there exists a size for regions flanking mating-type loci that allows both inversions to
appear and mutations to accumulate, so that inversions can trap several deleterious mutations
when suppressing recombination. The value d = 10° chosen here allows to cover such flanking
regions.

We computed our estimate of the probability of deleterious mutations accumulation for r =
0.001 (the two loci are close, strongly linked), r = 0.01, r = 0.1, and r = 0.5 (the two loci are
distant, unlinked). We considered several values of selfing and intra-tetrad mating rates f and
pin in order to assess the impact of the mating system on the probability of deleterious mutation
accumulation near a mating-type locus.

Ney =

3. Results

3.1. Deleterious mutations are almost surely purged in the partial dominance case, and can
escape purge in the overdominance case

Partial Dominance scenario

Under partial dominance, we find that the dominant eigenvalue p of the matrix C is always
negative or null (see App. E.1 and E.2 for more details on the proof and computations). Previous
theoretical results on branching processes state that, when p < 0, the probability that the dele-
terious mutation is purged from the population before it reaches a substantial frequency is one,
and the mean time of purging is finite (see the Methods section). In particular, the probability of
purging does not depend on the mating system (p < 0 for any value of intratetrad, intertetrad
and outcrossing rates), nor on the recombination probability, selection and dominance coeffi-
cients. The only exceptions are when the deleterious mutation is neutral (s = 0) or behaves as
neutral (h = 0 and r = 0, the mutation is neutral when heterozygous and completely linked to
one mating-type allele), in which case the dominant eigenvalue is 0. The mutation is still purged
from the population but previous theoretical results on branching processes state that this can
take a much longer time compared to the case where p < 0, as the mean purging time would be
infinite (see the Methods section).

Taking wo, = 1—hs and w3y = 1inthe model of Ewens, 1967, to mirror our partial dominance
scenario, the dominant eigenvalue becomes 1 — hs. It is always smaller than one, except when
h = 0ors =0, i.e when the mutation is neutral in the heterozygous state. Except in those cases,
the mutation is purged from the population with probability one. We therefore find the same
results as Ewens, 1967, and we extend these results in the case where mating is not random
among gametes. In particular, the mutation being neutral in the heterozygous case (h = 0) is not
sufficient to prevent the purging probability to be one when mating is not random: the mutation
has to be completely linked to a permanently heterozygous locus (h = 0 and r = 0).
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Overdominance scenario

Under overdominance, the dominant eigenvalue p can take positive or negative values. When
p is positive, the probability that the mutation escapes purging and that the number of mutation-
carriers increases exponentially fast is strictly positive. The general conditions on the parameters
for p to be positive in our model are given in App. F.2, but they are difficult to interpret. Below,
we describe a few simple cases in order to elucidate the role of each parameter, and then we
complement the analysis with a numerical approach.

Similarly to the partial dominance case, the dominant eigenvalue is O when the mutation is
neutral (s3 = 0, which implies s, = 0 as well). The dynamics of the b-subpopulation (i.e. mutation-
carriers) is then critical, which means that the mutant is purged with probability 1 but the mean
purging time can be arbitrarily long (as the average extinction time of a critical branching process
is infinite, see the Methods section).

When the mutation is not neutral (s3 # 0) but with no disadvantage to BB homozygotes
(s4 = 0), we prove that p < 0 (see App. F.2), which means that the dynamics of the b subpopu-
lation is subcritical and that the mutant allele is purged with probability 1. This shows that the
overdominant mutant allele is not maintained in the population when wild-type homozygotes
are not disfavored compared to heterozygotes at the load locus. This corresponds to a com-
pletely recessive mutation, and is in agreement with the results for the partial dominance case
with h = 0.

When the mutant allele is completely linked to a mating-type allele (r = 0), or under complete
outcrossing (f = 0), the dominant eigenvalue is equal to s, the selection coefficient for the
fitness reduction of the BB wild-type homozygotes. The dynamics of the b subpopulation is
then supercritical, which means that there is a non-zero probability that the mutant allele is not
purged and, instead, reaches a significant number of carriers. Moreover, the mutant allele is more
favored in this case when selection against BB homozygotes is stronger as it induces a stronger
advantage of the Bb heterozygotes. A similar result can be derived from the work of Ewens,
1967. Taking wo, = 1 and wzy = 1 — s4 in his model to mirror our overdominance scenario,
the dominant eigenvalue of Eq. 4 becomes 1/(1 — s4). As long as s, > 0, this eigenvalue is
always greater than one, and its value increases as the selection against wild-type homozygotes
increases. This shows that the dynamics of an overdominant allele under random gamete mating
is similar as under complete outcrossing.

In the case of complete intra-tetrad selfing (f = 1, p;, = 1), we find that p > 0if r <
2s4, in agreement with the results of Antonovics and Abrams, 2004. These results mean that
the overdominant mutation can be maintained under complete selfing if it is tightly linked to
the mating-type locus (r small) or if the heterozygote advantage over wild-type homozygotes is
strong (s, large).

In the case of complete selfing (f = 1), we find that p = s, —s3 < 0Owhen r(2—r—p;,(1—r))—
2s3 > 0. This shows that the dominant eigenvalue depends only on the selection coefficients
when the recombination rate r exceeds a certain threshold (visible on the bottom panels of
Figure 2). This means that, if the recombination rate is larger than the strength of the selection
against deleterious homozygotes, the mutation is purged with probability one. Moreover, the
purging time is shorter when the difference in fitness between the two homozygotes is larger.
The threshold on recombination increases as p;, increases, which means that the strength of
the linkage between the mating-type locus and the mutation has the highest effect under intra-
tetrad selfing.

Figure 2 shows more generally that the mating system affects the purging of deleterious mu-
tations. On Figure 2, the probability of purging is one in blue areas (the dominant eigenvalue is
negative), and positive but smaller than one in red areas (the dominant eigenvalue is positive).
The lines below which the mutation has a non-zero survival probability under the framework of
Antonovics and Abrams, 2004, i.e. r = 2s4 under complete intra-tetrad selfing, are displayed as
well. Comparing the panels for different values of intratetrad mating rate (p;,) and selfing rate
(f) shows that selfing favors the purging of the mutant allele (the blue area becomes larger as
f increases), whereas intratetrad mating favors the maintenance of the deleterious allele (the
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Figure 2 - Dominant eigenvalue p for the overdominance scenario. When p < 0 (blue
areas), the mutation is purged with probability 1. When p > 0 (red areas), the mutation
has a non-zero probability to escape purging. The mutation is maintained longer in the
population as p increases. All panels have the same axes. x-axis: s, selection coefficient
for wild-type BB homozygotes. y-axis: r, recombination rate between the two loci. Each
column corresponds to a value of p;, (intra-tetrad rate, 0, 0.5, 1), and each row to a value
of f (selfing rate, 0, 0.5, 1). The selection coefficient for bb homozygotes is set to s3 = 0.1.
The line r = 25, is displayed for comparison with the findings in Antonovics and Abrams,
2004.

blue area become smaller as p;, increases). Indeed, selfing favors the creation of homozygous
individuals, which are disfavored, and intra-tetrad selfing favors the creation of heterozygous
individuals, which are favored, compared to inter-tetrad selfing: the probability that a heterozy-
gous individual Bb produces a heterozygous offspring Bb is higher under intra-tetrad selfing
(probability 1 — r/2) than under inter-tetrad selfing (probability 1 — r + r2/2).

3.2. The presence of a mating-type locus has a sheltering effect under partial selfing

Looking at the derivative of the dominant eigenvalue at r = 0.5, we find that the presence
of a mating-type locus near the mutation has a sheltering effect on the deleterious mutation,
under partial selfing and in both selection scenarii. Indeed, the derivative % |05 is always
negative, except when the mutation is neutral (s = 0 under partial dominance or s3 = 0 under
overdominance), when it is lethal (s = 1) or dominant (h = 1) under partial dominance, or under
complete outcrossing (f = 0) in both scenarii, in which cases the derivative is zero and there is no
sheltering effect. Under complete selfing (f = 1), the derivative is also null when the intratetrad
coefficient p;, is below a certain threshold (see App E.3 and F.3 for the proof). As explained in the
Methods section, this analysis shows that, in a wide range of situations, the rate of decay of the
mutant subpopulation is lower when the mutation is linked to a mating-type locus, even loosely
(i.e. as soon as r < 0.5), than when recombination is free between the two loci. Hence, except
for the particular cases cited above, the mating-type locus always has a sheltering effect on
the deleterious mutation maintenance under partial selfing, independently of the mating system
coefficients (f and p;,) and of the selection and dominance coefficients (s and h, or s3 and s;).

