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Abstract
Large regions of suppressed recombination having extended over time occur in many organ-isms around genes involved in mating compatibility (sex-determining or mating-type genes).The sheltering of deleterious alleles has been proposed to be involved in such expansions.However, the dynamics of deleterious mutations partially linked to genes involved in mat-ing compatibility are not well understood, especially in finite populations. In particular, un-der what conditions deleterious mutations are likely to be maintained for long enough nearmating-compatibility genes remains to be evaluated, especially under selfing, which generallyincreases the purging rate of deleterious mutations. Using a branching process approxima-tion, we studied the fate of a new deleterious or overdominant mutation in a diploid popu-lation, considering a locus carrying two permanently heterozygous mating-type alleles, anda partially linked locus at which the mutation appears. We obtained analytical and numer-ical results on the probability and purging time of the new mutation. We investigated theimpact of recombination between the two loci and of the mating system (outcrossing, intraand inter-tetrad selfing) on the maintenance of the mutation. We found that the presenceof a fungal-like mating-type locus (i.e. not preventing diploid selfing) always sheltered themutation under selfing, i.e. it decreased the purging probability and increased the purgingtime of the mutations. The sheltering effect was higher in case of automixis (intra-tetradselfing). This may contribute to explain why evolutionary strata of recombination suppres-sion near the mating-type locus are found mostly in automictic (pseudo-homothallic) fungi.We also showed that rare events of deleterious mutation maintenance during strikingly longevolutionary times could occur, suggesting that deleterious mutations can indeed accumu-late near themating-type locus over evolutionary time scales. In conclusion, our results showthat, although selfing purges deleterious mutations, these mutations can be maintained forvery long times near a mating-type locus, which may contribute to promote the evolution ofrecombination suppression in sex-related chromosomes.
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1. Introduction
The evolution of sex chromosomes, and more generally of genomic regions lacking recom-bination, is widely studied in evolutionary biology as it raises multiple, unresolved questions(Ironside, 2010, Yan et al., 2020, Hartmann, Ament-Velásquez, et al., 2021, Kratochvíl and Stöck,2021, Jay et al., 2022). A striking feature of many sex and mating-type chromosomes is theabsence of recombination in large regions around the sex-determining genes. Recombinationsuppression indeed evolved in various groups of plants and animals in several steps beyond thesex-determining genes, generating evolutionary strata of differentiation between sex chromo-somes (Nicolas et al., 2004, Bergero and Charlesworth, 2009, Hartmann, Duhamel, et al., 2021,Kratochvíl and Stöck, 2021). The reasons for the gradual expansion of recombination cessationbeyond sex-determining genes remain debated (Ironside, 2010, A. E. Wright et al., 2016, Pon-nikas et al., 2018, Hartmann, Duhamel, et al., 2021). Recombination suppression has extended
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progressively with time not only on many sex chromosomes but also on mating-type chromo-somes in fungi (Hartmann, Duhamel, et al., 2021) and other supergenes (Yan et al., 2020, Jayet al., 2021).The main hypothesis to explain such stepwise extension of recombination cessation on sexchromosomes has long been sexual antagonism (D. Charlesworth et al., 2005,Bergero and Charlesworth, 2009). Theoretical studies have indeed shown that the suppres-sion of recombination may evolve to link alleles that are beneficial in only one sex to the sex-determining genes (W. R. Rice, 1987, D. Charlesworth et al., 2005, Ruzicka et al., 2020). However,this hypothesis has received little evidence from empirical studies despite decades of research(Ironside, 2010, Dagilis et al., 2022). Moreover, the sexual antagonism hypothesis cannot ex-plain the evolutionary strata found on fungal mating-type chromosomes. Indeed, in many fungi,two gametes can form a new individual only if they carry different mating types, but there isno sexual antagonism or other form of antagonistic selection between cells of opposite matingtypes; the cells of different mating types do not show contrasted phenotypes or footprints ofdiversifying selection (Bazzicalupo et al., 2019). Yet, evolutionary strata have been documentedon the mating-type chromosomes of multiple fungi, with recombination suppression extendingstepwise beyondmating-type determining genes (Fraser et al., 2004, Menkis et al., 2008, Brancoet al., 2017, Branco et al., 2018, Hartmann, Duhamel, et al., 2021, Hartmann, Ament-Velásquez,et al., 2021, Vittorelli et al., 2023). Evolutionary strata have also been reported around othersupergenes, i.e., large genomic regions encompassing multiple genes linked by recombinationsuppression, such as in ants and butterflies (Yan et al., 2020, Jay et al., 2021). Several hypothesesalternative to sexual antagonism have been proposed and explored to explain the stepwise ex-tension of recombination suppression on sex-related chromosomes (Ironside, 2010, Hartmann,Duhamel, et al., 2021). Theoretical models suggested that recombination suppression could beinduced by a divergence increase in regions in linkage disequilibrium with a sex-determininglocus (Jeffries et al., 2021) or that inversions could be stabilized by dosage compensation onasymmetric XY-like sex chromosomes (Lenormand and Roze, 2022).A promising, widely applicable hypothesis is the sheltering of deleterious alleles by inver-sions carrying a lower load than average in the population (B. Charlesworth and Wall, 1999,Antonovics and Abrams, 2004, Hartmann, Duhamel, et al., 2021, Jay et al., 2022). Inversions(or any suppressor of recombination in cis) can indeed behave as overdominant: inversions withfewer recessive deleterious mutations than average are initially beneficial and increase in fre-quency, but can then occur in a homozygous state where they express their load, unless theyare linked to a permanently heterozygous allele. In this case, they remain advantageous, and canreach fixation in the sex-related chromosome on which they appeared (Jay et al., 2022). Thesuppression of recombination is thereby selected for, and recessive deleterious mutations arepermanently sheltered. The process can occur repeatedly, leading to evolutionary strata. Impor-tantly, this is one of the few hypotheses able to explain the existence of evolutionary strata onfungal mating-type chromosomes and it can apply to any supergene with a permanently het-erozygous allele (Llaurens et al., 2017, Jay et al., 2022).A key point for the recombination suppressor to invade is that it must appear in populationswhere recessive deleterious mutations segregate near the mating-compatibility genes (Olito etal., 2022, Jay et al., 2022). We therefore need to understand whether such mutations can persistin the vicinity of permanently heterozygous alleles (such as those occurring at mating-type loci)and under what conditions. In particular, it is usually considered that selfing purges deleteriousmutations (Glémin, 2007, Abu Awad and Billiard, 2017), while most evolutionary strata on fungalmating-type chromosomes have been reported in selfing (automictic) fungi (Branco et al., 2017,Branco et al., 2018, Hartmann, Ament-Velásquez, et al., 2021, Vittorelli et al., 2023). Indeed,because mating types are determined at the haploid stage in fungi, mating types do not preventselfingwhen considering diploid individuals (Billiard et al., 2012). Some particular forms of selfingassociated with a permanently heterozygous mating-type locus such as intra-tetrad mating (i.e.automixis, mating among gametes from the same meiosis) can however favor the maintenanceof heterozygosity (Hood and Antonovics, 2000). Indeed, mating can only occur between haploidcells carrying different mating-type alleles, which maintains heterozygosity at the mating-type
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locus, and to some extent at flanking regions, thereby possibly sheltering deleterious alleles.We therefore need to study whether deleterious or overdominant mutations can be maintainednear mating-type compatibility loci, even under selfing, to assess whether the mechanism ofsheltering deleterious mutations can drive extensions of recombination suppression.The dynamics of deleterious mutation frequencies in genomes have been extensively stud-ied independently of the presence of a permanently heterozygous locus. Deterministic modelsand diffusion approximations have been used to study the dynamics of deleterious mutationsin a one locus-two allele setup (Kimura, 1980, Ewens, 2004, S. H. Rice, 2004), with the additionof sexual reproduction and in particular selfing (Ohta and Cockerham, 1974, Caballero and Hill,1992, Abu Awad and Roze, 2018). Extensions of these models exist to cover the two locus-twoallele case (Karlin, 1975) and multilocus systems (reviewed in Bürger, 2020), or to take stochas-tic fluctuations into account (Coron et al., 2013, Coron, 2014). However, the dynamics of dele-terious mutations in genomic regions near a permanently heterozygous allele have been littlestudied. A deterministic model showed that a lethal allele can be sheltered in an outcrossingpopulation only when it is completely linked to a self-incompatibility locus (Leach et al., 1986).Another deterministic model introduced selfing and showed with simulations that a lethal allelecan be sheltered when it is completely linked to a mating-type allele, favored in a heterozygotestate, and if there is intra-tetrad selfing (Antonovics et al., 1998). Assuming a variable recombi-nation rate between the two loci, Antonovics and Abrams, 2004 showed that an overdominantallele lethal in a homozygous state could be maintained if recombination was twice as low as theselection for heterozygotes and mating occurred via intra-tetrad selfing. Stochastic simulationsadditionnally showed that a recessive deleterious allele could be maintained completely linkedto a self-incompatibility allele, especially when it is highly recessive, and when the number ofself-incompatibility alleles in the population is large (Llaurens et al., 2009), and that codominantweakly deleterious alleles could be maintained near loci under balancing selection in the majorhistocompatibility complex (MHC) in humans (Lenz et al., 2016).Here, building on the work of Antonovics and Abrams, 2004, we use a similar though simpli-fied two locus-two allele framework, taking into account the non-negligible reproductive stochas-ticity during the early stage of the dynamics of the mutant subpopulation, until it becomes ex-tinct or reaches some appreciable fraction of the total population. More precisely, we considera permanently heterozygous mating-type locus and a genetic load locus, and we assume thatthe recombination rate between the two loci is a fixed parameter. Individuals can reproduce viaoutcrossing, or via either one of two types of selfing, intra-tetrad mating or inter-tetrad mating.The two types of selfing depend on whether a given gamete mates with another gamete pro-duced during the same meiosis event (within a tetrad) or with a gamete from a different meiosis(from another tetrad, App. B). The distinction is important because intra-tetrad mating maintainsmore heterozygosity in some genomic regions than inter-tetrad mating (Hood and Antonovics,2000). Starting with a continuous-time Moran process, we derive the rates at which individualsof each genotype are produced. Then, as a newmutation is carried by very few individuals at thebeginning of its evolution, a branching process naturally arises. Indeed, in this initial phase twoindividuals carrying the mutant allele have an extremely low probability to mate with each other.Mutant-carrier individuals can thus be assumed to reproduce independently of each other, lead-ing to an approximation of the dynamics of the subpopulation of mutant carriers by a branchingprocess.The use of branching processes has shown its utility to account for the dynamics of a newlyarised mutant allele in a population. Many estimates of the fixation or purging time of mutantsin stochastic models (Champagnat and Méléard, 2011, Collet et al., 2013) relied on the use ofbranching processes to approximate the dynamics of a newly appeared mutant allele and of anearly-fixed one. A branching-process approximation was used to study a two locus-two allelemodel, with individual fitness depending on the allelic state at both loci (Ewens, 1967, Ewens,1968). For the diploid case, the framework of a seven-type branching process that can be used tostudy the fate of a deleterious mutation has been described, without deriving any analytical re-sult (Pollard, 1966, Pollard, 1968). A similar branching process approximation was used to studythe fate of a beneficial mutation with selfing (Pollak, 1987, Pollak and Sabran, 1992). Here, we
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use a similar framework but consider deleterious mutations and a permanently heterozygous lo-cus. Modeling multiple loci suggests the use of multitype branching processes, which have beenwidely studied (Harris, 1964, Kesten and Stigum, 1966 , Mode, 1971, Athreya and Ney, 1972,Sewastjanow, 1975, Pénisson, 2010). However, the multiplicity of types renders the derivationof analytical results on probabilities of extinction and on extinction times difficult (Heinzmann,2009). We therefore use an analytical approach to study the probability that a new mutation ispurged from the population, and a numerical approach to study the purging time (when purgingoccurs) to assess how long a deleterious or overdominant mutation remains in a population. Westudy in particular the impact of the mating system and of the level of linkage to a permanentlyheterozygous locus on the long-term maintenance of deleterious mutations near a fungal-likemating-type locus (i.e. not preventing diploid selfing).
2. Methods and Models

All parameters which will be needed below are listed in App. A.
2.1. Population and stochastic dynamics

We consider diploid (or dikaryotic) individuals, represented by their mating-type chromo-somes, that harbor two biallelic loci: one mating-type locus, with alleles A and a, and one loadlocus, with awild alleleB and amutant allele b.Wemodel a fungal-likemating-type locus, so thatmating is only possible between haploid cells carrying different alleles at the mating-type locus(this does not prevent diploid selfing as each diploid individual is heterozygous at themating-typelocus). Consequently, only four genotypes are admissible, denoted by G1, ... ,G4 in Figure 1. Wefollow the evolution of (g(t)
)
t≥0 =

