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Abstract
This paper is concerned with dynamic force identification on thin plates from full field vibration measure-
ments. The main goal of this study is to compare two force identification methods. The first method is the
Force Analysis Technique (FAT). It uses a finite difference scheme to discretize the Love-Kirchhoff spatial
operator and then resolve the local equation of motion to identify the load. The second method under con-
sideration is the Virtual Fields Method (VFM). In this technique, virtual displacements and curvatures are
used to solve the principle of virtual work (PVW). The local aspect and the fact that boundary conditions of
the plate need not to be known a priori are important advantages of both methods. In this paper full field
vibration measurements are obtained by optical deflectometry. The paper first gives an overview of the Force
Analysis Technique, the Virtual Fields Method and the optical deflectometry techniques. It then presents
experimental results based on deflectometry measurements.

1 Introduction

In the past, several methods have been developed to identify the dynamic loads applied on a structure from the
measured vibration response. Two methods are addressed in this paper: the Force Analysis Technique and the
Virtual Field Method. The Force Analysis Technique (FAT) was first developed by Guyader and Pézerat to
identify the pressure field applied on a beam [1], a plate or a shell. This method is based on the strong form of
the local equilibrium. Since then, FAT has been the subject of several developments like the Corrected Force
Analysis Technique (CFAT) which allows identifying the pressure field at higher frequencies. This method
has been formulated for isotropic plates [2] and recently to more complex structures such as laminated plates
[3]. FAT and CFAT have also been used to identify structural parameters (Young’s moduli, damping factor)
of isotropic plates [4, 5] and orthotropic plates [6, 7].

The second method addressed in this paper is the Virtual Field Method (VFM). This method is based on the
principle of virtual work (PVW), a weak form of the equation of equilibrium. The VFM consists in solving
the PVW using a carefully selected set of virtual displacements, called virtual fields [8]. The key point of the
method is the choice of those virtual fields. Contrary to FAT, VFM was first developed to identify mechanical
constitutive parameters. Since then the method has been applied to identify stationary dynamic loadings on
bending plates [9, 10]. This identification has also been developed to identify non-stationary excitations
(such as diffuse acoustic fields and turbulent flows) thanks to a time resolved identification [11, 12].

In this study, full-field vibration measurements performed by a fast camera and optical deflectometry on an
isotropic thin plate are used as inputs of the force identification methods. Optical deflectometry provides
local bending slopes with a large time and space resolution. Optical deflectometry has been already coupled
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with VFM in the work of O’Donoughue et al. ( [11, 12] but to the best of the authors’ knowledge the use of
optical deflectometry measurements in force identification with FAT has never been reported.

This paper first details the basic principles of FAT and VFM and then provides details on the optical full-field
measurements and processing. Finally, experimental results of force identification on an isotropic plate are
presented.

2 Identification methods

2.1 Force analysis technique

FAT is based on a strong form of the local equilibrium. We consider a homogeneous isotropic Love-Kirchhoff
plate of thickness h. This plate is submitted to a harmonic transverse loading q(x, t) = q̃(x)ejωt [Pa] where
x is the position of an arbitrary point of the plate and j=

√
−1. The out-of-plane displacement is denoted by

w(x, t) = w̃(x)ejωt [m]. The local equilibrium equation of the plate is [2] :

q̃(x) = −ρhw̃(x)ω2 +D

(
∂4w̃(x)

∂x4
+ 2

∂4w̃(x)

∂x2∂y2
+

∂4w̃(x)

∂y4

)
(1)

where ρ is the mass density of the plate, D = Eh3

12(1−ν2)
is the flexural stiffness and x, y are the cartesian

coordinates on the plate.

