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Abstract

These notes provide an introduction to the algebra and geometry of differential oper-

ators and jet bundles. Their point of view is guided by the leitmotiv that higher-spin

gravity theories call for higher-order generalisations of Lie derivatives and diffeomorphisms.

Nevertheless, the material covered here may be of general interest to anyone working on

topics where geometrical (coordinate-free, global, generic) and mathematically rigorous

definitions of differential operators are required.
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1 Introduction

The recurrent theme behind the higher-spin extension of usual spacetime symmetries can be

summarised as follows: Replace everywhere possible “vector fields” by “differential operators”.

For instance, a by now standard recipe for constructing the higher-spin generalisation of a

spacetime symmetry algebra (say of isometries or conformal transformations) is by allowing for

higher-derivative differential operators as extra symmetry generators beyond vector fields. More

precisely, higher-spin algebras of rigid symmetries are higher-order extensions of the isometry (or

conformal) algebra obtained by taking its enveloping algebra (with respect to some irreducible

representation). The gauging, à la Cartan, of such higher-spin algebras leads to higher-spin

gravity theories.1 Furthermore, another standard recipe in higher-spin gravity is to pack the

tower of metric-like fields of all ranks into a single generating function on the cotangent bundle,

which can be interpreted as the symbol of a differential operator. Accordingly, higher-spin

gravity calls for higher-order generalisations of Lie derivatives and diffeomorphisms. This issue

motivates this introduction to the mathematics (algebra and geometry) of differential operators.

Coordinate-free formulations of jet bundles2 and differential operators3 are reviewed here

in a self-contained way. The leitmotiv behind these notes is to view differential operators (re-

spectively, jet fields) as natural higher-derivative generalisations of vector fields (respectively,

differential one-forms). Although this material is standard, the way some notions are presented

and some side observations might be original, to the best of the author’s knowledge.

1.1 Plan

The plan of this paper is as follows:

Section 2 initiates these notes with a general outlook on differential operators as natural

generalisations of vector fields. Pragmatic readers may jump directly to Section 3 where the

technical part is actually starting.

The section 3 aims to immediately introduce the reader to the modern algebraic approach

to geometry where one shifts the focus from the manifold itself to the algebra of functions on it.

In particular, the one-to-one correspondence between the points of a manifold and the maximal

ideals (or, dually, the multiplicative functionals) of the corresponding algebra of functions is

reviewed. This abstract detour proves to be necessary in order to address the geometry of

1Many pedagogical reviews on higher-spin gravity are available by now: advanced ones [1] as well as introduc-
tory ones [2]. Two books of conference proceedings also offer a panorama of this research area [3].

2A classical textbook on the subject is [4]. Other textbooks covering the geometry of jet bundles are [5, 6, 7]
while shorter introductions are [8].

3An inspiring source on the algebro-geometric approach to smooth manifolds, differential operators and jet
bundles is the classical textbook [9]. A concise pedagogical introduction is [10].
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differential operators later on.

Similarly, the modern definition of vector fields on a manifold as derivations of the algebra

of functions is adopted in Section 4. The one-to-one correspondence between diffeomorphisms

and automorphisms of the algebra of functions is also discussed. The (co)tangent bundles are

adressed along similar lines and the structure of symplectic (respectively, Schouten) algebra for

the space of functions on the cotangent bundle (respectively, symbols of differential operators)

is presented.

First-order differential operators and the algebraic structure they span are introduced in

Section 5. This section prepares the ground for the transition from first-order to higher-order

differential structures in the next section. First-order (co)jets are also introduced.

Section 6 is the main goal of these notes. There, jets (respectively, cojets) are introduced

as higher-order generalisations of cotangent (respectively, tangent) vectors. Various standard

definitions of differential operators are reviewed such as the elegant algebraic definition due

to Grothendieck. In order gain some geometrical intuition and stress the analogy with vector

fields, a definition of differential operators as sections of cojet bundles is presented. Finally, the

almost-commutative structure of the algebra of differential operators is emphasised.