(
g1(t), ... , g4(t)

)
t≥0, where gi (t) is the number of individualsof genotype Gi in the population at time t . We suppose that the reproduction dynamics is givenby a biparental Moran model with selection. In this continous-time model, a single individual isreplaced successively and the total population size, denoted by N, remains constant. A changein the population state g occurs in three steps.The first step is the production of an offspring. After a random time following an exponentiallaw of parameterN , an individual is chosen uniformly at random to reproduce. This means in par-ticular that all individuals have the same probability to reproduce. Mathematically speaking, thisformulation is equivalent to saying that each individual reproduces at rate 1. The chosen diploidindividual produces haploid gametes, via meiosis, during which recombination takes place be-tween the two loci with probability r (see Figure 1 (a)). The product of a meiosis is a tetrad thatcontains four haploid gametes (Figure 1 (b)). Mating can then occur through three modalities,illustrated in App. B (recall that two gametes can fuse only if they carry different mating-typealleles): (i) Intra-tetrad selfing, with probability fpin: the two gametes are picked from the sametetrad, only one parent is involved; (ii) Inter-tetrad selfing, with probability f (1 − pin): the twogametes are picked from two different tetrads produced by the same individual, only one parentis involved; (iii) Outcrossing, with probability 1− f : the two gametes are picked from tetrads pro-duced by two different parents. In this case, the second parent is chosen uniformly at randomin the remaining population, and produces haploid gametes via meiosis with the same recombi-nation rate r . An offspring is produced following the chosen mating system, its genotype thusdepending on the genotypes of the parents involved and on the occurrence of a recombinationevent in the tetrads.The second step is the offspring survival. We assume that the fitness of a genotype Gi is theprobability that an offspring with that genotype survives, and we denote it by Si . We considertwo selection scenarii (Figure 1, left): (i) The partial dominance case, where the mutant allele b isalways deleterious and recessive. Homozygotes bb and heterozygotes Bb at the load locus havefitness values (i.e. a probability of survival) of 1 − s and 1 − hs , respectively. Homozygotes BBhave fitness 1; (ii) The overdominance case, where heterozygotes Bb are favored over BB and

bb individuals. In this case, the fitness of Bb, bb and BB juveniles are respectively 1, 1 − s3 and
1 − s4, with s3 > s4 so that the fitness of bb individuals is lower than the fitness of wild-typeindividuals BB. The mating-type locus is considered neutral regarding survival.
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The third step occurs if the offspring survives, in which case an individual chosen uniformlyat random in the extant population is chosen to die and to be replaced by the offspring. If theoffspring does not survive, the population state (g1, g2, g3, g4
) does not change.A jump in the stochastic process is thus an increase by one of the number of genotype Giindividuals in the population, when an offspring of genotype Gi is produced and survives, and aconcomitant decrease by one of the number of genotype Gj individuals in the population, whenan adult of genotype Gj dies. If i = j , i.e. if the surviving offspring and the individual chosen todie have the same genotype, the composition of the population does not change.We denote thejump rate from g to g + ei − ej by Qi ,j(g), where ei is the vector with a 1 in position i and zeroseverywhere else. Qi ,j(g) is equal to the product of the rate at which an offspring of genotype

Gi is produced (first step), which we denote by Tg (+Gi ), of the probability that it survives (Si ,second step), and of the probability that the adult chosen to die is of genotype Gj (third step).Thus, we have
Qi ,j(g) = Tg (+Gi )× Si ×

gj
N

.

The total rates at which individuals of different genotypes are produced are given in App. C.1.For example, the rate at which an offspring of genotype G1 is produced when the current stateof the population is g = (g1, g2, g3, g4) is given by
Tg (+G1) = fg1

(
1− r

(
1− 1

4
pin

)
+

1

4
(1− pin) r2

)
+ fg2

r

4
(pin + r (1− pin))

+
1− f

N − 1

[
g1

(
1− r

2

)(
(g1 − 1)

(
1− r

2

)
+ g3 + g4

)
+ g2r

(
g2

r

4
+

1

2
(g3 + g4)

)

+ g1g2r

(
1− r

2

)
+ g3g4

]
.

The first two terms on the right-hand side, with a factor f , correspond to reproduction eventsby selfing. The third term, with a factor 1− f , corresponds to reproduction events by outcrossing.Each subterm then encompasses the rate at which each genotype is involved in the reproductionevent, and the probability that the offspring produced is of genotype G1, taking into accountpossible recombinations. For example, the subterm (1− f )/(N − 1)× g1(g1− 1)(1− r/2)2 is theproduct of the total rate g1×1 at which an individual of genotype 1 reproduces, of the probability
1−f that reproduction happens by outcrossing, of the probability (g1−1)/(N−1) that the secondparent is chosen among the other individuals of genotype G1, and of the probability (1 − r/2)2that their offspring has genotype G1.
2.2. Branching-Process approximation

Let us now consider that the population size N is very large. When a mutation appears at theload locus, it is carried by a single individual. Hence, during the initial phase of the dynamics ofthe mutation b, the number of individuals who carry the mutation remains small compared tothe number of wild-type individuals. The number of wild-type individuals is of the same orderof magnitude as the total population size N , and the number of mutation-carrier individuals isnegligible. More precisely, we assume that, when N is large,
(1) g4 ≈ N, and gi � N for i = 1, 2, 3.

Under this assumption, the jump ratesQi ,j(g) of the process can be approximated by neglect-ing the terms of the form 1/(N − 1)× gi × gj , with i , j ∈ {1, 2, 3}, as they are of order 1/N . Thismeans that mating by outcrossing between individuals carrying the mutation b can be neglected.As a consequence, the birth rates of the different genotypes are linear in gi , and a reproductionlaw for each genotype that is independent of the number of individuals of all other mutant-carrier genotypes can be derived. The Moran process can then be approximated by a branchingprocess that follows the change in genotype counts for the mutation-carrier genotypes only.We denote this branching process by (Zt)t≥0, where for each t ≥ 0, we have
Zt = (Zt,1,Zt,2,Zt,3), with Zt,i the number of individuals of genotype Gi in the population at

6 Emilie Tezenas et al.

Peer Community Journal, Vol. 3 (2023), article e14 https://doi.org/10.24072/pcjournal.238

https://doi.org/10.24072/pcjournal.238


Genotype A

B

a

b

G1

A

b

a

B

G2

A

b

a

b

G3

A

B
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1− hs 1− hs 1− s 1
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(a)
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B
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b

Rec.

(b)
A

B

a

b
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A

B

A

b

a

B

a

b

Tetrad with rec.
Figure 1 – Schematic drawings of the genotypes considered and their parameters. (Left)Description of the possible genotypes in the population and their fitness Si for the twoselection scenarii considered (partial dominance and overdominance). (Right) (a) Positionof a putative event of recombination between the mating-type locus and the load locus.(b) Example of a tetrad that can be obtained after a meiosis of an individual of genotype
G1, with recombination. Four gametes are produced, two of each mating type. In thesecond and third gamete from the left, combinations of alleles that did not exist in theparent are observed (A with b and a with B ).

time t . To each genotype is associated a reproduction law, that is, a probability distribution on
N3 (vectors with three integer-valued coordinates) that gives the probability for an individual ofthat genotype to produce a given number of descendants of each genotype when it reproduces.Note that the rationale behind the branching process is different from the one for the Moranprocess. Indeed, each replacement event in the Moran model that involves an individual carryingthe mutant allele b will be seen in the branching process as a reproduction event, in which theoffspring is the mutant individual that is possibly produced during the first step of the Moranjump, and the parent is another mutant individual that is either one of the two actual parentsin the replacement event, or the individual chosen to be replaced by the offspring in the Moranreplacement event. A reproduction event of the branching process consists in the replacement ofthe parent by its descendants, which will be made of the mutant offspringwhen there is one, andof the mutant parent when it remains in the population. More precisely, we will encode threesituations as follows: (i) when the replacement event in the Moran model corresponds to thereproduction of an individual of genotype Gi , i ∈ {1, 2, 3} (via selfing or outcrossing with an in-dividual of genotype G4), that this reproduction event generates a mutant offspring of genotype
Gj , j ∈ {1, 2, 3}, and the mutant parent is not chosen to die, we will see the reproduction event ofthe branching process as being an individual of genotype Gi having descendance vector ei + ej ;(ii) When theMoran replacement event leads to the reproduction of an individual of genotypeGi ,
i ∈ {1, 2, 3} (via selfing or outcrossing with an individual of genotype G4), that this reproductionevent generates an offspring of genotype G4, and the mutant parent is not chosen to die, we willsee the reproduction event as being an individual of genotype Gi having descendance vector ei(as non-mutant individuals are not accounted for in the branching process approximation). Notethat this reproduction event will imply no change in the population state, but for the sake ofcompleteness we indicate here all Moran replacement events that have non-vanishing rates as
N tends to infinity; (iii) When the Moran replacement event only involves non-mutant parents
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and an individual of genotype Gi , i ∈ {1, 2, 3}, is chosen to die, we will see the reproduction eventas being an individual of genotype Gi having descendance vector 0 (corresponding to the parentbeing removed from the branching process and no mutant offspring being produced). Other pos-sible Moran replacement events occur at rates that vanish as N tends to infinity, and thereforedo not contribute to the reproduction events of the branching process. The rates at which repro-duction events described above occur are directly derived from the rates Qi ,j(g) of the Moranmodel, under the approximation stated in Eq.(1). They are summarized in the matrices A, T , and
D defined as follows:

A =




(fa(r) + (1− f )d(r))S1
(
fc(r) + (1− f ) r

2

)
S1 (1− f )S1(

fc(r) + (1− f ) r
2

)
S2 (fa(r) + (1− f )d(r))S2 (1− f )S2

fb(r)S3 fb(r)S3 fS3


 ,

T =




(
fb(r) + 1−f

2

)
S4 0 0

0
(
fb(r) + 1−f

2

)
S4 0

0 0 0


 ,

D =



S4 0 0
0 S4 0
0 0 S4


 ,

with
(2) a(r) = 1− r +

r

4

(
1− (1− pin)(1− r)

)
, b(r) =

r

4

(
1 + (1− pin)(1− r)

)
,

(3) c(r) =
r

4

(
1− (1− pin)(1− r)

)
, and d(r) = 1− r

2
.

The entries Aij of matrix A, Tij of matrix T and Djj of matrix D give the rates at which eachindividual of genotype j reproduces and gives rise to a descendance vector respectively equal to
ei + ej (situation (i)), ei (situation (ii)), and 0 (situation (iii)). An example of derivation of the matrixcoefficients is given in App. C.2.
2.3. Probability of purge and purging time

Under the assumption that the mutation is initially rare (after a mutation or migration eventfor example), we can use the branching process approximation described in Section 2.2 to derivethe probability and purging time of the mutation from the population. In particular, our goal isto analyze the effect of the presence of a mating-type locus near the load locus on the purgeof the deleterious mutant b, i.e. on the extinction of the mutant-carrier population described bythe branching process.
Extinction Probability
The probability of extinction of the branching process can be determined by looking at theeigenvalues of the matrix C such that E[Zt |Z0 = z0] = z0e

Ct for t ≥ 0, where z0 ∈ N3 is the initialstate of the branching process (Zt)t≥0 (Sewastjanow, 1975 in German, and Pénisson, 2010 fora statement of these results in English). Under the assumption of irreducibility of the matrix C ,results relying on the theory of Perron-Froebenius (see for example Athreya andNey, 1972) statethat the process almost surely dies out (i.e. the mutation is purged with probability 1) if and onlyif ρ, the maximum eigenvalue of C , satisfies ρ ≤ 0. When C is not irreducible, which occurs forexample if f = 0 or f = 1, the result still holds but requires the use of the theory of final classes(Sewastjanow, 1975, cited in Pénisson, 2010). Details are given in App. C.4.We follow a method described in Bacaër, 2018, to compute the matrix C mentioned aboveand obtain
Cij =




Aij + Tij if i 6= j ,

Ajj −
∑
k 6=j

Tkj − Djj if i = j .
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This gives