In FAT, the 4-th order derivatives in Eq. (1) are estimated by finite differences [2]:

∂4w̃

∂x4
≃ δ4x∆ =

1

∆4

2∑

r=−2

Γrw̃(x+ r∆, y)

∂4w̃

∂y4
≃ δ4y∆ =

1

∆4

2∑

r=−2

Γrw̃(x, y + r∆)

∂4w̃

∂2x∂2y
≃ δ2x2y∆ =

1

∆4

1∑

p=−1

1∑

q=−1

Ψpqw̃(x+ p∆, y + q∆) (2)

where ∆ is the spacing between two consecutive points in the experimental mesh and Γ−2 = Γ2 = 1, Γ−1 =
Γ1 = −4, Γ0 = 6, Ψ00 = 4, Ψ−10 = Ψ10 = Ψ0−1 = Ψ01 = −2 and Ψ−1−1 = Ψ11 = Ψ1−1 = Ψ−11 = 1.
The external pressure estimate by FAT is given by [2]:

q̃FAT(x) = −ρhw̃(x)ω2 +D(δ4x∆ + δ4y∆ + δ2x2y∆ ) (3)

Therefore, to estimate the applied pressure at point x, the measurement of 13 displacements around x is
needed.

One of the strengths of FAT is its local aspect. Indeed, the boundary conditions of the structure or the
vibration response outside those 13 points are not required to estimate the load at x. On the other hand,
FAT is sensitive to measurement noise. The 4th order derivatives, amplify measurement noise and the results
of the method will no longer be reliable in low frequency. In response to this issue, a low-pass filtering
in the wavenumber domain is applied at each frequency. This operation avoids noise amplification in the
high wavenumber domain. In this study, the low-pass wavenumber filter is applied when extracting data
from the deflectometry measurements (see section 3.2). The low-pass filtering is related to the number of
measurement points by flexural wavelength λ:

n =
λ

∆
=

2π

k∆
(4)
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where k = 4

√
ρh

D

√
ω is the flexural wavenumber of the plate. When the number of measurement points by

wavelength is large, the method will have a greater sensibility to measurement noise.

2.2 Virtual Fields Method

2.2.1 Principe of Virtual Work

The starting point of the Virtual Field Method (VFM) is the Principle of Virtual Work (PVW), which is a
weak form of the equation of equilibrium. This principle is given again for a Love-Kirchhoff plate of surface
S submitted to a harmonic transverse loading [9]:

h3

12

∫

S
KvT (x)Q(x)K̃(x)dS − hω2

∫

S
ρw̃(x)wv(x)dS =

∫

S
q̃VFM(x)wv(x)dS (5)

where

• K̃(x) denotes the bending curvatures of the plate at position x. They are given by:

K̃(x) =



Kxx

Kyy

Kxy


 = −




∂2/∂x2

∂2/∂y2

∂2/∂x∂y


 w̃(x) (6)

• Q(x) is the 3x3 elastic matrix of the plate, here considered constant over S and given by:

Q(x) =
E

1− ν2



1 ν 0
ν 1 0

0 0 1−ν2

2(1+ν)


 (7)

• wv(x) and Kv(x) are respectively the virtual displacement and associated virtual curvatures (in Eq.
(5) the superscript T denotes the transpose matrix).

2.2.2 Virtual fields

The virtual fields wv(x) and Kv(x) are the key quantities of the VFM. The PWV is resolved with any
virtual displacement wv C1 (continuity of the virtual displacement and its first derivatives). Also, in order to
avoid additional unknown forces and moments at the plate’s edges in the PVW, the virtual fields need to be
kinematically admissible (KA). For example, if the plate is simply-supported along all edges, to be KA, the
virtual displacement should also be null at the edges.

