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Abstract

Nowadays, the operations performed by the Internet of Things (IoT) systems are no more trivial
since they rely on more sophisticated devices than in the past. The IoT system is physically
composed of connected computing, digital, mechanical devices such as sensors or actuators.
Most of the time, each of them incorporates a logical arithmetic unit that can pre-compute or
compute on the device. To extract value from the data produced at the edge, processing power
offered by cloud computing is still utilized. However, streaming data to the cloud exposes some
limitations related to the increased communication and data transfer, which introduces delays
and consumes network bandwidth. Clustering data is one example of a treatment that can be
executed in the cloud. In this paper, we propose a methodology for solving the data stream
clustering problem at the edge. Data Stream clustering is defined as the clustering of data
that arrive continuously, such as telephone records, multimedia data, sensors data, financial
transactions, etc. Since we use low-cost and low-capacity devices, the objective is, given a
sequence of points, to construct a good clustering of the streamusing a small amount ofmemory
and time. We propose a ’windowing’ scheme, coupled with a sampling scheme to respect the
objective. Under the experimental conditions, experiments show that the clustering solutions
can be controlled, with difficulties for time-stamped data but not for random data or data with
well-delimited clusters. The main advantage of our schema is that we are clustering data "on
the fly” with no knowledge or assumption regarding the available data. We do not assume that
all the data are known before a treatment batch by batch. Our schema also has the potential to
be adapted to other classes of machine learning algorithms.

Keywords: Edge AI, Machine-Learning Algorithms, Online data stream clustering,
Experiments on heterogeneous and low cost hardware.

1. Introduction

Edge computing is an emerging paradigm to meet the ever-increasing computation demands
from pervasive devices such as sensors, actuators, and smart things. Though the edge devices
can execute complex applications, some applications must migrate to centralized servers or
clouds. But we would like to avoid this migration. In the case of smart buildings, if we decide to
give more control over data privacy and security to residents, one may choose to avoid sending
data produced by the residents of a building into any cloud (GAFAM -Google Amazon Facebook
Apple Microsoft, or BATX - Baidu, Alibaba, Tencent, Xiaomi clouds). This new vision entails
new engineering of the building data, processors, and overall controllers. This new positioning
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raises several further research questions about 1- the efficient use of the computing, networking,
and storage capabilities owned by the building residents and visitors; 2- the performances of
the devices installed in the building. Both are central if we want to effectively learn from the
data produced in-situ inside a building.
A Co2 sensor inside a building produces data, and we may be interested in clustering the

data to determine some anomalies. Our motivation is to cluster data at the edge and on devices
present at the edge for such a use case. By definition, such devices have low capacities in terms
of memory and CPU speed, and they may be constituted of computing facilities of the residents
(Home PC, tablets. . . ).
For the reader convenience, we put at the end of the paper a table for notations and a table

for acronymes used in the paper.
Data Stream clustering is defined as the clustering of data that arrive continuously. Since we

require low-cost devices to solve the problem, we need to control the memory space used to
compute the solutions. The first step is to show that clustering can effectively occur in a small
memory space (not caring about the number of passes). Small-Space is a divide-and-conquer
algorithm that divides the data, S, into l pieces, clusters each one of them, and then clusters the
centers obtained. The underlying idea is as follows. So, ifM is the size of memory, we need to
partition n = ∥S∥ into l subsets such that each subgroup fits in memory (n/l) and so that the
weighted l.k centers also fit in memory, l.k < M . In brief, we need to satisfy (n/l)+ l.k < M .
But, second, such an l may not always exist. Anyway, l and k need to be chosen carefully.
The paper proposes a new small-space methodology to solve the data stream clustering prob-

lem on resource-constrained devices, those present at the edge, in a building to continue with
our initial motivation.
Thus, the contributions of the paper are twofold. First, we propose a small-space framework

for the "on the fly” data stream problem, which only depends on one parameter W = M/c,
where c is a constant factor. We mean thatW = Ω(M/c) to keep the notation used in the anal-
ysis of algorithms. Moreover we do not assume that we know all the data before the treatment
batch by batch. Second, we experimentally demonstrate that we can control the solutions in
comparing them to the solutions of clustering algorithms when we know the whole data in ad-
vance. We conduct experiments with low-cost and low-end devices such as Raspberry Pi Zero
and Pi 4, as well as with an FPGA circuit, in a realistic setting, based on an MQTT (Mosquito)
server to publish the data.
The organization of the paper is as follows. Section 2 is about related work, and it introduces

data stream clustering algorithms, the low-cost machine, and heterogeneous concepts. Section
3 states the problem and the algorithmic solution. Section 4 introduces the series of experiments
and the lessons learned from the experiments. Section 5 concludes the paper.

2. Related work

2.1. Data Stream clustering algorithms
Clustering is a crucial data mining task, and it refers to the problem of partitioning a set

of observations into clusters such that the intra-cluster observations are similar (or close) and
the inter-cluster observations are dissimilar (or distant). The other objective of clustering is to
reduce the complexity of the data by replacing a group of observations (cluster) with a repre-
sentative observation (prototype/centroid).
When the data continue to arrive at a more or less rapid rate, we can not access them ran-

domly to generate the clustering solution. We refer to these types of data as data streams. The
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data stream clustering problem requires a process capable of partitioning observations contin-
uously while considering restrictions of memory and time, particularly for IoT and edge com-
puting. In the literature of data stream clustering methods, many algorithms use a two-phase
scheme that consists of an online component that processes data stream points and produces
summary statistics and an offline component that uses the summary data to generate the clus-
ters. An alternative class is capable of generating the final clusters without the need for an
offline phase.
One can also consider the followingmodels, on themethodological plan, to build data streams

algorithms:

• Data stream model: if the stream has length n and the domain has size m, algorithms are
generally constrained to use space that is logarithmic in m and n. Algorithms make only
some small constant number of passes over the stream, sometimes just one.

• Sliding window model: in this model, the function of interest is computed over a fixed-
size window in the stream. As the stream progress, items from the end of the window are
removed from consideration while new items from the stream take their place.

In this paper, we consider a sequence of potentially infinite, non-stationary data. We mean
that we assume that the probability distribution of the unknown data generation process may
change over time. For instance, we will experiment with time-stamped data in a 2D space, and
also with 2D data, chosen randomly in the same range of values.
Due to the memory limitation of our computing devices we do not consider streaming plat-

forms such as MOA [Bifet et al. (2011)] and distributed streaming platforms such as Spark
Streaming [Zaharia et al. (2013)] and Flink [Friedman and Tzoumas (2016)].