C =




(fa(r) + (1− f )d(r))S1 − S4
(
fc(r) + (1− f ) r

2

)
S1 (1− f )S1(

fc(r) + (1− f ) r
2

)
S2 (fa(r) + (1− f )d(r))S2 − S4 (1− f )S2

fb(r)S3 fb(r)S3 fS3 − S4


 ,

where the functions a, b, c , d were defined in Eqs. 2 and 3 (see details in App. C.3).
We derived the dominant eigenvalue usingMathematica (WolframResearch, 2015) and studyits sign analytically when possible, or numerically otherwise.
Comparison with previous results
Our results can be compared to the work of Ewens, 1967, who used a similar framework tostudy a random-mating population with two biallelic loci under selection, one of which carried anew allele. Assuming that the frequency of the gametes that carried a new allele was negligiblecompared to the frequencies of wild-type gametes, he used a branching process approximationto study the probability that the new allele was purged from the population. He considered arecombination rate R between the two loci, and fitnesses wij for each genotype (where i and jtake the value 1 or 3 when loci are homozygous, and the value 2 when heterozygous). Setting

wi1 = wi3 = 0 for i = 1, 2, 3 allows to force heterozygosity at the locus that does not carrythe new allele in his model, and to compare his findings with our results on the fate of a newallele appearing near a permanently heterozygous locus. The dominant eigenvalue of the matrixdriving the dynamics of the new allele in Ewens, 1967, is
(4) λ1 =

w22

w32

with w22 being the fitness of individuals heterozygous for the new allele, and w32 the fitnessof homozygous wild-type individuals. As Ewens, 1967, considered a discrete-time branchingprocess, this dominant eigenvalue must be compared to one to deduce information on the newallele survival probability.
Sheltering effect of the mating-type locus
We investigate now to the potential effect of the presence of a mating-type locus on themaintenance of a mutant allele in a population: as mating-type alleles are always heterozygous,any mutation appearing completely linked to one mating-type allele is maintained in a heterozy-gous state as well. The load of the mutant allele is then less expressed when the mutation isrecessive, and the mutation is said to be "sheltered".This potential sheltering effect can be explored by looking at the variation of the dominanteigenvalue ρ when the recombination rate r is close to 0.5. Indeed, the quantity |ρ| can be seenas the rate of decay of the deleterious mutant subpopulation (see the results on the probabilityof survival of a multitype branching process, Th. 3.1 of Heinzmann, 2009), and its value givesa rough approximation of the inverse of the mean time to extinction of this subpopulation, i.e.of the mean purging time of the mutant allele b. Moreover, setting the recombination rate to

r = 0.5 in our model allows us to consider a load locus completely unlinked to the mating-typelocus, while decreasing the value of r introduces some loose linkage between the two loci. Wethus look at the derivative ∂ρ
∂r |r=0.5 to obtain the variation of the dominant eigenvalue of C whendeparting from this unlinked state.The sign of the derivative gives information on the existence of a sheltering effect due tothe mating-type locus: if ∂ρ∂r |r=0.5< 0, then when r decreases from 0.5 to lower values, i.e. whenlinkage between the two loci appears, the (negative) value of ρ increases, which means that thepurging of the mutation becomes slower. In this case, the mating-type locus has a sheltering

Emilie Tezenas et al. 9

Peer Community Journal, Vol. 3 (2023), article e14 https://doi.org/10.24072/pcjournal.238

https://doi.org/10.24072/pcjournal.238


effect. Otherwise, if ∂ρ∂r |r=0.5> 0, the presence of a mating-type locus accelerates the purgingof a deleterious allele.The absolute value of the derivative also gives information on the strength of the shelteringeffect of the mating-type locus. The closer to 0 the derivative is, the smaller the impact of themating-type locus. We compute the derivative and study its sign analytically. We then study thevalues of the derivative numerically in order to identify the impact of each parameter on thesheltering effect of the mating-type locus.We also look at the strength of the sheltering effect on mutations close to the mating-typelocus, by studying the eigenvalue variation around r = 0. Setting the recombination rate to r = 0models a situation where the load locus is completely linked to the mating-type locus. Hence,the mutation is completely linked to one mating-type allele, and maintained in a heterozygousstate. Looking at the derivative ∂ρ
∂r |r=0 allows us to quantify the impact of departing from thissituation by loosening the linkage between the two loci. We study the difference between thederivative at r = 0.5 and the derivative at r = 0 to compare the effect of adding a small amountof linkage between completely unlinked loci (r = 0.5) and the effect of adding a small amount ofrecombination between completely linked loci (r = 0).

Extinction time
Themean time to extinction in a multitype branching process is finite for a subcritical process(that is, when the principal eigenvalue ρ of C is less than 0), and infinite for a critical process(i.e. when ρ = 0, see Pötscher, 1985, for the proof of existence and finiteness of extinction timemoments). Previous work, in particular Theorem 4.2 in Heinzmann, 2009, showed that a Gumbellaw gives a good approximation of the law of the extinction time, provided that the initial numberof individuals in the branching process and the absolute value of the dominant eigenvalue areboth large. In our case, however, the mutation appears in a single individual, and the dominanteigenvalue is close to zero, which prevents the use of the Gumbel law approximation. Therefore,we performed computer simulations to study the empirical distribution of the time to extinctionof the process, i.e. the purging time of the b mutant allele.The branching process was simulated with a Gillespie algorithm to obtain an empirical distri-bution for the time to extinction. More precisely, the Gillespie algorithm produces realizations ofthe stochastic process by iteratively updating the number of individuals of each genotype withinthe multitype branching process (Gillespie, 1976). To circumvent the problem of exponential in-crease of the population size in the supercritical case, the parameters were chosen so that thebranching process was subcritical. The probability of extinctionwas thus equal to 1 and themeantime to extinction was finite. For each scenario, we looked at different values of the recombina-tion rate r , in order to study the impact of linkage between the load locus and the mating-typelocus on the purging time of the mutant allele. We also chose different values for the selfing rate

f in order to assess the impact of the mating system on the purging time of the mutant allele. Foreach set of parameters, 100,000 independent simulation runs were performed with the sameinitial condition (a single individual heterozygous at the load locus was introduced). The scriptsused to simulate the process and display the figures are available at Tezenas, 2022.
Probability of a new mutation apparition before the first one is purged
As a first step towards the study of the accumulation of deleterious mutations near a mating-type locus, we studied the probability that the deleterious mutation can be maintained longenough in the population so that a second mutation can appear before the first one is purged.We considered that a second mutation could appear during a reproduction event occurring inthe population of mutation carriers (described by the branching process), on a region of a givenlength d = 106 base pairs, at a rate of µ = 10−8 mutations per base pairs per reproduction event.The mean number of reproduction events needed for a new mutation to appear in a region oflength d , n̄ev , is the inverse of the mutation rate µ multiplied by the length d :

10 Emilie Tezenas et al.

Peer Community Journal, Vol. 3 (2023), article e14 https://doi.org/10.24072/pcjournal.238

https://doi.org/10.24072/pcjournal.238


n̄ev =
1

µ× d
= 102.

We then estimated the probability that a new mutation appears in such a genomic regionbefore the first one is purged by counting the number of independent simulations in which thenumber of reproduction events exceeded n̄ev before the branching process went extinct (i.e.before the purging of the first mutation), over 100,000 simulation runs. Note that we did not takeinto account the genotype of the individual onwhich the secondmutation appears, and thereforewe did not distinguish whether the second mutation appears on a chromosome that carries thefirst one or not. Our estimate thus does not exactly equals the probability to have twomutationson the same chromosome, but this gives an order of magnitude of the probability of deleteriousmutation accumulation and of the impact of themating system. The length of the genomic regionon which a second mutation can appear was chosen arbitrarily, and changing it can also changethe probability. However, the important point for the deleterious-mutation mechanism to workis that there exists a size for regions flanking mating-type loci that allows both inversions toappear and mutations to accumulate, so that inversions can trap several deleterious mutationswhen suppressing recombination. The value d = 106 chosen here allows to cover such flankingregions.We computed our estimate of the probability of deleterious mutations accumulation for r =
0.001 (the two loci are close, strongly linked), r = 0.01, r = 0.1, and r = 0.5 (the two loci aredistant, unlinked). We considered several values of selfing and intra-tetrad mating rates f and
pin in order to assess the impact of the mating system on the probability of deleterious mutationaccumulation near a mating-type locus.

3. Results
3.1. Deleterious mutations are almost surely purged in the partial dominance case, and canescape purge in the overdominance case

Partial Dominance scenario
Under partial dominance, we find that the dominant eigenvalue ρ of the matrix C is alwaysnegative or null (see App. E.1 and E.2 for more details on the proof and computations). Previoustheoretical results on branching processes state that, when ρ < 0, the probability that the dele-terious mutation is purged from the population before it reaches a substantial frequency is one,and the mean time of purging is finite (see the Methods section). In particular, the probability ofpurging does not depend on the mating system (ρ < 0 for any value of intratetrad, intertetradand outcrossing rates), nor on the recombination probability, selection and dominance coeffi-cients. The only exceptions are when the deleterious mutation is neutral (s = 0) or behaves asneutral (h = 0 and r = 0, the mutation is neutral when heterozygous and completely linked toone mating-type allele), in which case the dominant eigenvalue is 0. The mutation is still purgedfrom the population but previous theoretical results on branching processes state that this cantake a much longer time compared to the case where ρ < 0, as the mean purging time would beinfinite (see the Methods section).Takingw22 = 1−hs andw32 = 1 in themodel of Ewens, 1967, to mirror our partial dominancescenario, the dominant eigenvalue becomes 1 − hs . It is always smaller than one, except when

h = 0 or s = 0, i.e.when the mutation is neutral in the heterozygous state. Except in those cases,the mutation is purged from the population with probability one. We therefore find the sameresults as Ewens, 1967, and we extend these results in the case where mating is not randomamong gametes. In particular, the mutation being neutral in the heterozygous case (h = 0) is notsufficient to prevent the purging probability to be one when mating is not random: the mutationhas to be completely linked to a permanently heterozygous locus (h = 0 and r = 0).
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Overdominance scenario
Under overdominance, the dominant eigenvalue ρ can take positive or negative values.When

ρ is positive, the probability that the mutation escapes purging and that the number of mutation-carriers increases exponentially fast is strictly positive. The general conditions on the parametersfor ρ to be positive in our model are given in App. F.2, but they are difficult to interpret. Below,we describe a few simple cases in order to elucidate the role of each parameter, and then wecomplement the analysis with a numerical approach.Similarly to the partial dominance case, the dominant eigenvalue is 0 when the mutation isneutral (s3 = 0, which implies s4 = 0 as well). The dynamics of the b-subpopulation (i.e.mutation-carriers) is then critical, which means that the mutant is purged with probability 1 but the meanpurging time can be arbitrarily long (as the average extinction time of a critical branching processis infinite, see the Methods section).When the mutation is not neutral (s3 6= 0) but with no disadvantage to BB homozygotes(s4 = 0), we prove that ρ < 0 (see App. F.2), which means that the dynamics of the b subpopu-lation is subcritical and that the mutant allele is purged with probability 1. This shows that theoverdominant mutant allele is not maintained in the population when wild-type homozygotesare not disfavored compared to heterozygotes at the load locus. This corresponds to a com-pletely recessive mutation, and is in agreement with the results for the partial dominance casewith h = 0.When themutant allele is completely linked to amating-type allele (r = 0), or under completeoutcrossing (f = 0), the dominant eigenvalue is equal to s4, the selection coefficient for thefitness reduction of the BB wild-type homozygotes. The dynamics of the b subpopulation isthen supercritical, which means that there is a non-zero probability that the mutant allele is notpurged and, instead, reaches a significant number of carriers. Moreover, themutant allele is morefavored in this case when selection against BB homozygotes is stronger as it induces a strongeradvantage of the Bb heterozygotes. A similar result can be derived from the work of Ewens,1967. Taking w22 = 1 and w32 = 1 − s4 in his model to mirror our overdominance scenario,the dominant eigenvalue of Eq. 4 becomes 1/(1 − s4). As long as s4 > 0, this eigenvalue isalways greater than one, and its value increases as the selection against wild-type homozygotesincreases. This shows that the dynamics of an overdominant allele under random gamete matingis similar as under complete outcrossing.In the case of complete intra-tetrad selfing (f = 1, pin = 1), we find that ρ ≥ 0 if r ≤
2s4, in agreement with the results of Antonovics and Abrams, 2004. These results mean thatthe overdominant mutation can be maintained under complete selfing if it is tightly linked tothe mating-type locus (r small) or if the heterozygote advantage over wild-type homozygotes isstrong (s4 large).In the case of complete selfing (f = 1), we find that ρ = s4−s3 ≤ 0 when r(2−r−pin(1−r))−
2s3 ≥ 0. This shows that the dominant eigenvalue depends only on the selection coefficientswhen the recombination rate r exceeds a certain threshold (visible on the bottom panels ofFigure 2). This means that, if the recombination rate is larger than the strength of the selectionagainst deleterious homozygotes, the mutation is purged with probability one. Moreover, thepurging time is shorter when the difference in fitness between the two homozygotes is larger.The threshold on recombination increases as pin increases, which means that the strength ofthe linkage between the mating-type locus and the mutation has the highest effect under intra-tetrad selfing.Figure 2 shows more generally that the mating system affects the purging of deleterious mu-tations. On Figure 2, the probability of purging is one in blue areas (the dominant eigenvalue isnegative), and positive but smaller than one in red areas (the dominant eigenvalue is positive).The lines below which the mutation has a non-zero survival probability under the framework ofAntonovics and Abrams, 2004, i.e. r = 2s4 under complete intra-tetrad selfing, are displayed aswell. Comparing the panels for different values of intratetrad mating rate (pin) and selfing rate(f ) shows that selfing favors the purging of the mutant allele (the blue area becomes larger as
f increases), whereas intratetrad mating favors the maintenance of the deleterious allele (the