Since any C1 KA function over S can be a virtual displacement, a choice needs to be made. In our case,
piecewise virtual displacements are used. These displacements are defined over a virtual mesh like in the
Finite Element Method but they are limited to a small sub-domain of S [8]. One advantage of piecewise
virtual displacements compared to virtual displacements defined over the whole surface S is their flexibility.
In our case we consider a virtual displacement based on the Hermite16 interpolation functions used in the
Finite Element Method. This field fulfills the C1 continuity condition [8]. The virtual displacements are
defined over a rectangular virtual window Sv (scanning the plate surface) composed of 4 quadrants. In order
to eliminate the virtual work of transverse forces and bending moments, at the boundary of Sv the virtual
displacement and its normal derivatives are equal to zero on the edges of Sv. Each quadrant posseses 4
nodes for a total of 9 degrees of freedom. For each position of the window over the plate surface, these
nodes correspond to points of the experimental mesh. The virtual window, virtual displacements and virtual
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(a) (b)

Figure 1: (a) Virtual window Sv defined on the plate surface S (b) Virtual displacement wv and curvatures
Kv

xx, Kv
yy, Kv

xy over the virtual window

curvatures are shown in Figure 1. The virtual displacement over each quadrant is defined by [9]:

wv(x, y) = H0
2 (ξ1)H

0
2 (ξ2) on quadrant 11

wv(x, y) = H0
1 (ξ1)H

0
2 (ξ2) on quadrant 12

wv(x, y) = H0
2 (ξ1)H

0
1 (ξ2) on quadrant 21

wv(x, y) = H0
1 (ξ1)H

0
1 (ξ2) on quadrant 22 (8)

where ξ1 and ξ2 are non-dimensional coordinates defined for each quadrant, H0
1 (ξ) =

1
4(2 + ξ)(1− ξ)2 and

H0
2 (ξ) =

1
4(2 + ξ)(1 + ξ)2. The curvatures related to these displacements are detailed in appendix A. Each

virtual window will be moved over S and for each position Eq. (5) is solved over Sv. The loading is searched
as a concentrated force f̃VFM(ω) applied at the center point xc of each virtual window. Since wv = 1 at the
center of the window the right term of Eq. (5) becomes :

∫

Sv

q̃VFM(x)w(x)vdS =

∫

Sv

f̃VFM(ω)δ(x− xc)w(x)
vdS = f̃VFM(ω) (9)

The force estimated by VFM in the center of the window is then given by:

f̃VFM(ω) =
h3

12

∫

Sv

KvT (x)Q(x)K̃(x)dS − hω2

∫

Sv

ρw̃(x)wv(x)dS (10)

The integrals on the right-hand side of Eq. (10) are approximated by sums over the points of the measurement
grid. Note that in comparison to the local equilibrium Eq. (1), the PVW in Eq. (10) requires only second-
order spatial derivatives of the transverse displacement to obtain the loading (instead of 4th-order derivatives
in Eq. (1)), making the approach a priori less sensitive to measurement noise.

3 Deflectometry measurements

3.1 Basic principles

Optical deflectometry is a full-field non-invasive technique which measures the local slopes of the transverse
displacement fields of flat structures. A schematic of a deflectometry setup is shown in figure 2. The surface
of the plate must have a mirror-like finish. On this surface the specular reflection of the grid, placed in front of
the plate at a distance L, is observed. A high-speed camera records this specular reflection, as shown by the
example at the bottom of figure 2. When a dynamic load is applied on the plate, the transverse deformation
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Figure 2: Schematic of a optical deflectometry set-up

of the plate creates a time-varying distortion of the grid reflection as shown in right bottom of figure 2. The
deflectometry measurement consists in recording these distortions with the high-speed camera. The bending
vibration of the plate leads to a local slope α at point M, which is now the reflection of point P of the grid
instead of R. The shift PR is noted γ. With the small angle approximation for θ and α [11], γ is given by:

γ = 2Lα (11)