2.1.1. Pionnering work
In this subsection, we review the pioneering work on data-stream clustering. BIRCH [Zhang

et al. (1996)] algorithm incrementally and dynamically clusters multi-dimensional data points
to try to produce the best quality clustering with the available resources (i.e., memory and
time constraints) by making a single scan of the data and to improve the quality further with
a few additional scans. One can note that the BIRCH method is not designed for clustering
data streams and cannot address the concept drift problem. The essential characteristic of the
BIRCH is to introduce a new data structure called a clustering feature (CF) as well as a CF-tree.
The CF can be regarded as a concise summary of each cluster. The complexity of the algorithm
is O(N) since one pass suffices to get a good clustering (results can be improved by allowing
several passes).
COBWEB [Fisher (1987)], [Fisher (1996)] is an incremental clustering technique that keeps a

hierarchical clustering model in the form of a classification tree. COBWEB descends the tree
for each new point, updates the nodes along the way, and searches for the best node to put the
point on (using a category utility function). There are four basic operations COBWEB employs
in building the classification tree. The operations are Merging two nodes, Splitting a node,
Inserting a new node, and Passing an object down the hierarchy. As with IRSH, COBWEB is a
hierarchical stream method.
CluStream [Aggarwal et al. (2003)] divides the clustering process in two phases: (a) Online,

the data will be summarized; (b) Offline, the final clusters will be generated. CluStream uses
micro-clusters that are temporal extensions of BIRCH [Zhang et al. (1996)] cluster feature vec-
tor, so that it can decide if a micro-cluster can be newly created, merged, or forgotten based
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in the analysis of the squared and linear sum of the current micro-clusters data-points and
timestamps, and then at any point in time, one can generate macro-clusters by clustering this
micro-clustering using an offline clustering algorithm like k-means [Lloyd (1982)], thus produc-
ing a final clustering result.

2.1.2. A recent synthesis of data stream clustering methods
The reference [Ghesmoune et al. (2016b)] is a survey of state-of-the-art approaches for clus-

tering data streams. The paper is, in part, related to methodologies to device algorithms, and
this point constitutes one remarkable point. Figure 1, from [Ghesmoune et al. (2016b)], illus-
trates the different methodologies and algorithms. These algorithms are categorized according
to the nature of their underlying clustering approach.

Figure 1: Data stream clustering methods [Ghesmoune et al. (2016b)]. The presented algorithms categorized according
to the nature of their underlying clustering approach.

Neural gas is an artificial neural network inspired by the self-organizing map and introduced
in 1991 by ThomasMartinetz and Klaus Schulten [Martinetz and Schulten (1991)]. The neural gas
is a simple algorithm for finding optimal data representations based on feature vectors. Fritzke
in [Fritzke (1994)] describes the growing neural gas (GNG) as an incremental network model
that learns topological relations by using a "Hebb-like learning rule." We do not use an artificial
neural network in our work. Typically, it is used for finding topological structures that closely
reflect the structure of the input distribution, which is not the aim of our work.
We skip the hierarchical stream methods such as the BIRCH algorithm because it has been

introduced above as well as CluStream. We also forget the density-based stream methods not
because they are not adapted to our problem but because we have chosen to work with the
nearest cluster center notion using Euclidean distance. Most of the grid-based stream methods
consist of an online component that processes input data stream and produces summary statis-
tics and an offline component that uses the summary data to generate clusters. The method
implies that we need additional data structures, which is not our choice. Multiple stream struc-
tures introduce tedious evaluation of data stream algorithms.
A partitioning-based clustering algorithm organizes the objects into some number of parti-

tions, where each partition represents a cluster. The clusters are formed based on a distance
4



function like the k-means [Lloyd (1982)] algorithm, which leads to finding only spherical clus-
ters. It is in this category that we find our approach. The originality of our work is that it does
not require additional complex data structures, contrary to the algorithms presented in Figure
1 for the partitioning stream methods. We only use an in-place sorting step, iteratively, after
catching W data.

Moreover, we estimate that we do not need the optimization as the one presented in [Sculley
(2010a)] because the publication rate of data, and the performance of the MQTT server that
collects the data overlap the performance time of the treatment of one batch of data.

2.1.3. Advanced methods
In [Attaoui et al. (2021)], authors tackled the subspace clustering problem, which discovers

clusters embedded in multiple, overlapping subspaces of high dimensional data. They proposed
the S2G-Stream algorithm based on growing neural gas and soft subspace clustering. Exper-
iments on public datasets demonstrated the ability of S2G-Stream to detect relevant features
and blocks and provide the best partitioning of the data.
In [Attaoui et al. (2020)], authors investigated the clustering problem according to multiple

objectives. Most of the clustering algorithms follow only one cluster validity measure. Given
different data properties, a single validity measure does not work well for all datasets. In the
paper, the authors introduced the MOC-Stream algorithm based on Multi-objective clustering
and data stream concepts. The goal of MOC-Stream is to find clusters by applying several
algorithms corresponding to several objective functions.
Finally, in [Ghesmoune et al. (2016a)], authors presented a new algorithm, called G-Stream,

for clustering data streams by making one pass over the data. G-Stream is based on the growing
neural gas method that allows us to discover clusters of arbitrary shapes without any assump-
tions on the number of clusters. By using a reservoir and applying a fading function, the quality
of clustering is improved. Experiments on public datasets validated the improvements.
These three papers illustrate the variety of approaches and research questions in the field of

clustering algorithms. In our case, we investigate the "classical" problem with the objectives to
control the memory used by the algorithm, and such that the algorithm is implementable with
companion IoT technologies, i.e., easy to implement because the underlying idea is kept simple.
The reference [Carnein and Trautmann (2019)] is yet another seminal synthesis on data

stream clustering. Matthias Carnein alsomaintains a dedicatedWeb site1 with pointers to codes.
Scikit-learn [Pedregosa et al. (2011)], a simple and efficient Python tools for predictive data

analysis, contains many data stream clustering algorithms such as BIRCH [Zhang et al. (1996)]
and MiniBatchK-Means [Sculley (2010b)]. The Scikit-learn Web page for clustering2 also intro-
duces some other clustering methods not related to data-stream clustering.
The MiniBatchKMeans is a variant of the KMeans algorithm, which uses mini-batches to

reduce the computation time while still attempting to optimize the same objective function.
Mini-batches are subsets of the input data, randomly sampled in each training iteration. These
mini-batches drastically reduce the amount of computation required to converge to a local so-
lution. In contrast to other algorithms that reduce the convergence time of k-means, mini-batch
k-means produces results that are generally only slightly worse than the standard algorithm.
In [Béjar Alonso (2013)] Béjar Alonso Javier digs into the advantage of the Mini batch k-

means algorithm to reduce the computational cost by not using all the datasets each iteration

1https://www.matthias-carnein.de/streamclustering
2https://scikit-learn.org/stable/modules/clustering.html
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but a subsample of a fixed size. The purpose of the paper is to perform empirical experiments
using artificial datasets with controlled characteristics to assess how much cluster quality is
lost when applying this algorithm.