12 Emilie Tezenas et al.

Peer Community Journal, Vol. 3 (2023), article e14 https://doi.org/10.24072/pcjournal.238

https://doi.org/10.24072/pcjournal.238


Figure 2 – Dominant eigenvalue ρ for the overdominance scenario. When ρ ≤ 0 (blueareas), the mutation is purged with probability 1. When ρ > 0 (red areas), the mutationhas a non-zero probability to escape purging. The mutation is maintained longer in thepopulation as ρ increases. All panels have the same axes. x-axis: s4, selection coefficientfor wild-type BB homozygotes. y-axis: r , recombination rate between the two loci. Eachcolumn corresponds to a value of pin (intra-tetrad rate, 0, 0.5, 1), and each row to a valueof f (selfing rate, 0, 0.5, 1). The selection coefficient for bb homozygotes is set to s3 = 0.1.The line r = 2s4 is displayed for comparison with the findings in Antonovics and Abrams,2004.
blue area become smaller as pin increases). Indeed, selfing favors the creation of homozygousindividuals, which are disfavored, and intra-tetrad selfing favors the creation of heterozygousindividuals, which are favored, compared to inter-tetrad selfing: the probability that a heterozy-gous individual Bb produces a heterozygous offspring Bb is higher under intra-tetrad selfing(probability 1− r/2) than under inter-tetrad selfing (probability 1− r + r2/2).
3.2. The presence of a mating-type locus has a sheltering effect under partial selfing

Looking at the derivative of the dominant eigenvalue at r = 0.5, we find that the presenceof a mating-type locus near the mutation has a sheltering effect on the deleterious mutation,under partial selfing and in both selection scenarii. Indeed, the derivative ∂ρ
∂r |r=0.5 is alwaysnegative, except when the mutation is neutral (s = 0 under partial dominance or s3 = 0 underoverdominance), when it is lethal (s = 1) or dominant (h = 1) under partial dominance, or undercomplete outcrossing (f = 0) in both scenarii, in which cases the derivative is zero and there is nosheltering effect. Under complete selfing (f = 1), the derivative is also null when the intratetradcoefficient pin is below a certain threshold (see App E.3 and F.3 for the proof). As explained in theMethods section, this analysis shows that, in a wide range of situations, the rate of decay of themutant subpopulation is lower when the mutation is linked to a mating-type locus, even loosely(i.e. as soon as r < 0.5), than when recombination is free between the two loci. Hence, exceptfor the particular cases cited above, the mating-type locus always has a sheltering effect onthe deleterious mutation maintenance under partial selfing, independently of the mating systemcoefficients (f and pin) and of the selection and dominance coefficients (s and h, or s3 and s4).Figure 3 shows that, under both partial dominance or overdominance, the variation of the de-rivative at r = 0.5 is stronger when the selfing rate f (x-axis) or the intratetrad selfing probability

pin (y-axis) are high. This means that the sheltering effect of the mating-type locus is stronger un-der high selfing or high intratetrad mating. Two forces oppose here: increasing selfing induces a
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greater production of homozygotes, which are disfavored, whereas increasing intra-tetrad selfingrate or increasing the linkage with a mating-type locus favors the production of heterozygotes,which are favored. The sheltering effect of themating-type locus that counters the purging effectof selfing is higher when selfing is higher, and this countering effect is reinforced by a high intra-tetrad mating rate. Moreover, when approaching f = 1, the derivative decreases to 0. Indeed,the selection and dominance coefficients s , s3 and h are here sufficiently small for the condition
to have ∂ρ

∂r

∣∣∣
r=0.5

= 0 when f = 1 to be met, for both selection scenarii (see App. E.3 and F.3 for
the derivation of this condition). This means that the dynamics of the deleterious mutation isindependent of the presence of a mating-type locus under complete selfing and weak selection.We explore the impact of other parameters in the Supplementary materials. Figure S2 showsthat, under partial dominance, the sheltering effect of a mating-type locus is stronger when thedominance coefficient h is lower (Bb heterozygotes, which are more prone to be created in thepresence of a mating-type locus, are more favored) or when the selection coefficient s is high(the differential in fitness between Bb heterozygotes and bb homozygotes is higher). Similarly,Figure S3 shows that, under overdominance, the sheltering effect of the mating-type locus isstronger when the selection against bb homozygotes is higher (s3 coefficient), whereas the se-lection againstBB homozygotes does not impact the strength of the sheltering effect, suggestingthat the dynamics of the deleterious allele is mostly driven by the difference in fitness betweenthe favored heterozygotes and the disfavored deleterious homozygotes.Looking at the derivative at r = 0, we show in App. E.3 and App. F.3 that it is also negative inboth selection scenarii. This means that the eigenvalue decreases, i.e. that the mutation is lessmaintained in the population as soon as the two loci are no longer completely linked. Figure S4shows that the difference ∆

(
∂ρ
∂r

)
= ∂ρ

∂r |r=0.5 −∂ρ
∂r |r=0 is always positive, which means that

the absolute value of the derivative at r = 0 is larger than the absolute value of the derivativeat r = 0.5. This shows that the sheltering effect is stronger on mutations closely linked to themating-type locus : adding a small chance of recombination on previously completely linkedloci (r = 0) has a greater impact on the maintenance of deleterious mutations than adding asmall amount of linkage between two previously completely unliked loci (r = 0.5). The largestdifference between the two derivatives occurs for selfing rates close to one, the derivative beingthen zero at r = 0.5, while the derivative at r = 0 approaches −1. This shows that the linkage tothe mating-type locus particularly impacts the strength of its sheltering effect under high selfing.
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Figure 3 – Relative variation of the derivative of the dominant eigenvalue in the partialdominance case (left) and the overdominance case (right). For each panel, the values of
∂ρ
∂r |r=0.5 range from a minimal value, which is negative, to zero. We divided each valueof the derivative by this minimum in order to plot values between 0 and 1 for everypanel. This enables us to compare the effect of the presence of a mating-type locus onthe same scale for both selection scenarii. x-axis: selfing rate f . y-axis: intratetrad selfingrate pin. The darker the color, the more the mating-type locus shelters the mutation, thuspromoting its maintenance.

3.3. Rare events of maintenance of the deleterious mutation occur in both selection scenarii,paving the way for an accumulation of mutations
The empirical distribution of the purging time of the deleterious mutation in the partial dom-inance case is shown on Figure 4: for ca. 75% of the independent runs, the mutation was rapidlypurged, while in some rare cases (ca. 1%), the purge took very long (several orders of magnitudelonger than the 75% percentile empirically obtained from the 100,000 runs). Note that the ap-proximation of the distribution of the time to extinction by a Gumbel law (Th. 4.1 of Heinzmann,2009) falls short here, because the initial number of individuals (one) and the absolute value of

ρ (given in the caption) are too small.Consistently with our results that ∂ρ
∂r < 0, the sheltering effect of the mating-type locusimplies that the purging time increases when the recombination rate decreases (Figure 4, andFigure S6 for the overdominant case). We also consistently find that increasing selfing decreasesthe purging time (Figures S5 and S7). In each case, the closer ρ is to zero, the more extreme therare events are : the distribution of the 1% longest purging times is stretched towards highervalues when ρ gets closer to zero, while the distributions of the 75% shortest remain similar.Figure 5 displays the probability that the mutation can be maintained long enough in thepopulation for another mutation to appear in a region of 106 bp near the mating-type locus. Thisprobability is nonnegligible (of the order of 1% to 10%), which shows that accumulation eventsare rare but still occur near mating-type loci. This is true even under selfing as the sheltering ef-fect of the mating-type locus can counter the purging effect of selfing. Indeed, when the recom-bination rate between the first mutation and the mating-type locus is high (r = 0.5 or r = 0.1),modeling a situation where the distance between the two loci is large, the probability that a
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Figure 4 – Empirical distribution of the deleterious allele purging time for the partialdominance scenario. A total of 100,000 simulations were run, with s = 0.1, h = 0.1,
f = 0.5, pin = 0.5, starting from one heterozygous individual (X0 = (1, 0, 0)), and forthree values of the recombination rate (r = 0.001 in blue, r = 0.1 in red and r = 0.5in green). The respective values for ρ are ρ = −0.0101, ρ = −0.0106 and ρ = −0.0307.The x-axis is log-scaled. The large-dotted lines represent the 75th percentile (q75), thedashed lines indicate the 99th percentile (q99), and solid lines the maximum value (max)of the purging time. Maximum values are several order of magnitudes higher than the
75th percentile of the empirical distribution of the purging time.

second mutation appears before the first one is purged decreases with increasing selfing, evenwith high intra-tetrad selfing rates. However, when the first mutation is closer to the mating-type locus (lower recombination rates), the probability that a second mutation appears beforethe first one is purged under selfing is similar to the probability under complete outcrossing. Thepresence of a mating-type locus can thus facilitate the accumulation of deleterious mutations inits flanking regions, especially in highly selfing populations.
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Figure 5 – Probability that a newmutation appears in a region of length 106 bp before thefirst mutation is purged from the population, under the partial dominance scenario, de-pending on the recombination rate between the first mutation and themating-type locus.We considered a mutation rate per base pair per reproduction event of 10−8. Here, thereproduction events are those of the branching process, that change the composition ofthe mutant-carriers subpopulation. The probability that a new mutation appears beforethe purge of the first one is approximated by the proportion of simulation runs for whichthe number of reproduction events exceeds the expected number of events needed fora new mutation to appear (see text). For each set of parameters (r , f , pin), 100,000 inde-pendent simulations were run. Colors correspond to different values of the selfing rate f ,and line styles to different values of the intra-tetrad selfing rate pin. When f = 0, a singlecurve is displayed, as the value of pin has no impact under complete outcrossing. For allsimulations, we set s = 0.1 and h = 0.1.