Another expression of γ can be obtained with the local phase variations in the grid images. The phase map
of a reference image recorded in the absence of load is compared to the phase map of a distorted image. The
phase maps are extracted with a Windowed Discrete Fourier Transform (WDFT) algorithm that performs a
2D discrete Fourier transform of the distorted grid image. The phase of the first Fourier component of the
grid images is then obtained with a spatial phase shifting and windowing with a kernel triangular window.
Since the phase values returned are between [−π, π], an unwrapping algorithm is applied. The difference
∆ϕ(x, y) = ϕd(x, y) − ϕr(x, y) is kept, with ϕd(x, y) and ϕr(x, y) the phases extracted from the distorted
and reference images respectively. The shift γ can then be locally obtained with the relation [11]:

γ =
p

2π
∆ϕ (12)

where p is the grid pitch [m], i.e. the spatial period of the grid. The corresponding pitch on the plate is
p/2 because of the reflection. In practice, two phase maps are obtained: one according to local x-slopes,
∆ϕx(x, y) and one according to local y-slopes, ∆ϕy(x, y). Combining Eqs. 11 and 12, the local slopes
according to x and y are given by: {

αx = p
4πL∆ϕx(x, y)

αy = p
4πL∆ϕy(x, y)

(13)

3.2 Extraction of plate displacements from deflectometry measurements

An important setting of the measurement setup is that the number N of pixels in the camera sensor corre-
sponding to a grid pitch on the image must be an integer. Consequently, for each grid period, a measurement
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point will be obtained. This number N cannot be too small to have a good estimation of the local phase shift
or too high in order to avoid a sub-optimal use of the camera by having few measurement points [12]. This
calibration is mandatory for the use of the WDFT algorithm and allows reducing Moiré interference. A good
calibration over the whole image is very hard to achieve in practice. However, the kernel triangular window
used in the WDFT algorithm helps reducing the error due to miscalibration [11]. In addition to the WDFT
and 2D unwrapping algorithms, the data are spatially smoothed with a second kernel triangular window of
size N × N . The pressure q̃FAT is obtained via Eq. (1) and the finite difference scheme Eq. (2) to estimate
4th-order spatial derivatives of displacements. On the other hand, for VFM, the PVW in Eq. (5) requires
both the displacement and curvature fields of the structure. In practice, the curvature fields are obtained by
calculating the numerical gradient of the slope fields. An interesting point is that VFM requires only one
spatial integration and one spatial derivation to be applied to slope fields. The integration of the slopes to
obtain out-of-plane displacement field is a more complex operation that is performed here in the wavenumber
domain. Here, α̂x(kx, ky), α̂y(kx, ky) and ŵ(kx, ky) denote the 2D spatial Fourier transforms of αx and αy

and w. For kx and ky non-zero, ŵ(kx, ky) is given by :
{

ŵ(kx, ky) =
α̂x(kx,ky)

jkx

ŵ(kx, ky) =
α̂y(kx,ky)

jky

(14)

This system is solved using the least square approach:

ŵ(kx, ky) = −jkxα̂x(kx, ky) + jkyα̂y(kx, ky)

k2x + k2y
(15)

The kx = 0, ky = 0 singularity is solved by first assuming that ŵ(0, 0) = 0 (the spatial DC component of
the displacement field is 0). The out-of-plane displacement is recovered by an inverse 2D Fourier transform
of Eq.(14). The DC value of the displacement is then modified by imposing the boundary condition of the
plate. In the experimental work (see the next section), the plate is simply-supported along its four edges. A
zero-displacement at the center point of the left edge is imposed on the displacement field.

