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ASYMPTOTIC ANALYSIS OF Θ-HYPERGEOMETRIC FUNCTIONS

ANGELA PASQUALE

Abstract. We define the Θ-hypergeometric functions as a generalization of the hypergeometric
functions associated with root systems of Heckman and Opdam. In the geometric setting, the Θ-
hypergeometric functions can be specialized to Harish-Chandra’s spherical functions on Riemann-
ian symmetric spaces of noncompact type, and also to the spherical functions on noncompactly
causal symmetric spaces. After describing their regularity properties, we prove estimates for the
Θ-hypergeometric functions which are uniform in the space parameter and locally uniform in the
spectral parameter. Particular cases are sharp uniform estimates for the Harish-Chandra series up
to the walls of the positive Weyl chamber. New estimates for the spherical functions on noncom-
pactly causal symmetric spaces are deduced.

Introduction

The Θ-hypergeometric functions originate from the harmonic analysis on symmetric spaces, more
precisely, from the theory of multivariable hypergeometric functions of Heckman and Opdam and
from the analysis of spherical distributions. In the late 1980s Heckman and Opdam defined the
hypergeometric functions associated with root systems as multivariable analogue of the Jacobi
functions of first kind (see [17], [15], [31] and [32]). The foundation of their construction was the
interrelation between the theory of special functions in one variable and the harmonic analysis on
rank-one Riemannian symmetric spaces G/K of noncompact type. Indeed, for special values of
their parameters, the Jacobi functions of first kind agree with the restriction to a maximal flat
subspace of the spherical functions on G/K. Proceeding in the opposite direction, Heckman and
Opdam defined Jacobi functions of first kind in more variables by a suitable analytic continuation of
the spherical functions on higher rank Riemannian symmetric spaces of noncompact type. From the
point of view of harmonic analysis, this is not a mere generalization of Harish-Chandra’s theory:
by constructing the most appropriate context in which the spherical functions on Riemannian
symmetric spaces can be studied by spectral-theoretic methods, Heckman and Opdam could develop
very powerful techniques (e.g. monodromy techniques and the methods of shift and of analytic
continuation in the spectral parameters) which allow to understand Harish-Chandra’s spherical
functions without using integral formulas. It is therefore quite natural to try to generalize the
theory of Heckman and Opdam for the harmonic analysis of H-spherical distributions on a pseudo-
Riemannian symmetric spaces G/H, where integral formulas are generally not available (see e.g.
[25] and references therein). The theory of Θ-hypergeometric functions is such a generalization: it
allows a successful analysis of certain spherical distributions on the so-called noncompactly causal
symmetric spaces and provides a potential framework for studying spherical distributions on the
larger class of Kε-spaces of Oshima and Sekiguchi [37].

The definition of the Θ-hypergeometric functions is suggested by the theory of spherical functions
on noncompactly causal (NCC) symmetric spaces, in particular by Ólafsson’s expansion formula
[26]. The NCC symmetric spaces build a specific class of pseudo-Riemannian symmetric spaces
whose study started in connection with the global properties of the space-time (see e.g. [13]).
The fine structure of a NCC symmetric space G/H (characterized by the existence of a certain

2000 Mathematics Subject Classification. Primary 33C67, 43A90; Secondary 43A85.
Key words and phrases. Θ-hypergeometric functions, Θ-spherical functions, hypergeometric functions associated

with root systems, spherical functions, causal symmetric spaces, c-functions, Harish-Chandra series.
Address: Institut für Mathematik, TU-Clausthal, 38678 Clausthal-Zellerfeld, Germany.
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Ad(H)-invariant convex cone in the tangent space at the base point {H}) allowed Faraut, Hilgert
and Ólafsson to extend in 1994 the theory of spherical functions of Harish-Chandra to this non-
Riemannian context (see [7], [20] and [26]). The spherical functions on G/H are the restrictions
of certain H-spherical distributions associated with the principal series representations of G to the
interior of a specific submanifold S/H described by the causal structure. Similarly to the Riemann-
ian case, the spherical functions on G/H are H-invariant joint eigenfunctions of the commutative
algebra of G-invariant differential operators on G/H. In [26], Ólafsson could relate them to the
eigenfunctions of the algebra of G-invariant differential operators on the dual Riemannian symmet-
ric space to G/H, which is isomorphic to G/K. This allowed him to prove his expansion formula,
which expresses the spherical functions on G/H as a linear combination of the Harish-Chandra
series of G/K. Since the starting point of the theory of Heckman and Opdam is the expansion
of spherical functions on Riemannian symmetric spaces as linear combination of Harish-Chandra
series, Ólafsson’s formula indicates precisely how to generalize the hypergeometric functions of
Heckman and Opdam to include, together with the spherical functions on Riemannian symmetric
spaces, also the spherical functions on NCC symmetric spaces as geometric special instances.

Despite the analogies with the Riemannian case, the non-compactness of H causes much less
regularity for the spherical functions on a NCC symmetric space G/H: they are only defined
on the interior of the submanifold S/H and generally singular on its boundary ∂(S/H); they
are meromorphic (not entire) as functions of the spectral parameter; they can be described by
integral formulas only for special values of the spectral parameter (hence these integral formulas
cannot be used for global estimates); the associated spherical Fourier transform, which is defined
by integration on S/H, can a priori only be applied to functions with compact support in S/H
to compensate the singularities of the spherical functions on ∂(S/H). The theory developed in
this paper provides an efficient (and today the only) way to handle or solve all these problems. In
particular, it determines the exact nature and location of the singularities in the spectral parameter
and gives the first global estimates for these spherical functions. See Theorem 3.5 and Example
3.7, Corollary 5.6 and Proposition 5.9 below; see also Theorem 8.7 in [28].

The general context of special functions associated with root systems allows us to employ and
adapt to the Θ-hypergeometric functions the powerful methods of Heckman and Opdam. The
results obtained in this general setting can then be applied to the various special instances, e.g.
to the spherical functions on NCC symmetric spaces. On the other hand, the spherical functions
on NCC symmetric spaces justify the introduction of the Θ-hypergeometric functions as a natural
class of special functions in more variables. In fact, for special values of their parameters, the Jacobi
functions of second type agree with the restriction to a Weyl chamber in a maximal flat subspace of
the spherical functions on rank-one NCC symmetric spaces. Containing as special cases both the
spherical functions on Riemannian symmetric spaces of noncompact type and the spherical functions
on NCC symmetric spaces, the Θ-hypergeometric functions are not only useful extensions of the
hypergeometric functions of Heckman and Opdam, but also geometrically-motivated multivariable
analogues of the Jacobi functions (cf. [10] and [16]). The theory of Θ-hypergeometric functions
will be therefore developed in this paper from the point of view of special functions associated with
root systems.

The parameter Θ designates a subset of a fixed fundamental system Π of positive simple roots in
a given root system Σ. The different choices for Θ lead to a lattice of special functions associated
with the root system. At the top of the lattice are the hypergeometric functions of Heckman and
Opdam, which correspond to Θ = Π, and at the bottom (certain multiples of) the Harish-Chandra
series, which correspond to Θ = ∅. In the middle there appear many new special functions. When
Σ is the restricted root system corresponding to a NCC symmetric space G/H and with Θ equal
to the set of positive compact simple roots, we obtain special functions which include the spherical
functions on G/H. In the rank-one case there are only two choices for Θ, and they respectively
lead to the Jacobi functions of first and second kind.

Suppose Σ is a root system in the dual space a∗ of a Euclidean space a. Let W denote the Weyl
group of Σ. A multiplicity function on Σ is a W -invariant complex-valued function m on Σ. For
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a fixed Θ, the Θ-hypergeometric functions ϕΘ(m;λ, a) depend on three parameters: a multiplicity
function m; a spectral parameter λ in the complex dual a∗C of a; a space parameter a in a certain
open domain AΘ in a split Cartan space A with Lie algebra a. One has AΘ = exp aΘ, where aΘ is
the smallest open convex cone containing the positive Weyl chamber a+ and invariant under the
Weyl group WΘ of the root system generated by Θ. We refer to Section 3 for the precise definitions.

For “generic” λ ∈ C the Jacobi functions of second kind with spectral parameter λ and −λ form
a basis for the solution space of the Jacobi differential equation on (0,+∞). The Jacobi functions of
first kind with spectral parameter λ can be therefore written on (0,+∞) as their linear combination
by means of the classical transition relations (see e.g. [6], 2.9(34)). The coefficients are functions
of λ given by products of ratios of gamma functions. Similarly, for a fixed root system Σ, for
a fixed multiplicity function m on Σ and for “generic” values of λ ∈ a∗C, each Θ-hypergeometric
function of spectral parameter λ is obtained on the positive Weyl chamber A+ := exp a+ as a linear
combination of the Harish-Chandra series of spectral parameter wλ for w in WΘ:

ϕΘ(m;λ, a) =
∑
w∈WΘ

cΘ(m;wλ)Φ(m;wλ, a), a ∈ A+, (1)

where Φ(m;λ, a) denotes the Harish-Chandra series of spectral parameter λ. The coefficients occur-
ring in (1) are obtained from the product cΘ(m;λ) := c+

Θ (m;λ)c−Θ (m;λ) of a function c+
Θ , which is

modeled on the Harish-Chandra c-function, and of a function c−Θ , which is modeled on the function
cΩ of Krötz and Ólafsson [24]. The functions cΘ are therefore products of ratios of gamma functions
depending on m, λ and on the root structure. Motivating the given definition is the requirement for
the Θ-hypergeometric functions to generalize the spherical functions on symmetric spaces. Indeed,
suppose m comes from the root multiplicities of a Riemannian symmetric spaces of noncompact
type (such m’s will be called geometric; see Section 1). Then, for suitable choices of Θ, the right-
hand side of (1) specializes to Harish-Chandra’s expansion formula for the spherical functions on
Riemannian symmetric spaces of noncompact type and to Ólafsson’s expansion formula for the
spherical functions on NCC symmetric spaces. To underline their geometric origin, we denote the
Θ-hypergeometric functions corresponding to geometric multiplicities as Θ-spherical functions.1 It
follows also from their definition that all Θ-hypergeometric functions of spectral parameter λ are
joint eigenfunctions of the hypergeometric system of differential equations of spectral parameter λ
constructed by Heckman-Opdam-Cherednik (cf. Section 1.1).

The regularity properties of the Θ-hypergeometric functions increase with Θ. The hypergeomet-
ric functions of Heckman and Opdam are holomorphic in a suitable tubular neighborhood of A in
its complexification AC and entire in the spectral parameter. At the other extreme of the Θ-lattice
we have the Harish-Chandra series. They are generally only defined and holomorphic in a tubular
neighborhood of A+ in AC and they are meromorphic in the spectral parameter, with singularities
along complex hyperplanes associated with all roots. The Harish-Chandra series can be directly
investigated by means of their defining recursion relations. Information on the Θ-hypergeometric
functions for arbitrary Θ (and in particular for the spherical functions on NCC symmetric spaces)
can be obtained moving “upwards” from the Harish-Chandra series by means of (1), or moving
“downwards” from the hypergeometric functions of Heckman and Opdam (that is, “averaging” the
Θ-hypergeometric functions to get the hypergeometric functions of Heckman and Opdam). The
Θ-hypergeometric functions turn out to be holomorphic in a tubular neighborhood of the cone AΘ

in AC. As functions of the spectral parameter, they are meromorphic, with singularities located
along complex hyperplanes associated with the roots in Σ which are not in the root subsystem
generated by Θ. The locus of possible singularities and their order can be described by means of
the “numerator” of the function c−Θ . In the multiplicity variable m there will be no singularities
provided a suitable normalization of the Θ-hypergeometric functions is chosen. See Theorem 3.5.

The estimates of the Θ-hypergeometric functions form the core of this paper. A first group
of estimates is treated in Section 4, where we estimate the Harish-Chandra series. The method

1The employ of the name Θ-spherical functions for the geometric case and Θ-hypergeometric functions for the
general case was kindly suggested by the referee.
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employed has its roots in the celebrated estimates of Gangolli [8]. But various modifications are
introduced, and we also employ ideas of Wallach [42] and of Van den Ban and Schlichtkrull [3].
The resulting estimates, stated in Theorem 4.17, are quite sharp. They are uniform in a ∈ A+ and
locally uniform in λ ∈ a∗C. Moreover, they are in the context of special functions associated with
root systems, i.e. they hold for every (not necessarily geometric) positive multiplicity function.
There are two new important features of these estimates: first, they prove that for every positive
multiplicity function m and for generic λ ∈ a∗C the function Φ(m;λ, a)δ(m; a) vanishes on the “walls”
of A+, where

δ(m) :=
∏
α∈Σ+

∣∣eα − e−α∣∣mα ; (2)

second, the domains in the λ-variables on which the estimates are uniform contain W -invariant
domains which cover the entire a∗C. This is crucial to get estimates for ϕΘ(m;λ, a) for all λ ∈ a∗C by
means of the estimates for the Φ(m;λ, a) and the defining formula (1) of ϕΘ(m;λ, a). The procedure
is developed in Section 5. The resulting estimates for the Θ-hypergeometric functions are stated in
Theorem 5.5. They imply that ϕΘ(m;λ, a)δ(m; a) vanishes along the “walls” of AΘ. From Theorem
5.5 we derive new estimates for the spherical functions on the NCC symmetric spaces.

A noteworthy application of our estimates concerns the spherical Fourier transform. The spher-
ical transform on Riemannian and NCC symmetric spaces can be easily generalized to define a
Θ-hypergeometric Fourier transform. For a positive multiplicity function m, the Θ-hypergeometric
Fourier transform of a WΘ-invariant function f on AΘ is the WΘ-invariant function FΘf(m) on a∗C
defined for λ ∈ a∗C by

FΘf(m;λ) :=
1
|WΘ|

∫
AΘ

f(a)ϕΘ(m;λ, a)δ(m; a) da (3)

provided the integral converges. Here da is a normalization of the Haar measure on A. When
Θ = Π, the transform has been studied by Opdam in [33]. In this case, as in the Riemannian
case, the convergence of the integral is guaranteed by a sufficiently fast decay at infinity. When
Θ 6= Π the situation is more complicated because one also has to take into account the behavior of
the integrand along the walls of AΘ, where the Θ-hypergeometric functions present singularities.
The existence of these singularities is well-known in the case Θ = ∅ (when the Θ-hypergeometric
functions are essentially the Harish-Chandra series) and also in the geometric case of spherical
functions on the NCC symmetric spaces. However, the nature and order of the singularities is
generally not known. For this reason, all works on the harmonic analysis on NCC symmetric spaces
have so far considered only the spherical transform of functions which are compactly supported in
AΘ, in particular, which stay far away from the walls of AΘ. This is too restrictive. One would
like to work on more structured spaces, such as Lp-spaces or Schwartz spaces. The problem is
overcome once one knows that ϕΘ(m;λ, a)δ(m; a) vanishes along the walls of AΘ. Our estimates
are therefore an important initial step in the harmonic analysis of Θ-hypergeometric functions, and
in particular for the harmonic analysis on NCC symmetric spaces. Our estimates also allow us to
obtain an inversion formula for the Θ-hypergeometric transform with Θ arbitrary as a consequence
of the one proven by Opdam in the case Θ = Π. For WΘ-invariant compactly supported smooth
functions, the inversion formula is given for a ∈ AΘ by

f(a) = k
|W |
|WΘ|

∫
ia∗
FΘf(m;λ)EΘ(m;−λ, a)

dλ

|cΘ(m;λ)|2
.