4. Discussion
Partially recessive deleteriousmutations are almost surely purged in finite timewhile overdominantmutations can persist
We have shown that partially recessive deleterious mutations close to a fungal-like mating-type locus (i.e. that does not prevent diploid selfing) are almost surely purged in finite time, ex-cept when they are neutral or behave as neutral. In the overdominance case, the probability ofpurge depends on parameter values. Low selfing rates, high intra-tetrad selfing rates or tightlinkage to the mating-type locus increases both the maintenance probability and persistence ofthe overdominant allele, whereas a high selfing rate favors its purge.In particular, if linkage is complete (corresponding to r = 0 here, or to the case where theinversion encompasses a permanently heterozygous locus in Jay et al., 2022), an overdominantallele may be maintained in a population and even sweep to fixation with non-zero probability,which confirms previous findings (Antonovics et al., 1998, Antonovics and Abrams, 2004, Jay etal., 2022). This means that, although selfing purges deleterious mutations, a mating-type locuscan have a sheltering effect in its flanking regions.
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In general, the overdominant allele is maintained longer and with a higher probability in thepopulation when the fitness advantage of heterozygotes over homozygotes is higher, in linewith previous simulation results (Antonovics and Abrams, 2004). This conclusion is sensible: ifthe mutant is strongly favored in a heterozygous state, it can be maintained in this state in thepopulation.
The presence of the mating-type locus has a sheltering effect under selfing
We found that, in both selection scenarii, the presence of the mating-type locus had no ef-fect on the maintenance of deleterious mutations under outcrossing, but always had a shelteringeffect under selfing, which strengthened as the selfing rate increased. Indeed, selfing increaseshomozygosity and thus accelerates the purge of a deleterious allele, whereas the presence ofa permanently heterozygous mating-type locus induces more heterozygosity in its flanking re-gions, that counters the purging effect of selfing. The sheltering effect of a mating-type locus isthus all the more tangible as it counters the strong purging effect induced by selfing. Increasingintra-tetrad selfing also induces more heterozygosity and thus slightly reinforces the shelteringeffect of the mating-type locus. This is consistent with the findings that, in fungi, ascomycetesthat reproduce via outcrossing and live as haploids do not show evolutionary strata (Skinneret al., 1993, Zhong et al., 2002, Phan et al., 2003, Kuhn et al., 2006, Jin et al., 2007, Malkuset al., 2009) whereas pseudo-homothallic ascomycete fungi, living as dikaryotic and undergoingmostly intra-tetrad selfing, are those with evolutionary strata around their mating-type locus(Menkis et al., 2008, Hartmann, Duhamel, et al., 2021, Hartmann, Ament-Velásquez, et al., 2021,Vittorelli et al., 2023). In basidiomycetes also, the species with evolutionary strata are dikaryoticand automictic, e.g. Microbotryum fungi and Agaricus bisporus var. bisporus (Branco et al., 2017,Branco et al., 2018, Foulongne-Oriol et al., 2021). This may be explained by the fact that intra-tetrad selfing favors the accumulation of deleterious alleles near the mating-type locus, which inturn can promote selection for recombination suppression because there will be more variabil-ity in the number of mutations present in a genomic region close to the mating-type locus, andtherefore more fragments having a much lower number of deleterious mutations than averagein the population (Jay et al., 2022).Additionally, we found that the sheltering effect of a mating-type locus was stronger whenthe mutation was more strongly recessive. Indeed, the purging effect of selfing on partially re-cessive mutations is stronger for more recessive mutations (D. Charlesworth and Charlesworth,1987, Caballero and Hill, 1992, Arunkumar et al., 2015), in which case the opposite force of thesheltering effect of a mating-type locus is strenghtened. This is in agreement with the results ofstudies on the sheltered load linked to a self-incompatibility locus, showing that completely re-cessive deleterious mutations are more easily fixed than partially recessive ones (Llaurens et al.,2009). This also confirms results on the fixation of inversions encompassing recessive deleteri-ousmutations and linked to a permanently heterozygous locus (Olito et al., 2022, Jay et al., 2022).These results showed that inversions became fixed with a higher probability when segregatingdeleterious mutations were more strongly recessive.
Rare events of long maintenance of deleterious mutations in the population can occur
We further found that rare events of long maintenance of deleterious mutations in the pop-ulation occurred under both selection scenarii. This shows that some deleterious mutations canpersist in the population for an extended period of time before being purged, especially near themating-type locus: in approximately 1% of our simulations, the purge of the deleteriousmutationtook several orders of magnitude longer than the 75% percentile empirically obtained from the100,000. These surprisingly long purging times are likely to be due to the dynamics of themutantbeing almost critical (the dominant eigenvalue in the branching process approximation is nega-tive, but close to zero). However, from amodeling perspective very little is currently known aboutthese trajectories, and more generally about the extinction time of multitype branching pro-cesses. Studying the extinction time of a deleterious allele in a one locus-two allele setting witha unitype branching process approximation and a diffusion approximation showed that the stan-dard deviation of the mean extinction time was higher than the mean itself (Nei, 1971), which is
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a feature that was also found in our simulations of multitype branching processes. These resultsshow that the extinction time of deleterious alleles is highly variable, producing long-lasting mu-tations that may induce an accumulation of deleterious alleles near a mating-type locus, whichis a prerequisite for recombination suppression to extend away from this locus (Jay et al., 2022).
The dynamics of deleterious mutations heavily relies on the mating system
Our results show that the mating system, and selfing in particular, is a prevailing force impact-ing the dynamics of deleterious mutations. Indeed, we found that a mating-type locus sheltersmutations and thus favors their maintenance, but increasing selfing reduces the maintenanceof mutations with a stronger effect. This result is congruent with previous studies showing thatan increase in the selfing rate induces i) a reduction of the mutational load at a given locus orat multiple non-interacting loci far from mating-type compatibility loci (D. Charlesworth et al.,1990, for a deterministic model, Abu Awad and Roze, 2018, for diffusion approximation), and ii)a reduction of the purging time of deleterious mutations (Caballero and Hill, 1992).However, we observed a particular behavior when the population reproduced only via self-ing. Under complete selfing in our setting, the existence of a sheltering effect of a mating-typelocus strongly depended on the values of the intra-tetrad selfing rate: the sheltering effect ofthe mating-type locus was detectable only when the intra-tetrad selfing coefficient exceededa certain threshold, that depended on the dominance and selection coefficients. This strong ef-fect of departing from complete selfing had previously been noted: introducing a small amountof outcrossing in a selfing population can lead to sharp changes in the dynamics of a deleteri-ous mutation, whereas adding a small amount of selfing in an outcrossing population induces asmoother change (Holsinger and Feldman, 1985).
Limits of the methods
Our results are limited to the case of a single load locus, in interaction with a heterozygousmating-type locus, and may not apply when considering different frameworks, such as multipleepistatic loci or with additional beneficial mutations, especially regarding the impact of the mat-ing system. Indeed, selfing has a non-monotonous effect depending on the tightness of linkagebetween multiple interacting loci (Abu Awad and Roze, 2018): at low selfing rates, increasinglinkage between loci increases the mutation load, whereas the opposite effect is observed athigh selfing rates. Selfing also has a non-monotonous effect on genetic variation in populationsunder stabilizing selection (Lande and Porcher, 2015, Clo and Opedal, 2021). In addition, self-ing can enhance the fixation chances of a deleterious allele when it hitchhikes during a selec-tive sweep (Hartfield and Otto, 2011, Hartfield and Glémin, 2014). Moreover, the impact of themating system on the maintenance of deleterious mutations may be different if the number ofindividuals carrying the mutant allele exceeds a certain threshold. In this case, the branching pro-cess approximation does not hold anymore, and a deterministic model in large population maybe used to further describe the dynamics of the deleterious allele (Durrett and Schweinsberg,2004, Durrett, 2008 Section 6.1.3). The impact of the mating system then remains unclear: inlarge populations, selfing reduces the effective population size, which impairs the efficiency ofselection and increases the mutational load of the population, but it also bolsters homozygos-ity, which favors the purge of deleterious mutations (Pollak, 1987, Caballero and Hill, 1992, D.Charlesworth and Wright, 2001, S. I. Wright et al., 2008).Another limitation of our approach is that we considered a fixed recombination rate for sim-plicity, but allowing this rate to vary would allow us to test whether recombination suppressioncould evolve. Such an outcome may depend on the strength of selection against the deleteri-ous mutation, as well as on the mating system (Antonovics and Abrams, 2004, Abu Awad andRoze, 2018). In some previous models, the impact of a modifier of recombination in the form of amulti-allelic locus was studied by simulations, but no analytical results were obtained (Feldman,1972, Palsson, 2002, Antonovics and Abrams, 2004, Lenormand and Roze, 2022). The multitypebranching process framework developed here would also be an interesting approach to obtainnumerical results on this more complex situation, but analytical results would probably be outof reach because of the increase in complexity of the model.
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Conclusion and Perspectives
In conclusion, our findings show that a mating-type locus has a sheltering effect on nearbydeleterious mutations, especially in case of selfing and automixis, which can then play a rolein the evolution of recombination suppression near mating-compatibility loci (Antonovics andAbrams, 2004, Jay et al., 2022). This may contribute to explain why evolutionary strata of re-combination suppression near the mating-type locus are found mostly in automictic (pseudo-homothalic) fungi (Menkis et al., 2008, Branco et al., 2017, Branco et al., 2018, Hartmann et al.,2020, Hartmann, Ament-Velásquez, et al., 2021, Foulongne-Oriol et al., 2021, Vittorelli et al.,2023).The results obtained here on the accumulation of deleteriousmutations should apply, beyondfungal-like mating-type loci, to other permanently heterozygous loci, such as supergenes (Llau-rens et al., 2017). In contrast, sporophytic or gametophytic plant self-incompatibility loci preventdiploid selfing, leading to a completely different evolutionary scenario in their flanking regionsas imposed by complete outcrossing. The diversity of observed patterns regarding the presenceor absence, length and number of evolutionary strata around these regions (Uyenoyama, 2005)may be explained, in addition to the mating system, by other factors controlling the long-termbehavior of deleterious mutations which are not studied here, such as the number of alleles atsupergenes, the length of the haploid phase (Jay et al., 2022), or the presence of multiple loadloci that are possibly physically linked and with epistatic interactions (Abu Awad and Roze, 2018,Lenormand and Roze, 2022). The questions of the genome-wide impact of a mating-type locus,and of the interaction between a permanently heterozygous locus and background mutations,are currently debated (Abu Awad and Waller, 2023). The branching process framework devel-oped here could be applied to diploid individuals carrying a load locus with two alleles, undergo-ing selfing or outcrossing, in order to investigate the dynamics of a new deleterious mutation ina population with or without a mating-type locus.Our results showing the long maintenance of deleterious mutations in the vicinity of per-manently heterozygous loci pave the way for future investigations on the accumulation of dele-terious mutations. Previous studies (Coron et al., 2013, Coron, 2014) on mutational meltdown,showing that deleterious mutations accumulate faster when other mutations are already fixed,also encourage future work in this direction.
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Appendix A. Table of notation
Table S1

N Population size
G1, ... ,G4 Genotypes
(g1, ... , g4) Number of individuals of each genotype

f Selfing probability
pin and pout = 1− pin Intra- and Inter-tetrad selfing probabilities

r Recombination rate
Si Probability of survival of an offspring of genotype i ∈ {1, 2, 3, 4}(see Figure 1)
s Selection coefficient in the partial dominance case
h Dominance coefficient in the partial dominance case

s3, s4 Selection coefficients in the overdominance case
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Appendix B. Intra-, Inter-tetrad selfing and outcrossing
(A) Intra-tetrad selfing

Single parent
A a

Meiosis
One tetrad

A A a a

GameteA Gametea
A a

Offspring

(B) Inter-tetrad selfing
Single parent

A a

Meiosis

A A a a

Meiosis

A A a a

Two tetrads

GameteA Gametea
A a

Offspring

(C) Outcrossing
Parent 1
A a

Meiosis

Parent 2
A a

Meiosis

A A a a A A a a

One tetrad each

GameteA Gametea
A a

Offspring
Figure S1 – Schematic representation of the three mating systems considered in themodel. Individuals are represented by a pair of mating-type chromosomes, with themating-type locus displayed. A diploid offspring is generated by the fusion of two ga-metes carrying different mating-type alleles (A and a). (A) Under intra-tetrad selfing, bothgametes are picked from the same tetrad; only one parent is involved. (B) Under inter-tetrad selfing, the two gametes are picked from two different tetrads (meioses) producedby the same diploid parent; only one parent is involved. (C) Under outcrossing, the twogametes are picked in tetrads produced by different parents.
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Appendix C. Appendices for the Method section
C.1. Rates of creation of offspring with given genotypes (Moran process)
ParentalGeno-types

Intra/Inter -Tetrad
Recombination Genotype of offspring

. . G1 G2 G3 G4

G1

fg1

Intra
pin

(A) (1− r) fg1pin(1− r) 0 0 0

(A) r 1

4
fg1pinr

1

4
fg1pinr

1

4
fg1pinr

1

4
fg1pinr

Inter
pout

(AA) (1− r)2 fg1pout(1− r)2 0 0 0

(AP) 2(1− r)r 1

2
2fg1pout(1− r)r 0 1

4
2fg1pout(1− r)r

1

4
2fg1pout(1− r)r

(PP) r2 1

4
fg1pout r

2 1

4
fg1pout r

2 1

4
fg1pout r

2 1

4
fg1pout r

2

G2

fg2

Intra
pin

(A) (1− r) 0 fg2pin(1− r) 0 0

(P) r 1

4
fg2pinr

1

4
fg2pinr

1

4
fg2pinr

1

4
fg2pinr

Inter
pout

(AA) (1− r)2 0 fg2pout(1− r)2 0 0

(AP) 2(1− r)r 0 1

2
2fg2pout(1− r)r

1

4
2fg2pout(1− r)r

1

4
2fg2pout(1− r)r

(PP) r2 1

4
fg2pout r

2 1

4
fg2pout r

2 1

4
fg2pout r

2 1

4
fg2pout r

2

G3 fg3 Same tetrad (homozyg.) 0 0 fg3 0

G4 fg4 Same tetrad (homozyg.) 0 0 0 fg4

Table S2 – Table summarizing the rates of production of an offspring of each genotype(last four columns) in case of selfing. Parental Genotype: The genotype of the individualinvolved in the mating event; Intra/Inter-tetrad: Mating through intra- of inter-tetrad self-ing (see section 2.1 for definitions); Recombination: Occurrence of a recombination eventin the tetrads from which gametes are picked. "A" stands for "Absence" in one tetrad, "P"stands for "Presence" in one tetrad. We use only one letter when the two gametes comefrom the same tetrad or when one of the genotypes involved is homozygous at the loadlocus. For example, (AP) indicates that recombination occured in one tetrad but not in theother. Gi : the rate at which an offspring of genotype Gi is produced, due to the scenarioof parental genotype, intra/inter tetrad selfing and presence/absence of recombinationconsidered. The total rate Tg (+Gi ) at which a new offspring of genotype Gi is createdwhen the population state is g = (g1, g2, g3, g4) is then the sum of all the rates appearingin column Gi in this Table, Table S3 and Table S4.
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The total rate at which an offspring of a given genotype is produced is then obtained bysumming the rates along each column Gi in Tables S2, S3 and S4. This gives:
Tg (+G1) = fg1

