
HAL Id: hal-03960541
https://hal.science/hal-03960541

Submitted on 27 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an MDE approach of Digital Twin for Software
Applications

Asbathou Biyalou-Sama, Matthieu Allon, Cédric Dumoulin, Blazho Nastov,
Emmanuel Renaux

To cite this version:
Asbathou Biyalou-Sama, Matthieu Allon, Cédric Dumoulin, Blazho Nastov, Emmanuel Renaux. To-
wards an MDE approach of Digital Twin for Software Applications. Université de Lille. 2021. �hal-
03960541�

https://hal.science/hal-03960541
https://hal.archives-ouvertes.fr

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards an MDE approach of Digital Twin

for Software Applications

Asbathou Biyalou-Sama
Univ. Lille, UMR 9189 CRIStAL

IMT Lille Douai
Axellience

Lille, France
asbathou.biyalousama.etu@univ-lille.fr

Matthieu Allon
Axellience

Lille, France
matthieu.allon@axellience.com

Cédric Dumoulin
Univ. Lille, UMR 9189 CRIStAL

Lille, France
cedric.dumoulin@univ-lille.fr

Blazho Nastov
Axellience

Lille, France
blazho.nastov@axellience.com

Emmanuel Renaux
Univ. Lille, UMR 9189 CRIStAL

IMT Lille Douai
Lille, France

emmanuel.renaux@imt-lille-douai.fr

Abstract— Digital Twin (DT) refers to a digital

representation of a physical entity and its functions, behaviors

and rules. Digital Twin (DT) technology, originally, emerges

from manufacturing and aerospace sectors. With the

advancement of Industry 4.0 and IoT, DT is applied in other

domains like cyber-physical systems (CPS), building, and

health. This scattering of the DT technology results in a lack of
clear and concise definition of what is exactly a DT.In this

context, we want to explore what could be a DT for Software

Applications (SA). This paper describes the approach that we

will follow to identify what could be a DT for Software

Applications. On the basis of the features (of a DT) identified in

the other domains, we propose ways to define a DT for Software

Applications. In a first approach, we propose to use structural

and behavioral UML diagrams to instrument the application
(by defining software probes), and we visualize the results in a

"dashboard". This gives us the “monitoring” features of the DT.

From this approach, we want to explore the other features

(simulation, prediction, optimization…) that will allow us to

propose a more complete digital twin.

Keywords—Digital Twin, MDE, Software Application

I. INTRODUCTION

Digital twins (DT) have found wide application in areas
such as cyber physical systems (CPS) buildings, Iot, health ...
A DT is composed of a physical part (the CPS, a building ...)
and its digital counterpart (the twin). In these different
domains, the digital twin allows, among other things, to
monitor the physical part, to perform simulations on the
digital part, or to interact on the physical part.

As we observed these DTs, we wondered ourselves what
a DT of a software application might look like and what such
a DT might be used for...

By Software Application (SA), we mean an application
realized in an Object Oriented Language and for which we can
obtain representations, even partial, in the form of UML
diagrams.

In the absence of a formal definition for DTs, we have
identified different points characterizing a DT. We then tried
to transpose these characteristics to the domain of SA. One of
the difficulties encountered is that in our case, the 'physical'
part of the DT is itself already digital. Despite this difficulty,
we propose a first MDE approach in which we describe our
DT with the help of three models: a model partially
representing the application and in which we can place
'sensors', a model to describe how the data from the sensors

are transformed, and a model to describe how to visualize the
results. Thereafter, in order to follow the MDE process, we
will automatically generate the code corresponding to the DT
described in these models.

To quickly validate our approach, and to be able to
experiment around the definition of a DT for SA, we propose
a framework allowing "to build programmatically" (i.e.
without automatic code generation) the DT conform to the
models.

This short paper presents the state of progress of our
thinking and our future investigations, which, we hope, will
allow us to experiment around the notion of DT for SA. These
experimentations and the developed tools will allow us, in the
future, to propose a more precise definition of a DT for SA.

Section 2 describes the characteristics we have retained
when studying DTs in different areas. In section 3, we cite
references on which we have based our work. In Section 4, we
detail our proposed DT for SA. Section 5 describes the
implementation of the framework for the experimentations. In
section 6, we describe the challenges that we have identified
and that need to be solved in order to complete the definition
of a DT for SA. Finally, we conclude and discuss the
perspectives in section 7.