4 Experimental results

4.1 Experimental set-up

A 0.42×0.48 m2 rectangular aluminum panel, of thickness 3.2 mm (ρ = 2700 kg/m3, ν = 0.3E = 70 GPa)
is mounted on a metallic frame with simply-support boundary conditions. The camera set-up calibration is
made with N = 7 pixels per grid pitch. The deflectometry setup is shown in figure 3a. The distance between
the grid and the panel is L = 1.51 m and the grid pitch is p = 8 mm in each direction, thus the spatial
resolution of the structural vibration is p/2 = 4 mm. The smallest calculated flexural wavelength in the
frequency range [180 ; 5660] Hz is 73.7 mm. The experimental mesh is composed of 116× 101 points. The
images are recorded with a Photron SA-X2 high-speed camera. The maximum resolution of the camera is
1024×1024 pixel. The recording is made with a frame rate of 12,000 fps and a recording time of 1.49 s. The
plate is excited by a shaker (Bruël & Kjaer 4810) with a broadband input filtered over octave bands. Five
measurements, one for each of the five octave band considered, are made. The bands considered are 250,
500, 1000, 2000 and 4000 Hz. The shaker injects forces in the plate via a small metallic circular tablet of
diameter 13 mm which is glued to the plate at position x = 0.055 m, y = 0.16 m relative to the bottom left
corner of the plate. A force sensor (PCB 208C03) is mounted on the shaker to measure the injected force.

4.2 Force identification results

Once the slope fields have been extracted, a 2D spatial Fourier transform is performed on these fields at each
time step so that Eq (15) can be applied. A 2D inverse Fourier transform of the results of Eq (15) is realized
to obtain the displacement field over time. The numerical differentiation of the slope fields to obtain the
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(a)

(b)

Figure 3: (a) Experimental set-up (b) Out-of-plane displacement at 1 kHz

(a) (b)

Figure 4: Identified force with (a) VFM and(b) FAT integrated between 180 and 5660 Hz ( in dB normalized
by the maximum value for each map, over a 12dB range)

curvature fields is directly performed in the time domain. A time Fourier transform of the displacement and
curvature is then performed to obtain the displacement at each point in the frequency domain. The 4th order
derivatives of the displacements are calculated using the displacement field in the frequency domain. VFM
and FAT are finally applied in the frequency domain. An example of the out-of-plane displacement at 1 kHz
is shown in figure 3b. In order to reduce the noise sensitivity of FAT in the estimation of 4th order spatial
derivatives of plate displacements, the number of points n per flexural wavelength (Eq. (4)) is reduced by
taking the step ∆ in the finite difference scheme equal to twice that in the experimental mesh. The window
in the VFM has a size of 9 × 9 pixels. At each frequency a complex cartography of the identified forces is
obtained for both methods. The moduli of these maps are integrated between 180 and 5660 Hz. The result is
shown in figure 4. In addition to these results, in figure 5 are shown the maps of the identified loads averaged
over 250, 500, 2000 and 4000 Hz octave band. The force applied on the plate is well localized with both
methods. By comparing figure 5b, and 5h it can be highlighted that FAT’s maps are less noisy when the
frequency increases (i.e. when the parameter n decreases).

Since a force sensor has been mounted on the shaker, the force magnitudes obtained with the sensor and the
methods can be compared to FAT and VFM predictions. Since FAT identifies a pressure, a spatial integration
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(a) VFM for the 250 Hz
octave band

(b) FAT for the 250 Hz
octave band

(c) VFM for the 500 Hz
octave band

(d) FAT for the 500 Hz
octave band

(e) VFM for the 2000
Hz octave band

(f) FAT for the 2000 Hz
octave band

(g) VFM for the 4000
Hz octave band

(h) FAT for the 4000 Hz
octave band

Figure 5: Identified force with FAT and VFM integrated over 250, 500, 2000 and 4000 Hz octave bands (in
dB normalized by the maximum value for each map, over a 12dB range))

of the pressure is necessary in order to recover the force magnitude. The area considered here corresponds to
the surface of the tablet mounted at the end of the shaker. The force identified with VFM is averaged on the
same surface. The comparison of these results over all octave bands is shown in figure 6. On figure 7 the same
results are integrated over each third octave band between 200 and 5000 Hz. The force magnitude predicted
with FAT and VFM is satisfactory even though some divergence with the results from the direct measurement
are observable. In low frequency FAT slightly overestimates the force magnitude due to measurement noise.
Above 4 kHz, the actual force injected by the shaker decreases significantly and FAT and VFM predictions
become also contaminated by measurement noise.

