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 to the context of root systems with even multiplicities. Under the even multiplicity assumption, we prove a local Paley-Wiener theorem for the Jacobi transform and the strong Huygens' principle for the wave equation associated with the modified compact Laplace operator.

Introduction

Harish-Chandra's theory of spherical functions on Riemannian symmetric spaces of the noncompact type, resp. of the compact type, was generalized in the late 1980s by G. Heckman and E. Opdam into the theory of hypergeometric functions, resp. of Jacobi polynomials, associated with root systems. Correspondingly, the noncompact and compact spherical transforms have as natural generalizations the Opdam's hypergeometric transform and the Jacobi transform. We refer to [START_REF] Heckman | Harmonic analysis and special functions on symmetric spaces[END_REF], [START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF], [START_REF] Opdam | Lecture notes on Dunkl operators for real and complex reflection groups[END_REF] and references therein for more information. It is then a natural question, how known results in harmonic analysis on symmetric spaces can be extended to these new integral transforms.

In [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF] we proved a Paley-Wiener theorem for the spherical transform on compact symmetric spaces with even multiplicities. The Paley-Wiener theorem was then used to show (by three different methods) that the local strong Huygens' principle holds for the modified wave equation on these spaces. In this note we show how our results can be extended to prove a local Paley-Wiener theorem for the Jacobi transform and then the strong Huygens principle for the modified Laplacian associated with a root system with even multiplicities.

In the context of special functions associated with root systems, the symmetric space is replaced by a triple (a, ∆, m), consisting of an n-dimensional real Euclidean vector space a, a root system ∆ in the dual a * of a, and a multiplicity function m on Σ. Hence α → m α is a map on ∆ which is invariant with respect to the Weyl group W of ∆. We will write m ≥ 0 to indicate that m α ≥ 0 for all α ∈ ∆. The two results in the title will be proven under the additional assumption that ∆ is reduced, i.e. 2α / ∈ ∆ for all α ∈ ∆, and that m is even, i.e. m α ∈ 2N for all α ∈ ∆. In the geometric situation of symmetric spaces, even multiplicity functions occur only on reduced root systems. In our more general context, the two conditions have to be imposed. We remark that our notation is based on the theory of symmetric spaces which differs from the Heckman-Opdam notation in the following ways. The root system R used by Heckman and Opdam is related to our root system ∆ by R = {2α | α ∈ ∆} and the multiplicity function k in Heckman-Opdam's work is given by k 2α = m α /2.

Compared to [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF], this note contains two new ingredients: an explicit formula for the Jacobi polynomials in the even multiplicity case, and a detailed study of the convergence of certain Jacobi expansions. It is also important to notice that in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF] several results have were proven under the more restrictive condition (always satisfied by Riemannian symmetric spaces with even multiplicities) that the multiplicity function is a constant function, i.e., there is m ∈ N such that m α = 2m for all α ∈ ∆. This condition will be dropped in the present note. We also remark that we will not work out all details. Our aim is to prove what is necessary to apply the results and methods from [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF].

Jacobi polynomials and the Jacobi Transform

Let P be the lattice of restricted weights. This consists of all elements µ ∈ a * C so that µ α := µ, α / α, α ∈ Z for all α ∈ ∆. In particular P ⊂ a * . Then A C := Hom Z (P, C × ) is a complex torus with Lie algebra a C . It admits the decomposition A C = AT with A := exp(a) and T = exp(ia). Recall that harmonic analysis of K-invariant function spaces on G/K, respectively U/K, can be reduced to harmonic analysis of Weyl group invariant objects on a maximal flat subspace. Therefore the Lie groups A and T are respectively replacements for the symmetric spaces G/K and U/K.

1.1. Jacobi polynomials. Let C[A C ]
denote the space of finite C-linear combinations of elements e µ with µ ∈ P , and let C[A C ] W be the subspace of W -invariant elements. We will always assume that m ≥ 0. Fix a set of positive roots ∆ + in ∆ and set δ(m, t) := α∈∆ + |e α(log t) -e -α(log t) | mα . Define an inner product

•, • m on C[A C ] W by f, g m := T f (t)g(t) δ(m, t) dt ,
where dt is the normalized Haar measure on T .