II. DIGITAL TWINS : DEFINITION THROUGH DOMAINS AND

MAIN USAGES

In CPS, the digital twins consist of a set of models that
represent the physical system. These models are digital
representations of the physical system. They are able to
capture real data from the system [1]. Digital Twins also offer
a set of microservices that exploit the data from the system [2],
[3]. These microservices provide, among other things, data
visualization or system simulation. The Building Information
Model (BIM) is considered as the digital twin for building [4].
It is a numeric plan where some values, such as temperature,
may change over time. This plan is updated with data gathered
from sensors placed on the real building. BIM is used to
visualize the information and the behavior of various building
components.

 The study of these two domains highlights some common
characteristics of digital twins:

 Digital representations: whether in CPS or in
buildings, digital twins are primarily digital
representations integrating various functions of the
physical system.

 Data visualization: one of the main purposes of digital
twins is to be able to trace and visualize what is
happening in the physical system. For example, BIM
makes it possible to visualize real information coming
from the building.

 Data gathering: Digital twins gather data from the
physical system using sensors.

 Data processing: data retrieved by the sensors are raw
data. A processing and filtering phase is often
necessary to obtain information more relevant for
humans.

The digital twins are designed to serve different purposes. The
literature reviews in [3], [5], [6] provide a list of these most
frequent aims:

 Monitoring: this is the data visualization part.

 Simulation and prediction: simulate the real
system is a purpose present in almost all digital
twins. According to [7], digital twins are the next
generation of simulation techniques. Simulation
allows to observe the behaviors and the reactions
of CPS or buildings in different scenarios.

 Optimization: a digital twin can also be used to
optimize various resources of a system.

III. EXISTING CONCEPTUAL METHODS AND PROPOSED

ARCHITECTURES

We have studied several approaches for DT. We would
like to cite the following two:

Reference [8] proposes to design digital twins for CPS
using some dedicated tools: UML/P class diagrams for the
Digital Twin Information System, MontiArc models for the
physical system. A dedicated language is used to make the
interconnection between the two systems. The
implementations are generated from the different models.

Reference [9] proposes an approach for designing DT of
organizations. It proposes to integrate the different entities of
an organization, i.e. processes, people, etc., while also
proposing different diagrams.

In terms of the architecture of a digital twin, [2] proposes
a four layers architecture: communication, data
representation, data computation and microservices. We use
parts of this architecture as a start for our work.

These papers show that DT can be designed with an MDE
approach, but they do not answer our question « what could
be a DT of a SA »?

IV. OUR PROPOSAL : TOWARDS AN MDE APPROACH OF DT

FOR SOFTWARE APPLICATIONS

In section 2, we have identified some common
characteristics of DTs: digital representations, data
visualization, data gathering and data processing. Now we
propose the equivalent of these concepts for SA. We also
introduce the models used to define a DT for a SA.

A. Equivalent concepts

1) Digital representation of software
In CPS and buildings, the digital representation is used to

observe various characteristics of the system, either structural

or behavioral. In software engineering, UML is used to
describe these later characteristics. We use UML and its
diagrams to describe the structural part (class diagram) and the
behavioral part (activity diagram, collaboration diagram...).
We do not describe the whole application, but only the parts
that the user wants to observe. To obtain these diagrams and
the UML model, we plan to use some reverse engineering
tools.

2) Data visualization: monitoring
Data visualization is done in different formats depending

on the target applications or the various domains. This can be
textual presentation, graphic components or 3D visualization.
In our context, we propose the concept of viewers to display
data according to the user observation needs. Viewers are not
responsible for processing or interpreting the data. The only
operations performed are related to the display of data.

3) Data gathering
In CPS or buildings, physical sensors are used to gather

real data such as temperature, position of a robot…

At the SA level, we propose to capture data related to the
system (temperature, memory usage, CPU speed…) and also
application-related data (values of variables or instances,
number of instances, values of method parameters, exceptions
thrown…). These data are captured in the application using «
software probes » that are placed in the code.

4) Data processing
For data processing purpose, we propose the concept of

operation boxes. They will be in charge of processing the raw
data from the system: filtering, interpretation, extraction of
information based on business rules.

B. Concept modeling

The modeling of a DT for a SA is done through the use of
the previous concepts in three models (Figure 1-a) that we are
going to describe.

1) Probe Model
The probe model (Figure 1-a left) is used to describe both

the digital representation of the SA and the placement of
software probes within that SA. This model is a partial digital
representation, which can be structural or behavioral, of the
application. We propose to use UML diagrams to represent
the probe models. The probes can be placed on different
elements of the SA, such as variables, classes, properties,
activities...