Figure 3 shows that, under both partial dominance or overdominance, the variation of the de-
rivative at r = 0.5 is stronger when the selfing rate f (x-axis) or the intratetrad selfing probability
pin (y-axis) are high. This means that the sheltering effect of the mating-type locus is stronger un-
der high selfing or high intratetrad mating. Two forces oppose here: increasing selfing induces a
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greater production of homozygotes, which are disfavored, whereas increasing intra-tetrad selfing
rate or increasing the linkage with a mating-type locus favors the production of heterozygotes,
which are favored. The sheltering effect of the mating-type locus that counters the purging effect
of selfing is higher when selfing is higher, and this countering effect is reinforced by a high intra-
tetrad mating rate. Moreover, when approaching f = 1, the derivative decreases to 0. Indeed,
the selection and dominance coefficients s, s3 and h are here sufficiently small for the condition

to have % s 0 when f = 1 to be met, for both selection scenarii (see App. E.3 and F.3 for
the derivatiron'of this condition). This means that the dynamics of the deleterious mutation is
independent of the presence of a mating-type locus under complete selfing and weak selection.

We explore the impact of other parameters in the Supplementary materials. Figure S2 shows
that, under partial dominance, the sheltering effect of a mating-type locus is stronger when the
dominance coefficient h is lower (Bb heterozygotes, which are more prone to be created in the
presence of a mating-type locus, are more favored) or when the selection coefficient s is high
(the differential in fitness between Bb heterozygotes and bb homozygotes is higher). Similarly,
Figure S3 shows that, under overdominance, the sheltering effect of the mating-type locus is
stronger when the selection against bb homozygotes is higher (s; coefficient), whereas the se-
lection against BB homozygotes does not impact the strength of the sheltering effect, suggesting
that the dynamics of the deleterious allele is mostly driven by the difference in fitness between
the favored heterozygotes and the disfavored deleterious homozygotes.

Looking at the derivative at r = 0, we show in App. E.3 and App. F.3 that it is also negative in
both selection scenarii. This means that the eigenvalue decreases, i.e. that the mutation is less
maintained in the population as soon as the two loci are no longer completely linked. Figure S4
shows that the difference A (%) = % lr=05 —% |—o is always positive, which means that
the absolute value of the derivative at r = 0 is larger than the absolute value of the derivative
at r = 0.5. This shows that the sheltering effect is stronger on mutations closely linked to the
mating-type locus : adding a small chance of recombination on previously completely linked
loci (r = 0) has a greater impact on the maintenance of deleterious mutations than adding a
small amount of linkage between two previously completely unliked loci (r = 0.5). The largest
difference between the two derivatives occurs for selfing rates close to one, the derivative being
then zero at r = 0.5, while the derivative at r = 0 approaches —1. This shows that the linkage to
the mating-type locus particularly impacts the strength of its sheltering effect under high selfing.
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Figure 3 - Relative variation of the derivative of the dominant eigenvalue in the partial
dominance case (left) and the overdominance case (right). For each panel, the values of
%§ |/—05 range from a minimal value, which is negative, to zero. We divided each value
of the derivative by this minimum in order to plot values between O and 1 for every
panel. This enables us to compare the effect of the presence of a mating-type locus on
the same scale for both selection scenarii. x-axis: selfing rate f. y-axis: intratetrad selfing
rate p;,. The darker the color, the more the mating-type locus shelters the mutation, thus
promoting its maintenance.

3.3. Rare events of maintenance of the deleterious mutation occur in both selection scenarii,
paving the way for an accumulation of mutations

The empirical distribution of the purging time of the deleterious mutation in the partial dom-
inance case is shown on Figure 4: for ca. 75% of the independent runs, the mutation was rapidly
purged, while in some rare cases (ca. 1%), the purge took very long (several orders of magnitude
longer than the 75% percentile empirically obtained from the 100,000 runs). Note that the ap-
proximation of the distribution of the time to extinction by a Gumbel law (Th. 4.1 of Heinzmann,
2009) falls short here, because the initial number of individuals (one) and the absolute value of
p (given in the caption) are too small.

Consistently with our results that %é < 0, the sheltering effect of the mating-type locus
implies that the purging time increases when the recombination rate decreases (Figure 4, and
Figure Sé for the overdominant case). We also consistently find that increasing selfing decreases
the purging time (Figures S5 and S7). In each case, the closer p is to zero, the more extreme the
rare events are : the distribution of the 1% longest purging times is stretched towards higher
values when p gets closer to zero, while the distributions of the 75% shortest remain similar.

Figure 5 displays the probability that the mutation can be maintained long enough in the
population for another mutation to appear in a region of 10° bp near the mating-type locus. This
probability is nonnegligible (of the order of 1% to 10%), which shows that accumulation events
are rare but still occur near mating-type loci. This is true even under selfing as the sheltering ef-
fect of the mating-type locus can counter the purging effect of selfing. Indeed, when the recom-
bination rate between the first mutation and the mating-type locus is high (r = 0.5 or r = 0.1),
modeling a situation where the distance between the two loci is large, the probability that a
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Figure 4 - Empirical distribution of the deleterious allele purging time for the partial
dominance scenario. A total of 100,000 simulations were run, with s = 0.1, h = 0.1,
f = 0.5, pi, = 0.5, starting from one heterozygous individual (X, = (1,0,0)), and for
three values of the recombination rate (r = 0.001 in blue, r = 0.1 inred and r = 0.5
in green). The respective values for p are p = —0.0101, p = —0.0106 and p = —0.0307.
The x-axis is log-scaled. The large-dotted lines represent the 75" percentile (g75), the
dashed lines indicate the 99" percentile (g99), and solid lines the maximum value (max)
of the purging time. Maximum values are several order of magnitudes higher than the
75th percentile of the empirical distribution of the purging time.

second mutation appears before the first one is purged decreases with increasing selfing, even
with high intra-tetrad selfing rates. However, when the first mutation is closer to the mating-
type locus (lower recombination rates), the probability that a second mutation appears before
the first one is purged under selfing is similar to the probability under complete outcrossing. The
presence of a mating-type locus can thus facilitate the accumulation of deleterious mutations in
its flanking regions, especially in highly selfing populations.
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Figure 5 - Probability that a new mutation appears in a region of length 10 bp before the
first mutation is purged from the population, under the partial dominance scenario, de-
pending on the recombination rate between the first mutation and the mating-type locus.
We considered a mutation rate per base pair per reproduction event of 10~8. Here, the
reproduction events are those of the branching process, that change the composition of
the mutant-carriers subpopulation. The probability that a new mutation appears before
the purge of the first one is approximated by the proportion of simulation runs for which
the number of reproduction events exceeds the expected number of events needed for
a new mutation to appear (see text). For each set of parameters (r, f, p;,), 100,000 inde-
pendent simulations were run. Colors correspond to different values of the selfing rate f,
and line styles to different values of the intra-tetrad selfing rate p;,. When f = 0, a single
curve is displayed, as the value of p;, has no impact under complete outcrossing. For all
simulations, we set s = 0.1 and h = 0.1.

4. Discussion

Partially recessive deleterious mutations are almost surely purged in finite time while overdominant
mutations can persist

We have shown that partially recessive deleterious mutations close to a fungal-like mating-
type locus (i.e. that does not prevent diploid selfing) are almost surely purged in finite time, ex-
cept when they are neutral or behave as neutral. In the overdominance case, the probability of
purge depends on parameter values. Low selfing rates, high intra-tetrad selfing rates or tight
linkage to the mating-type locus increases both the maintenance probability and persistence of
the overdominant allele, whereas a high selfing rate favors its purge.