Let P + := {µ ∈ a * | µ α ∈ Z + for all α ∈ ∆ + }. For µ ∈ P + and t ∈ T let P (m, µ, t) denote the Jacobi polynomial with spectral parameter µ. This is defined as follows. where the coefficients c µν (m) are defined by the following conditions, cf. [START_REF] Heckman | Harmonic analysis and special functions on symmetric spaces[END_REF], §1.3:

(i) c µµ (m) = 1 ;
(ii) P (m, µ), M (ν) m = 0 for all ν ∈ P + with ν < µ.

Observe that by definition, P (m, µ, t) extend holomorphically to A C as a function of t. Moreover {P (m, µ)

| µ ∈ P + } is a basis for C[A C ] W which is orthogonal with respect to the inner product •, • m (cf. [2], Corollary 1.3.13).
The L 2 -norm of P (m, µ) is expressed in terms of two c-functions. The first one, denoted c(m, λ), is the c-function defined by means of the Gindikin-Karpelevic formula as in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF], (2.10). In particular, for reduced root systems and even multiplicity functions,

(1.2) 1 c(m, λ) = C α∈∆ + mα/2-1 k=0 (λ α + k)
where the constant C is given by

(1.3) C = α∈∆ + mα/2-1 k=0 1 ρ α + k and ρ := ρ(m) := 1 2 α∈∆ + m α α as usual.
The second function, denoted c * (m, λ), is a dual c-function. In the case of reduced root systems and even multiplicities, these two functions are related by the formula c * (m, λ) = C (-1) È α∈∆ + mα/2 c(m, λ) with C as in (1.3). See [START_REF] Heckman | Harmonic analysis and special functions on symmetric spaces[END_REF] (3.5.2) for the general definition of c * . Again assuming even multiplicities, one has for µ ∈ P + (see [START_REF] Heckman | Harmonic analysis and special functions on symmetric spaces[END_REF], Corollary 3.5.3):

(1.4) P (m, µ) 2 m = |W | C c * (m, -µ -ρ) c(m, µ + ρ) = |W | α∈∆ + mα/2-1 k=0 (µ α + ρ α + k) (µ α + ρ α -k) .
The positivity of the last member in (1.4) depends on the following lemma.

Lemma 1.1. Assume that ∆ is a reduced root system and that for all α ∈ ∆ the multiplicities m α are even. Then ρ α ≥ m α /2 for every α ∈ ∆ + .

Proof. Observe first that

(1.5) ρ α > 0 for every α ∈ ∆ + .
Indeed, if α is a simple root in a reduced root system ∆, then

ρ α = m α /2. See [1], Lemma 2.7, (1). 
We prove the inequalities in the statement by induction on the length ℓ(α) of a root α ∈ ∆ + . Recall that, if Π := {α 1 , . . . , α n } is the basis of simple roots in ∆ + and α = n j=1 n j α j , then ℓ(α) := n j=1 n j . The inequalities being true when ℓ(α) = 1, we then suppose that ℓ(α) > 1. Because of (1.5), there must be γ ∈ Π so that γ, α > 0. Since ℓ(α) > 1, the root α is not simple. Hence s γ α := α -2 γ,α γ,γ γ satisfies s γ α ∈ ∆ + and ℓ(s γ α) < ℓ(α). We can therefore apply the inductive hypothesis to s γ α. Noticing that s γ ρ = ρ -m γ γ, we get:

