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Abstract. Solving equations over finite fields is an important problem
from both theoretical and practice points of view. The problem of solv-
ing explicitly the equation Pa(X) = 0 over the finite field FQ, where
Pa(X) := Xq+1 + X + a, Q = pn, q = pk, a ∈ F∗

Q and p is a prime,
arises in many different contexts including finite geometry, the inverse
Galois problem [1], the construction of difference sets with Singer param-
eters [9], determining cross-correlation between m-sequences [10] and to
construct error correcting codes [5], cryptographic APN functions [6, 7],
designs [21], as well as to speed up the index calculus method for com-
puting discrete logarithms on finite fields [11, 12] and on algebraic curves
[18].

In fact, the research on this specific problem has a long history of more
than a half-century from the year 1967 when Berlekamp, Rumsey and
Solomon [2] firstly considered a very particular case with k = 1 and
p = 2.

In this article, we discuss the equation Pa(X) = 0 without any restriction
on p and gcd(n, k). In a very recent paper [15], the authors have left open
a problem that could definitely solve this equation. More specifically, for
the cases of one or two FQ-zeros, explicit expressions for these rational
zeros in terms of a were provided, but for the case of pgcd(n,k) + 1 FQ−
zeros it was remained open to compute explicitly the zeros. This paper

solves the remained problem, thus now the equation Xpk+1 +X + a = 0
over Fpn is completely solved for any prime p, any integers n and k.
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1 Introduction

Let n and k be any positive integers, Q = pn and q = pk where p is a prime. We
consider the polynomial

Pa(X) := Xq+1 +X + a, a ∈ F∗
Q := FQ \ {0}.

Notice the more general polynomial forms Xq+1 + rXq +sX+ t with s 6= rq and

t 6= rs can be transformed into this form by the substitution X = (s−rq)
1
qX1−r.

It is clear that Pa(X) have no multiple roots.
These polynomials have arisen in several different contexts including finite

geometry, the inverse Galois problem [1], the construction of difference sets with
Singer parameters [9], determining cross-correlation between m-sequences [10]
and to construct error correcting codes [5], APN functions [6, 7], designs [21].
These polynomials are also exploited to speed up (the relation generation phase
in) the index calculus method for computation of discrete logarithms on finite
fields [11, 12] and on algebraic curves [18].

Let Na denote the number of zeros in FQ of polynomial Pa(X) and Mi denote
the number of a ∈ F∗

Q such that Pa(X) has exactly i zeros in FQ.

1.1 Previous works

Berlekamp, Rumsey and Solomon [2] in 1967 and Williams [22] in 1975 firstly
considered a very particular case of this problem with k = 1 and p = 2. In this
particular case one has Pa(X) = X3 + X + a and so Na ≤ 3. In 2004, Bluher
[3] proved that Na takes either of 0, 1, 2 and pd + 1 where d := gcd(n, k) and
computed Mi for every i. She also stated some criteria for the number of the
FQ-zeros of Pa(X). In 2008 and 2010, Helleseth and Kholosha [13, 14] found new
criteria for the number of F2n -zeros of Pa(X). When there is a unique zero or
exactly two zeros, and d is odd, and they explicitly provided the expressions
of these zeros as polynomials of a [14]. In 2014, Bracken, Tan, and Tan [6]
presented a criterion for Na = 0 in F2n when d = 1 and n is even. In 2019, Kim

and Mesnager [16] completely solved this equation X2k+1 +X + a = 0 over F2n

when d = 1. Very recently (2021), new criteria for which Pa(X) has 0, 1, 2 or
pd+ 1 roots were stated by [15, 19] for any characteristic. In [15], for the cases of
one or two FQ-zeros, explicit expressions for these rational zeros in terms of a are
provided. For the case of pd+1 rational zeros, [15] provides a parametrization of
such a’s and expresses the pd + 1 rational zeros by using that parametrization,
but it was remained open to explicitly represent the zeros.

We highlight that some of the latest important achievements listed above
could not be found without the precious advances made by Bluher [3, 4].