Here EΘ(m;λ) is the WΘ-invariant real analytic function on AΘ defined by requiring that the
equality

EΘ(m;λ, a) =
cΘ(m;λ)
cΠ(m;λ)

ϕΠ(m;λ, a)

holds for all a ∈ A+. Moreover, dλ is a suitable normalization of the Lebesgue measure on ia∗, and
k is a positive constant depending only on the normalization of the measures. See [39].
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Further applications of our estimates concern the case of even multiplicity functions, studied
by Ólafsson and the author in [30]. In the context of Riemannian or NCC symmetric spaces
G/H, even multiplicity functions correspond to the assumption that the Lie algebra of G possesses
a unique conjugacy class of Cartan subalgebras. When the multiplicity function is even, each
Harish-Chandra series Φ(m;λ, a) can be obtained on A+ from the exponential function eλ(log a) by
means of a differential operator D(m) with singular coefficients. D(m) is one of Opdam’s shift
operators (see e.g. [14], Chapter 3). Let ∆(m) :=

∏
α∈Σ+(eα − e−α)mα . Our estimates for Φ are

the essential tool in the proof that ∆(m)D(m) extends as a W -invariant differential operators with
holomorphic coefficients on a tubular neighborhood of A in AC. This has several consequences: an
elementary independent proof of Opdam’s results in the case Θ = Π ; Paley-Wiener type theorems
for the Θ-hypergeometric transform; explicit formulas for the Θ-hypergeometric functions. We
point out that we obtain, as special instances, new explicit formulas for the spherical functions
on Riemannian symmetric spaces of noncompact type with even multiplicities. We refer to the
forthcoming publications [30] and [4] for further information.

The present work has to be considered as part of a larger project dealing with the harmonic
analysis of the Θ-hypergeometric functions. There are several motivations for proceeding in this
direction. As already mentioned, the Θ-hypergeometric functions represent a natural generalization
of the hypergeometric functions of Heckman and Opdam and their primary application is the study
of the spherical functions on NCC symmetric spaces. The regularity properties, on which this paper
focuses, are only the first step for the harmonic analysis. Most of the analysis of spherical functions
on NCC symmetric spaces is either in construction or yet undone: the L2 and Schwartz space
theory have never been studied, and Paley-Wiener theorems have been proven only in special
cases (rank-one and even multiplicity cases, and some additional special series; see [1], [2], [30],
and references therein). We believe that, as well as the theory of Heckman and Opdam did for
the theory of spherical functions on Riemannian symmetric spaces, the approach by means of Θ-
hypergeometric functions can clarify many of the parts of harmonic analysis on NCC symmetric
spaces which are at this point still obscure. Another reason is related to the different choices
for the set of simple roots Θ. Riemannian symmetric spaces of the noncompact type and NCC
symmetric spaces are special instances of Kε-symmetric spaces according to Oshima and Sekiguchi.
The Θ-hypergeometric functions give a unified approach to the spherical functions and distributions
on Riemannian and NCC symmetric spaces. It is an interesting and challenging problem to try
to relate them also to spherical distributions on Kε-spaces. The potential link is underlined by
a natural bijection between the set of possible signatures ε for these symmetric spaces and the
possible choices of Θ for the Θ-hypergeometric functions. It seems not accidental that the trivial
signature (i.e. the signature of the Riemannian symmetric spaces) corresponds to Θ = Π and
the signature for the NCC symmetric spaces corresponds to the set of positive compact simple
roots. Further hints of a relation come from the study of the invariant differential operators in
[37], Section 2.3. A final motivation comes from the study of distribution characters of discrete
series representations. Despite the enormous advances in the harmonic analysis occurred in the
last few years, explicit formulas for the distribution characters of discrete series representation is
in most cases still missing. We refer the reader to Section 5 in [27] for a survey. In the group
case this formula is due to Harish-Chandra [11]. For the holomorphic discrete series it was proven
that the H-distribution characters can be realized as hyperfunctions using the spherical functions
on NCC symmetric spaces G/H (see [23] and [27]). It is therefore an interesting problem if the
Θ-hypergeometric functions can be related to the H-distribution characters of other discrete series
representations. In conclusion, the investigation of the precise role played by the Θ-hypergeometric
functions in the harmonic analysis on symmetric spaces is, in our opinion, an important topic and
a ground for further studies in the direction initiated by the present paper.

Acknowledgments. This paper is part of the Habilitationsschrift of the author. She wishes to express
her gratitude to Joachim Hilgert, Gestur Ólafsson and Eric Opdam for valuable discussions. She
also thanks the referee for a careful reading of the manuscript and for several helpful suggestions.
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1. Notation and preliminaries

Let a be an l-dimensional real Euclidean vector space with inner product 〈·, ·〉. For every α
in the dual space a∗ of a, let Aα ∈ a be determined by the condition that α(H) = 〈H,Aα〉 for
all H ∈ a. Hence Hα := 2Aα/〈Aα, Aα〉 satisfies α(Hα) = 2. The assignment 〈α, β〉 := 〈Aα, Aβ〉
defines an inner product in a∗. Let Σ be a (possibly nonreduced) root system in the dual a∗ with
associated Weyl group W . For every α ∈ Σ, we denote by rα the reflection in a∗ defined by
rα(λ) := λ− λ(Hα)α for all λ ∈ a∗.

Let Σ+ be a choice of positive roots in Σ and Π = {α1, . . . , αl} the fundamental system of simple
roots associated with Σ+. The positive Weyl chamber a+ consists of the elements H ∈ a for which
α(H) > 0 for all α ∈ Σ+. We denote by Σi and Σu the indivisible and unmultipliable roots in Σ,
respectively. Their set of positive elements are denoted by Σ+

i and Σ+
u .

The complexification aC := a ⊗R C of a can be viewed as the Lie algebra of the complex torus
AC := aC/Z{iπHα : α ∈ Σ}. We write exp : aC → AC for the exponential map, with multi-valued
inverse log. The split real form A := exp a of AC is an abelian subgroup of AC with Lie algebra a
such that exp : a→ A is a diffeomorphism. We set A+ := exp a+. The polar decomposition of AC

is AC = AT , where T := exp(ia) is a compact torus with Lie algebra ia. Let a∗C be the space of all
C-linear functionals on a. The action of W extends to a by duality, to a∗C and aC by C-linearity,
and to AC and A by the exponential map. Moreover, W acts on functions f on any of these spaces
by (wf)(x) := f(w−1x), w ∈ W . The C-bilinear extension to a∗C and aC of the inner products 〈·, ·〉
on a∗ and a will also be denoted by 〈·, ·〉.

A multiplicity function on Σ is a W -invariant function m : Σ → C. Setting mα := m(α) for
α ∈ Σ, we therefore have mwα = mα for all w ∈ W . We extend m to a∗ by putting mα = 0 for
α /∈ Σ. We say that a multiplicity function m is geometric if there is a Riemannian symmetric
space of noncompact type G/K with restricted root system Σ such that mα is the multiplicity of
the root α for all α ∈ Σ. Otherwise, m is said to be non-geometric. 2 The setM of all multiplicity
functions on Σ is a subspace of the finite-dimensional C-vector space CΣ. The real subspace of
M consisting of all multiplicity functions m with mα ≥ 0 for all α ∈ Σ is denoted by M+. The
complex dimension d(M) of M equals the number of W -orbits in Σ. Thus M can be treated
analytically as Cd(M).

The dimension l of a will also be called the (real) rank of the triple (a,Σ,m).
For α ∈ Σ and λ ∈ a∗C we set

λα :=
λ(Hα)

2
=
〈λ, α〉
〈α, α〉

. (4)

Define

P := {λ ∈ a∗ : λα ∈ Z for all α ∈ Σ},
P+ := {λ ∈ a∗ : λα ∈ N0 for all α ∈ Σ+}.

Here and in the following we adopt the conventions N = {1, 2, 3, . . . } and N0 = {0, 1, 2, . . . }.
We call P the restricted weight lattice of Σ. The elements of P+ are the dominant restricted

weights. Observe that {2α : α ∈ Σ} ⊂ P . When m is geometric, then P+ coincides with the
set of restrictions to a of the highest weights of the finite-dimensional irreducible K-spherical
representations of G (see [19], Theorem 4.1, p. 535).

If λ ∈ P , then the exponential eλ : AC → C given by eλ(h) := eλ(log h) is single valued. The eλ

are the algebraic characters of AC. Their C-linear span coincides with the ring of regular functions
C[AC] on the affine algebraic variety AC. The lattice P is W -invariant, and the Weyl group acts on
C[AC] according to w(eλ) := ewλ. The set Areg

C := {h ∈ AC : e2α(log h) 6= 1 for all α ∈ Σ} consists
of the regular points of AC for the action of W . Notice that A+ is a subset of Areg

C . The algebra

2We adopt the multiplicity notation commonly used in the theory of symmetric spaces. It differs from the notation
employed by Heckman and Opdam in the following ways. The root system R used by Heckman and Opdam is related
to our root system Σ by the relation R = {2α : α ∈ Σ}; the multiplicity function k in Heckman-Opdam’s work is
related to our m by k2α = mα/2.
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C[Areg
C ] of regular functions on Areg

C is the subalgebra of the quotient field of C[AC] generated by
C[AC] and by 1/(1− e−2α) for α ∈ Σ+. Its W -invariant elements form the subalgebra C[Areg

C ]W .

1.1. The hypergeometric system. In this subsection we outline the theory of hypergeometric
differential equations as developed by Heckman, Opdam and Cherednik. More details and further
references can be found in [33] and [34].

Let S(aC) denote the symmetric algebra over aC considered as the space of polynomial functions
on a∗C, and let S(aC)W be the subalgebra of W -invariant elements. Every p ∈ S(aC) defines a
constant-coefficient differential operators ∂(p) on AC and on aC such that ∂(H) is the directional
derivative in the direction of H for all H ∈ a. The algebra of the differential operators ∂(p) with
p ∈ S(aC) will also be indicated by S(aC). Let D(Areg

C ) := C[Areg
C ] ⊗ S(aC) denote the algebra

of differential operators on AC with coefficients in C[Areg
C ]. The Weyl group W acts on D(Areg

C )
according to

w
(
ϕ⊗ ∂(p)

)
:= wϕ⊗ ∂(wp).

We write D(Areg
C )W for the subspace of W -invariant elements. The space D(Areg

C ) ⊗ C[W ] can be
endowed with the structure of an associative algebra with respect to the product

(D1 ⊗ w1) · (D2 ⊗ w2) = D1w1(D2)⊗ w1w2,

where the action of W on differential operators is defined by (wD)(wf) := w(Df) for every suf-
ficiently differentiable function f . It is also a left C[Areg

C ]-module. Considering D ∈ D(Areg
C ) as

element of D(Areg
C )⊗C[W ], we shall usually write D instead of D⊗ 1. The elements of the algebra

D(Areg
C ) ⊗ C[W ] are called the differential-reflection operators on Areg

C . The differential-reflection
operators act on functions f on Areg

C according to (D ⊗ w)f := D(wf).
Define a linear map Υ : D(Areg

C )⊗ C[W ]→ D(Areg
C ) by

Υ(
∑
j

Dj ⊗ wj) :=
∑
j

Dj .

Then Υ(Q)f = Qf for all Q ∈ D(Areg
C ) ⊗ C[W ] and all W -invariant f on Areg

C . Moreover, Υ
establishes an algebra homomorphism of

(D(Areg
C )⊗ C[W ])1⊗C[W ] := {Q ∈ D(Areg

C )⊗ C[W ] : Q · (1⊗ w) = (1⊗ w) ·Q for all w ∈W}

into D(Areg
C )W (see [14], Lemma 1.2.2).

Definition 1.1. ([5]) Let m ∈M and H ∈ aC. The Dunkl-Cherednik operator T (H,m) ∈ D(Areg
C )⊗

C[W ] is defined by

T (H,m) := ∂(H)− ρ(m)(H) +
∑
α∈Σ+

mαα(H)(1− e−2α)−1 ⊗ (1− rα)

where

ρ(m) :=
1
2

∑
α∈Σ+

mαα ∈ a∗C. (5)

The Dunkl-Cherednik operators map C[AC] into itself (see [34], Proposition 2.1). They can also
be considered as operators acting on other function spaces, for instance, on the spaces C∞(A) and
C∞c (A) of C∞ and compactly supported C∞ functions on A, or on the analogous spaces of functions
on a. This is always possible because, as can be seen from the Taylor formula, the term 1 − rα
cancels the apparent singularity on A and a arising from the denominator 1− e−2α.

A remarkable property of the Dunkl-Cherednik operators is that they commute (cf. [33], Section
2). Therefore the map H 7→ T (H,m) on aC extends uniquely to an algebra homomorphism of S(aC)
into D(Areg

C )⊗ C[W ]. For p ∈ S(aC) we set D(p,m) := Υ
(
T (p,m)

)
. If p ∈ S(aC)W , then

T (p,m) ∈ (D(Areg
C )⊗ C[W ])1⊗C[W ]

(see [33], Theorem 2.12(2)), and hence D(p,m) ∈ D(Areg
C )W .
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Let pL ∈ S(aC)W be the polynomial defined by pL(λ) := 〈λ, λ〉 for λ ∈ a∗C. Then

D(pL,m) = L(m) + 〈ρ(m), ρ(m)〉,

where
L(m) := LA +

∑
α∈Σ+

mα cothα ∂α (6)

and LA is the Laplace operator on A (see [16], Theorem 2.2). In (6) we have set for all α ∈ Σ+

∂α := ∂(Aα) =
1
2
〈α, α〉∂(Hα)

and

cothα :=
1 + e−2α

1− e−2α
.

The differential operator L(m) generalizes to arbitrary multiplicity functions m the radial compo-
nent of the Laplace operator on a Riemannian symmetric space G/K of noncompact type with
respect to the left action of K.

The algebra
D(a,Σ,m) := {D(p,m) : p ∈ S(aC)W }

is a commutative subalgebra of D(Areg
C )W coinciding with the commutant {Q ∈ D(Areg

C )W :
L(m)Q = QL(m)} of L(m) in D(Areg

C )W . It is called the algebra of hypergeometric differential
operators associated with the data (a,Σ,m). It is the analogue, for arbitrary multiplicity func-
tions, of the commutative algebra of the radial parts on A of the invariant differential operators on
a Riemannian symmetric space of noncompact type.

The map γ(m) : D(a,Σ,m)→ S(aC)W defined by

γ(m)
(
D(p,m)

)
(λ) := p(λ) (7)

is called the Harish-Chandra homomorphism. It defines an algebra isomorphism of D(a,Σ,m)
onto S(aC)W (see [14], Theorem 1.3.12 and Remark 1.3.14). From Chevalley’s theorem it therefore
follows that D(a,Σ,m) is generated by l(= dim a) elements.

Let λ ∈ a∗C be fixed. The system of differential equations

D(p,m)ϕ = p(λ)ϕ, p ∈ S(aC)W , (8)

is called the hypergeometric system of differential equations with spectral parameter λ associated
with the data (a,Σ,m). The differential equation corresponding to the polynomial pL is

L(m)ϕ =
(
〈λ, λ〉 − 〈ρ(m), ρ(m)〉

)
ϕ. (9)

For geometric multiplicities, the hypergeometric system (8) agrees with the system of differential
equations on A defining Harish-Chandra’s spherical function of spectral parameter λ.

Example 1.2 (The Euclidean case). When m ≡ 0, the root system Σ plays no role. D(a) :=
D(a,Σ, 0) consists of the differential operators with constant coefficients. Indeed T (p, 0) = D(p, 0) =
∂(p) for all p ∈ S(aC)W . The operator L(0) is the Laplacian LA.

Example 1.3 (The rank-one case). The rank-one case corresponds to triples (a,Σ,m) in which a
is one dimensional. Then the set Σ+ consists at most of two elements: α and, possibly, 2α. By
setting Hα/2 ≡ 1 and α ≡ 1, we identify a and a∗ with R, and their complexifications aC and a∗C
with C. The Weyl chamber a+ coincides with the half-line (0,+∞). The Weyl group W reduces
to {−1, 1} acting on R and C by multiplication. Moreover ρ(m) ≡ mα/2 +m2α. We normalize the
inner product so that 〈α, α〉 = 1. The algebra S(aC)W is generated by the polynomial pL(λ) = λ2.
Hence D(pL,m) = L(m) + ρ2 generates D(a,Σ,m). The hypergeometric differential system with
spectral parameter λ ∈ C is equivalent to the single Jacobi differential equation

d2ϕ

dz2
+
(
mα coth z +m2α coth(2z)

) dϕ
dz

= (λ2 − ρ2)ϕ. (10)
8



The function z 7→ ez maps aC ≡ C onto AC ≡ C×. Hence Areg
C ≡ C\{0,±1}. The change of variable

ζ := (1− cosh z)/2 transforms (10) into the hypergeometric differential equation

ζ(1− ζ)
d2ψ

dζ2
+ [c− (1 + a+ b)ζ]

dψ

dζ
− ab ζ = 0

with parameters

a =
λ+ ρ

2
, b =

−λ+ ρ

2
, c =

mα +m2α + 1
2

.