In particular, if linkage is complete (corresponding to r = 0 here, or to the case where the
inversion encompasses a permanently heterozygous locus in Jay et al., 2022), an overdominant
allele may be maintained in a population and even sweep to fixation with non-zero probability,
which confirms previous findings (Antonovics et al., 1998, Antonovics and Abrams, 2004, Jay et
al., 2022). This means that, although selfing purges deleterious mutations, a mating-type locus
can have a sheltering effect in its flanking regions.

Peer Community Journal, Vol. 3 (2023), article e14 https://doi.org/10.24072/pcjournal.238



https://doi.org/10.24072/pcjournal.238

18 Emilie Tezenas et al.

In general, the overdominant allele is maintained longer and with a higher probability in the
population when the fitness advantage of heterozygotes over homozygotes is higher, in line
with previous simulation results (Antonovics and Abrams, 2004). This conclusion is sensible: if
the mutant is strongly favored in a heterozygous state, it can be maintained in this state in the
population.

The presence of the mating-type locus has a sheltering effect under selfing

We found that, in both selection scenarii, the presence of the mating-type locus had no ef-
fect on the maintenance of deleterious mutations under outcrossing, but always had a sheltering
effect under selfing, which strengthened as the selfing rate increased. Indeed, selfing increases
homozygosity and thus accelerates the purge of a deleterious allele, whereas the presence of
a permanently heterozygous mating-type locus induces more heterozygosity in its flanking re-
gions, that counters the purging effect of selfing. The sheltering effect of a mating-type locus is
thus all the more tangible as it counters the strong purging effect induced by selfing. Increasing
intra-tetrad selfing also induces more heterozygosity and thus slightly reinforces the sheltering
effect of the mating-type locus. This is consistent with the findings that, in fungi, ascomycetes
that reproduce via outcrossing and live as haploids do not show evolutionary strata (Skinner
et al., 1993, Zhong et al., 2002, Phan et al., 2003, Kuhn et al., 2006, Jin et al., 2007, Malkus
et al., 2009) whereas pseudo-homothallic ascomycete fungi, living as dikaryotic and undergoing
mostly intra-tetrad selfing, are those with evolutionary strata around their mating-type locus
(Menkis et al., 2008, Hartmann, Duhamel, et al., 2021, Hartmann, Ament-Velasquez, et al., 2021,
Vittorelli et al., 2023). In basidiomycetes also, the species with evolutionary strata are dikaryotic
and automictic, e.g. Microbotryum fungi and Agaricus bisporus var. bisporus (Branco et al., 2017,
Branco et al., 2018, Foulongne-Oriol et al., 2021). This may be explained by the fact that intra-
tetrad selfing favors the accumulation of deleterious alleles near the mating-type locus, which in
turn can promote selection for recombination suppression because there will be more variabil-
ity in the number of mutations present in a genomic region close to the mating-type locus, and
therefore more fragments having a much lower number of deleterious mutations than average
in the population (Jay et al., 2022).

Additionally, we found that the sheltering effect of a mating-type locus was stronger when
the mutation was more strongly recessive. Indeed, the purging effect of selfing on partially re-
cessive mutations is stronger for more recessive mutations (D. Charlesworth and Charlesworth,
1987, Caballero and Hill, 1992, Arunkumar et al., 2015), in which case the opposite force of the
sheltering effect of a mating-type locus is strenghtened. This is in agreement with the results of
studies on the sheltered load linked to a self-incompatibility locus, showing that completely re-
cessive deleterious mutations are more easily fixed than partially recessive ones (Llaurens et al.,
2009). This also confirms results on the fixation of inversions encompassing recessive deleteri-
ous mutations and linked to a permanently heterozygous locus (Olito et al., 2022, Jay et al., 2022).
These results showed that inversions became fixed with a higher probability when segregating
deleterious mutations were more strongly recessive.

Rare events of long maintenance of deleterious mutations in the population can occur

We further found that rare events of long maintenance of deleterious mutations in the pop-
ulation occurred under both selection scenarii. This shows that some deleterious mutations can
persist in the population for an extended period of time before being purged, especially near the
mating-type locus: in approximately 1% of our simulations, the purge of the deleterious mutation
took several orders of magnitude longer than the 75% percentile empirically obtained from the
100,000. These surprisingly long purging times are likely to be due to the dynamics of the mutant
being almost critical (the dominant eigenvalue in the branching process approximation is nega-
tive, but close to zero). However, from a modeling perspective very little is currently known about
these trajectories, and more generally about the extinction time of multitype branching pro-
cesses. Studying the extinction time of a deleterious allele in a one locus-two allele setting with
a unitype branching process approximation and a diffusion approximation showed that the stan-
dard deviation of the mean extinction time was higher than the mean itself (Nei, 1971), which is
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a feature that was also found in our simulations of multitype branching processes. These results
show that the extinction time of deleterious alleles is highly variable, producing long-lasting mu-
tations that may induce an accumulation of deleterious alleles near a mating-type locus, which
is a prerequisite for recombination suppression to extend away from this locus (Jay et al., 2022).

The dynamics of deleterious mutations heavily relies on the mating system

Our results show that the mating system, and selfing in particular, is a prevailing force impact-
ing the dynamics of deleterious mutations. Indeed, we found that a mating-type locus shelters
mutations and thus favors their maintenance, but increasing selfing reduces the maintenance
of mutations with a stronger effect. This result is congruent with previous studies showing that
an increase in the selfing rate induces i) a reduction of the mutational load at a given locus or
at multiple non-interacting loci far from mating-type compatibility loci (D. Charlesworth et al.,
1990, for a deterministic model, Abu Awad and Roze, 2018, for diffusion approximation), and ii)
a reduction of the purging time of deleterious mutations (Caballero and Hill, 1992).

However, we observed a particular behavior when the population reproduced only via self-
ing. Under complete selfing in our setting, the existence of a sheltering effect of a mating-type
locus strongly depended on the values of the intra-tetrad selfing rate: the sheltering effect of
the mating-type locus was detectable only when the intra-tetrad selfing coefficient exceeded
a certain threshold, that depended on the dominance and selection coefficients. This strong ef-
fect of departing from complete selfing had previously been noted: introducing a small amount
of outcrossing in a selfing population can lead to sharp changes in the dynamics of a deleteri-
ous mutation, whereas adding a small amount of selfing in an outcrossing population induces a
smoother change (Holsinger and Feldman, 1985).

Limits of the methods

Our results are limited to the case of a single load locus, in interaction with a heterozygous
mating-type locus, and may not apply when considering different frameworks, such as multiple
epistatic loci or with additional beneficial mutations, especially regarding the impact of the mat-
ing system. Indeed, selfing has a non-monotonous effect depending on the tightness of linkage
between multiple interacting loci (Abu Awad and Roze, 2018): at low selfing rates, increasing
linkage between loci increases the mutation load, whereas the opposite effect is observed at
high selfing rates. Selfing also has a non-monotonous effect on genetic variation in populations
under stabilizing selection (Lande and Porcher, 2015, Clo and Opedal, 2021). In addition, self-
ing can enhance the fixation chances of a deleterious allele when it hitchhikes during a selec-
tive sweep (Hartfield and Otto, 2011, Hartfield and Glémin, 2014). Moreover, the impact of the
mating system on the maintenance of deleterious mutations may be different if the number of
individuals carrying the mutant allele exceeds a certain threshold. In this case, the branching pro-
cess approximation does not hold anymore, and a deterministic model in large population may
be used to further describe the dynamics of the deleterious allele (Durrett and Schweinsberg,
2004, Durrett, 2008 Section 6.1.3). The impact of the mating system then remains unclear: in
large populations, selfing reduces the effective population size, which impairs the efficiency of
selection and increases the mutational load of the population, but it also bolsters homozygos-
ity, which favors the purge of deleterious mutations (Pollak, 1987, Caballero and Hill, 1992, D.
Charlesworth and Wright, 2001, S. I. Wright et al., 2008).