5 Conclusion

In this study the Virtual Fields Method (VFM) and the Force Analysis Technique (FAT) were used to identify
the load applied on a simply supported thin aluminum plate. The measurements were performed by optical
deflectometry. The applied force can be well located and quantified on the five octave bands considered in
these experiments (from 250 Hz to 4 kHz). The simplicity of FAT and its local aspect are its main advantages.
However, its sensitivity to noise can be a problem if no regularization is applied to remove high wavenumber
components. Here no extra low-pass wavenumber filter has been applied as the procedure used to extract the
vibratory field already involves a low-pass wavenumber filter.

The Virtual Fields Method, requires less regularization than FAT, however the choice of the virtual fields is
crucial in this approach. This aspect of VFM means that it may be more complex to apply compared to FAT.

In the continuity of this study, the comparison of both methods could be realized in the future on the identifi-
cation of the material parameters of complex panels. The calculation of the Love-Kirchhoff spatial operator
directly with the slope fields is a subject that may also be studied in the future.
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Figure 6: Force spectra (in dB ref 1 N) identified with FAT (thin black dashed line) VFM (thick green dash-
dotted line) and direct measurement (thin continuous red line)

Figure 7: Force spectra (in dB ref 1 N) identified with FAT (black line) VFM (green) and direct measurement
(red) integrated over each each third octave band between 200 and 5000 Hz
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[5] Q. Leclère, F. Ablitzer, and C. Pézerat, “Practical implementation of the corrected force analysis
technique to identify the structural parameter and load distributions,” Sep. 2015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0022460X15003570
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Appendix

A Expression of the virtual curvatures

The virtual curvatures are given by [9] :

∂2wv(x, y)

∂x2
=

16

(bx − ax)2
H0”

2 (ξ1)H
0
2 (ξ2) on quadrant 11

∂2wv(x, y)

∂x2
=

16

(bx − ax)2
H0”

1 (ξ1)H
0
2 (ξ2) on quadrant 12

∂2wv(x, y)

∂x2
=

16

(bx − ax)2
H0”

2 (ξ1)H
0
1 (ξ2) on quadrant 21

∂2wv(x, y)

∂x2
=

16

(bx − ax)2
H0”

1 (ξ1)H
0
1 (ξ2) on quadrant 22 (16)

Where H0”
1 = 3

2ξ and H0”
2 = −3

2ξ

∂2wv(x, y)

∂y2
=

16

(by − ay)2
H0

2 (ξ1)H
0”
2 (ξ2) on quadrant 11

∂2wv(x, y)

∂y2
=

16

(by − ay)2
H0

1 (ξ1)H
0”
2 (ξ2) on quadrant 12

∂2wv(x, y)

∂y2
=

16

(by − ay)2
H0

2 (ξ1)H
0”
1 (ξ2) on quadrant 21

∂2wv(x, y)

∂y2
=

16

(by − ay)2
H0

1 (ξ1)H
0”
1 (ξ2) on quadrant 22 (17)

∂2wv(x, y)

∂x∂y
=

16

(bx − ax)(by − ay)
H0′

2 (ξ1)H
0′
2 (ξ2) on quadrant 11

∂2wv(x, y)

∂x∂y
=

16

(bx − ax)(by − ay)
H0′

1 (ξ1)H
0′
2 (ξ2) on quadrant 12

∂2wv(x, y)

∂x∂y
=

16

(bx − ax)(by − ay)
H0′

2 (ξ1)H
0′
1 (ξ2) on quadrant 21

∂2wv(x, y)

∂x∂y
=

16

(bx − ax)(by − ay)
H0′

1 (ξ1)H
0′
1 (ξ2) on quadrant 22 (18)

with H0′
1 = 3

4(ξ
2 − 1) and H0”

2 = −3
4(ξ

2 − 1)
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