At every point h ∈ Areg
C , the space S(m;λ)(h) of local solutions of (8) near h consists of holo-

morphic functions and its dimension is the order |W | of the Weyl group (cf. [14], Corollary 4.1.8.
See also [34], Theorem 6.7). Thus the hypergeometric system is holonomic with holonomic rank
|W |. For “generic” λ ∈ a∗C, a basis for the solution space of (8) on A+ is constructed by means of
the so-called Harish-Chandra series.

1.2. The Harish-Chandra series. As in the classical theory of spherical functions on Riemannian
symmetric spaces, the explicit expression of the differential equation (9) suggested Heckman and
Opdam [20] to look for solutions on A+ of the hypergeometric system (8) with spectral parameter
λ which are of the form

Φ(m;λ, a) = e(λ−ρ)(log a)
∑
µ∈Λ

Γµ(m;λ)e−µ(log a), a ∈ A+.

Here Λ :=
{∑l

j=1 njαj : nj ∈ N0

}
is the positive semigroup generated by the fundamental system

of simple roots Π := {α1, . . . , αl} in Σ+. For µ ∈ Λ \ {0}, the coefficients Γµ(m;λ) are rational
functions of λ ∈ a∗C determined from the recursion relations

〈µ, µ− 2λ〉Γµ(m;λ) = 2
∑
α∈Σ+

mα

∑
k∈N

µ−2kα∈Λ

Γµ−2kα(m;λ)〈µ+ ρ− 2kα− λ, α〉,

with initial condition Γ0(m;λ) = 1, which are derived by formally inserting the series for Φ into the
differential equation (9). Let `(µ) :=

∑l
j=1 nj denote the level of µ =

∑l
j=1 njαj ∈ Λ. It is easy to

check by induction on `(µ) that the recurrence relations imply Γµ(m;λ) = 0 unless µ =
∑l

j=1 njαj
with nj ≥ 0 and nj even for all j = 1, . . . , l. Hence the function Φ(m;λ, a) is in fact a sum over
2Λ, that is

Φ(m;λ, a) = e(λ−ρ)(log a)
∑
µ∈2Λ

Γµ(m;λ)e−µ(log a), a ∈ A+. (11)

The relations yield unique solutions Γµ(m;λ) provided 〈µ, µ− 2λ〉 6= 0 for all µ ∈ 2Λ.
The function Φ(m;λ, a) is called the Harish-Chandra series. For λ in the set

a∗C,Λ := {λ ∈ a∗C : 〈µ, µ− 2λ〉 6= 0 for all µ ∈ 2Λ}, (12)

it is a well-defined formal series that converges absolutely and uniformly on compact subsets of A+.
In fact, the Harish-Chandra series extends as a holomorphic function of λ on a much larger subset
of a∗C.

Theorem 1.4. ([32], Corollary 2.3) There is a connected and simply connected open subset U of
T containing the identity element e such that the Harish-Chandra series Φ(m;λ, h) extends as a
meromorphic function of (m,λ, h) ∈ M × a∗C × A+U . Its singularities are at most simple poles
located along the hyperplanes of the form M×Hn,α ×A+U , where

Hn,α := {λ ∈ a∗C : λα = n} (13)

is a complex hyperplane in a∗C corresponding to some α ∈ Σ+
i and n ∈ N .

9



The set U in Theorem 1.4 is chosen so that the function log is single valued on it. Then all
functions e(λ−ρ)(log h) (λ ∈ a∗C) are single valued and holomorphic on A+U .

By construction, the Harish-Chandra series are solutions of the differential equation (9). As in
the Riemannian case, one wishes to use them series to build a basis for solution space of the entire
hypergeometric system with spectral parameter λ. This is possible when λ ∈ a∗C is “generic”.

Definition 1.5. We say that λ ∈ a∗C is generic if λα /∈ Z for all α ∈ Σ.

Observe that the set of generic elements in a∗C is W -invariant. Indeed, let λ ∈ a∗C be generic.
Then for all α, β ∈ Σ we have (rβλ)α = λrβα /∈ Z.

Corollary 1.6. (see [14], Corollary 4.2.6) Let U be the open subset of T from Theorem 1.4. If
λ ∈ a∗C is generic, then the set {Φ(m;wλ, a) : w ∈ W} is a basis of the solution space on A+U of
the hypergeometric system (8) with spectral parameter λ.

Example 1.7 (The Euclidean case). In this case we have plainly Φ(0;λ, h) = eλ(log h) for all
λ ∈ a∗C ≡ Cl.

Example 1.8 (The rank-one case). The solution of the Jacobi differential equation (10) on (0,+∞)
that behaves asymptotically as e(λ−ρ)t for t→ +∞ is

Φ(m;λ, t) = (2 sinh t)λ−ρ 2F1

(
ρ− λ

2
,
−mα/2 + 1− λ

2
; 1− λ;− sinh−2 t

)
,

where 2F1 denotes the Gaussian hypergeometric function. The function Φ(m;λ, t) coincides with
the Jacobi function of second kind Φ(a,b)

ν (t) with parameters a = (mα+m2α−1)/2, b = (m2α−1)/2
and ν = −iλ (see [22], Section 2).

Example 1.9 (The complex case). Let m be geometric multiplicity of a reduced system Σ. If
mα = 2 for all α ∈ Σ, then m corresponds to a Riemannian symmetric space of the noncompact
type G/K with G complex. The triple (a,Σ,m) will be said to correspond to a complex case. The
constant multiplicity function with all values equal to k ∈ C on Σ will be indicated by the symbol
k. In the complex case, we have

Φ(2;λ, a) = ∆(a)−1eλ(log a). (14)

where
∆ :=

∏
α∈Σ+

(eα − e−α) (15)

is the Weyl denominator.

2. c-Functions

Let (a,Σ,m) be a triple as in Section 1. Let Θ denote an arbitrary subset of the fundamental
system Π = {α1, . . . , αl} associated with a choice Σ+ of positive roots in Σ. The set 〈Θ〉 of elements
in Σ which can be written as linear combinations of elements from Θ is a subsystem of Σ. Its Weyl
group WΘ is generated by the reflections rj := rαj with αj ∈ Θ. We denote by 〈Θ〉i and 〈Θ〉u
respectively the indivisible and unmultipliable roots in 〈Θ〉. Their subset of positive roots are
indicated with 〈Θ〉+i and 〈Θ〉+u . Then

WΘ(Σ+ \ 〈Θ〉+) ⊂ Σ+ \ 〈Θ〉+ and WΘ(Σ+
i \ 〈Θ〉

+
i ) ⊂ Σ+

i \ 〈Θ〉
+
i . (16)

Definition 2.1. For a multiplicity function m on Σ, a root α ∈ Σ+ and λ ∈ a∗C we set

c+
α (m;λ) :=

Γ
(
λα + mα/2

4

)
Γ
(
λα + mα/2

4 + mα
2

) ,
c−α (m;λ) :=

Γ
(
− λα −

mα/2
4 − mα

2 + 1
)

Γ
(
− λα −

mα/2
4 + 1

) .
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Let Θ ⊂ Π be any subset. We define the functions c±Θ and c±,cΘ by

c+
Θ (m;λ) :=

∏
α∈〈Θ〉+

c+
α (m;λ),

c+,c
Θ (m;λ) :=

∏
α∈Σ+\〈Θ〉+

c+
α (m;λ),

c−Θ (m;λ) :=
∏

α∈Σ+\〈Θ〉+
c−α (m;λ),

c−,cΘ (m;λ) :=
∏

α∈〈Θ〉+
c−α (m;λ),

with the conventions
c+
∅ ≡ c

+,c
Π := 1 and c−Π ≡ c

−,c
∅ := 1.

Remark 2.2. (a) The interchange of 〈Θ〉+ and Σ+ \ 〈Θ〉+ in the formulas for c+
Θ and c−Θ is

motivated by the definition of the Θ-hypergeometric functions in Section 3.
(b) The W -invariance of m and (16) imply that c−Θ (m;λ) and c+,c

Θ (m;λ) are WΘ-invariant
functions of λ ∈ a∗C.

(c) The duplication formula for the gamma function
√
π Γ(2z) = 22z−1Γ(z)Γ(z + 1/2) (17)

yields

c+
Θ (m;λ) =

∏
α∈〈Θ〉+i

√
π

2−(λα+mα/2)+1 Γ(λα)

Γ
(
λα
2 + mα

4 + 1
2

)
Γ
(
λα
2 + mα

4 + m2α
2

) (18)

c−Θ (m;λ) =
∏

α∈Σ+
i \〈Θ〉

+
i

1√
π

Γ
(
− λα

2 −
mα
4 + 1

2

)
Γ
(
− λα

2 −
mα
4 −

m2α
2 + 1

)
2λα+mα/2 Γ(−λα + 1)

. (19)

Definition 2.1 gives a concise representation of the functions c±Θ . Nevertheless in formulas
(18) and (19) the location of possible singularities and zeros of these functions is more
intelligible. See Lemma 2.7 below.

(d) When α/2 is not a root (e.g. when Σ is reduced), then

c+
α (m;λ) :=

Γ(λα)
Γ(λα +mα/2)

c−α (m;λ) :=
Γ(−λα −mα/2 + 1)

Γ(−λα + 1)
.

Therefore, when Σ is reduced and mα is even for all α,

c+
Θ (m;λ) =

∏
α∈〈Θ〉+

mα/2−1∏
k=0

1
λα + k

,

c−Θ (m;λ) =
∏

α∈Σ+\〈Θ〉+

0∏
k=−mα/2+1

1
−λα + k

are inverse of polynomials.

Example 2.3. (a) The function

c(m;λ) :=
c+

Π (m;λ)
c+

Π (m; ρ(m))
(20)

11



coincides for geometric multiplicities m with the Harish-Chandra c-function for Riemannian
symmetric spaces (see e.g. [9], Theorem 4.7.5). Recall that the Harish-Chandra c-function
is normalized to have value 1 at ρ(m).

(b) Suppose that m is a geometric multiplicity function corresponding to a NCC symmetric
space G/H. Let Θ := Π0 be the fundamental system for the system Σ+

0 of positive compact
roots. Then 〈Θ〉+ = Σ+

0 . The functions

c0(m;λ) :=
c+

Θ (m;λ)
c+

Θ (m; ρ(m))

cΩ(m;λ) :=
c−Θ (m;λ)

c−Θ (m; ρ(m))
are respectively the Harish-Chandra c-function for the root system Σ0 and the function cΩ

of [24].

Lemma 2.4. Let m ∈M be fixed. Then for all α ∈ Σ+ and λ ∈ a∗C

c+
α (m;λ) =

sin
[
π
(
λα + mα/2

4 + mα
2

)]
sin
[
π
(
λα + mα/2

4

)] c−α (m;λ).

Proof. Immediate consequence of the formula Γ(z) = π
sin(πz)

1
Γ(1−z) .

To study the singularities of the functions c±Θ introduced in this section, it is convenient to
introduce separate notation for the numerator and the denominator of the function c−Θ according
to formula (19).

Definition 2.5. The functions

n−Θ (m;λ) :=
∏

α∈Σ+
i \〈Θ〉

+
i

Γ
(
− λα

2
− mα

4
+

1
2

)
Γ
(
− λα

2
− mα

4
− m2α

2
+ 1
)

(21)

d−Θ (m;λ) :=
∏

α∈Σ+
i \〈Θ〉

+
i

2λα+mα/2
√
π Γ(−λα + 1) (22)

are respectively called the numerator and the denominator of c−Θ (m;λ).

Remark 2.6. Suppose 2α /∈ Σ+ for all α ∈ Σ+
i \ 〈Θ〉

+
i , which occurs for instance when Σ is reduced.

Then we obtain from the duplication formula (17)

n−Θ (m;λ) :=
∏

α∈Σ+\〈Θ〉+
2λα+mα/2

√
π Γ

(
−λα −

mα

2
+ 1
)
.

Recall the notation Hr,α := {λ ∈ a∗C : λα = r} from (13). Observe that the equality Hn,α = Hm,β
with α, β ∈ Σ+

i and n,m ∈ Z implies α = β and n = m. From the singularities of the gamma
function we therefore obtain the following lemma.

Lemma 2.7. (a) The singularities of the meromorphic function c+
Θ (m;λ) are at most simple

poles located along the hyperplanes

H−n,α with α ∈ 〈Θ〉+i and n ∈ N0.

(b) The singularities of the numerator n−Θ (m;λ) are poles located along the hyperplanes

H−mα
2

+(2n−1),α with α ∈ Σ+
i \ 〈Θ〉

+
i and n ∈ N,

H−mα
2
−m2α+2n,α with α ∈ Σ+

i \ 〈Θ〉
+
i and n ∈ N.

Hence all poles are simple if and only if m2α is not an odd integer for all α ∈ Σ+
i \ 〈Θ〉

+
i .

If m2α is an odd integer for some α ∈ Σ+
i \ 〈Θ〉

+
i , then there are at most double poles.
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In particular, the poles are always simple when 2α /∈ Σ+ for all α ∈ Σ+
i \ 〈Θ〉

+
i (e.g.

when Σ is reduced). In this case the singularities of the numerator n−Θ (m;λ) are simple
poles located along the hyperplanes

H−mα
2

+n,α with α ∈ Σ+
i \ 〈Θ〉

+
i and n ∈ N.

(c) The singularities of the denominator d−Θ (m;λ) are simple poles located along the hyperplanes

Hn,α with α ∈ Σ+
i \ 〈Θ〉

+
i and n ∈ N.

Remark 2.8. In the geometric case, it is known that, if 2α is a root, then m2α is odd. It follows in
this case by part (b) of Lemma 2.7 that all poles of n−Θ are simple if and only if 2α is not a root
for all α ∈ Σ+ \ 〈Θ〉+.

3. Θ-hypergeometric functions

Definition 3.1. Let Θ ⊂ Π be any subset of simple roots and let c±Θ be the functions introduced
in Definition 2.1. Let U be the open subset of T from Theorem 1.4. The function on A+U defined
for generic λ ∈ a∗C by

ϕΘ(m;λ, h) := c−Θ (m;λ)
∑
w∈WΘ

c+
Θ (m;wλ)Φ(m;wλ, h), h ∈ A+U (23)

is called the Θ-hypergeometric function of spectral parameter λ. Because of the following Examples
3.3 (a) and (b), the function ϕΘ(m;λ, h) will be called the Θ-spherical function of spectral parameter
λ when the multiplicity function m is geometric.

As a linear combination of the Harish-Chandra series Φ(m;wλ, h), the Θ-hypergeometric function
of spectral parameter λ is by construction a solution of the hypergeometric system (8) of spectral
parameter λ.

Remark 3.2. The Θ-hypergeometric functions appeared first in the appendix of the paper [28] of
G. Ólafsson and the present author, where they have been employed to prove a conjecture on
the location of the singularities in the spectral parameter λ of the spherical functions on NCC
symmetric spaces.

Example 3.3. (a) When Θ = Π, then

ϕΠ(m;λ, h) =
∑
w∈W

c+
Π (m;wλ)Φ(m;wλ, h)

has been first considered by Heckman and Opdam in [17]. The hypergeometric function
associated with the root system Σ is

F (m;λ, h) :=
ϕΠ(m;λ, h)
c+

Π (m; ρ(m))
=
∑
w∈W

c(m;wλ)Φ(m;wλ, h),

where c(m;λ) is Harish-Chandra’s c-function of formula (20). The chosen normalization for
F (m;λ, h) is due to the requirement F (m;λ, e) = 1, in analogy to the classical requirement
imposed on the spherical functions on Riemannian symmetric spaces. The computation
of the value at e is a non-trivial matter which has been carried out by Opdam using the
so-called shift operators (see e.g. [14], pp. 67–68).

For geometric multiplicities m, the hypergeometric functions F (m;λ, h) agrees with
Harish-Chandra’s spherical functions. In particular, ϕΠ(m;λ, h) reduces to a spherical
function up to a multiplicative factor depending only on the multiplicities.
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(b) Suppose Σ is the restricted root system of a NCC symmetric space (in particular Σ is
reduced). Let Π0 be the fundamental system for the positive compact roots Σ+

0 and set
Θ := Π0. Then 〈Θ〉 = Σ0 and WΘ = W0 is the so-called small Weyl group. Up to
a factor depending only on the multiplicities, the Θ-hypergeometric functions reduce to
Unterberger’s for arbitrary multiplicities, and (because of Ólafsson’s expansion [26]) to the
spherical functions on NCC symmetric spaces for geometric multiplicities.