Another limitation of our approach is that we considered a fixed recombination rate for sim-
plicity, but allowing this rate to vary would allow us to test whether recombination suppression
could evolve. Such an outcome may depend on the strength of selection against the deleteri-
ous mutation, as well as on the mating system (Antonovics and Abrams, 2004, Abu Awad and
Roze, 2018). In some previous models, the impact of a modifier of recombination in the form of a
multi-allelic locus was studied by simulations, but no analytical results were obtained (Feldman,
1972, Palsson, 2002, Antonovics and Abrams, 2004, Lenormand and Roze, 2022). The multitype
branching process framework developed here would also be an interesting approach to obtain
numerical results on this more complex situation, but analytical results would probably be out
of reach because of the increase in complexity of the model.
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Conclusion and Perspectives

In conclusion, our findings show that a mating-type locus has a sheltering effect on nearby
deleterious mutations, especially in case of selfing and automixis, which can then play a role
in the evolution of recombination suppression near mating-compatibility loci (Antonovics and
Abrams, 2004, Jay et al., 2022). This may contribute to explain why evolutionary strata of re-
combination suppression near the mating-type locus are found mostly in automictic (pseudo-
homothalic) fungi (Menkis et al., 2008, Branco et al., 2017, Branco et al., 2018, Hartmann et al.,
2020, Hartmann, Ament-Velasquez, et al., 2021, Foulongne-Oriol et al., 2021, Vittorelli et al,,
2023).

The results obtained here on the accumulation of deleterious mutations should apply, beyond
fungal-like mating-type loci, to other permanently heterozygous loci, such as supergenes (Llau-
rens et al., 2017). In contrast, sporophytic or gametophytic plant self-incompatibility loci prevent
diploid selfing, leading to a completely different evolutionary scenario in their flanking regions
as imposed by complete outcrossing. The diversity of observed patterns regarding the presence
or absence, length and number of evolutionary strata around these regions (Uyenoyama, 2005)
may be explained, in addition to the mating system, by other factors controlling the long-term
behavior of deleterious mutations which are not studied here, such as the number of alleles at
supergenes, the length of the haploid phase (Jay et al., 2022), or the presence of multiple load
loci that are possibly physically linked and with epistatic interactions (Abu Awad and Roze, 2018,
Lenormand and Roze, 2022). The questions of the genome-wide impact of a mating-type locus,
and of the interaction between a permanently heterozygous locus and background mutations,
are currently debated (Abu Awad and Waller, 2023). The branching process framework devel-
oped here could be applied to diploid individuals carrying a load locus with two alleles, undergo-
ing selfing or outcrossing, in order to investigate the dynamics of a new deleterious mutation in
a population with or without a mating-type locus.

Our results showing the long maintenance of deleterious mutations in the vicinity of per-
manently heterozygous loci pave the way for future investigations on the accumulation of dele-
terious mutations. Previous studies (Coron et al., 2013, Coron, 2014) on mutational meltdown,
showing that deleterious mutations accumulate faster when other mutations are already fixed,
also encourage future work in this direction.
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Appendix A. Table of notation

Table S1
N Population size
Gy, ..., Gy Genotypes
(g1,....84) Number of individuals of each genotype
f Selfing probability

pin and poy: = 1 — pip  Intra- and Inter-tetrad selfing probabilities

r Recombination rate
S; Probability of survival of an offspring of genotype i € {1,2,3,4}
(see Figure 1)
s Selection coefficient in the partial dominance case
h Dominance coefficient in the partial dominance case
$3, S4 Selection coefficients in the overdominance case
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Appendix B. Intra-, Inter-tetrad selfing and outcrossing

(A) Intra-tetrad selfing

Single parent

AHHa
|

Meiosis

J One tetrad

(B) Inter-tetrad selfing

Single parent
Uk
N

Meiosis Meiosis

Two tetrads

ORI

Cm X

GarXete Gamete Gamete Gamete
a A a
Wb
Offspring Offspring
(C) Outcrossing
Parent 1 Parent 2
Meiosis Meiosis
J One tetrad each J

>

GRIDIGRED

Gamete Gamete
A

Offspring

Figure S1 - Schematic representation of the three mating systems considered in the
model. Individuals are represented by a pair of mating-type chromosomes, with the
mating-type locus displayed. A diploid offspring is generated by the fusion of two ga-
metes carrying different mating-type alleles (A and a). (A) Under intra-tetrad selfing, both
gametes are picked from the same tetrad; only one parent is involved. (B) Under inter-
tetrad selfing, the two gametes are picked from two different tetrads (meioses) produced
by the same diploid parent; only one parent is involved. (C) Under outcrossing, the two
gametes are picked in tetrads produced by different parents.
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Appendix C. Appendices for the Method section

C.1. Rates of creation of offspring with given genotypes (Moran process)

Parental | Intra Recombination Genotype of offspring
Geno- /Inter -
types Tetrad G G2 ‘ c ‘ G
Intra | (o) (1-1) fg1pin(1 — 1) 0 0 0
Gl Pin 1 1 1 1
(A) r n fg1pinr n fg1pint n fg1pinr 2 fg1pinr
fe1
Inter (AA) (1—1r)? fg1pout (1 — r)? 0 0 0
Pout 1 1 1
(AP) 2(1 — r)r §2f'g1pout(1 —rnr 0 12fg1pout(1 —nr Z2fg1pm,t(1 —nr
2 1 1 1 1
(PP) r 2 ferpout r? 2 ferpout r? 2 e Poutr? 2T Poutr?
ntaf@) (1) 0 fg2pin(1— 1) 0 0
G2 Pin 1 1 1 1
(P) r n fg2pinr " f82Pinr " fg2pinr 2 fg2pint
feo
Inter (AA) (1 - r)2 0 fg2pout(1 - r)2 0 0
Pout 1 1 1
(AP) 2(1 —r)r 0 52f82poue(1 = 1)r | 22fg2pou (1= r)r | 2 2fE2poue(l —r)r
2 1 1 1 1
(PP) r Z ngpout r2 1 fg2pout f2 1 ng.Dout r2 Z fg2 Pout r2
’ Gs3 fg3 ‘ Same tetrad (homozyg.) ‘ 0 ‘ 0 ‘ fgs ‘ 0 ‘
’ Gy fgs ‘ Same tetrad (homozyg.) ‘ 0 ‘ 0 ‘ 0 ‘ fau ‘

Table S2 - Table summarizing the rates of production of an offspring of each genotype
(last four columns) in case of selfing. Parental Genotype: The genotype of the individual
involved in the mating event; Intra/Inter-tetrad: Mating through intra- of inter-tetrad self-
ing (see section 2.1 for definitions); Recombination: Occurrence of a recombination event
in the tetrads from which gametes are picked. "A" stands for "Absence" in one tetrad, "P"
stands for "Presence" in one tetrad. We use only one letter when the two gametes come
from the same tetrad or when one of the genotypes involved is homozygous at the load
locus. For example, (AP) indicates that recombination occured in one tetrad but not in the
other. G;: the rate at which an offspring of genotype G; is produced, due to the scenario
of parental genotype, intra/inter tetrad selfing and presence/absence of recombination
considered. The total rate T,(+G;) at which a new offspring of genotype G; is created
when the population state is g = (g1, g2, g3, g4) is then the sum of all the rates appearing
in column G; in this Table, Table S3 and Table S4.
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The total rate at which an offspring of a given genotype is produced is then obtained by
summing the rates along each column G; in Tables S2, S3 and S4. This gives:

Te(+6) = (1-r+ F(1- - p)(a- 1) ) + g (1- - p)(1 1))

+ % [gl (1 - ;) ((gl -1 (1 - ;) + &3 +g4> + gor ((gz - 1)2 + %(& +g4)>

.
+ g182r (1 - 2) + g3g4}

Te(+62) = farg (1~ (1~ pi)(1 — 1) + &2 (1 N r))>

n % [gz (1 - ;) ((g2 —1) (1 —~ ;) +g3 +g4> +air ((gl - 1)% + %(& +g4)>

r

+ 8182r (1 - 2) + g3g4]

To(+Gs) = farz (14 (L= pi)1 = 1)) + feag (14+ (1 = pin) (1 = 1) + fis

1—-f r r r r r?
+ N_1 {gl(gl - 1)5 <1 - 2) + g2(g2 — 1)5 (1 - 2> + 818 (1 —r+ 2)

+ g3(g1+ &2+ (g3 — 1))]

Te(+Ga) = frg (14 (1= pin)(1 = 1)) + foog (14+ (1= pi)(1 = 1)) + e

1—-f r r r r r2
TNZ1 {gl(gl - 1)5 <1 - 2) + &2(g2 — 1)5 (1 - 2> + 8182 (1 —r+ 2)
+ (g1 + &2+ (& — 1))}

C.2. Reproduction law for the branching process

We give here an example of how the reproduction laws for the branching process are derived
from the rates of the Moran process, using the approximate regime (1).