In a first approach, we focus on placing probes on
methods, in order to capture the input and output parameter
values, as well as the system data.

2) Data manipulation and connection model
The data processing and connection model (figure 1-a

center) allows both to describe the operation boxes and to
connect these boxes to each other, as well as to probes and
viewers. This model reuses the probes described in the probe
model and the viewers described in the visualization model.

It models the flow of data, from probes to viewers through
the various processing boxes.

3) Visualization model
This model (Figure 1-a right) allows the user to describe

the set of viewers he wants to use to observe his digital twin.
The user has the possibility to use simple viewers like text,
image, etc. or to compose them in order to build viewers that

are more complex. This model describes the data displayed by
the digital twin.

V. TECHNICAL IMPLEMENTATION OF OUR APPROACH

To validate our approach, we develop a prototype. Its
architecture (Figure 1-b) is inspired by the three models:
application and probes model, data processing model and
visualization model. We add communication between the
different parts. The prototype implements the metamodels for
the three models, as well as a framework allowing to build a
DT for a SA. Proposing a framework to build DT is important,
as highlighted in [10]. To be complete, we test our framework
on a real SA.

A. Metamodels

For the probe model, we use UML and its diagrams. The
probes are designed using stereotypes that can be positioned
on any UML element. The metamodels for data processing
models and visualization models are realized with EMF, and
the corresponding diagrams with Sirius.

B. Model to framework transformations

The code generation of the DT will be possible from the
templates. This will be done later, when the models and the
framework are stabilized.

C. Framework

The framework provides the basic building block to build
DTs. The assembly and configuration of the building blocks
will later be generated from the models. The framework uses
existing technologies (figure 1-b): Kibana for viewers, a web
server (in Spring) to implement the data processing blocks,
RabbitMQ to communicate between probes and processing
blocks, http requests to communicate between processing
blocks and Kibana (via logstash and ElasticSearch).

The notion of software probe is realized thanks to "Spring
interceptors". This allows placing probes on method calls
without touching the existing code of the application to
observe. The downside is that we are currently limited to
applications developed with Spring. Other technologies are
available to implement probes and will be studied later.

D. Targeted software application

To test the framework, we use a real software application
that is in production. It is a web application developed in
Spring and React allowing "computer science project
proposals" for students in Masters.

VI. CHALLENGES

We have identified several challenges.

A. What data to display?

The first challenge we identified was "what data could be
visualized using the DT, and in which forms"? There is of
course the basic data such as values of arguments, of variables
or instances, CPU time, temperature, memory usage, etc.
These data are immediately accessible, and their visualization
is straightforward. It is also possible to combine data in order
to obtain and display more complex data such as the one
related to business processes, execution of activities... We
could thus visualize the percentage of users in the different
steps of a business process, some statistics on errors,
withdrawals, paths followed...

Still by combining data, we can find new data that can
hardly be accessible today: for example, we can combine the
CPU temperature with the number of user instances in order
to check the correct functioning of the processor, or to
improve the energy consumption.

B. Improve the prototype

Our second challenge consists in improving the prototype
of our approach. To achieve this we need to improve our
framework to make it easier to use and to integrate into
different types of applications: server, desktop... We need to
complete the concepts used in our metamodels, allow the
automatic generation of the DT code, and also propose to build
the probe model by reversing the real application. We also
need to explore other mechanisms for probes to observe other
types of software applications.

Figure 1: (a) Conceptual approach (b) Technical implementation

C. Simulation and optimization

Our current proposal does not allow any simulation. This
is our third challenge: what can we propose to perform
software application simulation?

In an answer that we propose, we divide the software
application into "interconnected blocks". Each block takes
input and output data, and performs processing on these data.
For example, blocks are classes, components, methods,
packages...

Our current DT proposal allows monitoring and recording
the inputs and outputs of these blocks. We can then consider
different scenarios as in the following examples:

 We modify the behavior of a block and we reinject the
recorded data in order to study the new
implementation. This is close to unit tests, but here we
work on "real" data. Changing the behavior can be
done by providing new code, or by using a language
to describe the output data in terms of inputs, such as
OCL.

 The behavior of a block can also be simulated and
modified by replacing the block with a mock. A mock
allows to specify output data according to input data.
A generic implementation is to record pairs of {input
data, output data}, and then provide the output data
based on the submitted inputs. With the help of our
DT, we can record the inputs and outputs, and thus
automatically create a mock of a block. Of course, the
number of pairs of {inputs, outputs} we can record is
limited.