ρ, α α, α = s γ ρ, s γ α s γ α, s γ α = ρ, s γ α s γ α, s γ α -m γ γ, s γ α s γ α, s γ α ≥ m sγ α /2 + m γ γ, α s γ α, s γ α ≥ m sγ α /2 = m α /2.
1.2. Hypergeometric functions. Let F (m, λ, a) denote the hypergeometric function of spectral parameter λ ∈ a * C . By definition, this is the unique solution of the Heckman-Opdam hypergeometric system of differential equations corresponding to the spectral parameter λ which is analytic in the space parameter a ∈ A and normalized by the condition F (m, λ, e) = 1. Here e denotes the identity element of A. See e.g. [START_REF] Heckman | Harmonic analysis and special functions on symmetric spaces[END_REF], §4. If the triple (a, ∆, m) is geometric (i.e. arises from a Riemannian symmetric space of the noncompact type G/K), then F (m, λ, a) agrees with the restriction to A = exp(a) of the spherical function ϕ λ from [1], (2.7).

1.3. Explicit formulas. The generalization of Lemma 2.5 in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF] and the Weyl group invariance stated in Theorem 2.11 in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF] is given as follows.

Lemma 1.2. Suppose that m ≥ 0 is a fixed multiplicity function. Then

(1.6) F (m, µ + ρ, a) = c(m, µ + ρ)P (m, µ, a) .
Furthermore,

(1.7) c(m, w(µ -ρ) -ρ)P (m, w(µ -ρ) -ρ) = c(m, µ)P (m, µ)
for all µ ∈ P + and w ∈ W .

Proof. See [START_REF] Heckman | Harmonic analysis and special functions on symmetric spaces[END_REF], (4.4.10).

Formula (1.6) provides a holomorphic extension of the hypergeometric function F (m, µ + ρ) to A C . Moreover, the second relation shows that we can extend the definition of P (m, µ) to µ ∈ P . Observe, however, that in the context of special functions associated with root systems, the functions F (m, λ) and P (m, µ) do not generally admit integral representations. Likewise, these functions cannot be considered as matrix coefficients of group representations. Nevertheless, the representation dimensions, or Plancherel density, d(µ) = d(m, µ) can still be introduced by means of Vretare's formula:

(1.8) d(m, µ) := lim ε→0 c(m, -ρ + ε) c(m, µ + ρ)c(m, -µ + ρ + ε) .
As in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF], this formula simplifies because of Lemma 1.1, which allows us to compute the limit in (1.8) as the quotient of the limits of the c-functions appearing in the numerator and in the denominator.

Corollary 1.3. Assume that ∆ is reduced and all m α are even for all α ∈ ∆. Then the following properties hold:

(1) For all µ ∈ P + we have

d(m, µ) = c(m, -ρ) c(m, µ + ρ)c(m, -(µ + ρ))
.

(2) The function d(m, µ) extends as to a polynomial function on a * C given by

d(m, λ) = α∈∆ + mα/2-1 k=0 k 2 -(λ + ρ) 2 α k 2 -ρ 2 α .
Assuming that ∆ is reduced and all multiplicities are even, the function δ(m, t) extends to a Winvariant holomorphic function on A C . Moreover, because of Theorem 5.1(c) in [START_REF] Ólafsson | A Paley-Wiener Theorem for the Θ-hypergeometric transform: the even multiplicity case[END_REF], there exists a Winvariant differential operator D on A with coefficients which are holomorphic on A C so that for all λ ∈ a * C and all a ∈ A we have

(1.9) δ(m, a)F (m, λ, a) = 1 d(m, λ -ρ) D w∈W a wλ .
The right-hand side of (1.9) is holomorphic in a ∈ A C and therefore a provides holomorphic extension of δ(m, a)F (m, λ, a). It also follows from (1.9) that (1.10) D w∈W a wλ = 0 for all λ ∈ a * C satisfying λ α ∈ ±{0, 1, . . . , m α /2 -1} for some α ∈ ∆ + . As an easy corollary of the above, we obtain the following formulas for the Jacobi polynomials. where

(1.12) C = |W | C 2 α∈∆ + mα/2-1 k=0 (ρ α -k) .
1.4. Estimates for the Jacobi polynomials. Estimates for the Jacobi polynomials and their derivatives can be deduced from (1.6), from the estimate

(1.13) 1 |c(m, λ)| ≤ const.(1 + λ ) È α∈∆ + mα/2
for the c-function, and from Opdam's estimates for the hypergeometric function and its derivatives. We note that the latter estimates are only valid inside {X + iH ∈ a C | |α(H)| ≤ π/2 for all α ∈ ∆}, which is smaller than the domain used in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF].