Let us derive the coefficient A;» of the matrix A, which is the rate at which an individual of
genotype G, generates an offspring of genotype G; and survives. Equivalently, this is the rate at
which an individual of genotype G, generates a descendance vector equal to e; + e.

Using the rates obtained for the Moran model, the rate at which an individual of genotype
G, produces an offspring of genotype Gj is:

r -1 r 1 r

) 15 (1=(=pi)(1=)+(1=1) lr (g/\i —1%373 (Ngj 1 Ng—4 1)>+Ng—1 1 (1 N 2) ]

The first term, with a factor f, is the rate at which an individual of genotype G, produces an
offspring of genotype G; by selfing. The second term, with a factor 1 — £, is the rate at which an
individual of genotype G, produces an offspring of genotype G; by outcrossing. In this term, the
fractions of the form Ngjl represent the probabilities that an individual of genotype G; is chosen
to mate with the G, parent.

Using the approximation (1), i.e. assuming that g4 ~ N and g; < N for i = 1, 2, 3, we obtain
that the quantity in Eq. (5) can be approximated by:
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(1= =pn)1=n)+@-h)3

To obtain Aj,, it remains to multiply this rate by the probability that the offspring survives,
Sy, and the probability that the parent G, is not chosen to die, X=1. As the population size N is
considered large, the latter probability is approximately equal to 1

This gives:

Anr = H(l —(1=pn)(1-1)+(1- f);] X Si.

C.3. Equation for the expected value of the size of the mutant population

This appendix gives the details of the derivation of the coefficients of the matrix C defined
by

4
dt
following Bacaér, 2018. Note that this is the same matrix defined in Athreya and Ney, 1972, Eq.

9, part. V.7.2., or in Pénisson, 2010, Eq. 1.1.16, but here we use the methodology described by
Bacaér, 2018 to derive its coefficients.

In the following, type j refers to the genotype G;. We will use the standard notation s* :=
sits3? ... sy for s and z two vectors of the same dimension d.

EZo [Zf] = EZo [Zt] C,

C.3.1. Notation. For all t > 0, let us denote the expected value of the process at time t by E(t):

El(t) E[Zt,l]
E(t) = (Eg(t)) — (E[zt,2]> _
E3(t) E[Ztg]

For z € N3 and t > 0, we let p(t, z) = P(Z; = z) be the probability that the system is found
in state z at time t. Let f(t, .) be the generating function of the variable Z;: for all s € [0, 1]3,

Zptzs —E[Z” Ze2 Zt3]

zeN3

Recalling that Y7 stands for the random vector of number of descendants of each type gen-
erated by the reproduction of a type j individual, we also define 7;(z) = P(Y/ = (z1, 2, z3)). As
indicated in the main text, the rates at which an individual of type j reproduces and gives rise to
a descendance vector e; + ¢, e; or 0 are respectively Aj;, T;; and D;;. We denote the total rate at
which a reproduction event occurs for a parent of type j by ¢; := > A; + > T + Dj

1 1

The reproduction law of type j individuals is then given by, for every i € {1, 2, 3},

; Aji , T; , D;
P(Y =e+¢)=—2, P(Y =¢)=-2, P(Y/ =0)=-L
G G G

Finally, let h; be the generating function of the reproduction law of type j individuals, for
j €{1,2,3}. Thatis, for s € [0, 1]3,

hs) = 3 mi(z)s” = E[s)1s)2s)’].

zeN3
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C.3.2. Ordinary differential edecompoquation (ODE) satisfied by (E(t))>o. The reproduction law
of each type has finite moments of all order, because the number of descendants produced can
not exceed 2. That garantees that there is no explosion of the population in finite time. Hence,
standard results on multi-dimensional random variables (see for example Athreya and Ney, 1972)
give us that, for all types jand all t > 0,

(0) = 5 (61)

with 1 = (1, 1, 1), which gives

aE(t)  Pf, 0 [« op, .,
i o5 DT 5 g‘p gt b3

The variation of p over time % can be decomposed into two terms. For z € N3,

)
a’; szcjptz +Z > (i +1)gp(t, u+ g)m(v).

J=1 u,veN3
u+v=z

The first term is the rate at which the population departs from state z, and is given by the
sum over all types j of the rate at which individuals of type j reproduce. The second term is
the rate at which the population arrives in state z from another state, and can be decomposed
according to the individual type whose reproduction changes the population state. Note that
the descendance vector generated during the reproduction event (v) counts the parent when it
does not die, implying that the population is formally decreased by one individual of type j and
increased by a vector v during the reproduction event. In other words, if the population starts
from a state u + ¢; and an individual of type j reproduces by creating a vector v of descendants,
the final state of the populationis u+ e —ej +v =u+v.

Back to the derivative of f with respect to t, we use the fact that the rates ¢; are independent
of the current state of the population to re-arrange the sums and obtain:

of B op 5
a(t,s) = Z a(t,z)s
zeNs3
3 3
= Z - sz-cjp(t, z)s? + Z Z (uj+ 1)gp(t, u+ e)mj(v)s*
zeN3 Jj=1 J=1uveN?
u+tv=z

= ch =Y Zip(t,2)s"+ > Y (uj+1)p(t, u+ g)mi(v)s®

zeN3 zeN3 y,veNs3
utv=z
=2 G| =5 D zp(t,2)s*9+ Y Y (u+1)p(t,ut ej)ﬂj(V)S“*”)
J zeN3 veN3 ueNs3

= ZCJ =5 2 Zp(t2)s 9+ ) m(v)s” Y (u+)p(t u+ ej)s“)

z€NS3 veNs ueN3

- ch ( SJE) (t,s)+ hj(s)gjj(t,s)>
8

—Zcf a5 (19
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Writing 0;j = 1if i = j and §; ; = 0 otherwise, we then obtain for the expected value:

dE; 8f

dt — 9s; £:5)]s1
—Eh(% ~65) (6 D+ Y gD - D5 (1)
=36 (G20 =) B©+ X oh(n) - D0 )
=6 (5200) - o) 6.

where the last equality arises from the fact that, because h; is a generating function,

hi(1)—1= > m(z)—1=0.
z€N3
The matrix C we are looking for is thus defined by Cj; = ¢; (‘ZZ (1) — 5,-J-) for1 <i,j<3.

Furthermore, we have, for all j,

(ZAUs,sJJrZ jisi+ D )

Combining the above, we arrive at

Z Ty — D ifi=j.

In conclusion, the matrix C is given by

(fa(r) + (1 = £)d(r)) 51 — Sa (fe(r) +(1=£)35) S (1-1)5
(6) C= ( (fe(r)+(1—-1)%)S> (fa(r)+ (1 —=1)d(r))S2—Ss (1— f)52> :
fb(r)53 fb(r)53 f53 — 54
with

aN=1-r+7(1-Q=pn)a-n). b()=Z(1+@-pn)A-1r),
1

c(r) = Z<1 ~(1=pi)(1-1r)), and d(r)=1- 5"

C.4. Reducibility of the matrix C and probability of extinction of the branching process

We will use the standard notation s* := s;*s3* ... s;? for s and z two vectors of the same
dimension d.

Assessing the type of branching process at hand (super-, sub-, or critical) relies on the study
of the eigenvalues of the matrix C. We use results of Sewastjanow, 1975 detailed in Pénisson,
2010 to obtain conditions on the almost-sure extinction of the process. When the matrix C is ir-
reducible, the Perron-Froebenius theory of positive matrices states that it has a unique dominant
eigenvalue. The branching process is then super-, sub-, or critical when this dominant eigenvalue
is respectively positive, negative, or zero (Athreya and Ney, 1972, V.7.2.). In particular, the prob-
ability of extinction is equal to 1 when p < 0.