(
1− r +

r

4

(
1− (1− pin)(1− r)

))
+ fg2

r

4

(
1− (1− pin)(1− r)

)

+
1− f

N − 1

[
g1

(
1− r

2

)(
(g1 − 1)

(
1− r

2

)
+ g3 + g4

)
+ g2r

(
(g2 − 1)

r

4
+

1

2
(g3 + g4)

)

+ g1g2r

(
1− r

2

)
+ g3g4

]
,

Tg (+G2) = fg1
r

4

(
1− (1− pin)(1− r)

)
+ fg2

(
1− r +

r

4

(
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))
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N − 1
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g2

(
1− r

2

)(
(g2 − 1)

(
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)
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4
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2
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)
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2

)
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]
,

Tg (+G3) = fg1
r

4
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)
+ fg2

r

4

(
1 + (1− pin)(1− r)

)
+ fg3

+
1− f
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(
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2
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2
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]
,

Tg (+G4) = fg1
r

4
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1 + (1− pin)(1− r)

)
+ fg2
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4

(
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]
.

C.2. Reproduction law for the branching process
We give here an example of how the reproduction laws for the branching process are derivedfrom the rates of the Moran process, using the approximate regime (1).Let us derive the coefficient A12 of the matrix A, which is the rate at which an individual ofgenotype G2 generates an offspring of genotype G1 and survives. Equivalently, this is the rate atwhich an individual of genotype G2 generates a descendance vector equal to e1 + e2.Using the rates obtained for the Moran model, the rate at which an individual of genotype

G2 produces an offspring of genotype G1 is:

(5) f
r

4

(
1−(1−pin)(1−r)

)
+(1−f )

[
r

(
g2 − 1

N − 1
× r

4
+

1

2

(
g3

N − 1
+

g4
N − 1

))
+

g1
N − 1

r

(
1− r

2

)]
.

The first term, with a factor f , is the rate at which an individual of genotype G2 produces anoffspring of genotype G1 by selfing. The second term, with a factor 1− f , is the rate at which anindividual of genotype G2 produces an offspring of genotype G1 by outcrossing. In this term, thefractions of the form gi
N−1 represent the probabilities that an individual of genotype Gi is chosento mate with the G2 parent.Using the approximation (1), i.e. assuming that g4 ≈ N and gi � N for i = 1, 2, 3, we obtainthat the quantity in Eq. (5) can be approximated by:
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f
r

4

(
1− (1− pin)(1− r)

)
+ (1− f )

r

2
.

To obtain A12, it remains to multiply this rate by the probability that the offspring survives,
S1, and the probability that the parent G2 is not chosen to die, N−1

N . As the population size N isconsidered large, the latter probability is approximately equal to 1.This gives:

A12 =

[
f
r

4

(
1− (1− pin)(1− r)

)
+ (1− f )

r

2

]
× S1.

C.3. Equation for the expected value of the size of the mutant population
This appendix gives the details of the derivation of the coefficients of the matrix C definedby

d
dtEZ0 [Zt ] = EZ0 [Zt ]C ,

following Bacaër, 2018. Note that this is the same matrix defined in Athreya and Ney, 1972, Eq.9, part. V.7.2., or in Pénisson, 2010, Eq. 1.1.16, but here we use the methodology described byBacaër, 2018 to derive its coefficients.In the following, type j refers to the genotype Gj . We will use the standard notation sz :=
sz11 sz22 ... szdd for s and z two vectors of the same dimension d .
C.3.1. Notation. For all t ≥ 0, let us denote the expected value of the process at time t by E (t):

E (t) =



E1(t)
E2(t)
E3(t)


 =




E[Zt,1]
E[Zt,2]
E[Zt,3]


 .

For z ∈ N3 and t ≥ 0, we let p(t, z) = P(Zt = z) be the probability that the system is foundin state z at time t . Let f (t, .) be the generating function of the variable Zt : for all s ∈ [0, 1]3,
f (t, s) :=

∑

z∈N3

p(t, z)sz = E
[
s
Zt,1

1 s
Zt,2

2 s
Zt,3

3

]
.

Recalling that Y j stands for the random vector of number of descendants of each type gen-erated by the reproduction of a type j individual, we also define πj(z) = P(Y j = (z1, z2, z3)). Asindicated in the main text, the rates at which an individual of type j reproduces and gives rise toa descendance vector ei + ej , ei or 0 are respectively Aij , Tij and Djj . We denote the total rate atwhich a reproduction event occurs for a parent of type j by cj :=
∑
i
Aij +

∑
i
Tij + Djj .

The reproduction law of type j individuals is then given by, for every i ∈ {1, 2, 3},
P(Y j = ei + ej) =

Aij

cj
, P(Y j = ei ) =

Tij

cj
, P(Y j = 0) =

Djj

cj
.

Finally, let hj be the generating function of the reproduction law of type j individuals, for
j ∈ {1, 2, 3}. That is, for s ∈ [0, 1]3,

hj(s) =
∑

z∈N3

πj(z)sz = E
[
s
Y j
1

1 s
Y j
2

2 s
Y j
3

3

]
.
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C.3.2. Ordinary differential edecompoquation (ODE) satisfied by (E (t))t≥0. The reproduction lawof each type has finite moments of all order, because the number of descendants produced cannot exceed 2. That garantees that there is no explosion of the population in finite time. Hence,standard results onmulti-dimensional random variables (see for example Athreya andNey, 1972)give us that, for all types j and all t ≥ 0,
Ej(t) =

∂f

∂sj
(t, 1),

with 1 = (1, 1, 1), which gives
dEj(t)

dt =
∂2f

∂sj∂t
(t, 1) =

∂

∂sj


∑

z∈N3

∂p

∂t
(t, z)sz



∣∣∣
s=1

.

The variation of p over time ∂p(t,z)
∂t can be decomposed into two terms. For z ∈ N3,

∂p

∂t
(t, z) = −

3∑

j=1

zjcjp(t, z) +
3∑

j=1

∑

u,v∈N3

u+v=z

(uj + 1)cjp(t, u + ej)πj(v).

The first term is the rate at which the population departs from state z , and is given by thesum over all types j of the rate at which individuals of type j reproduce. The second term isthe rate at which the population arrives in state z from another state, and can be decomposedaccording to the individual type whose reproduction changes the population state. Note thatthe descendance vector generated during the reproduction event (v ) counts the parent when itdoes not die, implying that the population is formally decreased by one individual of type j andincreased by a vector v during the reproduction event. In other words, if the population startsfrom a state u + ej and an individual of type j reproduces by creating a vector v of descendants,the final state of the population is u + ej − ej + v = u + v .
Back to the derivative of f with respect to t , we use the fact that the rates cj are independentof the current state of the population to re-arrange the sums and obtain:

∂f

∂t
(t, s) =

∑

z∈N3

∂p

∂t
(t, z)sz

=
∑
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3∑
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∑
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

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j
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−
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∑

z∈N3
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∑

v∈N3

∑
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(uj + 1)p(t, u + ej)πj(v)su+v



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j

cj
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∑

z∈N3

zjp(t, z)sz−ej +
∑

v∈N3

πj(v)sv
∑

u∈N3

(uj + 1)p(t, u + ej)s
u




=
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j

cj

(
−sj

∂f

∂sj
(t, s) + hj(s)

∂f
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(t, s)

)

=
∑

j

cj(hj(s)− sj)
∂f

∂sj
(t, s).
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Writing δi ,j = 1 if i = j and δi ,j = 0 otherwise, we then obtain for the expected value:
dEi

dt =
∂

∂si

∂f

∂t
(t, s)

∣∣
s=1

=
∑

j

cj

(
∂hj
∂si

(1)− δi ,j
)
∂f

∂sj
(t, 1) +

∑

j

cj(hj(1)− 1)
∂2f

∂si∂sj
(t, 1)

=
∑

j

cj

(
∂hj
∂si

(1)− δi ,j
)
Ej(t) +

∑

j

cj(hj(1)− 1)
∂2f

∂si∂sj
(t, 1)

=
∑

j

cj

(
∂hj
∂si

(1)− δi ,j
)
Ej(t),

where the last equality arises from the fact that, because hj is a generating function,
hj(1)− 1 =

∑

z∈N3

πj(z)− 1 = 0.

The matrix C we are looking for is thus defined by Cij = cj
(
∂hj
∂si

(1)− δij
) for 1 ≤ i , j ≤ 3.

Furthermore, we have, for all j ,
hj(s) =

1

cj

(∑

i

Aijsi sj +
∑

i

Tijsi + Djj

)
.

Combining the above, we arrive at
Cij =




Aij + Tij if i 6= j ,

Ajj −
∑
k 6=j

Tkj − Djj if i = j .

In conclusion, the matrix C is given by

(6) C =




(fa(r) + (1− f )d(r))S1 − S4
(
fc(r) + (1− f ) r

2

)
S1 (1− f )S1(

fc(r) + (1− f ) r
2

)
S2 (fa(r) + (1− f )d(r))S2 − S4 (1− f )S2

fb(r)S3 fb(r)S3 fS3 − S4


 ,

with
a(r) = 1− r +

r

4

(
1− (1− pin)(1− r)

)
, b(r) =

r

4

(
1 + (1− pin)(1− r)

)
,

c(r) =
r

4

(
1− (1− pin)(1− r)

)
, and d(r) = 1− 1

2
r .

C.4. Reducibility of the matrix C and probability of extinction of the branching process
We will use the standard notation sz := sz11 sz22 ... szdd for s and z two vectors of the samedimension d .
Assessing the type of branching process at hand (super-, sub-, or critical) relies on the studyof the eigenvalues of the matrix C . We use results of Sewastjanow, 1975 detailed in Pénisson,2010 to obtain conditions on the almost-sure extinction of the process. When the matrix C is ir-reducible, the Perron-Froebenius theory of positivematrices states that it has a unique dominanteigenvalue. The branching process is then super-, sub-, or critical when this dominant eigenvalueis respectively positive, negative, or zero (Athreya and Ney, 1972, V.7.2.). In particular, the prob-ability of extinction is equal to 1 when ρ ≤ 0.In our case, thematrixC can be reducible (for example, when f = 0). In order to obtain a resulton the probability of extinction in the subcritical case, we use the theory of sub-processes and
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of final classes. We recall below useful definitions and the principal result used (Sewastjanow,1975).
Let (Zt)t>0 be a multitype branching process, with types in a finite set K . The equivalencerelation of communication is defined by: for all states ki , kj ∈ K , we say that ki and kj communicate,if and only if there exist s, t > 0 such that

Peki
(Zs,kj > 0) > 0 and Pekj

(Zt,ki > 0) > 0.

This means that there exists a time at which the probability that the population describedby a branching process initiated with a single individual of type ki contains an individual of type
kj is positive, and a time at which the probability that the population described by a branchingprocess initiated with a single individual of type kj contains an individual of type ki is positive aswell. If a subset K̃ = {k1, ... , kp} is a class for the communication equivalence relation (meaningthat each state of K̃ communicates with all the others but communicates with none of the statesin K̃ c ), the K̃ -subprocess is the process defined for all t > 0 by

Z̃t :=
(
Zt,k1 , ... ,Zt,kp

)
,

which is the vector Zt from which only the coordinates of the types in the class K̃ are kept.
(Z̃t)t≥0 is still a branching process, and is by definition irreducible.