(c) When Θ = ∅, then W∅ = {id}, hence ϕ∅(m;λ, h) = c−∅ (m;λ)Φ(m;λ, h).

The function ϕΘ is a priori defined only for λ ∈ a∗C generic and h ∈ A+U . In the case Θ = Π,
Heckman and Opdam proved that ϕΠ(m;λ, h) extends as a W -invariant holomorphic function in
M× a∗C × UΠ, where UΠ denotes a W -invariant tubular neighborhood of A in AC (see e.g. [14],
§4.3–4.4). Their result parallels the regularity properties of the spherical functions on Riemannian
symmetric spaces. For arbitrary Θ ⊂ Π, there exists a certain WΘ-invariant open domain UΘ ⊂ AC

such that the right-hand side of (23) extends as a WΘ-invariant holomorphic function of h ∈ UΘ,
as a WΘ-invariant meromorphic function of λ ∈ a∗C and as entire function of m ∈M. See Theorem
3.5 below. The domain UΘ is a tubular neighborhood in AC of an open domain AΘ constructed as
follows. Let a+ denote the closure of the positive Weyl chamber, and let A+ := exp(a+). We define

aΘ := WΘ(a+)0 and AΘ := exp aΘ = WΘ(A+)0, (24)

where 0 denotes the interior. The set aΘ = WΘ(a+) is the smallest cone in a which is closed,
WΘ-invariant and contains a+. It is a union of closed Weyl chambers. The open polyhedral cone
in a∗

CΘ :=
∑

α∈Σ+\〈Θ〉+
R+Hα

has dual cone

C∗Θ : = {H ∈ a : 〈H,Y 〉 ≥ 0 for all Y ∈ CΘ}
= {H ∈ a : α(H) ≥ 0 for all α ∈ Σ+ \ 〈Θ〉+}.

As intersection of the closed hyperplanes defined by roots, C∗Θ is a convex cone which is a union of
closed Weyl chambers in a. The geometric properties of AΘ are given by the following lemma.

Lemma 3.4. We have
aΘ = C∗Θ.

Consequently, aΘ is a closed WΘ-invariant convex cone in a and also its interior aΘ is convex.

Proof. The cone C∗Θ is WΘ-invariant. Indeed for H ∈ C∗Θ, αj ∈ Θ and α ∈ Σ+ \ 〈Θ〉+ one has
α(rj(H)) = (rjα)(H) ≥ 0 because rjα ∈ Σ+ \ 〈Θ〉+ by (16). Hence rj(H) ∈ C∗Θ. By definition,
a+ ⊂ C∗Θ. Thus aΘ ⊂ C∗Θ.

Suppose now aΘ 6= C∗Θ. Both cones are unions of closed Weyl chambers. Moreover C∗Θ is convex.
Hence there is a closed Weyl chamber C ⊂ C∗Θ \ aΘ such that C ∩ aΘ is the wall F of a chamber in
aΘ. Let α be the element in Σ+ such that α(H) = 0 for all H ∈ F , and let C ′ be the Weyl chamber
of aΘ with wall F . If α ∈ 〈Θ〉+, then C = rα(C ′) ⊂ WΘ(a+) = aΘ. Thus α ∈ Σ+ \ 〈Θ〉+. Now, let
H ∈ C0. Then rα(H) ∈WΘ(a+). Hence there is H ′ ∈ a+ and w0 ∈WΘ such that rα(H) = w0(H ′).
Since w−1

0 α ∈ Σ+ \ 〈Θ〉+, we have

α(rα(H)) = α(w0(H ′)) = (w−1
0 α)(H ′) > 0.

Since H and rα(H) lie on opposite sides of the hyperplane {H ∈ a : α(H) = 0}, it follows that
α(H) < 0 and H /∈ C∗Θ, against the choice of C. This contradiction thus implies that aΘ = C∗Θ.

The regularity properties of the Θ-hypergeometric functions are given by the following theorem.
Its proof depends heavily on the study of the hypergeometric differential equations of Heckman and
Opdam. Since it essentially appeared already in [28], we only present here an outline of its proof.
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Theorem 3.5. There exists a WΘ-invariant tubular neighborhood UΘ of AΘ in AC such that the
function

ϕΘ(m;λ, h)
n−Θ (m;λ)

=
1

d−Θ (m;λ)

∑
w∈WΘ

c+
Θ (m;wλ)Φ(m;wλ;h)

extends as a holomorphic function of (m,λ, h) ∈M× a∗C × UΘ and satisfies

ϕΘ(m;wλ, h)
n−Θ (m;wλ)

=
ϕΘ(m;λ, h)
n−Θ (m;λ)

=
ϕΘ(m;λ,wh)
n−Θ (m;λ)

for all w ∈WΘ and (m,λ, h) ∈M× a∗C × UΘ.
In particular, the λ-singularities of the Θ-hypergeometric function ϕΘ(m;λ, h) are contained

(counted with multiplicities) in the polar set of the numerator function n−Θ (m;λ). Furthermore, the
λ-singularities are at most simple poles when Σ is a reduced root system.

Proof. (cf. [28], Theorem 8.7) The case Θ = ∅ follows from Theorem 1.4. We can therefore
assume Θ 6= ∅. Let m ∈ M and h ∈ A+U be fixed. Because of Theorem 1.4 and Lemma 2.7, the
possible singularities of ϕΘ(m;λ, h) in λ ∈ a∗C are: (a) poles of n−Θ (m;λ); (b) simple poles along the
hyperplanes Hn,α with α ∈ 〈Θ〉+i and n ∈ Z. We claim that all singularities in (b) are removable.
Observe that the intersection of hyperplanesHn,α for α ∈ 〈Θ〉+i with hyperplanesHn,α for Σ+

i \〈Θ〉
+
i

are varieties of codimension > 1. Hence Hartogs theorem guarantees that the singularities in (b)
are removable if and only if the singularities along the same hyperplanes of the function∑

w∈WΘ

c+
Π (m;wλ)Φ(m;wλ, h)

are removable. This is the sum considered in Heckman-Opdam’s work except that their summation
over W has been replaced by the summation over the subgroup WΘ. The claim follows by applying
the method of pole cancellation developed by Opdam in [31]. The extension in the variable h ∈ AΘ

is obtained using monodromy arguments. The regularity in m ∈M follows from Theorem 1.4 and
Lemma 2.7.

Corollary 3.6. Retain the notation of Theorem 3.5 and let (m,h) ∈M× UΘ be fixed. Then

ϕΘ(m;λ, h)
c−Θ (m;λ)

is a holomorphic function of λ on the open set BΘ := {λ ∈ a∗C : Reλα < 1 for all α ∈ Σ+
i \ 〈Θ〉

+
i }.

Example 3.7. Since the root system of a NCC symmetric space G/H is always reduced, the
singularities in the spectral parameter λ of the spherical functions on G/H are always simple poles.
They are contained in the polar set of the numerator function nΩ(λ) :=

∏
α∈Σ+\Σ+

0
Γ(−λα−mα/2+

1). In the space parameter a, the spherical functions are defined and real analytic in a tubular
neighborhood of exp

(
W0 · a+

)0 = exp(c0
max), where cmax is the maximal cone in a associated with

the causal structure of G/H.

Example 3.8 (The rank-one case). In the rank-one case, there are only two possibilities for Θ,
namely Θ = Π or Θ = ∅. The first case yields constant multiples of the Jacobi functions of first
kind

ϕΠ(m;λ, t) = 2F1

(
mα + 2m2α + 2λ

4
,
mα + 2m2α − 2λ

4
;
mα + 2m2α + 1

2
;− sinh2 t

)
.

In the case Θ = ∅, the function ϕ∅ is a multiple of the Harish-Chandra series (cf. Examples 1.8
and 3.3 (c)). The study of the singular set of the hypergeometric function is very classical (see
e.g. [41]). For the geometric case of the NCC symmetric space SO0(1, n)/ SO0(1, n − 1) with
n ≥ 2 (corresponding to mα = n − 1 and m2α = 0), the exact list of singularities of ϕ∅ has been
quickly determined with the method of Bernstein-Sato polynomials in [28], Corollary 6.4. From the
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obtained list, one sees that the λ-singularities of ϕ∅ are exactly all (simple) poles of the functions
n−∅ when mα is odd. When mα is even, there are only finitely many poles (and they are all simple).
See also the following example.

Example 3.9 (The even multiplicity case). A multiplicity function m on a reduced root system
Σ is said to be (positive) even if mα ∈ 2N or all α ∈ Σ. In the geometric case, even multiplicities
correspond to Riemannian spaces G/K with the property that all Cartan subalgebras in the Lie
algebra g of G are conjugate under the adjoint group of g. The easiest examples correspond to the
cases in which G is complex, where all multiplicities are equal to 2. In the even multiplicity case the
result in Theorem 3.5 can be sharpened by showing that the λ-singularities of the Θ-hypergeometric
functions are located on a specific finite union of complex affine hyperplanes. Indeed, let Θ ⊂ Π
and define

e−Θ (m;λ) :=
∏

α∈Σ+\〈Θ〉+

mα/2−1∏
k=−mα/2+1

(λα − k). (25)

for λ ∈ a∗C. Then there is a WΘ-invariant tubular neighborhood UΘ in AC of AΘ such that the
function

e−Θ (m;λ) ϕΘ(m;λ, h)
extends as a WΘ-invariant holomorphic function of (λ, h) ∈ a∗C × UΘ.

In the complex case an explicit formula for the Θ-hypergeometric functions ϕΘ(2;λ, h) is moreover
available. According to Remark 2.2 (a), we have

c+
Θ (2;λ) =

[ ∏
α∈〈Θ〉+

λα

]−1
and c−Θ (2;λ) =

[ ∏
α∈Σ+\〈Θ〉+

(−λα)
]−1

.

Consider the factorization ∆ = ∆+
Θ ∆−Θ of the Weyl denominator (15) with

∆+
Θ :=

∏
α∈〈Θ〉+

(
eα − e−α

)
and ∆−Θ :=

∏
α∈Σ+\〈Θ〉+

(
eα − e−α

)
.

Then there is a WΘ-invariant tubular neighborhood UΘ of AΘ in AC such that for all (λ, h) ∈ a∗C×UΘ

ϕΘ(2;λ, h) =
c−Θ (2;λ)
∆−Θ (h)

ϕ0
Θ(2;λ, h),

where

ϕ0
Θ(2;λ, h) :=

c+
Θ (2;λ)
∆+

Θ (h)

∑
w∈WΘ

det(w) ewλ(log h)

is the Θ-hypergeometric function with mα = 2 for all α ∈ 〈Θ〉 and mα = 0 for α ∈ Σ+\〈Θ〉+. In the
case Θ = Π, we have ϕΘ(2;λ, h) = ϕ0

Θ(2;λ, h), and the above formula reduces to Harish-Chandra’s
explicit formulas for the spherical functions on G/K with G complex. See [12], Section 14.

We refer to [30] for more information on the even multiplicity case, in particular for the clas-
sification of the NCC symmetric spaces with even multiplicities, and for the proof of the above
statements.

The definition of the Θ-hypergeometric functions, together with analytic continuation, yields
the following transition relations linking the Θ-hypergeometric functions for arbitrary Θ to the
hypergeometric functions of Heckman and Opdam.

Lemma 3.10. There is a WΘ-invariant tubular neighborhood UΘ of AΘ in AC so that for all
(m,λ, h) ∈M× a∗C × UΘ the following equality of meromorphic functions holds:

ϕΠ(m;λ, h) =
∑

w∈WΘ\W

c+,c
Θ (m;wλ)
c−Θ (m;wλ)

ϕΘ(m;wλ, h), (26)

where the functions c+,c
Θ (m;wλ) and c−Θ (m;wλ) are as in Definition 2.1.
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Proof. By WΘ-invariance in λ of c+,c
Θ (m;wλ), c−Θ (m;wλ) and ϕΘ(m;λ, a), we obtain for all m ∈M,

h ∈ A+U and for generic λ ∈ a∗C

ϕΠ(m;λ, h) :=
∑
w∈W

c+
Π (m;wλ)Φ(m;wλ, h)

=
∑

w∈WΘ\W

∑
w′∈WΘ

c+
Θ (m;w′wλ)c+,c

Θ (m;w′wλ)Φ(m;w′wλ, h)

=
∑

w∈WΘ\W

c+,c
Θ (m;wλ)
c−Θ (m;wλ)

c−Θ (m;wλ)
∑

w′∈WΘ

c+
Θ (m;w′wλ)Φ(m;w′wλ, h)


=

∑
w∈WΘ\W

c+,c
Θ (m;wλ)
c−Θ (m;wλ)

ϕΘ(m;wλ, h).

The equality extends by analyticity to (m,λ, h) ∈M× a∗C×UΘ for a suitable WΘ-invariant tubular
neighborhood UΘ of AΘ in AC.

Example 3.11. (a) In the geometric case with Θ = ∅, equation (26) reduces to the classical
Harish-Chandra expansion of the spherical functions on G/K with respect to the Harish-
Chandra series Φ(m;λ, h).

(b) When (a,Σ,m) corresponds to a NCC symmetric space G/H and m is geometric, then (26)
is Ólafsson’s functional relation between spherical functions on G/H and on its Riemannian
dual G/K (see [26], Theorem 5.9).

4. Estimates for the Harish-Chandra series

In this section we prove estimates for the Harish-Chandra series Φ(m;λ, a) which are uniform
in a ∈ A+ and locally uniform in λ ∈ a∗C. For the multiplicity function m, we assume m ∈ M+ is
fixed, and we convene that mα = 0 is equivalent to α /∈ Σ.

Our methods are a modification of the renowned estimates of Gangolli [8]. As in [8], we consider
the modified Harish-Chandra series

Ψ(m;λ, a) := δ (m/2; a) Φ(m;λ, a), (27)

where δ is defined by (2). Suppose λ ∈ a∗C,Λ (see (12)). The functions Ψ has then a series expansion

Ψ(m;λ, a) = eλ(log a)
∑
µ∈2Λ

aµ(m;λ)e−µ(log a), a ∈ A+, (28)

which is obtained as Cauchy product of the series expansions of Φ and δ (m/2). Since

|Ψ(m;λ, a)| ≤ eReλ(log a)
∑
µ∈2Λ

|aµ(m;λ)| e−µ(log a),

we can obtain estimates for Ψ from those of the coefficients aµ(m;λ). For this purpose, we first
determine a differential equation satisfied by Ψ. Formal insertion of the series expansion for Ψ
produces recurrence relations which we can employ inductively for estimating the aµ(m;λ).

The point of using Ψ instead of Φ is that Ψ satisfies a second order differential equation without
first order terms; see equation (31) below. This simplifies the structure of the recurrence relations
among the coefficients aµ(m;λ). Gangolli’s estimation procedure for the Harish-Chandra series via
the function Ψ has been originally inspired by the classical method of bringing the hypergeometric
differential equation in Liouville’s normal form (see [8] for further details).

Our final estimates differ from those in [8] in two distinguishing points. First of all, we give more
precise information on the behavior of the Harish-Chandra series on the walls of A+. Secondly,
Gangolli’s estimates are uniform on the set of all λ ∈ a∗C satisfying Re〈λ, α〉 ≤ 0 for all α ∈ Σ+. This
set avoids the singularities of Φ(m;λ, a). Our applications in Section 5 require that we consider the
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entire a∗C. We are not able to deal with the entire a∗C at one time. But we can move step by step in
the region containing the singularities and provide uniform estimates on the sets

a∗C(R) := {λ ∈ a∗C : Re〈λ, α〉 < R for all α ∈ Σ+}, (29)

for each R > 0. The λ-singularities of Φ(m;λ, a) are simple poles located on a locally finite family of
complex hyperplanes and there are only finitely many singular hyperplanes intersecting a∗C(R). The
λ-singularities on a∗C(R) are therefore canceled by multiplication by a polynomial function pR which
is a finite product of linear factors in 〈λ, α〉 with α ∈ Σ+ (see Lemmas 4.4 and 4.5 below). To carry
out the two distinguishing points, we shall also employ ideas of Wallach [42] and of van den Ban
and Schlichtkrull [3]. As in [8], our final estimates hold for arbitrary (not necessarily geometric)
multiplicities m ∈M+. See also Remark 4.18 (c) below for comparisons with the estimates in [42]
and [3].