2.2. Low-cost machines
The low-cost paradigm considers the following principles, which in our case correspond to

the following non-exhaustive list:

1. Radical simplification in a good or service reduced to its basic functionality (thus devoid
of generality, subtlety).

2. Drastically reduced input costs (cheap materials and components, minimized labor costs
for operation and maintenance).

2.3. Heterogeous computing
Heterogeneous computing [Zahran (2019), and Hwu (2016), and Terzo et al. (2019)] refers to

systems that use more than one kind of processor or core. These systems gain performance or
energy efficiency not by adding the same type of processors but by adding different types of
coprocessors.
Nowadays, many new processors now include built-in logic for interfacingwith other devices

(SATA, PCI, and memory controllers), as well as programmable functional units and hardware
accelerators (GPUs, cryptography coprocessors, neural network processors, programmable net-
work processors, etc.).
Heterogeneous computing systems present new challenges not found in typical homoge-

neous systems. For instance, the memory interface [Howes et al. (2016)] and hierarchy issues
are essential. Since compute elements may have different cache structures, cache coherency
protocols, and memory access may be uniform or non-uniform memory access (NUMA), the
coordination is challenging. The ability to read arbitrary data lengths as some processors/units
can only perform byte-, word-, or burst accesses also introduce differences. Thus, the problem
is an interconnect problem.

3. Problem statement and algorithmic solution

3.1. Problem statement
The problem we are dealing with is schematized in Figure 2. Sensors continuously send data

to a server governed by an Internet of Things protocol (MQTT). The machine performing the
clustering, namely "Processor for clustering" in Figure 2, subscribes to the messages received
by the server and performs the clustering. The publisher (MQTT server) and the processor that
executes the clustering are low-cost machines. A single machine can host both functionalities,
and, in this case, one can locate the service for collecting data from sensors and the service to
cluster data on the same device. Themain advantage of this co-location is to keep the production
and the treatment as close as possible to limit communication.
Finally, note that for reasons of clarity, we have chosen to use only one processing machine

(doing the work of clustering), but several sources can feed the processing machine. Thus, the
issue of scaling and dimensioning the architecture is not considered in our paper. Also, we
believe that the proposed architecture is adequate for using phones or tablets as processing
machines because the MQTT protocol, for example, has already been implemented on these
devices.
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Figure 2: Diagram of interactions and problem statement illustrated.

3.2. Our solution

Our generic framework is presented in Algorithm 1. We first consider a window ofW points
from the data stream, and we cluster it (lines 1 and 3). Notice that we have experimented with
k-means [Lloyd (1982)] and k-means++ [Arthur and Vassilvitskii (2007)], hence the explicit
mention in the algorithm. We sort the data (windowing of size W points) according to values
of the coordinates (line 4). Notice that the sorting step is in place and it does not require sup-
plementary memory. Then we cancel p values, chosen regularly to preserve the diversity, the
distribution of data (line 5). It remains to read p fresh points and go to step 2 (line 6). Note that
our algorithm has two input parameters: the window sizeW and the number of points to elim-
inate at each iteration step. This point makes the difference compared to other algorithms. The
choices for the corresponding values are of first importance to ensure a "good" convergence,
meaning that the centroids adapt continuously.
In Algorithm 1 we follow the sliding windowmodel, and we repeat infinitely first a clustering

step and second a sorting step to capture the streaming nature of the arrival of data. Both k-
means (and their variants) and sorting have been well studied in the past. Thus, there are
multithreaded versions of k-means and sorting that we can use if the low-cost machine has few
cores and accelerates the execution times. This point is one competitive advantage of working
with proven algorithms. Note that our codes, for instance sorting (see the Github link below),
are ready for multithreading on an SMP (Shared-memory Multiprocessing) machine since they
use OMP (OpenMP) directives.
Notice that streaming clustering algorithms (see the related work section) cannot serve as

baseline algorithms because, to the best of our knowledge, they are not designed with the re-
quirement of using low-cost machines in mind nor in using memory-constrained devices. We
are guessing that the comparison would not be fair in this case. In brief, the properties of our
generic framework are:

• The algorithm is based on offline clustering (traditional Kmeans or kmeans++ or KNN can
be used);
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• When we repeat, round after round, the clustering of step 3, it is only p << W data that
must be inserted; hence control of the memory space;

• Each sort in step 4 can be done in parallel (if the hardware does permit it); Sorting, coupling
with the next step, helps in preserving diversity in the data;

• The idea of eliminating p data by taking them in a regular way corresponds to the idea of
preserving diversity in the input.

Algorithm 1Main algorithm of our generic framework
Require: W : window size in points’ number that fit in memory;
Require: p: number of points to remove at each iteration; p ≪ W ;
1: n = Read(W inputs from the data stream);
2: loop
3: Cluster the n input data (for instance with k-means or k-means++);
4: Sort the n data;
5: Evict, in the sorted data, p data (for example by considering regular intervals);
6: Read p new data from the data stream to form a new window of size W ;
7: end loop

To summarize, the work’s main contribution is in clustering sensor data given in a stream-
ing manner with multiple devices, each of which has limited computation power and memory
resource. In contrast to most of the work mentioned in the Related work section, we devise
an online algorithm in the sense that data arrives "on the fly." If we take, for instance, the pa-
per [Sculley (2010a)] on the mini-batch algorithm, authors assumed that data are all known in
advance and are exploited batch b by batch b randomly. This view permits authors to select b
examples picked randomly from input X and used per-center learning rates for fast conver-
gence searching for the best centroid attached to a given point. Convergence properties follow
closely from a prior known result. The fact that is not fair between this algorithm and our
algorithm is that we can pick data as far as possible in the input. Of course, this manner limits
the amount of memory, but it may impact the convergence. In our case, we do not assume that
it is possible to check "the horizon." Our horizon is limited to b inputs, and again, we treat data
"on the fly."
Note also that the schema available for Algorithm 1 has the potential to be used for other

machine learning algorithms. Indeed, step 3 could be replaced by an offline supervised algo-
rithm or an offline unsupervised algorithm, Logistic regression or Outlier Detection to cite few
examples.

4. Experiments

4.1. Settings and experimental plan

This subsection introduces the devices we use for testing, and it explains the experimental
plan. Potentially we can utilize either k-means or k-means++ as the core clustering algorithm.
This choice gives two dimensions of our research plan. We can also wonder if we need to
reinitialize the centers at each iteration or if only one initialization step is enough to provide
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pi@raspberrypi:~/mosquitto $ time /bin/bash test.sh
real 96m30,030s
user 12m33,585s
sys 53m7,764s

Figure 3: Execution time of the script on a Raspberry PI-4

good results regarding the final centroids. This choice introduces two other dimensions in the
research plan.
The research plan also compares the centroids obtained through our algorithm and the cen-

troids obtained by k-means (k-means++) if all the data are known in advance. Of course, we
compare k-means with k-means algorithms or k-means++ with k-means++ algorithms.
At last, we use 2D points that are randomly generated for the x and y dimensions and 2D

points with the x dimension being a timestamp and the y being a random integer. This choice
is justified by the need to test our algorithms under "orthogonal" experimental conditions. We
know that the distribution of data can impact the quality of the results.