Lemma 1.5. Suppose that m ≥ 0 is a fixed multiplicity function.

(1) Let t = exp(iH) ∈ T satisfy |α(H)| ≤ π/2 for all α ∈ ∆. Then we have for all

µ ∈ P + |P (m, µ, t)| ≤ C 1 |W | 1/2 (1 + µ ) È α∈∆ + mα/2 e maxw∈W wρ(H) ≤ C 2 (1 + µ ) È α∈∆ + mα/2 , (1.14)
where C 1 and C 2 are some positive constants.

(2

) Let I = (i 1 , . . . , i n ) be a multi-index and set |I| = n j=1 i j . Let ∂ I = ∂(H 1 ) i1 • • • ∂(H 1
) in be the corresponding partial differential operator associated with an orthonormal basis {H 1 , . . . , H n } of t. Let t = exp(iH) ∈ T satisfy |α(H)| ≤ π/2 for all α ∈ ∆. Then there is a constant C 3 (t), depending on t, such that for all µ ∈ P + we have

|∂ I P (m, µ, t)| ≤ C 3 (t)(1 + µ ) |I|+ È α∈∆ + mα/2 .
Proof. The first estimate is an immediate consequence of [START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF], Theorem 3.15 and Proposition 6.1, together with (1.13).

To prove the estimates for the derivatives, we proceed as [START_REF] Opdam | Harmonic analysis for certain representations of graded Hecke algebras[END_REF], Corollary 6.2. Let t = exp(iH) be fixed as in the statement. Choose δ = δ(t) > 0 so that

T µ := {z ∈ t C | |z j -iH j | < δ/ µ } ⊂ {z = iX ∈ t | |α(X)| < π/2
for all α ∈ ∆ + } for all µ ∈ P + with µ = 0. Cauchy's integral formula then gives

∂ I P (m, µ, t) = iH+Tµ P (m, λ, z) (z -iH) I+(1,...,1) dz .
The result follows then easily from (1.14).

1.5. The Jacobi transform. The Jacobi transform of f ∈ L 2 (T ) W is the function f (m, •) :

P + → C defined by f (m, µ) := f, P (m, µ) m = T f (t)P (m, µ, t -1 ) δ(m, t) dt .
Here we have used the property that P (m, µ, t) = P (m, µ, t -1 ). The inversion formula is given by

(1.15) f = µ∈P + f (m, µ) P (m, µ) P (m, µ) 2 m
with convergence in the sense of L 2 . We remark that δ(m, t) = δ(m, t -1 ) in the even multiplicity case. If f ∈ C ∞ (T ) W we therefore obtain from Corollary 1.4 that

(1.16) c(m, µ + ρ)d(m, µ) f (m, µ) = |W | T (D * f )(t)t -(µ+ρ) dt,
where D * denotes the formal adjoint of the differential operator D with respect to the measure dt.

The Paley-Wiener theorem for the Jacobi transform

In the following we shall assume that a constant R > 0 has been chosen so that the ball

B R := {X ∈ t | X ≤ R} is contained in the set (2.1) S := {X = iH ∈ t | |α(H)| ≤ π/2 for all α ∈ ∆} .
Then the map exp : t → T is a diffeomorphism of B R onto its image, say D R . We shall refer to this condition by saying that R is small. We set

C ∞ R (T ) W := {f ∈ C ∞ (T ) W | Supp(f ) ⊆ D R }.
Moreover, we denote by P W R (t * ) the space of functions on P + admitting an extension F :

a * C = t * C → C so that λ → c(m, λ)F (λ -ρ) is a W -invariant holomorphic function of exponential type R (see [1], Definition 3.2).
The following theorem is the main result of this note.