We now enter into the details of the estimates. Recall that the Harish-Chandra series is a solution
of the differential equation (9). The first important observation concerns the transformation of the
operator D(pL,m) = L(m) + 〈ρ(m), ρ(m)〉 under conjugation by δ(m/2).

Lemma 4.1. (see [14], Theorem 2.1.1) Let m ∈ M. Then the following equality of differential
operators on A+ holds:

δ(m/2) ◦D(pL,m) ◦ δ(−m/2) = S(m), (30)

where

S(m) := LA +
∑
α∈Σ+

mα(2−mα − 2m2α)
(eα − e−α)2

〈α, α〉

is the Schrödinger operator of the generalized Calogero-Moser system associated with (a,Σ,m).

By (27) and by Lemma 4.1, the function Ψ(m;λ, a) satisfies therefore the differential equation

S(m)Ψ(m;λ, a) = 〈λ, λ〉Ψ(m;λ, a), a ∈ A+. (31)

For any T > 0, we define a+(T ) := {H ∈ a+ : αj(H) > T for all j = 1, . . . , l} and set A+(T ) :=
exp(a+(T )). As before, Π = {α1, . . . , αl} denotes the fundamental system of simple roots in Σ+.
On A+ we have the series expansion

δ (m/2; a) = eρ(m)(log a)
∏
α∈Σ+

(
1− e−2α(log a)

)mα/2
= eρ(m)(log a)

∑
µ∈2Λ

bµ(m)e−µ(log a) (32)

with b0(m) = 1. The Cauchy product of (32) and (11) yields the series expansion (28) with

aµ(m;λ) :=
∑
ν,η∈2Λ
ν+η=µ

bν(m)Γη(m;λ)

and a0(m;λ) = 1. The series converges absolutely in A+ and uniformly in A+(T ). Thus it can be
differentiated term by term arbitrarily often. Let {Hj}lj=1 be an orthonormal basis in a and set
∂j := ∂(Hj). Since

LAe
(λ−µ)(log a) =

l∑
j=1

∂2
j e

(λ−µ)(log a) =
l∑

j=1

(λ− µ)(Hj)2e(λ−µ)(log a) =〈λ− µ, λ− µ〉e(λ−µ)(log a),

we have for a ∈ A+(T )

LAΨ(m;λ, a) =
∑
µ∈2Λ

〈λ− µ, λ− µ〉aµ(m;λ)e(λ−µ)(log a). (33)

Noticing that

(eα − e−α)−2 =
∞∑
k=1

ke−2kα, (34)

18



we obtain from substitution of (33) in the differential equation (31):∑
µ∈2Λ

aµ(m;λ)〈λ− µ, λ− µ〉e(λ−µ)(log a) =

=

 ∑
α∈Σ+

mα(2−mα − 2m2α)
(eα(log a) − e−α(log a))2

〈α, α〉+ 〈λ, λ〉

 ∑
µ∈2Λ

aµ(m;λ)e(λ−µ)(log a)

Since all series converge absolutely, we can multiply them out and collect the coefficients of the
exponentials. This yields∑

µ∈2Λ

aµ(m;λ)〈µ− 2λ, µ〉e(λ−µ)(log a) =

=
∑
µ∈2Λ

∑
α∈Σ+

mα(2−mα − 2m2α)〈α, α〉
∑
k∈N

µ−2kα∈2Λ

kaµ−2kα(m;λ)e(λ−µ)(log a).

Equating the coefficients of e(λ−µ)(log a) on both sides, we obtain the recursion relations

aµ(m;λ)〈µ− 2λ, µ〉 =
∑
α∈Σ+

mα(2−mα − 2m2α)〈α, α〉
∑
k∈N

µ−2kα∈2Λ

kaµ−2kα(m;λ) (35)

for µ ∈ 2Λ \ {0}, with initial condition a0(m;λ) = 1. They are a simplified version of the original
relations (3.21) in [8].

Our goal is to use the recursion relations to determine growth estimates for the coefficients
aµ(m;λ). We first need a lemma, which is a local version of a lemma in [21]. We employ the
usual multi-index notation: If q = (q1, . . . , ql) ∈ Nl

0 denotes a multi-index and z = (z1, . . . , zl) is an
arbitrary point in Cl, we write

zq := zq11 · · · z
ql
l and ∂q :=

∂q1

∂zq1
· · · ∂

ql

∂zql
.

We moreover denote by |z| :=
(∑l

j=1 |zj |
2
)1/2

the norm of z associated with the natural Hermitian

structure (y, z) :=
∑l

j=1 yjzj in Cl.

Lemma 4.2. (cf. [21], pp. 65–66)
(a) Let p be a polynomial in the complex variable z of degree ≤ n. Let ε > 0 be fixed. Suppose

f is a holomorphic function on a domain D ⊂ C with D ⊃ {z ∈ C : |z| ≤ ε}. Finally, let
ψ : [0,∞) → R be a non-negative integrable function with compact support suppψ ⊂ [0, ε].
Then for all k = 0, 1, . . . , n we have∣∣∣∣f(0)

dkp

dzk
(0)
∣∣∣∣ ∫

C
|z|k ψ(|z|) dz ≤ Cn,k

∫
C
|f(z)p(z)|ψ(|z|) dz,

where Cn,k := n!
(n−k)! . In the above integrals, dz denotes the Lebesgue measure on C.

(b) Let p be a polynomial in z = (z1, . . . , zl) ∈ Cl of degree nj in the variable zj for all j =
1, . . . , l. For a fixed ε > 0, let r(ε) > 0 be chosen so that

Pr(ε) := {z ∈ Cl : |zj | ≤ r(ε) for all j = 1, . . . , l} ⊂ {z ∈ Cl : |z| < ε}.

Suppose F is a holomorphic function on a domain D ⊂ Cl with D ⊃ {z ∈ Cl : |z| < ε}.
Finally, let Ψ : Cl → R be a non-negative integrable function depending only on |z1| , . . . , |zl|
and with compact support supp Ψ ⊂ Pr(ε). Then for every multi-index q = (q1, . . . , ql) with
qj ≤ nj for all j, we have

|F (0) ∂qp(0)|
∫

Cl
|zq|Ψ(|z|) dz ≤ Cn,q

∫
Cl
|F (z)p(z)|Ψ(|z|) dz.
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Here Cn,q :=
∏l
j=1Cnj ,qj and dz = dz1 . . . dzn is the Lebesgue measure on Cl.

(c) Let p, n, q, F , ε and r(ε) be as in part (b). Then there is a constant Cε,n,q > 0 such that

|F (0) ∂qp(0)| ≤ Cε,n,q
∫
Pr(ε)

|F (z)p(z)| dz. (36)

As a corollary we obtain a variation of a classical lemma by Malgrange. It will play a decisive
role at various stages.

Corollary 4.3. Let U ⊂ Cl be any subset and let ε > 0. Consider the open ε-neighborhood

Uε := {ζ ∈ Cl : ∃z ∈ U with |ζ − z| < ε}.

Let H be a holomorphic function on Uε, and let p be a polynomial such that F := H/p is also
holomorphic in Uε. Let w1, . . . , wk be elements in Cl having all equal norm |wj | =: |w| (j =
1, . . . , k). Suppose there exists a constant C > 0 and N ∈ N0 such that

|H(z)| ≤ C(1 + |z|)Nemaxj=1,...,k(Re z,wj)

for all z ∈ Uε. Then there is a constant Cε > 0 such that

|F (z)| ≤ Cε(1 + |z|)Nemaxj=1,...,k(Re z,wj)+ε|w|

for all z ∈ U .

Proof. Let z ∈ U be fixed and apply (36) to the holomorphic function ζ 7→ F (ζ + z) and the
polynomial ζ 7→ p(ζ + z), which are defined on an open domain containing {ζ ∈ Cl : |ζ| < ε}.
Then ζ + z ∈ Uε, on which the estimates for H = Fp are given. Let r(ε) be as in Lemma 4.2,
and let nj denote the degree of p in the variable zj . Since r(ε) < ε, we have for every multi-index
q = (q1, . . . , qn) with qj ≤ nj for all j

|F (z) ∂qp(z)| ≤ Cε,n,q
∫
Pr(ε)

|F (ζ + z)p(ζ + z)| dζ

≤ C ′ε,n,q sup
|ζ|<ε
|H(z + ζ)|

≤ C ′ε,n,q sup
|ζ|<ε

(1 + |z + ζ|)Nemaxj=1,...,k(Re(z+ζ),wj)

≤ C ′ε,n,q sup
|ζ|<ε

(1 + |z|+ |ζ|)Nemaxj=1,...,k(Re z,wj)+|ζ||w|

≤ C ′′ε,n,q(1 + |z|)Nemaxj=1,...,k(Re z,wj)+ε|w|.

Since p is a polynomial, we can choose the multi-index q such that ∂qp(z) is a non-zero constant.
This proves the required inequality on U .

The norm |λ| := 〈λ, λ〉1/2 on a∗ can be extended to a∗C by setting |λ| =
(
|Reλ|2 + |Imλ|2

)1/2
for λ ∈ a∗C, where Reλ, Imλ ∈ a∗ are defined pointwise on a. Similarly, we define the norm
|H| := 〈H,H〉1/2 on a and extend it to aC. The fundamental system Π = {α1, . . . , αl} is a basis for
a∗. Define for λ =

∑l
j=1 λjαj ∈ a∗

‖λ‖1 :=
l∑

j=1

|λj | . (37)

Then ‖µ‖1 = `(µ) is the level of µ for all µ ∈ Λ. By equivalence of all norms in a∗, there is a
constant Q ≥ 1 such that for all λ ∈ a∗

Q−1‖λ‖1 ≤ |λ| ≤ Q‖λ‖1.
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In particular, for µ ∈ Λ we deduce that

Q−1`(µ) ≤ |µ| ≤ Q`(µ). (38)

The recursion relations (35) show that for µ ∈ 2Λ \ {0} each coefficient aµ(m;λ) is a rational
function of λ ∈ a∗C with at most simple poles along the hyperplanes

Hη := {λ ∈ a∗C : 〈η − 2λ, η〉 = 0}

for some η ∈ 2Λ \ {0} with η ≤ µ.
In the following R will always denote a finite positive real number and a∗C(R) is as in (29).

Lemma 4.4. Let R > 0 and η ∈ 2Λ, and let Q as in (38). If a∗C(R) ∩Hη 6= ∅, then `(η) < 2RQ2.
Hence a∗C(R) intersects at most finitely many hyperplanes Hη with η ∈ 2Λ \ {0}, and none if
R ≤ 1/Q2.

Proof. Let ν ∈ a∗C(R) ∩Hη, so 〈η, η〉 − 2〈ν, η〉 = 0. Write η =
∑l

j=1 ηjαj . Then

〈η, η〉 = Re〈η, η〉 = 2 Re〈ν, η〉 = 2
∑
j

ηj Re〈ν, αj〉 < 2R`(η).

Hence `(η)2 ≤ Q2〈η, η〉 < 2RQ2`(η), i.e. `(η) < 2RQ2. For the last statement, notice that there
are only finitely many η ∈ 2Λ with `(η) < 2RQ2 and that `(η) ≥ 2 for η ∈ 2Λ \ {0}. Thus
2 ≤ `(η) < 2RQ2 implies R > 1/Q2.

For R > 0, we set
XR := {η ∈ 2Λ \ {0} : Hη ∩ a∗C(2R) 6= 0}. (39)

Then XR is a finite set by Lemma 4.4, and it is empty for R ≤ 1/(2Q2). We define the polynomial
function pR on a∗C by

pR(λ) :=
∏
η∈XR

〈η − 2λ, η〉, (40)

with the convention that pR(λ) ≡ 1 when XR = ∅. We denote by deg pR the degree of the polynomial
pR.

Lemma 4.5. Suppose R > 0 and µ ∈ 2Λ. Then:
(a) pR(λ)aµ(m;λ) is holomorphic in λ ∈ a∗C(2R).

(b) For all ν < µ, the function
pR(λ)aν(m;λ)
〈µ− 2λ, µ〉

is holomorphic in λ ∈ a∗C(2R).

Proof. If Hη is a singular hyperplane for aµ(m;λ) in a∗C(2R), then Hη ∩ a∗C(2R) 6= ∅, hence η ∈ XR.
The singularity along Hη is a simple pole, so it is removed by multiplication by pR(λ). This proves
(a). For (b), observe first that, by the recursion relations, Hµ is not a singular hyperplane for
aν(m;λ) when ν < µ. The function 1

〈µ−2λ,µ〉 is singular in a∗C(2R) if and only if Hµ ∩ a∗C(2R) 6= ∅.
In this case 〈µ− 2λ, µ〉 divides pR(λ), so pR(λ)aν(m;λ)

〈µ−2λ,µ〉 is always holomorphic in a∗C(2R).

The following lemma is the classical argument of “ε-neighborhoods” from the analysis.

Lemma 4.6. Suppose R > 0. Then there is ε > 0 with the property that

a∗C(R)ε := {λ ∈ a∗C : ∃ν ∈ a∗C(R) with |λ− ν| < ε} ⊂ a∗C(2R).

Lemma 4.7. Let R′ > R > 0. Then there is a constant CR,R′,m > 0 with the following property:
For every µ ∈ 2Λ with `(µ) ≤ R′

|pR(λ)aµ(m;λ)| ≤ CR,R′,m(1 + |λ|)deg pR

for all λ ∈ a∗C(R).
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Proof. Let ε > 0 be as in Lemma 4.6. For µ ∈ 2Λ \ {0} with `(µ) ≤ R′, we set

ε(µ) := ε · R
′ + 1− `(µ)
R′ + 1

.

Then 0 < ε(µ) ≤ ε, hence
a∗C(R)ε(µ) ⊂ a∗C(R)ε ⊂ a∗C(2R). (41)

By induction on the level `(µ) ≤ R′, we prove the existence of a constant Cµ ≥ 0 such that

|pR(λ)aµ(m;λ)| ≤ Cµ(1 + |λ|)deg pR

for all λ ∈ a∗C(R)ε(µ). This is clear for µ = 0. Assume it is true for all elements in 2Λ of level less
than n (< R′) and prove it for µ ∈ 2Λ with `(µ) = n. By the recursion relations (35), we have

|pR(λ)aµ(m;λ)| ≤
∑
α∈Σ+

mα |mα + 2m2α − 2| 〈α, α〉
∑
k∈N

µ−2kα∈2Λ

k

∣∣∣∣pR(λ)aµ−2kα(m;λ)
〈µ− 2λ, µ〉

∣∣∣∣ .
Suppose µ − 2kα ∈ 2Λ for some α ∈ Σ+ and k ∈ N. By inductive hypothesis, there is a constant
Cµ−2kα ≥ 0 so that

|pR(λ)aµ−2kα(m;λ)| ≤ Cµ−2kα(1 + |λ|)deg pR

for all λ ∈ a∗C(R)ε(µ−2kα). Here

ε(µ− 2kα) := ε ·
(
R′ + 1− `(µ) + 2k`(α)

R′ + 1

)
≥ ε ·

(
R′ − `(µ) + 2

R′ + 1

)
= ε(µ) +

ε

R′ + 1
,

which implies together with (41)[
a∗C(R)ε(µ)

]
ε/(R′+1)

⊂ a∗C(R)ε(µ)+ε/(R′+1) ⊂ a∗C(R)ε(µ−2kα) ⊂ a∗C(2R).

By part (b) of Lemma 4.5, the function
pR(λ)aµ−2kα(m;λ)
〈µ− 2λ, µ〉

is holomorphic in a∗C(2R). Corollary

4.3 then implies the existence of a constant C ′µ−2kα ≥ 0 such that∣∣∣∣pR(λ)aµ−2kα(m;λ)
〈µ− 2λ, µ〉

∣∣∣∣ ≤ C ′µ−2kα(1 + |λ|)deg pR

for all λ ∈ a∗C(R)ε(µ). The inductive step is therefore concluded when we set

Cµ :=
∑
α∈Σ+

mα |mα + 2m2α − 2| 〈α, α〉
∑
k∈N

µ−2kα∈2Λ

kC ′µ−2kα.