Let Ft,ki : s ∈ [0, 1]d 7−→ Eeki

[
sZt

] be the generating function of the process (Zt)t≥0 at time t ,
starting with one individual of type ki . K̃ = {k1, ... , kp} is then said to be a final class if it is non-empty, and satisfies the property that there exists t > 0 such that for all ki ∈ K̃ and s ∈ [0, 1]d ,
Ft,ki (s) is of the form

Ft,ki (s) = αki ,1(t, s)sk1 + · · ·+ αki ,p(t, s)skp ,

where the coefficients αki ,j can be expressed using the coordinates sk of s such that k /∈ K̃ .In other words, Ft,ki (s) is linear in sk for all k ∈ K̃ . The interpretation of this property is thatwhenever the population starts from a single individual of type ki ∈ K̃ , at any time t ≥ 0 thereis one, and only one, individual of a type kj ∈ K̃ (and potentially other individuals with types in
K̃ c ). The following result gives a condition for the almost sure extinction of the process (Zt)t≥0in the general case where the matrix C is not necessarily irreducible. Recall that the Perron’s root
ρ of a process, when it exists, is a real eigenvalue of the matrix associated with the process suchthat all real parts of other eigenvalues are smaller than ρ (see Pénisson, 2010 Th. 1.1.7 and thefollowing ones for a more detailed definition).
TheoremC.1 (Prop. 1.1.22 in Pénisson, 2010). Let (Zt)t>0 be a continuous timeGalton-Watson pro-cess, and let ρ = max

K̃
ρK̃ be themaximal value of the Perron’s roots of all the possible K̃ -subprocesses.

Then the process (Zt)t>0 almost surely dies out if and only if there are no final classes and ρ 6 0.
Let us verify that our branching process does not contain a final class. For that, we showthat the generating function of the process starting from any state has a non-zero coefficient ofdegree zero, and thus cannot be linear.
For any t > 0, r ∈ [0, 1]3 and any j ∈ {1, 2, 3}, we can decompose the generating functioninto

Ft,j(r) = Eej (r
Zt ) = Pej (Zt = 0) +

∑

z∈N3\{0}
Pej (Zt = z)r z .

Let us prove that Pej (Zt = 0) > 0 for every j ∈ {1, 2, 3}. This will prove that the generatingfunction cannot be linear for any initial type, and thus that the process does not contain anyfinal classes.
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Let j ∈ {1, 2, 3}, τ1 be the time of the first reproduction event, and Y j
1 be the descendancevector created at that time. We have

Pej (Zt = 0) ≥ Pej

(
{τ1 ≤ t} ∩ {Y j

1 = 0})
= Pej

(
Y j
1 = 0|τ1 ≤ t

)
Pej

(
τ1 ≤ t

)

= Pej (τ1 ≤ t)× P(Y j = 0)

= (1− e−cj t)Djj

cj
,

where cj is the total rate of reproduction of an individual of type j , and Djj is the rate at which anindividual of type j reproduces and gives rise to a null vector of descendants. Hence, Pej (Zt =
0) > 0 when Djj > 0.For both selection scenarii, D11 = D22 = D33 = S4. In the partial dominance selection sce-nario, S4 = 1, and in the overdominant selection scenario, S4 = 1− s4. Having Djj = 0 for any j isimpossible in the first scenario and requires s4 = 1 in the second scenario, which means that thewild allele is lethal, which is not a reasonable assumption.We thus take s4 < 1. As a consequence,the generating function cannot be linear, and the process does not contain any final class.

The result of Proposition C.1 then applies here, and the sign of the dominant eigenvalue ofmatrix C gives a condition on the almost-sure extinction of the process.
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Appendix D. Supplementary figures

Figure S2 – Relative variation of the derivative of the eigenvalue in the partial dominancecase, for varying selfing rate f (x-axis), dominance coefficient h (y-axis, left) and selectioncoefficient s (y-axis, right). For each panel, the values of ∂ρ∂r |r=0.5 range from a minimalvalue, which is negative, to zero.We divided each value of the derivative by this minimumin order to plot values between 0 and 1 for every panel. This enables us to compare theimpact of different parameters (h, s and f ) on the sheltering effect of the mating-typelocus. The darker the color, the more the mating-type locus shelters the mutation, thuspromoting its maintenance.
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Figure S3 – Relative variation of the derivative of the eigenvalue in the overdominancecase, for varying selfing rate f (x-axis), and selection coefficients s3 (y-axis, left) and s4(y-axis, right), with s3 > s4. For each panel, the values of ∂ρ∂r |r=0.5 range from a minimalvalue, which is negative, to zero.We divided each value of the derivative by this minimumin order to plot values between 0 and 1 for every panel. This enables us to compare theimpact of different parameters (s3, s4 and f ) on the sheltering effect of the mating-typelocus. The darker the color, the more the mating-type locus shelters the mutation, thuspromoting its maintenance.
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Figure S4 – Difference between the dominant eigenvalue derivative at r = 0.5 and at
r = 0, ∆

(
∂ρ
∂r

)
= ∂ρ

∂r |r=0.5 −∂ρ∂r |r=0. The left panel shows the partial dominance case, the
right panel shows the overdominance case, for varying selfing rate f (x-axis), and intra-tetrad selfing rate (y-axis). The difference is always positive, with both derivative beingnegative (see App. E.3 and App. F.3). This means that the absolute value of the derivativeat r = 0 is always greater than the absolute value of the derivative at r = 0.5. The darkerthe color, the larger the difference between the two derivatives.
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Figure S5 – Empirical distribution of the deleterious allele purging time for the partialdominance scenario. A total of 100,000 simulations were run, with s = 0.1, h = 0.1,
r = 0.1, pin = 0.5, starting from one heterozygous individual (X0 = (1, 0, 0)), and forthree values of the selfing rate (f = 0 in green, f = 0.5 in red and f = 1 in blue). Therespective values for ρ are ρ = −0.0100, ρ = −0.0157 and ρ = −0.0818. The x-axis islog-scaled. The large-dotted lines represent the 75th percentile (q75), the dashed linesindicate the 99th percentile (q99), and solid lines the maximum value (max) of the purgingtime. Maximum values are several order of magnitudes higher than the 75th percentileof the empirical distribution of the purging time.
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Figure S6 – Empirical distribution of the deleterious allele purging time for the over-dominance scenario. A total of 100,000 simulations were run, with s3 = 0.1, f = 0.5,
pin = 0.5, starting from one heterozygous individual (X0 = (1, 0, 0)), for several valuesof the recombination rate and of the selection coefficient s4 (r = 0.1, s4 = 0.001 in blue,
r = 0.5, s4 = 0.01 in red, and r = 0.5, s4 = 0.001 in green). The respective values for ρare ρ = −0.0052, ρ = −0.0129 and ρ = −0.0219. The parameters were chosen so thatthe process is sub-critical and thus the purging time is almost surely finite. The x-axis islog-scaled. The large-dotted lines represent the 75th percentile (q75), the dashed linesindicate the 99th percentile (q99), and solid lines the maximum value (max) of the purgingtime. Maximum values are several order of magnitudes higher than the 75th percentileof the empirical distribution of the purging time.
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Figure S7 – Empirical distribution of the deleterious allele purging time for the overdomi-nant scenario. A total of 100,000 simulations were run, with s3 = 0.5, pin = 0.5, s4 = 0.01,
r = 0.4, starting from one heterozygous individual (X0 = (1, 0, 0)), for four values of theselfing rate (f = 0.1 in yellow, f = 0.5 in red, f = 0.9 in blue, f = 1 in green). The respec-tive values for ρ are ρ = −0.0035, ρ = −0.0713, ρ = −0.1905 and ρ = −0.25. Parameterswere chosen so that the process is sub-critical and thus the purging time is almost surelyfinite. The x-axis is log-scaled. The large-dotted lines represent the 75th percentile (q75),dashed lines indicate the 99th percentile (q99), and solid lines the maximum value (max)of the purging time. Maximum values are several order of magnitudes higher than the75th percentile of the empirical distribution of the purging time. Note that the selectioncoefficient for bb homozygotes is high (s3 = 0.5).
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Appendix E. The dominant eigenvalue, its sign and its derivative: partial dominancescenario
E.1. Determination of the dominant eigenvalue

The eigenvalues computed with Mathematica (Wolfram Research, 2015) are, for the partialdominance case,
λ0 = −r − hs(1− r), λ+ =

1

4

(
β +
√

∆
)

, λ− =
1

4

(
β −
√

∆
)

,

where
(7) β = f

(
− r(1− hs)α + 2(1− s)

)
− 2(1 + hs), α = 2− r − pin(1− r),

and
(8) ∆ = (β + 4hs)2 − 8fsrα(1− h)(1− hs).

It is straightforward to see that λ+ > λ−.
Let us prove that we also have λ+ > λ0. We used Geogebra to assist us in the calculations.

λ+ > λ0 if and only if (iff) 1

4

(
β +
√

∆
)
≥ λ0 iff √

∆ ≥ 4λ0 − β.

If 4λ0 − β ≤ 0, the last inequality if straightforward, as √∆ ≥ 0.Let us study the sign of 4λ0 − β. We define P(r) := 4λ0 − β = a2r
2 + a1r + a0, with

a2 = −f (1− hs)(1− pin) < 0, a1 = f (1− hs)(2− pin)− 4(1− hs) < 0,

and a0 = −2f (1− s) + 2(1− hs) > 0.

P is a second-order polynomial, with negative quadratic coefficient and positive coefficientof order zero (because 1 − hs > 1 − s > f (1 − s)). Thus, P admits two roots, one negative andone positive. We denote the positive root by rP . For r ∈ [0, rP ], we have P(r) ≥ 0, and for r > rP ,we have P(r) < 0. Consequently, we readily obtain that when r > rP , λ+ > λ0.Let us now consider the case r ∈ [0, rP ]. For such an r , using that 4λ0 − β ≥ 0, we can writethat
√

∆ ≥ 4λ0 − β iff ∆ ≥ (4λ0 − β)2.

Let us write Q(r) := (4λ0 − β)2 −∆ = b2r
2 + b1r + b0, with

b2 = f (1− hs)(1− pin) > 0, b1 = 2(1− hs)− f (1− hs)(2− pin)− fs(1− h)(1− pin),

and b0 = −2(1− hs)(1− f )− pinfs(1− h) < 0.

Q is a second-order polynomial, with positive quadratic coefficient, and negative coefficientof order 0. Hence, Q admits two roots, one negative, and one positive. We denote the positiveroot by rQ . In order to prove that λ+ > λ0, we have to prove that Q(r) ≤ 0 when P(r) > 0, i.e.when r ∈ [0, rP ]. As Q(0) < 0 and Q has only one positive root, proving that Q(rP) < 0 will implythat Q(r) ≤ 0 for r ∈ [0, rP ]. Let us prove that Q(rP) < 0. Noting that the quadratic coefficientsof P and Q are the opposites of one another, we use the equation P(rP) = 0 to obtain
Q(rP) = rP

(
− 2(1− hs)− fs(1− h)(1− pin)

)
+ fs(1− h)(2− pin).

Seeing Q(rP) as an affine function of rP , we obtain that the function rP 7−→ Q(rP) admits aunique root, which is positive, and that we will denote by r0P :
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r0P =
fs(1− h)(2− pin)

2(1− hs) + fs(1− h)(1− pin)
.

We wish to prove that rP ≥ r0P , as it implies that Q(rP) ≤ 0. Having rP ≥ r0P is equivalentto having P(r0P) ≥ 0, as rP is the unique positive root of P and P(0) ≥ 0. Consequently, it onlyremains to prove that P(r0P) ≥ 0, which is equivalent to
(

2(1− hs) + fs(1− h)(1− pin)
)2
P(r0P) ≥ 0.

To obtain this result, an efficient way is to consider the left-hand term as a polynomial in pin.Let us write K (pin) = (2(1− hs) + fs(1− h)(1− pin))2P(r0) = c2p
2
in + c1pin + c0, with

c2 = f 2s(1− s)(1− fs)(1− h) > 0, c1 = 2(1− s)f 3s2(1− h)2 > 0

and c0 = (1− h)2f 2s2
(
1− hs + f (s − 1)

)
+ 4(1− f )(1− hs)2 > 0.

K is thus a second-degree polynomial in pin, with a positive quadratic coefficient, and a mini-mum reached for a negative value (minimum reached at−c1/(2c2) < 0). K is thus monotonic forpositive abscissa, and the coefficient of order zero is positive. Consequently, for all pin ≥ 0, wehave K (pin) ≥ 0. We have then P(r0) ≥ 0, which concludes the proof that λ+ ≥ λ0.
Based on the result we just obtained, from now on we write ρ = λ+.