 Going even further, we can imagine putting an
Artificial Intelligence (AI) in the block, and
instructing this AI using the input and output data.
Once this "AI block" is instructed, we can replace the
original block and observe the behavior of the rest of
the blocks. Here we do not have the memory limit
anymore, but we have to find out how to change the
behavior of the block. One possible approach is to
instruct the block with modified data.

If we know how to decompose the application into blocks,
and reinject modified blocks, we can then perform
simulations. We can also study the performance of the blocks
in order to optimize the system.

D. Interaction with the application

Another challenge is to propose solutions to enable our DT
to interact with the application. For example, the DT would
allow changing configuration variables in order to adapt the
SA to a new context.

E. Define a DT for a SA

Our last challenge will be to provide a more precise
definition of what a DT for an SA is, and what it can bring.

VII. CONCLUSION & PERSPECTIVES

We are at the beginning of our work, and we have a real
question we want to answer: what a DT of a software
application might look like and what such a DT might be used
for. To answer this question, we propose to experiment around
the definition of a DT. The study of DTs in other domains
allows us to suggest ways to define a DT for a SA. The DT is
defined using three models describing the part of the
application to be observed and the probes used to gather data,
the data transformation, and finally the data visualization. A
prototype using this approach is currently under
implementation.

Our next work will be to search and deepen the solutions
for the identified challenges. The framework will allow us to
explore and test these solutions. The first aim of this short
paper is to expose the ideas we want to develop and implement
to be able to define what is a DT for a SA. The second aim is
to initiate discussions.

REFERENCES

[1] R. Vrabič, J. A. Erkoyuncu, P. Butala, and R. Roy, “Digital twins:

Understanding the added value of integrated models for through-life
engineering services,” Procedia Manuf., vol. 16, pp. 139–146, Jan.

2018, doi: 10.1016/j.promfg.2018.10.167.

[2] K. Y. H. Lim, P. Zheng, and C.-H. Chen, “A state-of-the-art survey of
Digital Twin: techniques, engineering product lifecycle management

and business innovation perspectives,” J. Intell. Manuf., Aug. 2020,

doi: 10.1007/s10845-019-01512-w.

[3] C. Boje, A. Guerriero, S. Kubicki, and Y. Rezgui, “Towards a semantic
Construction Digital Twin: Directions for future research,” Autom.

Constr., vol. 114, p. 103179, Jun. 2020, doi:

10.1016/j.autcon.2020.103179.

[4] S. Kaewunruen and N. Xu, “Digital Twin for Sustainability Evaluation

of Railway Station Buildings,” Front. Built Environ., vol. 0, 2018, doi:

10.3389/fbuil.2018.00077.

[5] M. Liu, S. Fang, H. Dong, and C. Xu, “Review of digital twin about
concepts, technologies, and industrial applications,” J. Manuf. Syst.,

vol. 58, pp. 346–361, Jan. 2021, doi: 10.1016/j.jmsy.2020.06.017.

[6] Y. Lu, C. Liu, K. I.-K. Wang, H. Huang, and X. Xu, “Digital Twin-
driven smart manufacturing: Connotation, reference model,

applications and research issues,” Robot. Comput.-Integr. Manuf., vol.

61, p. 101837, Feb. 2020, doi: 10.1016/j.rcim.2019.101837.

[7] S. Boschert and R. Rosen, “Digital Twin—The Simulation Aspect,” in
Mechatronic Futures: Challenges and Solutions for Mechatronic

Systems and their Designers, P. Hehenberger and D. Bradley, Eds.
Cham: Springer International Publishing, 2016, pp. 59–74. doi:

10.1007/978-3-319-32156-1_5.

[8] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Model-driven digital twin construction: synthesizing the integration

of cyber-physical systems with their information systems,” in
Proceedings of the 23rd ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems, New York, NY,

USA, Oct. 2020, pp. 90–101. doi: 10.1145/3365438.3410941.

[9] M. Caporuscio, F. Edrisi, M. Hallberg, A. Johannesson, C. Kopf, and
D. Perez-Palacin, “Architectural Concerns for Digital Twin of the

Organization,” in Software Architecture, Cham, 2020, pp. 265–280.

doi: 10.1007/978-3-030-58923-3_18.

[10] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and M.

Wimmer, “Towards Model-Driven Digital Twin Engineering: Current
Opportunities and Future Challenges,” presented at the ICSMM 2020

- International Conference on Systems Modelling and Management,
Jun. 2020. Accessed: Oct. 24, 2020. [Online]. Available:

https://hal.inria.fr/hal-02946949