This also proves the lemma, since there are only finitely many µ ∈ 2Λ satisfying `(µ) ≤ R′.

As in [42], we now define for c ∈ [0,∞)

δc(m) := ecρ(m)δ(−cm/2) =
∏
α∈Σ+

(
1− e−2α

)−cmα/2
. (42)

Lemma 4.8. For every fixed c ∈ R , we have the series expansion on A+

δc(m) =
∑
µ∈2Λ

dµ(m; c)e−µ (43)

with d0(m; c) = 1. The series converges absolutely in A+ and uniformly in A+(T ) for all T > 0.
If we assume c ∈ (0,∞), then dµ(m; c) > 0 for all µ ∈ 2Λ.
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Proof. For r ∈ R and n ∈ N0, we adopt the familiar notation
(
r
n

)
:=
∏n
h=1

r−h+1
h for the binomial

coefficients. As usual, empty products are defined to be 1. Recall that the binomial series (1+x)r =∑∞
k=0

(
r
k

)
xk converges absolutely in |x| < 1 and uniformly in |x| ≤ S < 1. Therefore for α ∈ Σ+

and a ∈ A+, we have(
1− e−2α(log a)

)−cmα/2
=
∞∑
k=0

(
−cmα/2

k

)
(−1)ke−2kα(log a), (44)

with absolute convergence in A+ and uniform convergence in A+(T ) for all T > 0. Write Σ+ =
{β1, . . . , βn}. Cauchy products yield∏

α∈Σ+

(
1− e−2α(log a)

)−cmα/2
=
∑
µ∈2Λ

dµ(m; c)e−µ(log a),

where

dµ(m; c) :=
∑

k1,...,kn∈N0
2(k1β1+···+knβn)=µ

(−1)k1+···+kn
(
−cmβ1/2

k1

)
· · ·
(
−cmβn/2

kn

)
.

As well as each of the series (44), also their Cauchy product converges absolutely in A+ and
uniformly in A+(T ) for all T > 0. Observe that d0(m; c) = 1.

If x > 0, then

(−1)k
(
−x
k

)
:= (−1)k

k∏
h=1

(
−x− h+ 1

h

)
=

k∏
h=1

x+ h− 1
h

> 0.

Suppose then c ∈ (0,∞). Since we are assuming mα > 0 for all α ∈ Σ+, we have (−1)k
(−cmα/2

k

)
> 0

for all α ∈ Σ+ and k ∈ N0. In this case we therefore obtain dµ(m; c) > 0 for all µ ∈ 2Λ.

The idea for estimating the modified Harish-Chandra series Ψ(m;λ, a) is the following. Suppose
c ∈ [0,∞). We determine a differential equation satisfied by δc(m) and, by formal insertion of the
series (43), we obtain recursion relations for the coefficients dµ(m; c). These recursion relations can
be used to compare |aµ(m,λ)| and dµ(m; c) for the same µ ∈ 2Λ. This provides an estimate for∣∣e−λΨ(m;λ)

∣∣ via δc(m). A suitable value of the parameter c is determined along the way.

Lemma 4.9. For all m ∈ M+, c ∈ [0,∞) and H ∈ a, the function δc(m) satisfies the differential
equation on A+(

LA − ∂(H)
)
δc(m) =

= c
∑
α∈Σ+

[
mα(cothα− 1)

(
α(H)

2
− c〈ρ(m), α〉

)
+
mα(cmα + 2cm2α + 2)

(eα − e−α)2
〈α, α〉

]
δc(m).

Proof. Let m ∈ M+ and c ∈ [0,∞) be fixed. For brevity, we omit the dependence on m in the
following computations. Observe that for all H ∈ a

δ−1∂(H)δ =
∑
α∈Σ+

mαα(H) cothα,

∂(H)
(
δ−1∂(H)δ

)
= −4

∑
α∈Σ+

mαα(H)2 1
(eα − e−α)2

.

Hence from

δ−1
c ∂(H)δc = cρ(H)− c

2
δ−1∂(H)δ,

δ−1
c ∂(H)2δc =

[
cρ(H)− c

2
δ−1∂(H)δ

]2
− c

2
∂(H)

(
δ−1∂(H)δ

)
,
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we obtain for LA =
∑l

j=1 ∂
2
j

δ−1
c LA(δc) = c2〈ρ, ρ〉+

c2

4

∑
α,β∈Σ+

mαmβ〈α, β〉 cothα cothβ

− c2
∑
α∈Σ+

mα〈ρ, α〉 cothα+ 2c
∑
α∈Σ+

mα〈α, α〉
1

(eα − e−α)2
.

The equality
1
4

∑
α,β∈Σ+

mαmβ〈α, β〉 cothα cothβ = 〈ρ, ρ〉+
∑
α∈Σ+

mα(mα + 2m2α)
(eα − e−α)2

〈α, α〉

is proven on p. 21 in [14]. Therefore, writing

〈ρ, ρ〉 =
1
2

∑
α∈Σ+

mα〈ρ, α〉,

we conclude that

δ−1
c LA(δc) = c2

∑
α∈Σ+

mα〈ρ, α〉(1− cothα) + c
∑
α∈Σ+

mα(cmα + 2cm2α + 2)
(eα − e−α)2

〈α, α〉.

The claim then follows because for all H ∈ a we have

−δ−1
c ∂(H)δc = −cρ(H) +

c

2
δ−1∂(H)δ =

c

2

∑
α∈Σ+

mα(cothα− 1)α(H).

Lemma 4.10. The coefficients dµ(m; c) of the series (43) satisfy the recurrence relations(
〈µ, µ〉+ µ(H)

)
dµ(m; c) =

∑
α∈Σ+

∑
k∈N

µ−2kα∈2Λ

[
2cmα

(
α(H)

2
− c〈ρ(m), α〉

)
+

+ kcmα(cmα + 2cm2α + 2)〈α, α〉
]
dµ−2kα(m; c)

for µ ∈ 2Λ \ {0}, and d0(m; c) = 1.

Proof. We formally insert the series (43) in the differential equation of Lemma 4.9. By termwise
differentiation of the series (43) we obtain(

LA − ∂(H)
)
(δc) =

∑
µ∈Λ

dµ(m; c)
(
〈µ, µ〉+ µ(H)

)
e−µ.

From (34) follows
1

(eα − e−α)2
δc =

∑
µ∈2Λ

∑
k∈N

µ−2kα∈2Λ

kdµ−2kα(m; c)e−µ.

Moreover,
(cothα− 1)δc = 2

∑
µ∈2Λ

∑
k∈N

µ−2kα∈2Λ

dµ−2kα(m; c)e−µ.

The recursion relations are then obtained by equating the coefficients of e−µ in the resulting equa-
tion.

Lemma 4.11. There exist constants 0 ≤ c < 1 and r > 1 such that the inequality

c(cmα + 2cm2α + 2) ≥ r |mα + 2m2α − 2|
holds for all α ∈ Σ+.
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Proof. (cf. [42], p. 782) Let r > 1 be arbitrarily fixed. For all α ∈ Σ+, define

cα,r :=
−1 +

√
1 + r(mα + 2m2α) |mα + 2m2α − 2|

mα + 2m2α
.

Notice that cα,r ≥ 0. Set cr := maxα∈Σ+ cα,r. Then cr ≥ 0. Moreover,

c2
r(mα + 2m2α) + 2cr − r |mα + 2m2α − 2| ≥ 0 (45)

for all α ∈ Σ+. Indeed cα,r is the largest root of the quadratic equation (mα + 2m2α)x2 + 2x −
r |mα + 2m2α − 2| = 0.

We now want to show that we can select r > 1 for which also cr < 1 holds. Suppose β ∈ Σ+

(depending on r) satisfies cr = cβ,r. Then the inequality cr < 1 can be written as

−1 +
√

1 + r(mβ +m2β) |mβ + 2m2β − 2|
mβ + 2m2β

< 1.

It is satisfied precisely when r fulfills

1 + r(mβ + 2m2β) |mβ + 2m2β − 2| < (mβ + 2m2β + 1)2. (46)

Observe that (mβ + 2m2β + 1)2 − 1 = (mβ + 2m2β)(mβ + 2m2β + 2). Therefore condition (46) is
equivalent to

r |mβ + 2m2β − 2| < mβ + 2m2β + 2. (47)
Since |mα + 2m2α − 2| < mα + 2m2α + 2 for all α ∈ Σ+, there exist r’s so that

1 < r < min
α∈Σ+

mα + 2m2α + 2
|mα + 2m2α − 2|

,

and any of them satisfies (47). Let R denote the set of such r’s. Then any cr with r ∈ R satisfies
all the requirements.

Lemma 4.12. Let m ∈M+ be a multiplicity function. Then the system of inequalities of Lemma
4.11 admits the solution c = 0 if and only if mα + 2m2α − 2 = 0 for all α ∈ Σ+. In this case,
aµ(m;λ) = 0 for all µ ∈ 2Λ \ {0} and λ ∈ a∗C.

Proof. The first statement is obvious. Let µ ∈ 2Λ\{0} be fixed. The recursion relations (35) define
aµ(m;λ) as a rational function of the variable λ ∈ a∗C. Suppose c = 0. Then mα + 2m2α− 2 = 0 for
all α ∈ Σ+, and the right-hand side of (35) vanishes. A rational function is identically zero when it
vanishes on the complement of a lower dimensional manifold. The equality aµ(m;λ)〈µ− 2λ, µ〉 = 0
for all λ ∈ a∗C therefore implies aµ(m;λ) = 0.

Remark 4.13. Suppose m is geometric. Recall that we are assuming mα > 0 for α ∈ Σ. If m2α 6= 0,
then 2m2α − 2 ≥ 0. Hence the equality mα + 2m2α − 2 = 0 can be satisfied if and only if 2α /∈ Σ
and mα = 2.

Fix c ∈ [0, 1) and r > 1 satisfying the inequalities of Lemma 4.11. We choose H ∈ a such that

α(H) ≥ max{2c〈ρ(m), α〉, 0} for all α ∈ Σ+. (48)

Condition (48) ensures that the first summands in Lemma 4.10 are all positive and that µ(H) ≥ 0
for all µ ∈ 2Λ.

Let R > 0. We wish to determine, for all λ ∈ a∗C(R) and µ ∈ 2Λ, an upper estimate for |aµ(m;λ)|
by the coefficients dµ(m; c) of the series expansion of δc. For finitely many µ ∈ 2Λ this can be easily
done by means of Lemma 4.7.

Lemma 4.14. Let c ∈ [0, 1) and r > 1 satisfy the inequalities of Lemma 4.11. Suppose R′ > R > 0.
Then there is a constant CR,R′,m,c,r > 0 with the following property: For every µ ∈ 2Λ with `(µ) ≤ R′

|pR(λ)aµ(m;λ)| ≤ CR,R′,m,c,r dµ(m; c)(1 + |λ|)deg pR

for all λ ∈ a∗C(R).
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Proof. If c = 0, then dµ(m; c) = 0 for all µ ∈ 2Λ \ {0}. But then also aµ(m;λ) = 0 for all λ ∈ a∗C
and µ ∈ 2Λ \ {0} by Lemma 4.12. The inequality is therefore trivially satisfied.

Suppose now that c ∈ (0, 1). Lemma 4.8 ensures then that dµ(m; c) > 0 for all µ ∈ 2Λ \ {0}. Set

d := min{dµ(m; c) : µ ∈ 2Λ, `(µ) ≤ R′}.

Then d > 0 and the required inequality is satisfied with CR,R′,m,c,r := CR,R′,m/d, where CR,R′,m is
the constant of Lemma 4.7.

To extend the inequalities of Lemma 4.14 to all λ ∈ a∗C and all µ ∈ 2Λ, we compare the
recursion relations of aµ(m;λ) and dµ(m; c); see (35) and Lemma 4.10, respectively. Looking at
these recursion relations, we realize that, when H is chosen as in (48), we need an inequality of the
form

|〈µ, µ〉 − 2〈λ, µ〉| > 1
r

[〈µ, µ〉+ µ(H)]

to hold for all λ ∈ a∗C(R) and all µ ∈ 2Λ. Such an inequality is clearly not possible because its
right-hand side is always positive, whereas its left-hand side may be equal to zero. Nevertheless,
the next lemma states that this inequality is satisfied by all λ ∈ a∗C(R) and by all µ ∈ 2Λ \ DR,r,
where DR,r contains only finitely many elements. This will be enough, because for finitely many
µ ∈ 2Λ we can apply Lemma 4.14.

Lemma 4.15. Let H ∈ a be chosen as in (48). For r > 1 and R > 0 we set

DR,r := {µ ∈ 2Λ : 〈µ, µ〉+ µ(H) ≥ r [〈µ, µ〉 − 2R`(µ)]} .

Then DR,r is a finite set. More precisely,

DR,r ⊂ {µ ∈ 2Λ : `(µ) ≤ Rr}

with

Rr :=
Q

r − 1
(|H|+ 2rRQ) (49)

and Q as in (38). Furthermore,

|〈µ, µ〉 − 2〈λ, µ〉| > 1
r

[〈µ, µ〉+ µ(H)] .

for all µ ∈ 2Λ \DR,r and all λ ∈ a∗C(R).

Proof. With Q as in (38) and µ ∈ DR,r, we have

(r − 1)〈µ, µ〉 ≤ µ(H) + 2rR`(µ) ≤ |µ| |H|+ 2rRQ |µ| .

Hence (r − 1) |µ| ≤ |H|+ 2rRQ, which implies

`(µ) ≤ Q |µ| ≤ Q

r − 1
(|H|+ 2rRQ) =: Rr.

Notice that Rr is finite because r > 1. Thus DR,r ⊂ {µ ∈ 2Λ : `(µ) ≤ Rr} is a finite set.
Suppose µ ∈ 2Λ \DR,r. Then

〈µ, µ〉+ µ(H) < r [〈µ, µ〉 − 2R`(µ)] .
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This implies in particular that 〈µ, µ〉 − 2R`(µ) > 0 because of (48) and because 〈µ, µ〉 > 0 when
`(µ) > 0. Write µ =

∑l
j=1 µjαj with µj ∈ 2N0. Then for λ ∈ a∗C(R) we have

|〈µ, µ〉 − 2〈λ, µ〉| ≥ Re [〈µ, µ〉 − 2〈λ, µ〉]

= 〈µ, µ〉 − 2
∑
j

µj Re〈λ, αj〉

> 〈µ, µ〉 − 2R
(∑

j

µj
)

= 〈µ, µ〉 − 2R`(µ)

>
1
r

[〈µ, µ〉+ µ(H)] .

Lemma 4.16. Let R > 0 and let pR be the polynomial defined in (40). Suppose c ∈ [0, 1) is chosen
as in Lemma 4.11 for some r > 1. Then there is a constant CR,c,m > 0 such that

|pR(λ)aµ(m;λ)| ≤ CR,c,mdµ(m; c)(1 + |λ|)deg pR

for all λ ∈ a∗C(R) and all µ ∈ 2Λ.

Proof. We proceed by induction on `(µ). For a fixed R, let Rr be as in (49). Observe that Rr > R.
Since the set of µ ∈ 2Λ with `(µ) ≤ Rr is finite, the claim is true for all such µ by Lemma 4.14.
Assume the claim as true for all η ∈ 2Λ so that `(η) < n, and prove it for µ ∈ 2Λ with `(µ) = n
(and we can assume n > Rr). Since `(µ) > Rr, then µ /∈ DR,r. Hence, by Lemma 4.15,

1
|〈µ, µ〉 − 2〈λ, µ〉|

<
r

〈µ, µ〉+ µ(H)
.