1.2 Main contribution and organization of the paper

Following [15], this paper discuss the equation Xpk+1 + X + a = 0, a ∈ Fpn ,
without any restriction on p and gcd(n, k). After introducing some prerequisites
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from [15] (Sec. 2), we solve the open problem remained in [15] to explicitly
represent the FQ−zeros for the case of pgcd(n,k) + 1 rational zeros (Sec. 3). After

all, it is concluded that the equation Xpk+1 +X + a = 0 over Fpn is completely
solved for any prime p, any integers n and k.

2 Prerequisites

Throughout this paper, we maintain the following notations.
• p is any prime.
• n and k are any positive integers.
• d := gcd(n, k).
• m := n/d.
• q := pk.
• Q := pn.
• a is any non-zero element of the finite field FQ.

Given positive integers L and l, define a polynomial

TLlL (X) := X +XpL + · · ·+XpL(l−2)

+XpL(l−1)

.

Usually we will abbreviate T l1(·) as Tl(·). For x ∈ Fpl , Tl(x) is the absolute trace

Trl1(x) of x. For x ∈ Fpkl , its norm Nrklk (x) over Fpk is defined by

Nrklk (x) := x1+p
k+···+pk(l−2)+pk(l−1)

.

In [15], the sequence of polynomials {Ar(X)} in Fp[X] is defined as follows:

A1(X) = 1, A2(X) = −1,

Ar+2(X) = −Aqr+1(X)−XqAq
2

r (X) for r ≥ 1.
(1)

The following lemma gives another identity that can be used as an alternative
definition of {Ar(X)} and an interesting property of this polynomial sequence,
which will be importantly applied afterward.

Lemma 1 ([15]). For any r ≥ 1, the following statements hold.

1.
Ar+2(X) = −Ar+1(X)−XqrAr(X). (2)

2.

Aq+1
r+1(X)−Aqr(X)Ar+2(X) = X

q(qr−1)
q−1 . (3)

The zero set of Ar(X) can be completely determined for all r:

Proposition 2 ([15]). For any r ≥ 3,

{x ∈ Fp | Ar(x) = 0} =

{
(u− uq)q2+1

(u− uq2)q+1
, u ∈ Fqr \ Fq2

}
.
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Further, define the following polynomial

G(X) := −Am+1(X)−XAqm−1(X).

It can be shown that if Am(a) 6= 0 then the FQ-zeros of Pa(X) satisfy a
quadratic equation and therefore necessarily Na ≤ 2.

Lemma 3 ([15]). Let a ∈ F∗
Q. Assume Am(a) 6= 0. If Pa(x) = 0 for x ∈ FQ,

then
Am(a)x2 +G(a)x+ aAqm(a) = 0. (4)

By exploiting these definitions and facts, the following results have been got.

2.1 Na ≤ 2: Odd p

Theorem 4 ([15]). Let p be odd. Let a ∈ FQ and E = G(a)2 − 4aAq+1
m (a).

1. Na = 0 if and only if E is not a quadratic residue in Fpd (i.e. E
pd−1

2 6= 0, 1).
2. Na = 1 if and only if Am(a) 6= 0 and E = 0. In this case, the unique zero in

FQ of Pa(X) is − G(a)
2Am(a) .

3. Na = 2 if and only if E is a non-zero quadratic residue in Fpd (i.e. E
pd−1

2 =

1). In this case, the two zeros in FQ of Pa(X) are x1,2 = ±E
1
2 −G(a)

2Am(a) , where

E
1
2 represents a quadratic root in Fpd of E.

2.2 Na ≤ 2: p = 2

When p = 2, in [15] it is proved that G(x) ∈ Fq for any x ∈ Fqm and using it

Theorem 5 ([15]). Let p = 2 and a ∈ FQ. Let H = Trd1

(
Nrnd (a)
G2(a)

)
and E =

aAq+1
m (a)
G2(a) .

1. Na = 0 if and only if G(a) 6= 0 and H 6= 0.

2. Na = 1 if and only if Am(a) 6= 0 and G(a) = 0. In this case, (aAq−1
m (a))

1
2 is

the unique zero in FQ of Pa(X).
3. Na = 2 if and only if G(a) 6= 0 and H = 0. In this case the two zeros in FQ

are x1 = G(a)
Am(a) · Tn

(
E
ζ+1

)
and x2 = x1 + G(a)

Am(a) , where ζ ∈ µQ+1 := {z ∈
FQ2 | zQ+1 = 1} \ {1}.