4.1.1. Low-cost machines
The low-cost machines we use in the experiments are:

• Raspberry Pi Zero W Rev 1.1: 1GHz single-core CPU, 512MB RAM, 16GB of micro SD. The
architecture is based on ARMv6-compatible processor rev 7 (v6l) which is a 32bits archi-
tecture; Hardware: Broadcom BCM2835. The mosquitto server is an MQTT v3.1.1 broker;

• Raspberry Pi 4: high-performance 64-bit quad-core processor at 1.5Ghz; 8GB of RAM; 16
GB of micro SD; The architecture is based on ARMv7 Processor rev 3 (v7l); Hardware:
Broadcom BCM2711. The mosquitto server is an MQTT v3.1.1 broker (version 1.5.7).

• Asus Sonicmaster Notebook with Intel(R) Core(TM) i3-3217U CPU @ 1.80GHz; 4 cores;
4GB of memory; 368GB of disk. The board is dated from Q2 of 2012 and is running Linux
version 5.11.0-18-generic. The mosquitto server is anMQTT v5.0/v3.1.1/v3.1 broker (version
2.0.10).

4.1.2. Performance of low-cost machines
For all experiments, we decided to run our implementation and theMQTT server on the same

machine. We noticed that the publication of data (one by one) through the mosquitto_pub
command line introduced a significant overhead. On the Raspberry Pi Zero W, firing no more
than 256 2D points lasted about 12s on average. On a Raspberry Pi 4, firing no more than 32248
2D points gave the information depicted on Figure 3 regarding resource usage.
We notice in Figure 3 that the testing has lasted more than 96 minutes, the execution spent

more than 53minutes in kernel space and only 12 minutes in userspace. These figures imply that
the transfer rate to the MQTT server cannot be significant on the type of hardware considered.
We are therefore not dealing with a deluge of information per second.
Consequently, in all the experiments, we set W = 256 or W = 2048 and p = ⌊

√
W ⌋ to get

experiments that last no more than 90 minutes according to the production of 12256 or 37248
2D points. We justify these choices as follows.
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First, notice that the strategy to get performance is to overlap data transmission with com-
putation. We mean that, in the permanent regime corresponding to the loop in Algorithm 1,
we need to overlap step 6 of Algorithm 1 (Read p new data from the data stream to form a new
window of size W) with steps 3, 4 and 5.
On one side, and according to the last numbers, the transmission rate on a Raspberry pi zero

is approximatively given by 32248/3180 = 10 2D points per second. This number is deficient,
as pointed out, and it constitutes the limiting factor for performance.
On the other side, it is known that the time complexity for steps 3, 4 and 5 is in O(nkdi)

where n is the number of d-dimensional vectors (to be clustered), k the number of clusters, i the
number of iterations needed until convergence of clustering,O(n log n) andO(n) respectively.
For the experimental work k = 5, d = 2, and we have measured, for instance, a value of i,
which is equal to 5 most of the time for our data. Let T (p) be the time to deliver p 2D points
to our algorithm with a windowing of sizeW , then the fundamental relation which depicts the
overlapping is approximated as with Equation 1.

T (p) < 50.Wp +Wp logWp +Wp (1)

The relation expresses that we want the data reception times to be shorter than the calcula-
tion times (clustering on the window of size W). In this way, we can overlap communications
with computations. At step n of the algorithm, we compute data received during iteration n−1,
and at the same time, we receive the data for the following iteration. The terms in W express
the (approximate) complexities of the three steps of the algorithm.
Equation 1 serves to guess the W parameter of our algorithm, given a certain value for p.

Operationally, you can monitor the transmission time, as we did with the script in Figure 3.
This method gives a unit number, in seconds, for example, and then you can check that the
right-hand expression of the equation, for a well-chosen W and after monitoring the code,
passes above the value of the expression on the left.
Thenwe can practically say that withW = 256 orW = 2048, the time required for steps 3, 4,

and 5 is far below the value of T (p) for our chosen low-cost machine. Remind that p = ⌊
√
W ⌋.

We could even increase the value ofW for two reasons. First, we have enough memory on our
boards for that purpose. Second, the time to deliver p data to our application, with a rate of
only ten 2D points per second, authorizes to overlap more data, depending on the clock cycle
of the board we utilize.
However, the performance metric we study in the paper is more related to the quality of the

result rather than to the speed we obtain the result. Moreover, the quantitative analysis made
in this section helps the expert to decide a value for W and p.

4.1.3. Heterogeneous devices and compilation toolchain
In this paper, we experiment with the reconfigurable computing class of heterogeneous

computing systems, especially the Field-programmable gate array (FPGA) class. A field-
programmable gate array is an integrated circuit designed to be configured by a customer or a
designer after manufacturing. The FPGA configuration is generally specified using a hardware
description language (HDL). The most common HDLs are VHDL and Verilog, as well as exten-
sions such as SystemVerilog. Many tools, as those commented below, have a C-like syntax or
better, accept as inputs C/C++ codes, unlike VHDL.
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In [Cérin et al. (2017), and Cérin et al.] we did experiments with the low-cost Xilinx Zynq-
Z23 board to explore thehttps://fr.overleaf.com/project/61fcfcde1d0312a1d9ce9714 optimization
potential of machine learning kernels. We studied the k-means Lloyd’s algorithm [Forgy (1965)],
which is not a data stream algorithm and written in Python, that systematically calls the FPGA
from the central processing unit to compute the distance between two points. More ambitiously,
in this paper, we explore the cost, in terms of the number of gates and other resources for
executing our datastream clustering algorithm fully inside an FPGA circuit.
From a technical point of view, the objective is to install an MQTT server under the control

of the CPU of the Zynq board (see Figure 4), to publish or pipeline the stream from the DRAM
to the internal memory of the FPGA part (the board has 630 KB of fast block RAM), then to
compute the clustering on a custom block of programmable logic.

Figure 4: A functional view of a Xilinx Zynq All Programmable System on a Chip.

The three synthesis system that we use is Xilinx Vivado HLS4, Intel/Altera Quartus5 and
Bambu6. Vivado introduces high-level synthesis with a toolchain that converts C/C++ code
into programmable logic. Bambu is also able to synthesis C/C++ code. Quartus is used with
the outputs (.vhd files) that result from the synthesis of the C/C++ code by Vivado HLS. We
have chosen these three tools because they offer complementary perspectives on synthesis at
the cost of writing the algorithms in C/C++.