In our case, the matrix C can be reducible (for example, when f = 0). In order to obtain a result
on the probability of extinction in the subcritical case, we use the theory of sub-processes and
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of final classes. We recall below useful definitions and the principal result used (Sewastjanow,
1975).

Let (Z;)+~0 be a multitype branching process, with types in a finite set K. The equivalence
relation of communication is defined by: for all states k;, k; € K, we say that k; and k; communicate,
if and only if there exist s, t > 0 such that

Pek,.(zs,kj >0)>0 and Pekj(Zt,k,. >0)>0.

This means that there exists a time at which the probability that the population described
by a branching process initiated with a single individual of type k; contains an individual of type
k; is positive, and a time at which the probability that the population described by a branching
process initiated with a single individual of type k; contains an individual of type k; is positive as

well. If a subset K = {ki, ..., kp} is a class for the communication equivalence relation (meaning

tha~t each state of K communicates with all the others but communicates with none of the states
in K¢€), the K-subprocess is the process defined for all t > 0 by

ZNt = (Zt,kly ceey Zt,kp) ,

which is the vector Z; from which only the coordinates of the types in the class K are kept.
(Zt)e>0 is still a branching process, and is by definition irreducible.

Let Fry, : s €[0,1]9 — Ee,. [szf} be the generating function of the process (Z;), at time t,

starting with one individual of type k;. K = {ki. ..., kp} is then said to be a final class if it is non-
empty, and satisfies the property that there exists t > 0 such that for all k; € K and s € [0, 1]7,
Fi . (s) is of the form

Fiii(s) = ak,1(t, s)sk, + -+ + au p(t, 5)sk,,

where the coefficients oy, ; can be expressed using the coordinates s, of s such that k ¢ K.
In other words, F; k. (s) is linear in s, for all k € K. The interpretation of this property is that
whenever the population starts from a single individual of type k; € K, at any time t > 0 there
is one, and only one, individual of a type k; € K (and potentially other individuals with types in
K¢). The following result gives a condition for the almost sure extinction of the process (Zt)e0
in the general case where the matrix C is not necessarily irreducible. Recall that the Perron’s root
p of a process, when it exists, is a real eigenvalue of the matrix associated with the process such
that all real parts of other eigenvalues are smaller than p (see Pénisson, 2010 Th. 1.1.7 and the
following ones for a more detailed definition).

Theorem C.1 (Prop. 1.1.22 in Pénisson, 2010). Let (Z;)+~0 be a continuous time Galton-Watson pro-
cess, and let p = max p . be the maximal value of the Perron’s roots of all the possible K-subprocesses.
K

Then the process (Z;)+~0 almost surely dies out if and only if there are no final classes and p < 0.

Let us verify that our branching process does not contain a final class. For that, we show
that the generating function of the process starting from any state has a non-zero coefficient of
degree zero, and thus cannot be linear.

Forany t > 0,r € [0,1]% and any j € {1,2, 3}, we can decompose the generating function
into

Fej(r) = Ee(r®) =Pg(Z: =0)+ > Pe(Z:=2z)r’.
zeN3\{0}
Let us prove that Pej(Zt = 0) > 0 for every j € {1,2,3}. This will prove that the generating
function cannot be linear for any initial type, and thus that the process does not contain any
final classes.
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Let j € {1,2,3}, 11 be the time of the first reproduction event, and Y{ be the descendance
vector created at that time. We have

PeJ'(Zt == 0)

v

P, ({n < t}n{¥{ =0})
P, (Y{ = 0lr1 < t)Pg(m < t)
P, (11 < t) x P(Y/ =0)

=(1- e*Cjt)&’
¢
where ¢; is the total rate of reproduction of an individual of type j, and Dj; is the rate at which an
individual of type j reproduces and gives rise to a null vector of descendants. Hence, Pej(Zt =
0) > 0 when Dj; > 0.

For both selection scenarii, D11 = Dy = D33 = S4. In the partial dominance selection sce-
nario, S4 = 1, and in the overdominant selection scenario, S4 = 1 — s4. Having Dj; = 0 for any j is
impossible in the first scenario and requires s, = 1 in the second scenario, which means that the
wild allele is lethal, which is not a reasonable assumption. We thus take s; < 1. As a consequence,
the generating function cannot be linear, and the process does not contain any final class.

The result of Proposition C.1 then applies here, and the sign of the dominant eigenvalue of
matrix C gives a condition on the almost-sure extinction of the process.
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Appendix D. Supplementary figures
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Figure S2 - Relative variation of the derivative of the eigenvalue in the partial dominance
case, for varying selfing rate f (x-axis), dominance coefficient h (y-axis, left) and selection
coefficient s (y-axis, right). For each panel, the values of %@ |/—05 range from a minimal
value, which is negative, to zero. We divided each value of the derivative by this minimum
in order to plot values between 0 and 1 for every panel. This enables us to compare the
impact of different parameters (h, s and f) on the sheltering effect of the mating-type
locus. The darker the color, the more the mating-type locus shelters the mutation, thus
promoting its maintenance.
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Figure S3 - Relative variation of the derivative of the eigenvalue in the overdominance
case, for varying selfing rate f (x-axis), and selection coefficients s; (y-axis, left) and s,
(y-axis, right), with s3 > s4. For each panel, the values of %§ |05 range from a minimal
value, which is negative, to zero. We divided each value of the derivative by this minimum
in order to plot values between 0 and 1 for every panel. This enables us to compare the
impact of different parameters (s3, s4 and f) on the sheltering effect of the mating-type
locus. The darker the color, the more the mating-type locus shelters the mutation, thus
promoting its maintenance.
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Figure S4 - Difference between the dominant eigenvalue derivative at r = 0.5 and at
r=0,A (%@) = %@ lr=05 —%§ |-=0. The left panel shows the partial dominance case, the

right panel shows the overdominance case, for varying selfing rate f (x-axis), and intra-
tetrad selfing rate (y-axis). The difference is always positive, with both derivative being
negative (see App. E.3 and App. F.3). This means that the absolute value of the derivative
at r = 0 is always greater than the absolute value of the derivative at r = 0.5. The darker
the color, the larger the difference between the two derivatives.
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Figure S5 - Empirical distribution of the deleterious allele purging time for the partial
dominance scenario. A total of 100,000 simulations were run, with s = 0.1, h = 0.1,
r = 0.1, p;, = 0.5, starting from one heterozygous individual (X, = (1,0, 0)), and for
three values of the selfing rate (f = 0 in green, f = 0.5inred and f = 1 in blue). The
respective values for p are p = —0.0100, p = —0.0157 and p = —0.0818. The x-axis is
log-scaled. The large-dotted lines represent the 75t percentile (q75), the dashed lines
indicate the 99t percentile (q99), and solid lines the maximum value (max) of the purging
time. Maximum values are several order of magnitudes higher than the 75th percentile
of the empirical distribution of the purging time.
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Figure S6 - Empirical distribution of the deleterious allele purging time for the over-
dominance scenario. A total of 100,000 simulations were run, with s3 = 0.1, f = 0.5,
pin = 0.5, starting from one heterozygous individual (X, = (1,0, 0)), for several values
of the recombination rate and of the selection coefficient s, (r = 0.1, s, = 0.001 in blue,
r =0.5,5, = 0.0l inred, and r = 0.5,s, = 0.001 in green). The respective values for p
are p = —0.0052, p = —0.0129 and p = —0.0219. The parameters were chosen so that
the process is sub-critical and thus the purging time is almost surely finite. The x-axis is
log-scaled. The large-dotted lines represent the 75" percentile (q75), the dashed lines
indicate the 99" percentile (q99), and solid lines the maximum value (max) of the purging
time. Maximum values are several order of magnitudes higher than the 75th percentile
of the empirical distribution of the purging time.
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f=0.5 q75 (f=0.5) q99 (f=0.5) max (f=0.5)
f=0.1 q75 (F=0.1) q99 (F=0.1) max (f=0.1)