2.3 Na = pd + 1: auxiliary results

Lemma 6 ([15]). Let a ∈ F∗
Q. The following are equivalent.

1. Na = pd + 1 i.e. Pa(X) has exactly pd + 1 zeros in FQ.
2. Am(a) = 0, or equivalently by Proposition 2, there exists u ∈ Fqm \ Fq2 such

that a = (u−uq)q
2+1

(u−uq2 )q+1
.

4



3. There exists u ∈ FQ \ Fp2d such that a = (u−uq)q
2+1

(u−uq2 )q+1
. Then the pd + 1 zeros

in FQ of Pa(X) are x0 = −1
1+(u−uq)q−1 and xα = −(u+α)q

2−q

1+(u−uq)q−1 for α ∈ Fpd .

Lemma 7 ([15]). If Am(a) = 0, then for any x ∈ FQ such that xq+1+x+a = 0,
it holds

Am+1(a) = Nrkmk (x) ∈ Fpd .

Furthermore, for any t ≥ 0

Am+t(a) = Am+1(a) ·At(a). (5)

In [15], it is remained an open problem to explicitly compute the pd + 1 rational
zeros.

3 Completing the case Na = pd + 1

Thanks to Lemma 6, throughout this section we assume Am(a) = 0. Let

La(X) := Xq2 +Xq + aX ∈ FQ[X].

Define the sequence of polynomials {Br(X)} as follows:

B1(X) = 0, Br+1(X) = −a ·Aqr(X). (6)

From Lemma 7 and the definition (1) it follows

Bm(a) = −aAqm−1(a) = A
1
q

m+1(a) ∈ Fpd . (7)

Using (5) and induction on l it is easy to check:

Proposition 8.

Bl·m(a) = Blm(a). (8)

for any integer l ≥ 1.

The first step to solve the open problem is to deduce the following statement.

Lemma 9. For any integer r ≥ 2, in the ring FQ[X] it holds

Xqr =

r−1∑
i=1

(
Aq

i

r−i(a) · Lq
i−1

a (X)
)

+Ar(a) ·Xq +Br(a) ·X. (9)

Proof. The equality (9) for r = 2 is Xq2 = La(X) − Xq − aX which is valid
by the definition of La(X). Suppose the equality (9) holds for r ≥ 2. By raising
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q−th power to both sides of the equality (9), we get

Xqr+1

=

r−1∑
i=1

(
Aq

i+1

r−i (a) · Lq
i

a (X)
)

+Aqr(a) ·Xq2 +Bqr (a) ·Xq

=

r∑
i=2

(
Aq

i

r+1−i(a) · Lq
i−1

a (X)
)

+Aqr(a) ·Xq2 +Bqr (a) ·Xq

=

(r+1)−1∑
i=2

(
Aq

i

r+1−i(a) · Lq
i−1

a (X)
)

+Aqr(a) · La(X)−Aqr(a) ·Xq

− a ·Aqr(a) ·X +Bqr (a) ·Xq

=

(r+1)−1∑
i=1

(
Aq

i

r+1−i(a) · Lq
i−1

a (X)
)

+Ar+1(a) ·Xq +Br+1(a) ·X,

where the last equality follows from the definitions (6) and (1). This shows that
the equality (9) holds also for r + 1 and so for all r ≥ 2. ut

For r = m, under the assumption Am(a) = 0, Lemma 9 gives

Xqm =

m−1∑
i=1

Aq
i

m−i(a) · Lq
i−1

a (X) +Bm(a) ·X.

Now, we define

F1(X) := Xqm −Bm(a) ·X =

m−1∑
i=1

Aq
i

m−i(a) · Lq
i−1

a (X) ∈ Fpd [X] (10)

and

G1(X) =

m−1∑
i=1

Aq
i

m−i(a) ·Xqi−1

. (11)

Then, evidently,

F1(X) = G1 ◦ La(X). (12)

Furthermore, we can show

Proposition 10.

F1(X) = La ◦G1(X).