Theorem 2.1 (Local Paley-Wiener theorem for the Jacobi transform). Suppose that the root system is reduced, all multiplicities m α are even and that R > 0 is small. Then the Jacobi transform is a bijection of C ∞ R (T ) W onto P W R (t * ). The remaining of this section is devoted to the proof of Theorem 2.1. To show that the Jacobi transform maps into P W R (t * ) one can follow the same lines as in Theorem 3.8 of [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF]. We only remark here that the exponential type R for c(m, λ) f (m, λ -ρ) depends on (1.16) together with the fact that d(m, λ) is a polynomial function (cf. also [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF], Lemma 3.3).

To prove the surjectivity, let F ∈ P W R (t * ) and set, according to the inversion formula (1.15), (2.2)

f (t) := µ∈P + F (µ) P (m, µ, t) P (m, µ) 2 m .
We need to show:

(1) f is smooth and W -invariant;

(2) f = F ;

(3) Supp(f ) ⊆ B R . For each α ∈ ∆, let A α ∈ a be defined by the condition that α(H) = A α , H for all H ∈ a. Then Γ := span Z {2πiA α / α, α | α ∈ ∆ + } is a lattice in t so that A C = a C /Γ. Lemma 2.2. Let R > 0 be small according to the definition given at the beginning of this section. For

F ∈ P W R (t * ) define h : t → C by h(H) := µ∈P c(m, µ)F (µ -ρ)e µ(H) .
Then h is a Γ-periodic function on t and Supp(h) ⊆ B R + Γ.

Proof. See [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF], Lemma 3.14. Lemma 2.3. Let R > 0 be small and let S be as in (2.1). Let F ∈ P W R (t * ) and define f by (2.2). Then the following properties hold:

(1) f is smooth and W -invariant on S.

(2) For all t ∈ T we have, with C as in (1.12),

(2.3) δ(m, t)f (t) = C D   µ∈P c(m, µ)F (µ -ρ)t µ   .
(3) f extends as a W -invariant smooth function on T so that f = F and Supp(f ) ⊆ D R .

Proof. Observe first that P (m, µ) -2 m is uniformly bounded in µ ∈ P + . According to Lemma 1.5, for each multi-index I, each t ∈ S and each N ∈ N, there is a constant C t,I,N > 0 such that

F (µ) ∂ I P (m, µ, t) P (m, µ) 2 m ≤ C t,I,N (1 + µ ) -N +|I|+ È α∈∆ + mα/2 .
By choosing N large enough, it follows that the series µ F (µ)∂ I P (m, µ)/ P (m, µ) 2 converges uniformly. Thus f is smooth. This proves (1).

The set P + is a fundamental domain for the action of W on P , and ρ ∈ P since m is even. Because of (1.10), we obtain as in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF], Lemma 3.13:

D   µ∈P + , w∈W c(m, µ + ρ)F (µ)t w(µ+ρ)   = D   µ∈P c(m, µ)F (µ -ρ)t µ   . It follows by Lemma 2.2 that δ(m, t)f (t) = µ∈P + F (µ) δ(m, t)P (m, µ, t) P (m, µ) 2 m = C c(m, µ + ρ) µ∈P + F (µ)D w∈W t w(µ+ρ) = C D   µ∈P c(m, µ)F (µ -ρ)t µ   .
By Lemma 2.2, the right-hand side of (2.3) is supported in D R . Thus f extends as smooth W -invariant function on T with Supp(f ) ⊆ D R . Finally, as f ∈ L 2 (T ) W , we have

µ∈P + F (µ) P (m, µ, t) P (m, µ) 2 m = f (t) = µ∈P + f (m, µ) P (m, µ, t) P (m, µ) 2 m and hence F (µ) = f (m, µ) for all µ ∈ P + .
As a corollary of the proof of the Paley-Wiener theorem, we obtain two integral formulas for functions in C ∞ R (T ) W for R > 0 small and even multiplicities.