4.2. Experimental testing
4.2.1. Metrics of performance
The total inertia I is measured as the sum of the squares of the distances of the points from

the center of gravity. In the case where all the points are not assigned the same weight, the
squares of the distances are, of course, weighted. If we note d the distance of a point from the

3See: https://www.tul.com.tw/productspynq-z2.html
4https://www.xilinx.com/products/design-tools/vivado.html
5https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
6https://panda.dei.polimi.it/?page_id=31
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center of gravity of the cloud, we have for n units assigned a weight p, the relation of Equation
2 for the definition of I .

I =

n∑
i=1

pi.d
2
i (2)

It follows that the more points we add, the more inertia increases. If all the observations
are assigned the same weight, the inertia is confused with a dispersion indicator. In our case,
the final result of clustering is only of size w ≪ n, n being the number of 2D points we have
covered. Moreover, inertia assumes that clusters are convex and isotropic, which is not always
the case. It responds poorly to elongated clusters or manifolds with irregular shapes. At last,
inertia is not a normalized metric: we know that lower values are better and zero is optimal.
In this paper, we do prefer to use the scatteringmetric as introduced in [Gauvrit andDelahaye

(2006)]. The metric refers to the order r diameter, and it is defined as with Equation 3 for n
points.

Dr =

 1

n(n− 1)

n∑
i̸=j

dri,j

1/r

(3)

In the general case, specific indices are recognized. Thus, D2 is the Greenwood index. The
limit for r tending to infinity,D∞ is the "diameter" in the usual sense of mathematics of graphs.
Finally, D1 is called the Gini index. This arithmetic mean of the distances is one of the most
frequent spreading measures by far for the treatment of two-dimensional data, as it is reminded
in [Gauvrit and Delahaye (2006)].
So, in the paper, we consider the Gini index over the cloud of centroids. In this way, we can

compare two sets of centroids, eventually obtained by two different methods and even if we do
not have access to all the data covered during the clustering process.
Moreover, the Jaccard index, also known as the Jaccard similarity coefficient, is a statistic used

for gauging the similarity and diversity of sample sets. The Jaccard coefficient is defined as the
size of the intersection divided by the size of the union of the sample sets, as with Equation 4.

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(4)

The Jaccard distance, which measures dissimilarity between the sample sets is complemen-
tary to the Jaccard coefficient and is obtained by subtracting the Jaccard coefficient from 1, or,
equivalently, by dividing the difference of the sizes of the union and the intersection of two sets
by the size of the union. The Jaccard distance equation is Equation 5.

dJ(A,B) = 1− J(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
(5)

In our context, we use the Jaccard index to evaluate the similarity (or dissimilarity) between
two sets of centroids.

4.2.2. On low-cost machines
This section selected what we consider the most exciting points underlying our design. First,

we have chosen a non-favorable case in playing with the nature of the input data. We also
12



measured the dispersion of the centroids, and the results are given in Tables 1 and 2. Second,
we made a series of experiments with a more mild case than the previous one with a random
data generation for both two dimensions. Table 3 synthesized the main results regarding the
dispersion of centroids. The third series of experiments consider even a more favorable case in
explicitly generating data spread in five clusters. Table 4 gives the results for the considered
performance metrics. The fourth series of experiments consider a real data distribution from
the Smart Building sector. We have timestamps and CO2 measures related to the building in
the data set. Again, since we have time series, we are in the presence of potentially non-trivial
clusters.

Experiment 1. The first set of experiments is not favorable to our algorithm since-
https://fr.overleaf.com/project/61fcfcde1d0312a1d9ce9714we strictly increase time-stamped data
for one dimension while the other dimension takes random values. Indeed in our case, we will
calculate the centroids from the data of the last window and history. In contrast, by knowing
the totality of the data in advance, we manage less uncertainty.

Figure 5: Illustration of the scattering.

Figure 5 illustrates the problem of dispersion of centroids with our settings. This picture cor-
responds to the results on line 1 of Table 1. Here, the five circles in the left part of the image and
inside the left block are our initialization from the first 256 values read. This initialization sets
the centroids forever. Since the values on the x-axis are time-stamped data, this initialization
is wrong since we do not take into account the temporal evolution of the data. The horizon-
tal circles are the centroids computed by Scikit learn’s Kmeans, i.e., over the whole data. The
centroids are much better than with our data stream. It is, therefore, preferable to initialize the
centroids at each iteration of our algorithm.
Thus, we compare the obtained centroids with our algorithm and with the Scikit-learn

kmeans algorithms, assuming that in this case, we know all the data in advance.
Table 1 presents the results when we do not re-initialize the centroids at each iteration of our

algorithm, and Table 2 introduces the results when we reinitialize the centroids at each iteration
13



#!/bin/bash
name=‘date +%d%m%Y%H%M%N.csv‘
for i in 1..37248; do

foo=‘date +%H%M%S%N‘;
i=‘expr $foo / 1000‘;
j=‘shuf -i 1-10000000 -n 1‘;
# publish data
/usr/bin/mosquitto_pub -h localhost -t date/celsius -m "$i,$j"
echo "$i,$j" ≫ ${name}

done
# publish the signal to terminate
/usr/bin/mosquitto_pub -h localhost -t date/celsius -m "0.0,0.0"
# publish the file name of generated data
/usr/bin/mosquitto_pub -h localhost -t final/final -m "$name,$name"

Figure 6: How-to start the production of data

of our algorithm. The test checks the importance of the re-initialization step in our algorithm.
The main observation is the ratio of Gini indexes. For Table 1, the ratios vary from 42.5% to
99.31%, meaning that the clustering obtained with our data stream algorithm and in using the
Scikit-learn k-means algorithm are very different. On the contrary, the ratios of Gini indexes for
Table 2 vary from 26.32% and 72.55% with many values close to the ideal 0%. This quantitative
result, meaning that we control dispersion, demonstrates the importance of reinitializing the
centroids at each iteration step of our algorithm.
Summarizing, Tables 1 and 2 present experiments with W = 256, the number of 2D points

is set to 12256, and the number of clusters is k = 5. Our data stream algorithm is configured
with kmeans as the offline algorithm. The low-cost machine used in these experiments is a
Raspberry Pi 4, executing the MQTT server and our algorithm. The publication of data to the
MQTT server is done according to the Bash script shown on Figure 6.
We notice in Tables 1 and 2 that the Jaccard indexes are always 0, meaning that we have never

found common centroids. This result is not dramatic in itself. It simply shows that the Jaccard
index is not an exciting metric for our problem. We could not infer this at the beginning of our
study.
Finally, note that in the tables, we give the centroids obtained through QR codes rather than

listing, in extension, the multiple values. This presentation reduces the size of the tables.