Proof. When m = 3, A3(a) = 0 is equivalent to a = 1. Therefore, one has

F1(X) = Xq3 −X = (Xq −X)q
2

+ (Xq −X)q + (Xq −X) = La ◦G1(X).
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Now, suppose m ≥ 4. Then, by using Definition (6)

La ◦G1(X) =

m−1∑
i=1

Aq
i+2

m−i(a) ·Xqi+1

+

m−1∑
i=1

Aq
i+1

m−i(a) ·Xqi +

m−1∑
i=1

aAq
i

m−i(a) ·Xqi−1

=

m∑
i=2

Aq
i+1

m+1−i(a) ·Xqi +

m−1∑
i=1

Aq
i+1

m−i(a) ·Xqi +

m−2∑
i=0

aAq
i+1

m−1−i(a) ·Xqi

= Xqm −Bm(a) ·X = F1(X),

where Equality (2) was exploited to deduce the last second equality. ut

By (5), from Am(a) = 0 it follows Al·m(a) = 0 for any l ≥ 1. Therefore, (8)
and (9) for r = lm yield that for any l ≥ 1

Xql·m −Blm(a) ·X =

l·m−1∑
i=1

Aq
i

l·m−i(a) · Lq
i−1

a (X). (13)

Proposition 11. Relation (13) can be rewritten by using F1(X) as follows:

Xql·m −Blm(a) ·X =

l−1∑
i=0

Bl−1−i
m (a) · F q

m·i

1 (X). (14)

Proof. If l = 1, the equality is equivalent to the definition of F1(X). Suppose
that it holds for l ≥ 2. By raising qm−th power to both sides of (14), we have

Xq(l+1)m

−Blm(a) ·Xqm =

l−1∑
i=0

Bl−1−i
m (a) · F q

m·(i+1)

1 (X)

=

(l+1)−1∑
i=1

B(l+1)−1−i
m (a) · F q

m·i

1 (X).

Since

Xq(l+1)m

−Blm(a) ·Xqm = Xq(l+1)m

−Blm(a) · F1(X)−Bl+1
m (a) ·X,

one has

Xq(l+1)m

−Bl+1
m (a) ·X =

(l+1)−1∑
i=1

B(l+1)−1−i
m (a) · F q

m·i

1 (X) +Blm(a) · F1(X)

=

(l+1)−1∑
i=0

B(l+1)−1−i
m (a) · F q

m·i

1 (X)

This shows that Equality (14) holds for all l ≥ 1. ut
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Define
N := (pd − 1) ·m,

G2(X) :=
∑pd−2
i=0 Bp

d−2−i
m (a) ·Xqm·i

.

Since F1(X) and G2(X) are pd−linearized polynomials over Fpd , they are com-
mutative under the symbolic multiplication “◦” (see e.g. 115 page in [17]). There-
fore, regarding Equation (14) and Proposition 10, one has

XqN −X = G2 ◦ F1(X) = F1 ◦G2(X) = La ◦G1 ◦G2(X) (15)

and consequently
ker(F1) = G2(FqN ), (16)

ker(La) = G1 ◦G2(FqN ). (17)

Since La(X) = XPa(Xq−1), here we can state:

Proposition 12. For a ∈ F∗
Q,

{x ∈ Fp | xq+1 + x+ a = 0} = {xq−1 | x ∈ G1 ◦G2(FqN )} \ {0}. (18)

Our goal now is to determine Sa := {x ∈ FQ | Pa(x) = 0}, the set of all
FQ−zeros to Pa(X) = Xq+1 +X + a, a ∈ FQ.

Remark 13. In order to find the FQ−zeros of Pa(X) it is not enough to consider
the FQ−zeros of La(X). In fact, one can see that Bm(a) 6= 1 in general. However,
it holds:

Proposition 14. La(X) = 0 has a solution in F∗
Q if and only if Bm(a) = 1.

Proof. If La(x) = 0 for x ∈ F∗
Q, then by (12) F1(x) = 0. More specifically, we

have
xq

m

−Bm(a) · x = (1−Bm(a)) · x = 0.