Lemma 2.4. Suppose that R > 0 is small and that f ∈ C ∞ R (T ) W . Then (2.4) δ(m, t)f (t) = C D it * c(m, λ) f (m, λ -ρ)t λ dλ ,
where D is the differential operator of (1.9) and C is as in (1.12). Moreover, (λ α -k) .

f (t) = C it * f (m, λ -ρ)F (m, λ, t)e(m,
Proof. As Corollary 3.16 of [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF], using (2.3) and (1.9).

3. The local Huygens' principle for the modified Laplace operator on T in the even multiplicity case

Let m ≥ 0 be fixed. The Laplace operator on the compact torus T is the W -invariant differential operator

L(m) = L T - α∈∆ + m α 1 + e -2α
1 -e -2α ∂ iα where L t is the Laplace operator on the abelian Lie group T and ∂ iα denotes the derivative in the direction of the vector iA α . Note that the second term vanishes if α(H) ∈ i π 2 + iπZ for all α and has singularities if there is a root α such that α(H) ∈ iπZ.

The Jacobi polynomials are eigenfunctions of L(m), with L(m)P (m, µ) = -µ + 2ρ, µ P (m, µ) for all µ ∈ P + . The modified wave equation on T is the partial differential equation

(3.1) L(m) -ρ 2 u = u τ τ
where u = u(t, τ ) is a function of (t, τ ) ∈ T × I and I ⊆ R is an interval containing 0. As far as we know, there is no statement in the literature about finite propagation speed for the solutions of this wave equation. This will follow from the following lemma; cf. Lemma 4.3 in [1]:

Lemma 3.1. Let T be the torus associated with a triple (a, ∆, m) with reduced root system ∆ and even multiplicity function m. Let R > 0 be small according to the previous section. Let 0 < ε < R, and let f ∈ C ∞ ε (T ) W . Assume that u(t, τ ) is a distributional solution to the Cauchy problem

(3.2)        (L(m) -ρ 2 )u = u τ τ , u(t, 0) = 0 , u τ (t, 0) = f (t) .
We suppose that u is smooth and W -invariant in the variable t ∈ T . Then for t = exp(X) ∈ T and τ ∈ [0, R -ε] we have

(3.3) δ(m, t)u(t, τ ) = C D it * c(m, λ) f (m, λ -ρ) sin( λ τ ) λ t λ dλ ,
where D is the differential operator of (1.9) and C is as in (1.12).

In particular the following hold for τ ∈ [0, R -ε]:

(1) u is a smooth function of τ ;

(

) (Finite propagation speed) u(exp X, τ ) = 0 if X ≥ |τ | + ε; (3) (Local strong Huygens' principle) u(exp X, τ ) = 0 if t is odd dimensional and |τ | ≥ X + ǫ. 2 
Proof. Since the domain of integration T for the Jacobi transform is compact, we can interchange differentiation and integration. Applying the Jacobi transform in the t-variable to both sides of (3.2) implies therefore the following initial value problem in the τ -variable for u(m, µ, τ ) :

(3.4)        u τ τ (m, µ, τ ) = -µ + ρ 2 u(m, µ, τ ) u(m, µ, 0) = 0 u τ (m, µ, 0) = f (m, µ) . Thus u(m, µ, τ ) = f (m, µ) sin( µ + ρ τ ) µ + ρ .
The local Paley-Wiener theorem now implies that µ → f (m, µ) belongs to P W ε (t * ). The function µ → sin( µ τ )/ µ has also a W -invariant holomorphic extension of exponential type τ . Thus the function µ → c(m, µ) f (m, µ -ρ) sin( µ τ )/ µ admits a W -invariant holomorphic extension of exponential type ε + τ , that is u(m, µ, τ ) = f (m, µ)sin( µ + ρ τ )/ µ + ρ belongs to P W ε+τ (t * ). Since ε + τ is small for τ ∈ [0, R -ε], another application of the local Paley-Wiener theorem yields u(•, τ ) ∈ C ∞ ε+τ (T ) W . This proves the finite propagation speed and allows us to apply Lemma 2.4 to u(•, τ ). Thus (3.3) holds.