Experiment 2. The second series of experiments is more favorable than the previous one. First,
we do not use time-stamped data but data generated at random for both the x and the y
dimensions. Moreover, we now configure our clustering algorithm with kmeans++ (and no
more kmeans), and we compare our results with kmeans++ from Scikit learn. This last option
means that the clustering is accomplished knowing all the data. Table 3 shows the results with
W = 2048 and the number of 2D points set to 37248. By experience, we know that kmeans++
does a better initialization than k-means. Second, the intuition is that the more we have data
in the window, the more accurate the clustering will be, hence our choice to increase the W
value. These ideas motivate the experiment for Table 3. We observe that the ratio of Gini in-
dexes is much better than the ones in the first series of experiments. The ratios of Gini indexes
vary only between -0.48% and 5.71%, which is excellent regarding the dispersion. The practical
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Table 1: Quality metrics with no recalculation of centroids between iterations.

W n k

Centroids
with data
stream al-
gorithm

Centroids
with Scikit
learn
kmeans

Jaccard
index

Gini index
for data
stream al-
gorithm

Gini in-
dex for
Scikit learn
kmeans

Ratio
Gini
in-
dexes
(%)

256 12256 5 0 18165972.03 1746156257.56 -98.95

256 12256 5 0 11216278.13 1647259205.64 -99.31

256 12256 5 0 19471853.63 1696275260.49 -98.85

256 12256 5 0 8301303.31 878905310.71 -99.05

256 12256 5 0 17447215.28 1680150040.83 -98.96

256 12256 5 0 15332205.36 863360772.02 -98.22

256 12256 5 0 21623806.32 2429909814.65 -99.11

256 12256 5 0 19259137.69 864481821.94 -97.77

256 12256 5 0 1248623980.75 876209679.72 42.50
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Table 2: Quality metrics with recalculation of centroids between iterations.

W n k

Centroids
with data-
stream
algorithm

Centroids
with Scikit
learn
kmeans

Jaccard
index

Gini index
for data
stream al-
gorithm

Gini in-
dex for
Scikit learn
kmeans++

Ratio
Gini
in-
dexes
(%)

256 12256 5 0 3122037561.71 3158922384.24 -1.16

256 12256 5 0 1463506031.54 1478086649.88 -0.98

256 12256 5 0 1286810869.93 4688680283.72 -72.55

256 12256 5 0 1468338014.16 1478659259.98 -0.69

256 12256 5 0 47160900799.98 47726023229.72 -1.18

256 12256 5 0 4540029344.29 3593890145.82 26.32

256 12256 5 0 1466775924.92 1858705978.39 -21.08

256 12256 5 0 3712835175.95 3566299932.92 4.10

256 12256 5 0 657737648.42 652562726.60 0.79

256 12256 5 0 3041363584.56 3160196060.50 -3.76
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choice of the value of W and the use of kmeans++ on data that are no longer time-stamped is
undoubtedly the cause of these good ratios.
As another illustration of the results for data generated at random for the x and y dimensions,

Figure 7 corresponds to the sample on line 7 of Table 3. The crosses materialize the centroids
obtained by our algorithm and the circles obtained by kmeans++. The markers seem to be
confused, as expected from the results in Table 3.

Figure 7: Illustration of the scattering.

Experiment 3. The third set of experiments is more favorable because we search for 5 clusters
in data that contain 5 clusters, and with k = 5 as the parameter of kmeans++. An example of
an input image to our algorithm is given in Figure 8. We notice that the delineation of clusters
is clear. Thus, the configuration and the settings leading to the results presented in Table 4 are
the following. We set up a process to obtain the five clusters based on randomly generating
points inside five circles of radius 10000. Thus, each test set we present is unique, meaning that
it contains different 2D points. Each test set is composed of 37248 2D points.
Moreover, since the value W = 2048 gave good results in the second set of experiments,

and this value is reasonable for a low-cost machine, we use it again. The sensitivity ofW and p
have been discussed empirically in the first two experimental parts. Of course, these parameters
affect the quality of the clustering result. But the nature of the data is also essential. It seems
to us that we have previously given valuable information to the readers.
Table 4 shows the results over 8 test sets. We notice that the ratios of the Gini indexes are

excellent because no value is greater than 0.789%. So, the scattering between the centroids
obtained by our algorithm and the kmeans++ algorithm, i.e., when we know all the data in
advance, is very poor. Our algorithm provides centroids similar to thosewe can obtain if one has
used the offline kmeans. In other words, the uncertainty on data has been reduced drastically.
The experiments in Table 4 were performed on the Asus notebook in the characteristics given

earlier in the text. Each experiment performs 801 iterations of the algorithm 1 for an average
cost of 0.0023 seconds. Recall that an iteration consists of launching a clustering, sorting the
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Table 3: Quality metrics with recalculation of centroids between iterations, using kmeans++ and random data for both
dimensions.

W n k

Centroids
with data
stream al-
gorithm

Centroids
with Scikit
learn
kmeans

Jaccard
index

Gini index
for data
stream al-
gorithm

Gini in-
dex for
Scikit learn
kmeans++

Ratio
Gini
in-
dexes
(%)

2048 37248 5 0 2815391.61 2693971.93 4.50

2048 37248 5 0 2794727.55 2679762.32 4.29

2048 37248 5 0 2848730.58 2700650.29 5.48

2048 37248 5 0 2793567.11 2687583.25 3.94

2048 37248 5 0 2751330.78 2764695.72 -0.48

2048 37248 5 0 2715312.63 2690239.39 0.93

2048 37248 5 0 2850149.24 2695244.71 5.74

2048 37248 5 0 2838615.15 2700738.53 5.10

Figure 8: A favorable use case with five clusters.

18



result, and eliminating some data. These 0.0023 seconds are much lower and by far than the
time spent by the system to deliver the data to our algorithm. Thus our algorithm, under the
assumptions of this series of experiments, can process data of arbitrary size at a constant time
cost and much less than the time it takes to supply the data from the sensors to our algorithm.
Given these results, it does not seem helpful to us to study the impact ofW on the quality and
the time to obtain results in a more advanced way. In the absolute, since feeding data is the
bottleneck, it would be nice to evaluate cases where data is fed faster from another machine.
We did experiments on another low-cost device (an Asus Notebook from 2012 but with SpecInt
better than the Raspberry), and we have observed the same trends as those presented above.

Table 4: Quality metrics, using kmeans++ and data with five clusters.