0.200

0.175 1

0.150 4

0.125 1

Density

0.100

0.075

0.050 1

0.025 4

0.000 T T T T T
10! 10° 10° 107 10°
Purging time of the deleterious allele

Figure S7 - Empirical distribution of the deleterious allele purging time for the overdomi-
nant scenario. A total of 100,000 simulations were run, with s3 = 0.5, p;, = 0.5, s, = 0.01,
r = 0.4, starting from one heterozygous individual (X, = (1,0, 0)), for four values of the
selfing rate (f = 0.1 in yellow, f = 0.5inred, f = 0.9 in blue, f = 1 in green). The respec-
tive values for p are p = —0.0035, p = —0.0713, p = —0.1905 and p = —0.25. Parameters
were chosen so that the process is sub-critical and thus the purging time is almost surely
finite. The x-axis is log-scaled. The large-dotted lines represent the 75 percentile (q75),
dashed lines indicate the 99" percentile (g99), and solid lines the maximum value (max)
of the purging time. Maximum values are several order of magnitudes higher than the
75th percentile of the empirical distribution of the purging time. Note that the selection
coefficient for bb homozygotes is high (s3 = 0.5).
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Appendix E. The dominant eigenvalue, its sign and its derivative: partial dominance
scenario
E.1. Determination of the dominant eigenvalue

The eigenvalues computed with Mathematica (Wolfram Research, 2015) are, for the partial
dominance case,

X=—-r—hs(l—r), A= %(ﬁ—k\/&) A= %(ﬁ—\/z)

where

(7) B=F(—r(1—hs)a+2(1—5s))=2(1+hs), a=2-r—pp(l-r),

(8) A = (B + 4hs)? — 8fsra(1 — h)(1 — hs).
It is straightforward to see that A, > A_.

Let us prove that we also have A\, > \g. We used Geogebra to assist us in the calculations.

Ay > Ao if and only if (iff) %(,BJM/E)Z/\O iff VA >4x — .

If 4Xo — B < 0, the last inequality if straightforward, as v/A > 0.
Let us study the sign of 4\o — 3. We define P(r) := 4X\g — B = apr? + arr + ag, With

ap=—f(1—hs)(1—ppn) <0, a1="rF(1—hs)(2—pin)—4(1—hs) <0,
and ap = —2f(1 —s) 4+ 2(1 — hs) > 0.

P is a second-order polynomial, with negative quadratic coefficient and positive coefficient
of order zero (because 1 — hs > 1 — s > f(1 — s)). Thus, P admits two roots, one negative and
one positive. We denote the positive root by rp. For r € [0, rp], we have P(r) > 0, and for r > rp,
we have P(r) < 0. Consequently, we readily obtain that when r > rp, Ay > Ao.

Let us now consider the case r € [0, rp]. For such an r, using that 4\, — 3 > 0, we can write
that

VA > 40— B iff A > (4 — B)2

Let us write Q(r) := (4X\o — B)? — A = bor? 4 byr + by, with

by = F(1— hs)(1— pin) > 0, by =2(1— hs) — F(1— hs)(2 — pim) — (1 — h)(1 — pin),
and by = —2(1 — hs)(1 — f) — pinfs(1 — h) < 0.

Q is a second-order polynomial, with positive quadratic coefficient, and negative coefficient
of order 0. Hence, @ admits two roots, one negative, and one positive. We denote the positive
root by rg. In order to prove that Ay > \g, we have to prove that Q(r) < 0 when P(r) > 0, i.e.
when r € [0, rp]. As Q(0) < 0 and Q has only one positive root, proving that Q(rp) < 0 will imply
that Q(r) < 0for r € [0, rp]. Let us prove that Q(rp) < 0. Noting that the quadratic coefficients
of P and Q are the opposites of one another, we use the equation P(rp) = 0 to obtain

Qrp) = r( = 2(1 = hs) — f5(1 = h)(1 = pin) ) + f5(1 — h)(2 — pin).

Seeing Q(rp) as an affine function of rp, we obtain that the function rp — Q(rp) admits a
unique root, which is positive, and that we will denote by r2 :
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0 fs(1 — h)(2 — pin)
P21 — hs) + fs(1 — h)(1 — pin)”
We wish to prove that rp > 3, as it implies that Q(rp) < 0. Having rp > r2 is equivalent
to having P(r3) > 0, as rp is the unique positive root of P and P(0) > 0. Consequently, it only
remains to prove that P(r3) > 0, which is equivalent to

(2(1 — hs) + fs(1 — h)(1 — Pin)>2P(rg) > 0.

To obtain this result, an efficient way is to consider the left-hand term as a polynomial in p;,.
Let us write K(pin) = (2(1 — hs) + fs(1 — h)(L — pin))?P(r0) = cap?, + c1pin + co, With

o="Ff%s1-s)(1—-f)(1-h) >0 c=21-s)>*1-h)?>>0
and ¢o = (1 — h)?f?s?(1 — hs + (s — 1)) + 4(1 — f)(1 — hs)*> > 0.
K is thus a second-degree polynomial in p;,, with a positive quadratic coefficient, and a mini-
mum reached for a negative value (minimum reached at —c; /(2¢;) < 0). K is thus monotonic for

positive abscissa, and the coefficient of order zero is positive. Consequently, for all p;, > 0, we
have K(pj,) > 0. We have then P(ry) > 0, which concludes the proof that A\ > Ao.

Based on the result we just obtained, from now on we write p = A,.

E.2. Sign of the dominant eigenvalue

We prove that p < 0, except when s = 0, or when h = 0 and r = 0, in which cases p = 0.
Recall the notation «, 5 from (7) and A from (8).

First, considering that r € [0, 1] and p;, € [0, 1], we have 0 < «a < 2, which leads to g < 0.

When s = 0 or (r, h) = (0,0), A = 32, which gives, as < 0, VA = /B2 = || = —3. We
then have p = 1 (3 — 8) = 0.

Let us now consider the case where s # 0 and (r, h) # (0, 0). We have

B+VA>0 iff 0>8>—VA iff 0<B <A iff 2P—A<O0.

Moreover, 32 — A = —16f(1 — s)hs + 8fra(1 — hs)s + 16hs. The sign of p is thus the sign of
fh(2 — ra)s + 2h(1 — f) + raf, which is an affine function of s. The slope and intercept of this
function are both non-positive when (r, h) # 0 or s # 0, which gives p < 0 in those cases.

E.3. Derivative of the dominant eigenvalue

The derivative of pis

GG ]

or 4 2 VA
Evaluating this derivative at r = 0.5, and using that 5'(0.5) = —f(1 — hs), we obtain
dp 1 £(0.5) + 45)
=r =—Zf(1—hs) (14222172
Orlr=05 4 ( ) ( + VA
Simple calculations lead to %’r:()j =0whenf=0,ors=0,ors=1,orh=1,orf =1and

Pin < 3 — %. In the latter case, whether the inequality is verified or not determines the sign

of A and therefore the value of v/A, which is either equal to 3(0.5) + 4s or —(3(0.5) + 4s). The
derivative is then either equal to zero or strictly negative.

For the rest of this paragraph, we study the sign of the derivative when none of the above
cases is met.
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Let us write v = 3(0.5) 4 4s. If ¥ > 0, we readily obtain %\,:0_5 < 0. Let us then assume that
~ < 0. In this case, we have

dp

>0 iff VA>-—n.
or

. i
<0 iff 1+—
r=0.5 I + v A

As —~ > 0, this comes down to

dp
Orlr=05
which is indeed satisfied.
In conclusion, we have shown that, in the general case,

%1 o
orlr=05
We also compute the derivative at r = 0. We have 5(0) = 2f(1 —s) — 2(1 + hs), 5'(0) =
—F(1— hs)(2 — pin), A(0) = (2f(1 — 5) — 2(1 — hs))>, and A/(0) = 23'(0)(53(0) + 4hs) — 8fs(1 —

h)(L — hs)(2 — pin).
After simplification, this gives

<0iffA >~ iff(1—s)(f-1)<0,

o fU—hﬂ@—wﬂ< 25(1 — h) )
Brlimo ~ 4 Lsgn(fl =) = (1= hs)) + g — 5= = ey )
with sgn(f(1 — s) — (1 — hs)) is equal to 1 (respectively to —1) when (1 — s) — (1 — hs) is
positive (resp. negative).
We obtain immediately that

dp
— <0.
orlr=0 —
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Appendix F. The dominant eigenvalue, its sign and its derivative: overdominance
scenario
F.1. Determination of the dominant eigenvalue

The eigenvalues computed with Mathematica (Wolfram Research, 2015) for the overdomi-
nant case are

Ao=51— 1, )\4_:%(5"‘\/5), )\_:%(B—\/E)

with

(9) B="Ff(r[pin(l—r)+r—2]—2s3+2)+4s, — 2,
and

(10) A = (B — 4s4)? + 8frsg(pin(1 — r) + r — 2)

Here again, we obviously have Ay > A_.
We follow the same method as in the partial dominance case to prove that A, > \o.
We have

AL > Xo if and only if (iff) %(,BJM/E)Z/\O iff VA > 4) — .