From the recursion relations (35), the inductive hypothesis, Lemma 4.11 and (48), we conclude

|pR(λ)aµ(m;λ)| ≤

≤ r

〈µ, µ〉+ µ(H)

∑
α∈Σ+

mα |mα + 2m2α − 2| 〈α, α〉
∑
k∈N

µ−2kα∈2Λ

k |pR(λ)aµ−2kα(m;λ)|

≤
CR,c,m

〈µ, µ〉+ µ(H)

[ ∑
α∈Σ+

mα(r |2−mα−2m2α|)〈α, α〉
∑
k∈N

µ−2kα∈2Λ

kdµ−2kα(m; c)
]
(1 + |λ|)deg pR

≤
CR,c,m

〈µ, µ〉+ µ(H)

[ ∑
α∈Σ+

cmα(cmα + 2m2α + 2)〈α, α〉
∑
k∈N

µ−2kα∈2Λ

kdµ−2kα(m; c)
]
(1 + |λ|)deg pR

≤
CR,c,m

〈µ, µ〉+ µ(H)

{ ∑
α∈Σ+

∑
k∈N

µ−2kα∈2Λ

[
2cmα

(α(H)
2
− c〈ρ(m), α〉

)
+

+ kcmα(cmα + 2cm2α + 2)〈α, α〉
]
dµ−2kα(m; c)

}
(1 + |λ|)deg pR

= CR,c,mdµ(m; c)(1 + |λ|)deg pR .

The last equality is provided by the recursion relations for dµ(m; c) in Lemma 4.10. This completes
the inductive step.

Theorem 4.17. Let R > 0 and let pR be the polynomial defined in (40). Suppose m ∈M+. Then
there exist c ∈ [0, 1) (depending only on the multiplicity function m) and CR,c,m > 0 such that

|pR(λ)Ψ(m;λ, a)| ≤ CR,c,mδ(m; a)−c/2(1 + |λ|)deg pRe(cρ(m)+Reλ)(log a) (50)
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and ∣∣∣pR(λ)δ(m; a)(c+1)/2Φ(m;λ, a)
∣∣∣ ≤ CR,c,m(1 + |λ|)deg pRe(cρ(m)+Reλ)(log a) (51)

for all a ∈ A+ and λ ∈ a∗C(R).
We can choose pR ≡ 1 for all sufficiently small R > 0 (e.g. R ≤ 1/(2Q2) with Q as in (38)).

Proof. Because of Lemma 4.16

|pR(λ)Ψ(m;λ, a)| ≤
∑
µ∈2Λ

|pR(λ)aµ(m;λ)|
∣∣∣e(λ−µ)(log a)

∣∣∣
≤ CR,c,m

∑
µ∈2Λ

dµ(m; c)e−µ(log a)(1 + |λ|)deg pReReλ(log a)

≤ CR,c,mδc(m; a)(1 + |λ|)deg pReReλ(log a).

The first inequality therefore follows from (43), and the second from the definition (27) of Ψ.

Remark 4.18. (a) Two features of the estimates (51) will be important in the following discus-
sion:

i. The condition c ∈ [0, 1) implies (c+ 1)/2 ∈ [1/2, 1);
ii. Each a∗C(R) contains a WΘ-invariant open subset a∗C,Θ(R) such that the set of the a∗C,Θ(R)

for R > 0 covers a∗C.
(b) For all λ ∈ a∗C the factor δ(m; a)(c+1)/2 cancels the possible singularities of Φ(m;λ, a) along

the walls of A+. The exact asymptotic behavior of Φ(m;λ, a) along the walls is in general
not known. In the complex and rank-one cases, these asymptotics can be deduced by the
explicit formulas for the Harish-Chandra series. We shall compare these exact asymptotics
with our estimate in Examples 4.19 and 4.20 below.

(c) For 0 < R < 1/(2Q2) we have pR(λ) = 1 for all λ. Hence the estimate (51) reduces to

δ(m; a)(c+1)/2 |Φ(m;λ, a)| ≤ CR,c,me(cρ(m)+Reλ)(log a) (52)

for all a ∈ A+ and λ ∈ a∗C(R). Only for geometric multiplicities m and for λ ∈ a∗C satisfying
Re〈λ, α〉 ≤ 0 for all α ∈ Σ+, the estimate (52) has been established by Wallach [42]. Our
optimal (=smallest) value for c coincides with the one determined in [42] despite the use of
different reductions for the recursion relations. The reduction methods used in Wallach’s
paper cannot be generalized to non-geometric multiplicities because they are based on
Araki’s tables of multiplicities.

Estimates of the type (51) have been determined in the more general case of Eisenstein
integrals by van den Ban and Schlichtkrull in [3], where the exponent of δ is however left
undetermined (it is also not stated whether it is smaller than 1).

(d) We introduce the notation A+ 3 a→ +∞ to indicate that a ∈ A+ and that α(log a)→ +∞
for all α ∈ Σ+, i.e. log a ∈ a+ moves towards infinity in such a way that also its distance
from each of the walls of the Weyl chamber a+ goes to infinity. Since for A+ 3 a→ +∞

δ(m; a)(c+1)/2 = e(c+1)ρ(m)(log a)
∏
α∈Σ+

(1− e−2α(log a))(c+1)mα/2 ∼ e(c+1)ρ(m)(log a)

Φ(m;λ, a) ∼ e(λ−ρ(m))(log a),

we conclude that, for a certain constant Cλ,R > 0,∣∣∣pR(λ)δ(m; a)(c+1)/2Φ(m;λ, a)
∣∣∣ ∼ Cλ,R e(cρ(m)+Reλ)(log a).

This shows that the estimate (51) is sharp for A+ 3 a→ +∞.
(e) For R > (1/2Q2) the exponent deg pR does not give a sharp estimate in λ ∈ a∗C(R). The first

a-priori reason comes from Theorem 1.4, which states that the λ-singularities of Φ(m;λ, a)
are much fewer than those suggested by the recursion relations. Moreover, the estimates on
a∗C(R) have been obtained by means of pR, which is the polynomial canceling all first-order
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singularities along the hyperplanes Hη intersecting the larger domain a∗C(2R). We couldn’t
have replaced pR by the polynomial pR/2 (which is the one canceling the λ-singularities along
the hyperplanes intersecting a∗C(R)) because of the application of Corollary 4.3 in Lemma
4.7. Indeed, Corollary 4.3 requires holomorphy on some ε-neighborhood of a∗C(R). For
many applications (e.g. inversion formulas and Paley-Wiener type theorems) the important
feature of the estimate in λ ∈ a∗C(R) is its form (1 + |λ|)d(R)eReλ, and not the exact value of
the (non-negative) exponent d(R). Since this form can be achieved in any case, our choice
of working on a∗C(2R) (rather than on a∗C(R+ ε) for some ε > 0) has only been dictated by
the attempt of simplifying the notation.

Example 4.19 (The complex case). If Σ is reduced and mα = 2 for all α ∈ Σ, then the right-hand
side of the inequality in Lemma 4.11 vanishes. Thus our optimal value of c is in this case c = 0
(obtained for any arbitrary r > 1). The explicit form of the Harish-Chandra series Φ(2;λ, a) =
∆(a)−1eλ(log a) (see Example 1.9) shows that we can choose pR ≡ 1 for all R > 0. Since δ(2)1/2 =
δ(1) = ∆, the estimate (51) reduces with c = 0 to

∆(a) |Φ(2;λ, a)| ≤ CR(1 + |λ|)deg pReReλ(log a)

for all a ∈ A+. For R > 0 small enough, Theorem 4.17 yields deg pR = 0. In this case the estimate
is the best possible. For arbitrary R > 0 the values of deg pR found via Theorem 4.17 are positive,
and the term (1 + |λ|)deg pR is in fact superfluous.

Example 4.20 (The rank-one case). In the rank-one case, the system of inequalities in Lemma
4.11 consists of only one inequality when 2α 6∈ Σ+, and of two when 2α ∈ Σ+. We now determine
the infimum c0 of all possible c ∈ [0, 1) which can be used in the estimate (51) for Φ(m;λ, t). Recall
our convention that m2α = 0 is equivalent to 2α /∈ Σ. Using the notation introduced in the proof
of Lemma 4.11, we have

inf
r>1

cα,r =
−1 +

√
1 + (mα + 2m2α) |mα + 2m2α − 2|

mα + 2m2α
,

inf
r>1

c2α,r =
−1 +

√
1 +m2α |m2α − 2|
m2α

and

c0 = max
{

inf
r>1

cα,r, inf
r>1

c2α,r

}
.

Suppose that either Σ is reduced and mα ≥ 2, or Σ is not reduced and m2α ≥ 2. In both
cases mα + 2m2α − 2 ≥ 0, and in the nonreduced case we also have m2α − 2 ≥ 0. Hence c0 =
1− 2/(mα + 2m2α) ∈ [0, 1), and the minimal exponent for δ(m) in the estimates (51) is

1 + c0

2
= 1− 1

mα + 2m2α
∈ [1/2, 1).

Notice that (1+c0)/2 can be arbitrarily close to 1. Moreover it is equal to 1/2 if and only if mα = 2
and m2α = 0 (i.e. in the complex rank-one case).

The wall of A+ ≡ (0,∞) reduces in the rank-one case to the point t = 0. We know already from
Remark 4.18 (c) that the estimate (51) is sharp for t→ +∞. Therefore we only need to compare it
with the asymptotic behavior for t → 0+ deduced by the explicit formula for Φ(m;λ, t). We have
for some constant Cm > 0

δ(m; t)−(1+c0)/2 = [(2 sinh t)mα(2 sinh(2t))m2α ]−(1+c0)/2 ∼ Cmt
“
mα+m2α
mα+2m2α

”
−(mα+m2α)

, t→ 0+.
(53)

The formula for Φ(m;λ, t) in Example 1.8 shows that the asymptotic behavior of the function
Φ(m;λ, t) for t → 0+ can be deduced from the formulas for the analytic continuation of the
hypergeometric function in a neighborhood of ∞. See [6], 2.1.4, (17) and (18), from which one

29



concludes that for some constant C ′m,λ > 0

Φ(m;λ, t)
Γ(1− λ)

∼ C ′m,λt1−(mα+m2α), t→ 0+. (54)

Notice that (mα + m2α)/(mα + 2m2α) = 1 when 2α /∈ Σ. In this case, comparing (54) with (53),
we conclude that the estimates (51) near t = 0+ are sharp. When 2α ∈ Σ, then (mα+m2α)/(mα+
2m2α) = 1−m2α/(mα + 2m2α) ∼ 1 when mα � 2m2α.

When either 0 < mα < 2 for Σ reduced, or 0 < m2α < 2 for Σ nonreduced, the above formula
for c0 becomes more complicated because at least one of the two square roots involved in the
computations does not simplify. We only treat here the situations where (mα,m2α) = (1, 0) and
(mα,m2α) = (2n, 1) (n ∈ N). These multiplicities are geometric: the first case corresponds to
Riemannian symmetric spaces isomorphic to the upper half-plane SL(2,R)/ SO(2); the second to
Riemannian symmetric spaces isomorphic to the complex hyperbolic space SU(n+1, 1)/ SU(n+1).
Also for these multiplicity functions, the exact asymptotic behavior of Φ(m,λ, t) as t→ 0+ can be
read off from [6], 2.1.4 (18). When (mα,m2α) = (1, 0), then

Φ((1, 0);λ, t) ∼ Cλ log t, t→ 0+.

Since (c0+1)/2 ∈ [1/2, 1), the estimate (51) cannot be sharp in this case. Suppose then (mα,m2α) =
(2n, 1) with n ∈ N. Then [6], 2.1.4 (18) yields (as in the general case)

Φ((2n, 1);λ, t) ∼ Cn,λt−2n, t→ 0+.

Since

c0 = 1− 1
n+ 1

and
c0 + 1

2
= 1− 1

2(n+ 1)
for all n ∈ N, the error between exponent of the power of t in the estimate (51) near t = 0+ and
the correct asymptotic behavior of Φ((2n, 1);λ, t) as t→ 0+ is 1− (2n+ 1)/(2n+ 2) = 1/(2n+ 2),
which tends to 0 as n→ +∞.

5. Estimates for the Θ-hypergeometric functions

The estimates for the Harish-Chandra series established in Section 4 can be employed for esti-
mating the Θ-hypergeometric functions by means of their defining formula (23).

For R > 0, let a∗C(R) be the domain in a∗C defined in (29). Let Θ ⊂ Π be fixed and define a∗C,Θ(R)
as the set of all λ ∈ a∗C satisfying

|Re〈λ, α〉| < R for all α ∈ 〈Θ〉+,
Re〈λ, α〉 < R for all α ∈ Σ+ \ 〈Θ〉+.

Then a∗C,Θ(R) is the largest WΘ-invariant open subset of a∗C(R). Every λ ∈ a∗C,Θ(R) has the property
that wλ ∈ a∗C(R) for all w ∈ WΘ. Hence we can apply the estimates of the previous section to all
the Φ(m;wλ, a) occurring at the right-hand side of (23). Moreover, a∗C,Θ(R) intersects only finitely
many singular hyperplanes of the function c+

Θ and of the numerator function n−Θ . These singularities
can therefore be removed by multiplying by a suitable polynomial in λ (which will also depend on
Θ and R). See Corollaries 5.2 and 5.4 below. The resulting estimates for the Θ-hypergeometric
functions, initially determined only for a ∈ A+ and for generic λ ∈ a∗C,Θ(R), will then be extended
by continuity and WΘ-invariance to the entire a∗C,Θ(R) and AΘ. When R ranges among the positive
real numbers, the domains a∗C,Θ(R) cover a∗C. Thus our estimates will be uniform in a ∈ AΘ and
locally uniform in λ ∈ a∗C.

Lemma 5.1. Let R > 0, r ∈ R and α ∈ Σ. Suppose the set a∗C,Θ(R) intersects the complex
hyperplane Hr,α = {λ ∈ a∗C : λα = r}.

(a) If α ∈ 〈Θ〉, then |r| < R/〈α, α〉.
(b) If α ∈ Σ+ \ 〈Θ〉+, then r < R/〈α, α〉.
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The next corollary is a straightforward consequence of Lemmas 2.7 and 5.1 and of the classical
asymptotics of ratios of gamma functions: For arbitrarily fixed a, b ∈ C and any small ε > 0 we
have

Γ(z + a)
Γ(z + b)

= za−b
[
1 +O(z−1)

]
(55)

for all z ∈ C with |arg z| ≤ π − ε < π (see e.g. [6], 1.18(4)). For R > 0 and α ∈ Σ we shall employ
the notation

Rα :=
[

R

〈α, α〉

]
,

where [x] denotes the integer part of x ∈ [0,+∞).

Corollary 5.2. Suppose R > 0. Then the set a∗C,Θ(R) intersects only finitely many singular hyper-
planes of the function c+

Θ (m;wλ) for all w ∈WΘ. More precisely, set

πΘ,R(λ) :=
∏

α∈〈Θ〉i

Rα∏
n=0

(λα + n). (56)

Then πΘ,R is a WΘ-invariant polynomial function of λ ∈ a∗C with the property that πΘ,R(λ)c+
Θ (m;wλ)

is holomorphic in a∗C,Θ(R) for all w ∈ WΘ. Moreover, there are positive constants CΘ,R,m and
r(Θ, R,m) such that ∣∣πΘ,R(λ)c+

Θ (m;wλ)
∣∣ ≤ CΘ,R,m(1 + |λ|)r(Θ,R,m)

for all λ ∈ a∗C,Θ(R) and all w ∈WΘ.

Let R > 0 be fixed. By definition, the singularities of c−Θ in a∗C,Θ(R) are (counted with multi-
plicities) among those of n−Θ . By Theorem 3.5, this holds also for the Θ-hypergeometric functions
ϕΘ(m;λ, a). The singularities of n−Θ listed in Lemma 2.7 together with Lemma 5.1 yield the follow-
ing corollary.

Corollary 5.3. Suppose R > 0. Then a∗C,Θ(R) intersects only finitely many singular hyperplanes
of the numerator function n−Θ (m;λ). More precisely, let α ∈ Σ+

i \ 〈Θ〉
+
i . Then a∗C,Θ(R) intersects:

(a) no hyperplanes H−mα
2

+(2n−1),α (n ∈ N), if R ≤ 〈α, α〉(1 − mα/2) (which is possible only
when mα < 2);

(b) at most the hyperplanes H−mα
2

+(2n−1),α with n = 1, 2, . . . , Rα,1 , if R > 〈α, α〉(1 −mα/2),

where Rα,1 :=
[

1
2

(
mα
2 + R

〈α,α〉 + 1
)]

;
(c) no hyperplanes H−mα

2
−m2α+2n,α (n ∈ N), if R ≤ 〈α, α〉(2−mα/2−m2α) (which is possible

only when mα/2 +m2α < 2);
(d) at most the hyperplanes H−mα

2
−m2α+2n,α with n = 1, 2, . . . , Rα,2 , if R > 〈α, α〉(2−mα/2−

m2α), where Rα,2 :=
[

1
2

(
mα
2 +m2α + R

〈α,α〉

)]
.