E.2. Sign of the dominant eigenvalue
We prove that ρ < 0, except when s = 0, or when h = 0 and r = 0, in which cases ρ = 0.Recall the notation α,β from (7) and ∆ from (8).First, considering that r ∈ [0, 1] and pin ∈ [0, 1], we have 0 < α < 2, which leads to β < 0.When s = 0 or (r , h) = (0, 0), ∆ = β2, which gives, as β < 0, √∆ =

√
β2 = |β| = −β. Wethen have ρ = 1

4 (β − β) = 0.Let us now consider the case where s 6= 0 and (r , h) 6= (0, 0). We have
β +
√

∆ > 0 iff 0 > β > −
√

∆ iff 0 < β2 < ∆ iff β2 −∆ < 0.

Moreover, β2 −∆ = −16f (1− s)hs + 8frα(1− hs)s + 16hs . The sign of ρ is thus the sign of
fh(2 − rα)s + 2h(1 − f ) + rαf , which is an affine function of s . The slope and intercept of thisfunction are both non-positive when (r , h) 6= 0 or s 6= 0, which gives ρ < 0 in those cases.
E.3. Derivative of the dominant eigenvalue

The derivative of ρ is
∂ρ

∂r
=

1

4

(
β′(r) +

1

2

∆′(r)√
∆

)
,

Evaluating this derivative at r = 0.5, and using that β′(0.5) = −f (1− hs), we obtain
∂ρ

∂r

∣∣∣
r=0.5

= −1

4
f (1− hs)

(
1 +

β(0.5) + 4s√
∆

)
.

Simple calculations lead to ∂ρ
∂r |r=0.5 = 0 when f = 0, or s = 0, or s = 1, or h = 1, or f = 1 and

pin ≤ 3− 8s(1−h)
1−hs . In the latter case, whether the inequality is verified or not determines the sign

of ∆ and therefore the value of √∆, which is either equal to β(0.5) + 4s or −(β(0.5) + 4s). Thederivative is then either equal to zero or strictly negative.For the rest of this paragraph, we study the sign of the derivative when none of the abovecases is met.
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Let us write γ = β(0.5) + 4s . If γ ≥ 0, we readily obtain ∂ρ
∂r |r=0.5 < 0. Let us then assume that

γ < 0. In this case, we have
∂ρ

∂r

∣∣∣
r=0.5

< 0 iff 1 +
γ√
∆
> 0 iff √

∆ > −γ.

As −γ > 0, this comes down to
∂ρ

∂r

∣∣∣
r=0.5

< 0 iff ∆ > γ2 iff (1− s)(f − 1) < 0,

which is indeed satisfied.In conclusion, we have shown that, in the general case,
∂ρ

∂r

∣∣∣
r=0.5

< 0.

We also compute the derivative at r = 0. We have β(0) = 2f (1 − s) − 2(1 + hs), β′(0) =

−f (1− hs)(2− pin), ∆(0) =
(
2f (1− s)− 2(1− hs)

)2, and ∆′(0) = 2β′(0)(β(0) + 4hs)− 8fs(1−
h)(1− hs)(2− pin).After simplification, this gives

∂ρ

∂r

∣∣∣
r=0

= − f (1− hs)(2− pin)

4

(
1 + sgn

(
f (1− s)− (1− hs)

)
+

2s(1− h)

|f (1− s)− (1− hs)|

)
,

with sgn
(
f (1 − s) − (1 − hs)

) is equal to 1 (respectively to −1) when f (1 − s) − (1 − hs) ispositive (resp. negative).We obtain immediately that
∂ρ

∂r

∣∣∣
r=0
≤ 0.
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Appendix F. The dominant eigenvalue, its sign and its derivative: overdominancescenario
F.1. Determination of the dominant eigenvalue

The eigenvalues computed with Mathematica (Wolfram Research, 2015) for the overdomi-nant case are
λ0 = s4 − r , λ+ =

1

4

(
β +
√

∆
)

, λ− =
1

4

(
β −
√

∆
)

with
(9) β = f (r [pin(1− r) + r − 2]− 2s3 + 2) + 4s4 − 2,

and
(10) ∆ = (β − 4s4)2 + 8frs3(pin(1− r) + r − 2)

Here again, we obviously have λ+ > λ−.We follow the same method as in the partial dominance case to prove that λ+ > λ0.We have
λ+ > λ0 if and only if (iff) 1

4

(
β +
√

∆
)
≥ λ0 iff √

∆ ≥ 4λ0 − β.

If 4λ0− β ≤ 0, the last inequality if straightforward, as√∆ ≥ 0. Let us thus study the sign of
4λ0 − β. Let us define the function P by P(r) := 4λ0 − β = a2r

2 + a1r + a0, with
a2 = −f (1− pin) < 0, a1 = f (2− pin)− 4 < 0, and a0 = 2(1− f (1− s3)) > 0.

P is a second-order polynomial, with a negative quadratic coefficient and a positive coeffi-cient of order 0. Hence P admits two roots, one which is negative and one which is positive.We denote the positive root by rP . For r ∈ [0, rP ], we have P(r) ≥ 0, and for r > rP , we have
P(r) < 0. Consequently, we readily obtain that when r > rP , the conclusion follows.Let us now consider r ∈ [0, rP ]. For such an r , as 4λ0 − β ≥ 0, again we have

√
∆ ≥ 4λ0 − β iff ∆ ≥ (4λ0 − β)2.

Let us define the function Q by Q(r) := (4λ0 − β)2 −∆ = b2r
2 + b1r + b0, with

b2 = f (1− pin) > 0, b1 = f (1 + s3)(pin − 1)− f + 2, and b0 = −fs3pin − 2(1− f ) < 0.

Q is a second-order polynomial, with positive quadratic coefficient, and negative coefficientof order 0. Hence, Q admits two roots, one negative and one positive. We denote the positiveroot by rQ . In order to prove that λ+ > λ0, we have to prove that Q(r) ≤ 0 when P(r) > 0, i.e.when r ∈ [0, rP ]. As Q(0) < 0 and Q has only one positive root, proving that Q(rP) < 0 will implythat Q(r) ≤ 0 for r ∈ [0, rP ]. Let us prove that Q(rP) < 0. Noting that the quadratic coefficientsof P and Q are the opposites of one another, we use the equation P(rP) = 0 to obtain
Q(rP) = rP

(
− 2− fs3(1− pin)

)
+ fs3(2− pin).

Seeing Q(rP) as an affine function of rP , we obtain that the function rP 7−→ Q(rP) admits aunique root, which is positive, and that we will denote by r0P :
r0P =

fs3(2− pin)

2 + fs3(1− pin)
.
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We wish to prove that rP ≥ r0P , as it implies that Q(rP) ≤ 0. Having rP ≥ r0P is equivalent tohaving P(r0) ≥ 0, as rP is the unique positive root of P and P(0) ≥ 0. There is thus left to provethat P(r0P) ≥ 0, which is equivalent to
(

2 + fs3(1− pin)
)2
P(r0P) ≥ 0.

To obtain this result, an efficient way is to consider the left-hand term as a polynomial in pin.Let us write K (pin) = (2 + fs3(1− pin))2P(r0P) = c2p
2
in + c1pin + c0, with

c2 = f 2s3(1− s3)(1− fs3) > 0, c1 = 2(1− s3)f 3s23 > 0

and c0 = f 2s23
(
(1− f )(1− s3) + s3

)
+ 4(1− f ) > 0.

K is thus a second-degree polynomial in pin, with a positive quadratic coefficient and posi-tive coefficient of order 0, that reaches its minimum for a negative value (minimum reached at
−c1/(2c2) < 0). Consequently, for all pin ≥ 0, we have K (pin) ≥ 0. We have then P(r0P) ≥ 0,which concludes the proof that λ+ ≥ λ0.

Based on the result we just obtained, from now on we write ρ = λ+.
F.2. Sign of the dominant eigenvalue

In this selection scenario, ρ is not of constant sign.The condition for ρ ≥ 0 is
√
f 2
[
r
(
pin(1− r) + r − 2

)− 2s3 + 2
]2

+ 4f (2(s3 − 1)− r(2s3 − 1)((pin − 1)r − pin + 2)) + 4

+f
[
r(pin(1− r) + r − 2)− 2s3 + 2

]
+ 4s4 ≥ 2.

We compute the dominant eigenvalue and study its sign for simple cases, and then use anumerical approach to complete the analysis (Figure 2). Under complete intra-tetrad selfing (f =
1, pin = 1), we have ρ = s4 − r/2 if s3 ≥ r/2 and ρ = s4 − s3 if s3 < r/2. As s4 ≤ s3, thecondition to have ρ ≥ 0 reduces to r ≤ 2s4. This is consistent with the results of Antonovicsand Abrams, 2004, as the authors set s3 = 1 and thus obtain ρ = s4 − r/2. Under completeselfing (f = 1), if r(2 − r − pin(1 − r)) − 2s3 ≥ 0, then ρ = s4 − s3 ≤ 0. This shows that thevalue of the dominant eigenvalue, and thus the dynamics of the process, depends only on theselection strength when the recombination rate r exceeds a certain threshold. Moreover, thisthreshold depends only on the selection coefficient for homozygous deleterious (s3), and on theprobability of intra-tetrad mating (pin). This threshold appears on the bottom panels of Figure2. Under complete outcrossing (f = 0), we have ρ = s4 ≥ 0. When the mutation is completelylinked to a mating-type allele (r = 0), we have ρ = s4 ≥ 0. When the mutation is neutral (s3 = 0,implying s4 = 0 as well), we have ρ = 0. Finally, when BB homozygotes are not disfavored(s4 = 0), we have ρ < 0. Indeed, in this case, β = fr [pin(1− r) + r − 2]− 2fs3 + 2(f − 1) < 0. Wethus have

ρ ≥ 0 iff √
∆ ≥ −β ≥ 0 iff ∆ ≥ β2 iff 8frs3(pin(1− r) + r − 2) ≥ 0.

But we trivially have pin(1− r) + r − 2 ≤ 0, and so the condition is not met and ρ < 0.
F.3. Derivative of the dominant eigenvalue

The derivative of the largest eigenvalue ρ is
∂ρ

∂r
=

1

4

(
β′(r) +

1

2

∆′(r)√
∆

)
.

Moreover, we have
β′(r) = 2f (1− pin)r + f (pin − 2)
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and
∆′(r) = 2β′(r)(β(r)− 4s4) + 8fs3(2(1− pin)r + pin − 2).

Evaluating these quantities at r = 0.5, we obtain β′(0.5) = −f , and so
∂ρ

∂r

∣∣∣
r=0.5

= −1

4
f

(
1 +

β(0.5)− 4s4 + 4s3√
∆

)
.

Simple calculations lead to ∂ρ
∂r |r=0.5 = 0 when f = 0, or s3 = 0, or f = 1 and pin ≤ 3− 8s3.For the rest of this paragraph, we study the sign of the derivative when none of the abovecases is met.

Let us write γ = β(r = 0.5) − 4s4 + 4s3. If γ ≥ 0, we readily obtain that ∂ρ∂r |r=0.5 < 0. Let usthen assume that γ < 0. In this case, we have
∂ρ

∂r

∣∣∣
r=0.5

< 0 iff 1 +
γ√
∆
> 0 iff √

∆ > −γ.

As −γ > 0,
∂ρ

∂r

∣∣∣
r=0.5

< 0 iff ∆ > γ2 iff (β − 4s4)2 + 8frs3(pin(1− r) + r − 2) > (β − 4s4)2 + 8s3(β − 4s4) + 16s23 .

After some simplifications, we obtain
∂ρ

∂r

∣∣∣
r=0.5

< 0 iff f <
8

3
,

which is always satisfied as f ∈ [0, 1].In conclusion, we have shown that
∂ρ

∂r

∣∣∣
r=0.5

< 0.

We also compute the derivative at r = 0. We have β(0) = 2f (1 − s3) + 4s4 − 2, β′(0) =

−f (2− pin), ∆(0) =
(
2f (1− s3)− 2

)2, and ∆′(0) = 2β′(0)(β(0)− 4s4)− 8fs3(2− pin).After simplification, this gives
∂ρ

∂r

∣∣∣
r=0

= − f (2− pin)

4

(
1 + sgn

(
2f (1− s3)− 2

)
+

4s4
|2f (1− s3)− 4s4|

)
,

with sgn
(
2f (1− s3)−2

) is equal to 1 (respectively to−1) when 2f (1− s3)−2 is positive (resp.negative).We obtain immediately that
∂ρ

∂r

∣∣∣
r=0
≤ 0.
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