Finally, recall from (4.13) in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF] that the function

v(X, τ ) := it * c(m, λ) f (m, λ -ρ) sin( λ τ ) λ e λ(X) dλ
is the solution of the Cauchy problem for the wave equation on t

∼ = R n :        L t v(X, τ ) = v τ τ (X, τ ) v(X, 0) = 0 v τ (X, 0) = g(X) , where g ∈ C ∞ ε (T ) W is the inverse Fourier transform of λ → c(m, λ) f (m, λ -ρ).
By the standard results for the wave equation on Euclidean spaces it follows that, in case k is odd dimensional, v(X, τ ) = 0 for |τ | ≥ X + ǫ (the strong Huygens principle). Let U be the periodization of v in the X-variable, and note that the translates of the support of g are all disjoint. Then (3.3) implies that that u(exp X, τ ) = CDU (X, τ ) safisfies [START_REF] Ólafsson | A Paley-Wiener Theorem for the Θ-hypergeometric transform: the even multiplicity case[END_REF].

Different proofs of the local strong Huygens principle can be obtained from the results in the previous section together with same arguments employed in [START_REF] Branson | The Paley-Wiener Theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case[END_REF]. More precisely, one can prove the following theorem.

Theorem 3.2. Let T be the torus associated with a triple (a, ∆, m) with reduced root system ∆ and even multiplicity function m. Let R > 0 be small according to the previous section. Let 0 < ε < R, and let f ∈ C ∞ ε (T ) W . Assume that T is odd dimensional. Suppose moreover that u(t, τ ) is a smooth solution of the Cauchy problem (c) Suppose dim(T ) ≥ 3. Let D be the differential operator of (1.9). Then for all t = exp H ∈ T and τ ∈ [0, R -ε] the smooth solution u(t, τ ) to (3.5 ) is given by the formula 

  of C[A C ] W as µ varies in P + because each W -orbit in P intersects P + in exactly one point. The Jacobi polynomial P (m, µ) is the exponential polynomial (1.1) P (m, µ) := µ≥ν∈P + c µν (m)M (ν)

Corollary 1 . 4 .

 14 Suppose that the root system is reduced and all multiplicities are even. Then for all µ ∈ P and all a ∈ A C we haveδ(m, a)P (m, µ, a) = 1 c(m, µ + ρ)d(m, µ) D m, -µ -ρ)d(m, µ) D w∈W a w(µ+ρ) = C c(m, µ + ρ)D w∈W a w(µ+ρ) ,

  m) -ρ 2 )u = u τ τ , u(t, 0) = 0 , u τ (t, 0) = f (t) .Then the following properties are satisfied:(a) (Local exponential Huygens' principle) There is a constant C > 0 so that for all (t, τ ) ∈ T × [0, R -ε] and all γ ∈ [0, ∞) we have(3.6) |δ(m, t)u(t, τ )| ≤ Ce -γ(τ -H -ε) with t = exp H. (b) (Local strong Huygens' principle) Supp(u) ∩ (T × [0, R -ε]) = Supp(u) ∩ (D R × [0, R -ε]) ⊆ S ε ,where S ε denotes the ε-shell(3.7) S ε := {(t = exp H, τ ) ∈ T × [0, ∞) | τ -ε ≤ H ≤ τ + ε}.

τ

  n-2 (M τ g)(H) .Here g ∈ C ∞ ε (t) W is the inverse Euclidean Fourier transform of the function λ → c(m, λ) f (m, λρ), and(3.9) (M r g)(H) := 1 Ω n-1 (r) Sr(H) g(s) dσ(s)is the mean value of a function g : t → C on the Euclidean sphere S r (H) := {H ∈ t | H = r} in t ∼ = R n with respect to the O(n)-invariant surface measure dσ. Moreover, Ω n-1 (r) denotes the surface area of S r (H), and Ω n-1 := Ω n-1 (1).
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