Consequently Bm(a) = 1. Conversely, assume Bm(a) = 1. Then F1(X) = Xqm−
X = La◦G1(X) and ker(La) = G1(Fqm). Assume G1(FQ) = {0}. Then, since G1

is q−linearized, it holds G1(Fqm) = G1 (Fq (FQ)) = {0} (where Fq (FQ) denotes,
by convention, the smallest field containing both Fq and FQ) which contradicts
to deg(G1) < qm. Thus there exists such a x0 ∈ F∗

Q that G1(x0) 6= 0. Then
G1(x0) ∈ ker(La) ∩ F∗

Q.

To achieve the goal, we will further need the following lemmas.

Lemma 15. Let L(X) be any q−linearized polynomial over FQ. If xq−1
0 ∈ FQ,

then L(x0)q−1 ∈ FQ.

Proof. If xq−1
0 ∈ FQ i.e. xq−1

0 = λ for some λ ∈ FQ, then xq0 = λx0 and

subsequently xq
i

0 =
∏i−1
j=0 λ

qjx0 for every i ≥ 1. Therefore, when L(X) is a

q−linearized polynomial over FQ, one can write L(x0) = λx0 for some λ ∈ FQ.

Thus, L(x0)q−1 = λ
q−1

λ ∈ FQ. ut
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Lemma 16. Let s = (qm−1)·(pd−1)
(Q−1)·(q−1) . If Am(a) = 0 and x0 ∈ ker(F1), then xs0 ∈

ker(F1) and (xs0)q−1 ∈ FQ.

Proof. For x0 = 0, the statement is trivial. Therefore, we can assume x0 6= 0.
Then, x0 ∈ ker(F1) implies

Bm(a) = xq
m−1

0 = (xs0)
(q−1)· Q−1

pd−1 . (19)

Since Bm(a) ∈ Fpd , therefore (xs0)q−1 ∈ FQ.
Now, we will show

Bm(a) = Bm(a)s.

Since Pa(X) has pd + 1 rational solutions when Am(a) = 0, there exists such a
non-zero x1 that

La(x1) = 0, xq−1
1 ∈ FQ.

Then (12) gives F1(x1) = 0 i.e.

xq
m−1

1 = Bm(a),

and on the other hand

xq
m−1

1 = (Nrnd (xq−1
1 ))s = (Nrkmk (xq−1

1 ))s = (xq
m−1

1 )s = Bsm(a),

where the second equality followed from the fact that Nrnd (y) = Nrkmk (y) for any
y ∈ FQ. Thus, Bm(a) = Bsm(a).

Hence, (xs0)q
m−1 = (xq

m−1
0 )s = Bsm(a) = Bm(a) i.e. F1(xs0) = 0. ut

Now, take any x0 ∈ ker(F1). The definition (10) and Lemma 16 shows

xs0 · F∗
Q := {xs0 · α | α ∈ F∗

Q} ⊂ ker(F1) = G2(FpN )

and

(xs0 · F∗
Q)q−1 ⊂ FQ.

Subsequently, Lemma 15 and Equality (18) prove

G1(xs0 · F∗
Q)q−1 ⊂ Sa.

To avoid the trivial zero solution, we need

G1(xs0 · F∗
Q) 6= {0}.

In fact, this is the case. Really, if we assume G1(xs0 · F∗
Q) = {0}, then G1(xs0 ·

Fqm) = {0} (because G1 is Fq−linear, and Fqm is generated by Fq and FQ) which
contradicts to deg(G1) < qm.

Next, in order to explicit all pd + 1 elements in Sa, we need to deduce the
following lemma.
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Lemma 17. Let Am(a) = 0 and x0 be a FQ−solution to Pa(X) = 0. Then,
x2
0

a

is a (q − 1)−th power in FQ. For β ∈ FQ with βq−1 =
x2
0

a ,

wq − w +
1

βx0
= 0 (20)

has exactly pd solutions in FQ. Let w0 ∈ FQ be a FQ−solution to Equation (20).
Then, the pd + 1 solutions in FQ to Pa(X) = 0 are x0, (w0 + α)q−1 · x0 where α
runs over Fpd .

Proof. We substitute x in Pa(x) with x0 − x to get

(x0 − x)q+1 + (x0 − x) + a = 0

or
xq+1 − x0xq − xq0x− x+ xq+1

0 + x0 + a = 0

which implies
xq+1 − x0xq − (xq0 + 1)x = 0,

or equivalently,

xq+1 − x0xq +
a

x0
x = 0.