We set Rα,1 := 0 in case (a) of Corollary 5.3, and Rα,2 := 0 in case (c). With the given Rα,1 and
Rα,2 for the cases (b) and (d) and with the usual convention that empty products are equal to 1,
we define

n−Θ,R(m;λ) :=
∏

α∈Σ+
i \〈Θ〉

+
i

Rα,1∏
n1=1

(
−λα

2
− mα

4
− 1

2
+ n1

) Rα,2∏
n2=1

(
−λα

2
− mα

4
− m2α

2
+ n2

)
. (57)

Corollary 5.4. Suppose R > 0 is fixed. Then n−Θ,R(m;λ) is a WΘ-invariant polynomial function
in λ ∈ a∗C with the property that

n−Θ,R(m;λ)ϕΘ(m;λ, a)
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is holomorphic in a∗C,Θ(R) for all a ∈ AΘ. Moreover, there are positive constants C ′Θ,R,m and
r′(Θ, R,m) such that ∣∣n−Θ,R(m;λ)c−Θ (m;λ)

∣∣ ≤ C ′Θ,R,m(1 + |λ|)r′(Θ,R,m)

for all λ ∈ a∗C,Θ(R).

Proof. The function n−Θ,R(m;λ)ϕΘ(m;λ, a) is holomorphic in a∗C,Θ(R) when so is the function
n−Θ,R(m;λ)n−Θ (m;λ). Using (21) and the functional relation zΓ(z) = Γ(z+ 1), one easily verifies the
equality

n−Θ,R(m;λ)n−Θ (m;λ) =
∏

α∈Σ+
i \〈Θ〉

+
i

Γ
(
−λα

2
− mα

4
+

1
2

+Rα,1

)
Γ
(
−λα

2
− mα

4
− m2α

2
+ 1 +Rα,2

)
.

(58)
The conditions defining Rα,1 and Rα,2 ensure then that the product (58) is nonsingular in a∗C,Θ(R).

The final estimate is a straightforward consequence of (55).

Theorem 4.17 proves estimates for the Harish-Chandra series Φ(m;λ, a) for all λ ∈ a∗C(R) and
a ∈ A+: multiplication by the polynomial pR(λ) of (40) cancels all λ-singularities of Φ(m;λ, a) in
a∗C(R); multiplication by δ(m; a)(c+1)/2, for a suitable c ∈ [0, 1), cancels the singularities along the
walls of A+. We make pR(λ) invariant under WΘ by defining

pΘ,R(λ) :=
∏

w∈WΘ

pR(wλ). (59)

Then pΘ,R(λ) is a polynomial in λ of degree deg pΘ,R = |WΘ| deg pR. Moreover, pΘ,R ≡ 1 whenever
so is pR. By restricting the variable λ to the WΘ-invariant domain a∗C,Θ(R) ⊂ a∗C(R), we can extend
Theorem 4.17 to Φ(m;wλ, a) for all w ∈WΘ and obtain for all a ∈ A+ and λ ∈ a∗C,Θ(R)∣∣∣pΘ,R(λ)δ(m; a)(c+1)/2Φ(m;wλ, a)

∣∣∣ ≤ CR,c,m(1 + |λ|)|WΘ| deg pRe(cρ(m)+Rewλ)(log a). (60)

The right-hand side of (60) can be made WΘ-invariant by replacing Rewλ(log a) with

ReWΘλ(log a) := max
w∈WΘ

Rewλ(log a)

and a ∈ A+ with the element aΘ of the WΘ-orbit of a lying in A+, that is

{aΘ} := WΘa ∩A+. (61)

Notice that ReWΘλ(log a) = ReWΘλ(log aΘ) for all λ ∈ a∗C and α ∈ AΘ. Combining all estimates
proven in this section, we reach the following estimate for the Θ-hypergeometric functions.

Theorem 5.5. Suppose m ∈ M+ and R > 0. Let πΘ,R(λ), pΘ,R(λ), n−Θ,R(m;λ) be the polynomials
defined in (56), (59) and (57), respectively. Let δ(m; a) be defined by (2). Finally, let c ∈ [0, 1) be
the constant (depending only on the multiplicity function m) which can be computed from Lemma
4.11. Then there are constants CΘ,R,c,m > 0 and d(Θ, R,m) ≥ 0 such that∣∣∣πΘ,R(λ)pΘ,R(λ)n−Θ,R(m;λ)δ(m; a)(c+1)/2ϕΘ(m;λ, a)

∣∣∣ ≤ CΘ,R,c,m(1+|λ|)d(Θ,R,m)e(cρ(m)+ReWΘλ)(log aΘ)

(62)
for all a ∈ AΘ and λ ∈ a∗C,Θ(R).

We can choose pΘ,R ≡ 1 for all sufficiently small R > 0 (e.g. R ≤ 1/(2Q2) with Q as in (38)).
Moreover, we have n−Θ,R ≡ 1 for all R when Θ = Π, and πΘ,R ≡ 1 for all R when Θ = ∅.

Proof. For all a ∈ A+ and for generic λ ∈ a∗C the Θ-hypergeometric function ϕΘ is defined by (23),
which implies the equality

πΘ,R(λ)pΘ,R(λ)n−Θ,R(m;λ)δ(m; a)(c+1)/2ϕΘ(m;λ, a)

=
[
n−Θ,R(m;λ)c−Θ (m;λ)

] ∑
w∈WΘ

[
πΘ,R(λ)c+

Θ (m;wλ)
][
pΘ,R(λ)δ(m; a)(c+1)/2Φ(m;wλ, a)

]
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Corollaries 5.4 and 5.2 together with (60) prove the required estimate (62) for generic λ ∈ a∗C,Θ(R)
and a ∈ A+. The left-hand side of (62) is a holomorphic function of λ ∈ a∗C,Θ(R) by Corollary
5.4. Moreover, it is continuous and WΘ-invariant in a ∈ AΘ. The estimate therefore extends by
continuity for all λ ∈ a∗C,Θ(R) and a ∈ AΘ.

From Theorem 5.5 we deduce new estimates for the spherical functions on a NCC symmetric
space G/H. We assume the notation of Chapter 8 in [20]. In particular, we denote by Σ0 the set
of compact roots, with Weyl group W0, and by Σ+

0 a suitable choice of positive compact roots.
Let c0

max = (W0 · a+)0 be the interior of the maximal cone associated with the causal structure,
and let S0 := H exp(c0

max)H. A spherical function ϕ : S0/H → C is uniquely determined by its
W0-invariant restriction to exp(c0

max). We denote by a0 the unique element of the W0-orbit of
a ∈ exp(c0

max) lying in A+ and set ReW0λ(log a) := maxw∈W0 Rewλ(log a). As common in this
context, we write δ(a) instead of δ(m; a) and ρ instead of ρ(m).

Corollary 5.6. Let ϕλ : S0/H → C denote the spherical function of spectral parameter λ ∈ a∗C on
the NCC symmetric space G/H. Let c ∈ [0, 1) be the constant (depending only on the multiplicities
of G/H) from Lemma 4.11. Suppose R > 0 and define a∗C,0(R) as the set of λ ∈ a∗C with |Re〈λ, α〉| <
R for all α ∈ Σ+

0 and Re〈λ, α〉 < R for all α ∈ Σ+ \ Σ+
0 . Then there is a polynomial qR(λ) and

constants CR,c > 0 and d(R) > 0 such that∣∣∣qR(λ)δ(a)(c+1)/2ϕλ(a)
∣∣∣ ≤ CR,c(1 + |λ|)d(R)e(cρ+ReW0λ)(log a0)

for all a ∈ exp(c0
max) and λ ∈ a∗C,0(R) .

The polynomials πΘ,R(λ)and pΘ,R(λ) appearing on the left-hand side of (62) are in fact unnec-
essary. They would allow n−Θ,R(m;λ)ϕΘ(m;λ, a) to have singularities in λ ∈ a∗C,Θ(R), but we know
from Corollary 5.4 that this function is holomorphic in a∗C,Θ(R) for all a ∈ AΘ. It is possible to
apply Corollary 4.3 and improve the estimates in λ by removing these superfluous polynomials, but
in doing so we somehow worsen the estimates in the a-variable for large a.

Corollary 5.7. Keep the notation of Theorem 5.5. Then there are constants εR > 0 and d′(Θ, R,m) ≥
0 with the following property: For every ε ∈ (0, εR] there is a constant CΘ,R,c,m,ε > 0 such that∣∣∣n−Θ,R(m;λ)δ(m; a)(c+1)/2ϕΘ(m;λ, a)

∣∣∣ ≤ CΘ,R,c,m,ε(1 + |λ|)d′(Θ,R,m)e(cρ(m)+ReWΘλ)(log aΘ)+ε|log a|

(63)
for all a ∈ AΘ and λ ∈ a∗C,Θ(R).

Proof. Let εR > 0 be chosen so that the εR-neighborhood a∗C,Θ(R)εR of a∗C,Θ(R) is contained in
a∗C,Θ(2R). Then a∗C,Θ(R)ε ⊂ a∗C,Θ(2R) for all ε ∈ (0, εR]. The estimate of Theorem 5.5 in the larger
domain a∗C,Θ(2R) gives for all a ∈ AΘ and λ ∈ a∗C,Θ(2R)∣∣∣qΘ,R(λ)n−Θ,2R(m;λ)δ(m; a)(c+1)/2ϕΘ(m;λ, a)

∣∣∣ ≤ CΘ,2R,c,m(1 + |λ|)d(Θ,2R,m)e(cρ(m)+ReWΘλ)(log aΘ)

where

qΘ,R(λ) := πΘ,2R(λ)pΘ,2R(λ)
n−Θ,2R(m;λ)
n−Θ,R(m;λ)

is a polynomial. For fixed a ∈ AΘ, consider the elements w log aΘ for w ∈ WΘ. They satisfy
|w log aΘ| = |log a| for all w. The required inequality is obtained by applying Corollary 4.3 to the
holomorphic function H(λ) := qΘ,R(λ)n−Θ,2R(m;λ)δ(m; a)(c+1)/2ϕΘ(m;λ, a), the polynomial qΘ,R(λ)
and the elements w log aΘ.

Remark 5.8. (a) When Θ 6= ∅, the estimates of Theorem 5.5 and Corollary 5.7 are not sharp in
many senses. In fact, they are even getting worse when the Θ-hypergeometric functions are
becoming more regular. This can be observed at three points. First, the domain a∗C,Θ(R)
for the variable λ on which the estimates hold is getting smaller when Θ increases. In
particular, it is always a compact subset of a∗C in the most regular case Θ = Π. Second, the
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term δ(m; a)(c+1)/2 is independent of Θ. It is necessary for the case Θ = ∅, but completely
superfluous in the case Θ = Π. The Θ-hypergeometric function ϕΘ is regular on AΘ. This
suggests that the correct factor should be

δΘ(m) :=
∏

α∈Σ+\〈Θ〉+

∣∣eα − e−α∣∣mα .
Third, the polynomial factor in λ on the right-hand side of the estimates is unnecessary
for Θ = Π (see below). However, being of polynomial nature, this additional factor gives
no problems in most of the applications. The estimates of Theorem 5.5 and Corollary 5.7
are nevertheless the first piece of information about the behavior of the Θ-hypergeometric
functions for all values of the spectral parameter along the walls of AΘ, also for the geometric
case of spherical functions on NCC spaces. The behavior predicted along the walls will be
good enough to apply the Θ-hypergeometric Fourier transform to functions without compact
support in AΘ.

(b) In Proposition 6.1(1) and Theorem 3.15 of [33], Opdam has proven estimates for the hy-
pergeometric functions associated with root systems. We state them for the functions ϕΠ,
which differ from the hypergeometric functions for root system only by a constant factor:
Suppose m ∈M+ is fixed. Then

|ϕΠ(m;λ, a)| ≤ |W |1/2 c+
Π (m; ρ(m)) emaxw∈W Re(wλ(log a)) (64)

for all a ∈ A.
Opdam could even extend the estimates (in a slightly more complicated version) to a

tubular neighborhood of A in AC. See [33], Proposition 6.1(2).
The proving techniques of Opdam’s estimates are very interesting: he deduces the results

for the hypergeometric functions from the estimates for another family of eigenfunctions of
the Dunkl-Cherednik operators, which he calls the non-symmetric hypergeometric functions.
The Dunkl-Cherednik operators are differential-reflection operators of first order, and this
allows Opdam to apply a clever trick to get the required estimates in the non-symmetric
case. The hypergeometric functions are obtained from the non-symmetric hypergeometric
functions by averaging over W , and this easily yields the estimates reported in (64). We
refer to Section 3 in [33] and Section 7 of [34] for further details.

The geometric interpretation of Opdam’s non-symmetric hypergeometric functions in
the Riemannian case is to our knowledge still an open problem. The construction of the
non-symmetric hypergeometric functions in the context of Θ-hypergeometric functions is a
challenging project with interests also for the geometric case of NCC symmetric spaces.

(c) In the geometric context of Riemannian symmetric spaces, the so-called Harish-Chandra
estimates provide sharp estimates for the spherical functions. Their proof employs both the
integral formulas and the system of differential equations. The integral formulas provide
shift inequalities which reduce to the estimation of the spherical functions for the spectral
parameter λ = 0. Similar techniques of the Riemannian case cannot be applied in the
context of hypergeometric functions associated with root systems (and therefore in the
general context of Θ-hypergeometric functions) because of the absence of integral formulas.
In fact, they cannot be applied even in the geometric setting of the NCC symmetric spaces,
where explicit integral formulas are given only on a certain subset of a∗C. For arbitrary
values of the spectral parameter λ (among them for λ = 0), these integral formulas have
been recently extended in [28] by the method of meromorphic continuation via Bernstein-
Sato polynomials. They are however not completely explicit due to insufficient information
on the Bernstein-Sato polynomials and their corresponding differential operators. The
estimates for the spherical functions deduced from them in [2] are consequently not sharp.
For instance they cannot predict any behavior of the spherical functions along the walls of
exp(cmax).
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Theorem 5.5 implies that for all λ ∈ a∗C the function

ϕΘ(m;λ, a)
n−Θ (m;λ)

δ(m; a)

vanishes along the walls ofAΘ. This property ensures that the integral defined the Θ-hypergeometric
transform (3) converges outside of the λ-singular set of ϕΘ also when applied to functions without
compact support in AΘ. Indeed, since (1 − c)/2 > 0, we can even admit some singularity for f
along the walls of AΘ. We have for instance the following proposition, which applies in particular
to the spherical transform on NCC symmetric spaces.

Proposition 5.9. Let m ∈ M+ and Θ ⊂ Π be fixed. Suppose f is a WΘ-invariant function such
that δ(m)(1−c)/2f is continuous and compactly supported in AΘ. Then

(a) The Θ-hypergeometric Fourier transform FΘf(m;λ) is a WΘ-invariant meromorphic func-
tion of λ ∈ a∗C. Its singularities are located (counting multiplicities) in the polar set of the
numerator function n−Θ (m;λ). When Σ is reduced, then all singularities are simple poles.

(b) Suppose Σ is reduced and m is an even multiplicity function. Let e−Θ (m;λ) be the polynomial
function of λ ∈ a∗C defined in (25). Then e−Θ (m;λ)FΘf(m;λ) is a WΘ-invariant entire
function of λ ∈ a∗C.

Remark 5.10. Since for A+ 3 a→ +∞
δ(m; a)(c+1)/2 ∼ e(c+1)ρ(m)(log a),

we obtain, for almost all λ and for a certain constant CR,λ,m > 0,

ϕΘ(m;λ, a) . CR,λ,me
(ρ(m)+WΘλ)(log a)

whenever λ ∈ a∗C,Θ(R) and A+ 3 a→ +∞. This suggests the possibility for the Θ-hypergeometric
Fourier transform of a Schwartz space theory in which, as in the Riemannian case, the correct
definition of rapid decrease of a function f requires that for every m ∈ N

f(a) = O
(
e−ρ(m)(log a)(1 + | log a|)m

)
for a ∈ A+ (see e.g. [9], §6.1).
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