W n k

Centroids
with data
stream al-
gorithm

Centroids
with Scikit
learn
kmeans

Jaccard
index

Gini index
for data
stream
algorithm

Gini index
for Scikit
learn
kmeans++

Ratio
Gini
in-
dexes
(%)

2048 37248 5 0 9742.04 9672.15 0.722

2048 37248 5 0 9759.56 9684.33 0.776

2048 37248 5 0 9687.30 9646.29 0.425

2048 37248 5 0 9682.17 9657.60 0.254

2048 37248 5 0 9666.88 9657.67 0.095

2048 37248 5 0 9724.13 9647.98 0.789

2048 37248 5 0 9651.84 9661.13 -
0.096

2048 37248 5 0 9689.98 9668.39 0.223

Experiment 4. The data set we deal with in this experiment comes from a building located
in France called the GreEn-ER building, located in the Presqu’ile of Grenoble, Isère, France.
The building gathers the Grenoble-INP engineering school Ense3, the G2Elab laboratory, and
training and research platforms. At themoment, the data set is not publicly available for privacy
concerns, but anyone can use a public API7 to extract data and build his own data set. The data

7http://mhi-srv.g2elab.grenoble-inp.fr/API/
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set comprises timestamps plus CO2 information (minimal observed values across the building).
The date range for the data is from Dec 16, 2021, to Jan 7, 2022.

Figure 9: Characterization of the CO2 data set.

Figure 9 presents a characterization of the CO2 data set in terms of clustering, through the
TimeSeriesKMeans method from the tslearn Python package. This method is dedicated to
clustering for time series. Figure 9 has three rows; each row corresponds to a specific distance,
among three distance metrics. Figure 9 has three columns; each column corresponds to a clus-
ter because we asked to compute the clustering for three clusters. Indeed we called first the
TimeSeriesScalerMeanVariance(mu=0.0, std=1.0) class that scales time series so that
their mean (resp. standard deviation) in each dimension is mu (resp. std). This scaler is such
that each output time series has zero mean and unit variance. The assumption here is that
the range of a given time series is uninformative and one only wants to compare shapes in
an amplitude-invariant manner. Second, we called the TimeSeriesResampler(sz) class that
resamples time series to reach the target size (sz). In our case, we set sz = 40. Third, we fit
k-means clustering using our CO2 data set and then predict the closest cluster each time series
in the data set belongs to. Thus, Figure 9 plots the regression between the prediction (in red)
and the calculated values (in black). The x-axis gives the 40 (re)samples id for the initial time
values, and the y-axis gives the resampling values for the CO2. We observe that some clusters
have no black prediction because the metric used was not discriminant enough to exhibit three
clusters on the resampled data set. Anyway, we observe an excellent fit between the predictions
and the observations, meaning that the values of CO2 are not spread significantly. The linearity
in the curves explains this conclusion.
In the Figure 10, for space reasons, we have given the centroids for a window of size W =

2048 after running our data-stream algorithm ten times, and with k = 3. Since there is a
random initialization, we can expect different runs. However, the numerical values for centroid
2 are the 4 points (1639661568000, 437) and the 4 points (1641500377088, 394), while for
centroid 3 we got the 5 points (1639658160128, 438) and the 2 points (1641544548352, 412).
Some executions having returned (0, 0)we have eliminated them. This fact is due, as explained
before, to the distance calculation, which is not discriminating enough to show 3 clusters. In
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(a) Centroid 2 (b) Centroid 3

Figure 10: Centroids obtained by our algorithm with 10 runs (W=2048)

the Figure 10, the x-axis gives the time, and the y-axis gives the CO2 level. The shapes in the
Figure 10 are different because in one case, we have an equal number of distinct values, and in
the other case, we have an unstable situation (5 and 2 identical points), hence our intuition to
represent it as a boxplot.
We can conclude that our algorithm is robust since it returns less distinct values for the

centroids than Experiment 1, which also concerns timestamps, but the values were chosen at
random. Since the CO2 data are less sparse than for Experiment 1, we better control the pro-
duction of centroids. These assertions are stil valid forW = 128, 256, 512, 1024.

4.2.3. On heterogeneous computing devices
Our first series of experiments is related to sorting since sorting is part of our main algorithm.

Since synthesis tools are not able to compile recursive functions; we have not used the tradi-
tional Quicksort or 3-way Quicksort but a variant with no recursion, written in C++ over 2D
points. Table 5 presents the metrics we obtained with the Bambu compiler and for two devices,
namely Zynq and Cyclone V. The number of 2D points equals 32768 = W .

Table 5: Synthesis metrics for the function main of the sorting procedure

W Device Register
allocation

Total estimated
area

Estimated
number of DSP

Number of allocated
multiplexers

32768 Zynq 101 19436 6 92
32768 Cyclone V 109 24178 4 90

The meaning attached to metrics is clear, except for the area metric. It is about the number
of allocated registers for the device by the compiler, the estimated number of digital signal
processing units assigned to the design, and the number of allocated multiplexers, the basic
hardware units. According to [Nane et al. (2016)], to evaluate the area of the allocated circuit,
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authors consider logic, DSP, and memory usage. For logic area, in Xilinx devices such as the
Zynq and Cyclone V boards, Bambu reports the total number of fracturable 6-LUTs (Look Up
Table: an array that replaces runtime computation with a simpler array indexing operation.),
each of which can be used to implement any single function of up to six variables or any two
functions that together use at most five distinct variables. Note that the Zynq circuit has only
13,300 logic slices, each with four 6-input LUTs.
The methodology we follow in the subsection measures the metrics mentioned above for

our design or part of the design. We also used different compilers/tools to cross-validate the
results or check our assumptions’ scope. Notice that we are nomore interested in the properties
of algorithm 1, but rather by the properties of the design regarding the quantity of hardware
component, from a computer architecture point of view, necessary to execute the algorithm on
the FPGA class of hardware architecture.
Summarizing the results presented in Table 5 we observe that the area is 20% more costly for

the Cyclone V circuit compared to the Zynq circuit. The difference for the other metrics is less
significant. This observation is due to the more aggressive synthesis for Zynq rather than for
the Cyclone V circuit.
Table 6 shows the performance metrics for the same sorting code and in using Vivado HLS.

The target device is the Zynq board andW has been set to 64. The "Total" line gives the number
of resources consumed by the synthesis, and the "Available" line shows the amount available
for that resource on the board. The RAM blocks (BRAM) are used to store large amounts of data
inside the FPGA. The rate of use of the other resources, notably DSP (Digital Signal Processor),
FF (FIFO), LUT (Lookup Table), and URAM (Ultra RAM) are systematically under the bar of
what is available. This observation allows us to conclude that we could increase the value of
W for the Zynq circuit.

