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Results

▪ Be able to co-infer demographic histories introduced in the simulations.

▪ Improve models by exploring further deep learning architectures or summary statistics.

▪ Explore other tree inference algorithms such as argweaver [4] and relate [5].

▪ For the model to be used on real human data, integrate other parameters such as natural
selection or migration.

The summary statistics calculated on the inferred trees followed identical trends to those
calculated on the pseudo-real trees, that is key to develop the ABC approach.

We checked to what extent the tree inference process could introduce bias into our imbalance
indices. Although an overestimation of the imbalance is produced, the statistics vary in the
same direction between the inferred and pseudo-real trees.

Both models show a good ability to
infer the intensity of the CTRS on our
simulations.

Conclusion

Future works:

We compared the predictions of the two models on a test dataset of 200 scenarios :

The ABCRF model outperformed the
SPIDNA model on our simulations,
and is better on the low and high
value ranges of 𝛼.

They exhibit increased difficulties in
prediction for low values of 𝛼 and to a
lesser extent for high values.

The two competing approaches show a good ability to infer CTRS on genomic data. Although
ABCRF outperformed on simulations, they are both worth investigating, especially under more
complex evolutionary histories.

Data Simulation

Under CTRS, there is a positive correlation between
the progeny size of parents and children.

Genealogical trees along the genome are imbalanced under this process, which we can
measure through imbalance indices.

Objective: develop and evaluate methods to infer the intensity of the CTRS (𝛂) from genomic
data.

The Cultural Transmission of Reproductive Success (CTRS) is one of the various cultural
processes which can impact human genetic evolution.

Introduction

In order to create a labelled database to train our models, we sample 1000 scenarios from the
prior of 𝛼. The forward-in-time simulator SLiM [1] is used to simulate populations while
integrating the strength of the CTRS (𝛼) given these scenarios.

The probability 𝑝𝑖 for a given couple 𝑖 of being chosen as parent for an individual of the new
generation is given by:

where 𝑠𝑖 is the average sibship size of the two members of couple 𝑖, 𝛼 the parameter
controlling the intensity of CTRS and 𝑏 the parameter controlling the variance in reproductive
success.

𝑝𝑖 =
𝛾𝑖 𝑏 × 𝑠𝑖

𝛼

σ
𝑗=1
𝑁𝑐 𝛾𝑗 𝑏 × 𝑠𝑗

𝛼

Approximate Bayesian Computation approach

Approximate Bayesian computation (ABC) is a frequently used likelihood-free inference
method in population genetics. It relies on summary statistics that simplify our high-
dimensional genomic data.

The ability to extract meaningful summary statistics in our data to infer the parameter of
interest 𝛼 is key. In our case we can use, among other statistics, the imbalance indices. We
compute these indices on inferred trees, using tsinfer [2], a step that could yield biases in our
indices.
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The other scenario parameters are:

▪ Genome size : 2 × 10-6 bp
▪ Mutation rate : 1.45 × 10-8 per bp
▪ Recombination rate : 1 × 10-8 per bp

▪ Sample size : 20 individuals
▪ Ne : 1000 individuals
▪ CTRS length : 10 generations

Simulations output the genomes in the form of Single Nucleotide Polymorphism (SNP)
matrices (individuals in row and loci in column) where 0 and 1 correspond to the two possible
alleles.

Deep Learning approach

We use a neural network 
architecture called SPIDNA
developed by  Sanchez et al. 
[3] that is:
• adaptive to the number 

of SNPs and haplotypes
• invariant to haplotype 

permutation
• able to combine relatives 

positions and SNPs

An alternative to summary statistics is based on deep learning to automatically extract
relevant information from raw genomic data.

MSEABCRF = 0.024

MSESPIDNA = 0.067
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