If 4)\g — 8 < 0, the last inequality if straightforward, as v/A > 0. Let us thus study the sign of
4)\o — B. Let us define the function P by P(r) := 4\g — 8 = axr? + ayr + ag, with

agz—f(l—p;,,) <0, a= f(2—p,'n)—4<0, and 30:2(1—f(1—53)) > 0.

P is a second-order polynomial, with a negative quadratic coefficient and a positive coeffi-
cient of order 0. Hence P admits two roots, one which is negative and one which is positive.
We denote the positive root by rp. For r € [0, rp], we have P(r) > 0, and for r > rp, we have
P(r) < 0. Consequently, we readily obtain that when r > rp, the conclusion follows.

Let us now consider r € [0, rp]. For such an r, as 4\g — 3 > 0, again we have

VA > 40— B iff A > (4 — B)%

Let us define the function Q by Q(r) := (4\o — 8)%> — A = bor? + byr + by, with

bng(l—p,‘n)>0, b1:f(1+53)(Pin—1)—f—|—2, and b():—f53p;n—2(1—f)<0.

Q is a second-order polynomial, with positive quadratic coefficient, and negative coefficient
of order 0. Hence, @ admits two roots, one negative and one positive. We denote the positive
root by rg. In order to prove that Ay > )Xo, we have to prove that Q(r) < 0 when P(r) > 0, i.e.
when r € [0, rp]. As Q(0) < 0 and Q has only one positive root, proving that Q(rp) < 0 will imply
that Q(r) < 0for r € [0, rp]. Let us prove that Q(rp) < 0. Noting that the quadratic coefficients
of P and Q are the opposites of one another, we use the equation P(rp) = 0 to obtain

Q(rp) = rp( =2 = fss(1 = pin) ) + fs3(2 — pin).

Seeing Q(rp) as an affine function of rp, we obtain that the function rp — Q(rp) admits a
unique root, which is positive, and that we will denote by r,%:

fs3(2 — pin)
2+ f53(1 - pin).
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We wish to prove that rp > rg, as it implies that Q(rp) < 0. Having rp > r,% is equivalent to
having P(ry) > 0, as rp is the unique positive root of P and P(0) > 0. There is thus left to prove
that P(r3) > 0, which is equivalent to

(2+ (1= pin)) P(2) 2 0.

To obtain this result, an efficient way is to consider the left-hand term as a polynomial in p;,.
Let us write K (pin) = (2 + fs3(1 — pin))?P(r3) = cap?, + c1pin + co, With

o ="Ffs(l-s)(1-1fs3)>0, c=21-s)3s2>0
and ¢o = f2s3((1 — f)(1 — s3) +s3) +4(1 — f) > 0.

K is thus a second-degree polynomial in p;,, with a positive quadratic coefficient and posi-
tive coefficient of order 0, that reaches its minimum for a negative value (minimum reached at
—c1/(2c2) < 0). Consequently, for all p;, > 0, we have K(pi,) > 0. We have then P(r3) > 0,
which concludes the proof that A, > Ao.

Based on the result we just obtained, from now on we write p = ;.

F.2. Sign of the dominant eigenvalue

In this selection scenario, p is not of constant sign.
The condition for p > 0is

\/f2 [r(pin(]_ — r) +r— 2) — 253 + 2}2 + 4f(2($3 — 1) — r(253 - 1)(([),‘,7 - l)r — Pin + 2)) +4

+f[r(p,—,,(1 —r)+r—2)—2s3+ 2} +4sy > 2.

We compute the dominant eigenvalue and study its sign for simple cases, and then use a
numerical approach to complete the analysis (Figure 2). Under complete intra-tetrad selfing (f =
1,pin = 1), wehave p = 54 —r/2ifs3 > r/2and p = s, — s3if s3 < r/2. As 54 < s3, the
condition to have p > 0 reduces to r < 2s,. This is consistent with the results of Antonovics
and Abrams, 2004, as the authors set s3 = 1 and thus obtain p = s, — r/2. Under complete
selfing (f = 1),if r(2 — r — pin(1 — r)) — 2s3 > 0, then p = s, — s3 < 0. This shows that the
value of the dominant eigenvalue, and thus the dynamics of the process, depends only on the
selection strength when the recombination rate r exceeds a certain threshold. Moreover, this
threshold depends only on the selection coefficient for homozygous deleterious (s3), and on the
probability of intra-tetrad mating (p;,). This threshold appears on the bottom panels of Figure
2. Under complete outcrossing (f = 0), we have p = s; > 0. When the mutation is completely
linked to a mating-type allele (r = 0), we have p = s; > 0. When the mutation is neutral (s3 = 0,
implying s, = 0 as well), we have p = 0. Finally, when BB homozygotes are not disfavored
(s4 = 0), we have p < 0. Indeed, in this case, 3 = fr[pin(1 — r) + r — 2] — 2fs3 + 2(f — 1) < 0. We
thus have

p>0 iff VA>—-B>0 iff A>p% iff 8frs3(pin(1—r)+r—2)>0.
But we trivially have pj,(1 — r) + r — 2 < 0, and so the condition is not met and p < 0.

F.3. Derivative of the dominant eigenvalue

The derivative of the largest eigenvalue p is

230 1)

Moreover, we have

B'(r) = 2f(1 — pin)r + f(pin — 2)
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and

A'(r) =28 (r)(B(r) — 4s4) + 8fs3(2(1 — pin)r + pin — 2).
Evaluating these quantities at r = 0.5, we obtain 3/(0.5) = —f, and so

op 1 B(0.5) — 4s4 + 4s3

g = f(1+ .
Orlr=05 4 v A

Simple calculations lead to %|r=0.5 =0whenf =0,0rs3=0,0r f =1and p;, <3 — 8s;.

For the rest of this paragraph, we study the sign of the derivative when none of the above
cases is met.

Let us write v = 3(r = 0.5) — 4s4 + 4s3. If v > 0, we readily obtain that %h:o.s < 0. Let us
then assume that v < 0. In this case, we have

op .
ar <0 iff 1+

oe >0 iff VA>—n.

SN

As —vy >0,
0 . .
chf o5 < 0iff A > ~?iff (8- 454)2 + 8frss(pin(L—r)+r—2) > (8 — 454)2 + 8s3(3 — 4s4) + 16532.
After some simplifications, we obtain

dp . 8
°r 0 iff f<-,
orlr=05 < I < 3

which is always satisfied as f € [0, 1].
In conclusion, we have shown that

dp
orlr=05
We also compute the derivative at r = 0. We have §(0) = 2f(1 — s3) + 4s4 — 2, 5/(0) =

—f(2 = pin), A(0) = (2f(1 — s3) — 2)2, and A’(0) = 28’(0)(B8(0) — 4s4) — 8fs3(2 — pin)-
After simplification, this gives

ap f(2— pin) ( 4s, )
S I S LS 2f(1 — s3) — 2
orlr—o 2 Fegn(2f(L=ss) =2) + g S )
with sgn(2f (1 — s3) — 2) is equal to 1 (respectively to —1) when 2f (1 — s3) — 2 is positive (resp.
negative).

We obtain immediately that

dp
<0.
orlr=0 —
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