Table 6: Vivado performance metrics of the sorting procedure
Name BRAM_18k DSP48E FF LTU URAM
DSP - - - - -

Expression - 4 0 144 -
FIFO - - - - -

Instance 4 0 1908 3309 0
Memory 2 - 2 1 0
Multiplexer - - - 257 -
Register - - 252 - -
Total 6 4 2162 3711 0

Available 280 220 106400 53200 0
Utilization 2 1 2 6 0

Figure 11 shows the performance metrics of the circuit when the input of the Quartus tool
is given by the VHDL code obtained with the Vivado HLS tool. We receive other performance
metrics than the previous ones, among them the Fan-out. Fan-out coefficient refers to the
number of doors of the same type driven by the output end of a door or load capacity. The
fan-out coefficient reflects the load capacity of the gate circuit, and it is a quality metric that
we could use to distinguish different syntheses.
Our second set of experiments consists of synthesizing the code corresponding to steps 3, 4,
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Figure 11: Quartus performance metrics of the sorting algorithm when we use the VHDL obtained by Vivado as input.

5, and 6 of the algorithm 1.

4.3. Lessons learned from the experiments
The scattering and dissimilarity measure points of view showed that obtaining centroids can

be controlled through our data stream algorithm settings. We also highlighted that our algo-
rithm had limitations when the data was time-stamped. Using algorithms other than kmeans or
kmeans++ as an offline brick could solve this nature of data problems. We think about spectral
clustering algorithms. Another critical point concerns the overlapping of communication (de-
livery of data from the sensors to the application) and computation (clustering). We observed
a limited throughput of communication on low-cost machines. So we can multiply the number
of iterations of our algorithm, meaning that we can frequently call kmeans/kmeans++ on W
data without penalty.
From a reconfigurable computing point of view, we proposed to look at three specific tools,

each measuring different performance metrics. Of course, each of these metrics makes sense
and provides insights for the expert to estimate the quality and performance of the synthesized
circuit. On this plan, the general question is, "What is the best compromise on the metrics to ob-
tain a maximumW value, given a reconfigurable circuit?". This question opens new directions
for our work.

5. Conclusion

In this paper, we proposed a generic framework for data stream clustering on low-cost ma-
chines. Our context is the Internet of Things and Edge computing contexts. Nowadays, there
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is an emphasis on creating better software and machine learning algorithms that can run effi-
ciently on resource-constrained devices. Multiple projects to address machine learning prob-
lems on low-cost hardware have emerged recently. These projects, such as TinyML8 for Ar-
duino, are driven by the idea of processing on embedded hardware. In the embedded field, we
can mention MCU boards (Wio Terminal, STM32 F7 F4 L4 L0, for example), which have a lot
of RAM, CPU performance, and FPU performance, allowing AI processing. For example, the
RAM of the Wio is 192kB, part of which is reserved for storing the program.
We instantiated the proposed frameworkwith k-means or k-means++ for the local search and

Quicksort for the sorting step. We also instantiated the removing step at the end of one iteration
with a regular sampling technique, but other methods are also possible with no sorting step.
Our framework requires two parameters. The first one is the window size W , and the second
one is the number of points to remove. This fact constitutes the originality of our work, and it
makes a distinction from other works.
We realized experiments under a realistic workbench composed of an MQTT server and

on various hardware. The datasets we used consider 2D points are generated randomly or
taken from a practical situation of CO2 measures. Two datasets have timestamps for the first
component of the 2D points. The goal of the experiments is to obtain some guidelines about
the best circumstances to apply this algorithm and the maximum gain in computational time
without compromising the overall quality of the partition.
We showed that, due to the low-end hardware, the rate of transmitting data to the MQTT

server, located on low-end hardware, can not be high. The throughput for receiving data is
limited because the processor clock speed is limited. We calibrate our algorithm consequently
in considering window sizes of 256 or 2048 2D points. The idea is to overlap the reception of the
data stream with the computational task. We found that we had time to execute the k-means
or k-means++ algorithms as well as sorting. The interest in choosing well-known algorithms
is the potential for parallelism or multithreading they have. Thus, our codes are ready, thanks
to OpenMP, to be executed on hardware with multiple cores such as a Raspberry Pi 4.
According to our setting, we also showed that we control the quality of the obtained cen-

troids. For that requirement, we have used the Gini index for the dispersion of centroids and
the Jaccard index for measuring the similarity between centroids.
We propose to address the following critical challenges of distributed edge AI for the future.

All of them are centered on the robustness issues and detailed as follows.
We want to test our framework with, in the middle, others clustering algorithms. For in-

stance, Mini batch k-means has the main advantage of reducing the computational cost of find-
ing a partition. This cost is proportional to the size of the sample batch used, and this difference
is more evident when the number of clusters is larger.
We want to test our framework with more than two dimensions for the sample sets. Incon-

sistent conclusions could be drawn regarding the influence of the number of attributes on the
quality of measures.
Given these objectives, it is worth exploring other strategies related to the selection points

to remove, i.e., how the window’s updating is computed during the iterations.
The question of scaling and dimensioning the proposed architecture (see Figure 2) is impor-

tant to address large-scale artifacts such as smart buildings and even smart cities. But in this
case, we also need to examine the appropriate communication technology that could be radio

8https://www.tinyml.org/
24



communication. So the question needs to be examined under the angle of both the algorithmic
part and the technology side.
At least, we want to go further with the FPGA implementation of our framework.
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Table for notations used in the paper

Notation Meaning
M Memory size available on the computing board
n Number of memory partitions we consider
l Subsets such that each subset fits in memory
k Number of desired centroids or clusters
W Window size
c Constant factor
O(nkdi) Complexity time, with n being the number of d-dimensional

vectors (to be clustered), k the number of clusters, i the number
of iterations needed until convergence of clustering,O(n log n)
being the time for sequential sorting, and O(n) the time for a
linear search.

I The total inertia
d The distance of a point to the gravity center of one cluster.
D2 The Greenwood index
D∞ The "diameter" in the usual sense of mathematics of graphs
D1 The Gini index
J(A,B) The Jaccard coefficient
dJ(A,B) The Jaccard distance
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Acronyms or abbreviation Table

Acronym Definition
GAFAM Google, Amazon, Facebook, Apple, Microsoft
BATX Baidu, Alibaba, Tencent, Xiaomi
FPGA Field-programmable gate array
MQTT Message Queuing Telemetry Transport
MOA Massive Online Analsys
CF Clustering Feature
SMP Shared-memory multiprocessing
OMP OpenMP programming language
BIRCH Balanced Iterative Reducing and Clustering using Hierarchies
COBWEB A conceptual clustering system that organizes data so as to

maximize inference ability
GAG Growing Neural Gas
NUMA Non-uniform memory access
HDL Hardware description language
VERILOG A hardware description language used for modelling electronic

systems; Verilog is an HDL description language based on C
language, on the other hand, VHDL is also an HDL but it is
based on Ada and Pascal languages.

VHDL Very High-Speed Integrated Circuit; Hardware Description
Language: a hardware description language used to describe
digital and mixed-signal systems.

LUT Lookup Table
FF FIFO
BRAM RAM block
DSP Digital Signal Processor
URAM Ultra RAM
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