Since x = 0 corresponds to x0 being a zero of Pa(X), we can divide the latter
equation by xq+1 to get

a

x0
yq − x0y + 1 = 0 (21)

where y = 1
x . Now, let y = tw where

tq−1 =
x20
a
. (22)

Then, Equation (21) is equivalent to

wq − w +
1

tx0
= 0. (23)

If t0 is a solution to Equation (22), then the set of all q − 1 solutions can be
represented as t0 · F∗

q . For every λ ∈ F∗
q , when w0 is a solution to Equation (23)

for t = t0, λw0 is a solution to Equation (23) for t = t0/λ. By the way, (t0, w0)
and (t0/λ, λw0) give the same y0 = t0 · w0 = t0/λ · λw0. Therefore, to find all
FQ−solutions to Equation (21) one can consider Equation (23) for any fixed
solution t0 of Equation (22).

Now, we will show that any solution t0 to Equation (22) lies in Fq · FQ :=
{α · β | α ∈ Fq, β ∈ FQ}. In fact, we know that Equation (23) has pd solu-
tions w with y = wt0 ∈ FQ. Let’s fix a solution w0 with y0 = w0t0 ∈ FQ of
Equation (23). Then, the set of all solutions to Equation (23) can be written
as w0 + Fq. Therefore, it follows that there exist pd ≥ 2 elements λ ∈ Fq with
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(w0 + λ)t0 ∈ FQ. As w0t0 ∈ FQ and (w0 + λ)t0 ∈ FQ, we have λt0 ∈ FQ i.e.
t0 ∈ 1

λFQ ⊂ Fq · FQ.
Hence, we can write t0 = α ·β, where α ∈ Fq, β ∈ FQ, and it follows that the

set of all solutions to Equation (22) are F∗
q ·β. This means that Equation (22) has

pd−1 solutions (i.e. F∗
pd ·β) in FQ, i.e.,

x2
0

a is a (q−1)−th power in FQ. Moreover,

Equation (20) has exactly pd solutions in FQ (because Equation (21) has exactly
pd solutions y = wβ in FQ). When w0 ∈ FQ is such a solution, the set of all pd

solutions in FQ is w0 + Fpd . Since Equation (23) yields y = wt = 1
(1−wq−1)x0

,

we have x0 − x = x0 − 1
y = x0 − (1 − wq−1)x0 = wq−1x0, which completes the

proof. ut

Finally, all discussion of this section is summed up in the following theorem.

Theorem 18. Assume Am(a) = 0. Let N = m(pd − 1) and s = (qm−1)·(pd−1)
(Q−1)·(q−1) .

Define two polynomials G1(X) and G2(X) as follows

– G1(X) =
∑m−2
i=0 Aq

i+1

m−1−i(a) ·Xqi ;

– G2(X) =
∑pd−2
i=0 Bp

d−2−i
m (a) ·Xqmi

.

It holds G1(G2(F∗
pN )s ·F∗

q ·F∗
Q)q−1 6= {0}. Take a x0 ∈ G1(G2(F∗

pN )s ·F∗
q ·F∗

Q)q−1\

{0}. x2
0

a is a (q − 1)−th power in FQ. For β ∈ FQ with βq−1 =
x2
0

a ,

wq − w +
1

βx0
= 0 (24)

has exactly pd solutions in FQ. Let w0 ∈ FQ be a FQ−solution to Equation (24).
Then, the pd + 1 solutions in FQ of Pa(X) are x0, (w0 +α)q−1 ·x0 where α runs
over Fpd .

Note that one can also explicit w0 by an immediate corollary of Theorem 4
and Theorem 5 in [20].

4 Conclusion

In [2, 22, 3, 13, 14, 6, 4, 16, 8, 19, 15], partial results about the zeros of Pa(X) =

Xpk+1 +X + a over Fpn have been obtained. In this paper, we provided explicit
expressions for all possible zeros in Fpn of Pa(X) in terms of a and thus at last
finalize the study initiated by Berlekamp, Rumsey and Solomon before more
than a half-century.
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