1.2 Teaser

Wishfully thinking, higher-spin gravity might provide a fresh viewpoint on some modern geo-

metrical notions perhaps less familiar to theoretical physicists, as well as a new playground for

applications of these conceptual tools. In order to proceed step by step, most of these notes

will be devoted to an introduction for physicists to some modern (though, nowadays, textbook)

viewpoints and developments in differential geometry, some of which could turn out to be useful

in higher-spin gravity.

More specifically, these lecture notes will be divided into four parts providing, respectively,

introductions to the following subjects:

‚ [Part I] the geometry of differential operators

‚ [Part II] the universal enveloping algebras of Lie algebroids

‚ [Part III] the general theory of connections on fibre bundles

‚ [Part IV] higher-order frames and jet groups
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1.3 Disclaimer

A first disclaimer is that these lecture notes are not intended for the pragmatists. They will

be disappointed by the content since the material reviewed here does not necessarily provide

tools for performing new calculations. In fact, a second disclaimer is that, despite its title, these

lecture notes will not review nor address any practical problem in higher-spin gravity. The hope

behind these lecture notes is rather that some better understanding of the geometry of higher-

order differential operators and the corresponding potential generalisations of connections might

contribute to foster some advances in higher-spin gravity. For instance, the subtleties encoun-

tered around the proper functional classes of infinitesimal vs finite automorphisms of the algebra

of differential operators might have to do with difficulties faced by higher-spin interactions, such

as their elusive (non-)locality properties. Also, the non-tensorial nature of cojets might be at the

root of the problem of minimal coupling higher-spin gauge fields to gravitational backgrounds,

in the metric-like formulation.
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2 Enveloping geometry: Differential operators as higher

vector fields

To start these notes, let us summarise its main emphasis and viewpoint in non-technical terms.

As is well-known, one of the leitmotives of modern theoretical physics is that fundamental

interactions are governed by symmetry principles. Accordingly, one will try to motivate via

symmetries the relevance of some higher-order structures on a manifold, such as the (co)jets that

generalise the (co)tangent vectors and probe the differential structure beyond first-order. More

specifically, higher-order differential operators will be introduced as natural generalisations (or

better, as refinements, in the sense that they probe further the smooth structure of the manifold)

of vector fields seen as infinitesimal symmetries of a smooth manifold.

Geometric symmetries, i.e. finite or infinitesimal symmetries of a smooth manifold such as

diffeomorphisms or vector fields, have an algebraic counterpart as automorphisms or, respectively,

derivations of the algebra of functions on the (possibly fibred) manifold, i.e. linear transforma-

tions which are compatible with the pointwise product structure of this algebra. Indeed, it is

well known that vector fields can be thought of, geometrically, as infinitesimal diffeomorphisms

(i.e. infinitesimal symmetries of the manifold) or, algebraically, as derivations (i.e. infinitesimal

symmetries of the algebra of functions on the manifold). More generally, the notion of infinitesi-

mal symmetries of a fibred manifold is nowadays captured at the algebraic level by Lie-Rinehart

algebras (e.g. the algebra of first-order differential operators) and at the geometrical level by

Lie algebroids, i.e. vector bundles endowed with an anchor and a Lie bracket on their space

of sections (a paradigmatic example being the tangent bundle whose sections are precisely the

vector fields).

In field theory, a standard generalisation of geometrical symmetries are projective representa-

tions (the transformation of a function comes not only from a transformation of the coordinates

but also with an extra multiplication by a factor) that correspond infinitesimally to first-order

differential operators (sums of a vector field plus a function). The latter can be seen as endo-

morphisms (i.e. linear transformations) compatible with the first-order structure of the space of

functions. However, from this algebraic perspective there is no compelling reason to stop at first

order if one considers smooth functions. In this sense, higher-order differential operators can

be thought of as infinitesimal symmetries of the space of functions probing further the smooth

structure of the manifold.

There is actually a systematic procedure for performing this higher-order generalisation: pass-

ing to the universal enveloping algebra of the corresponding Lie-Rinehart algebra of infinitesimal

symmetries. For instance, the associative algebra of differential operators (ô infinitesimal higher-

order symmetries) arises as the universal enveloping algebra of the Lie algebra of vector fields (ô
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infinitesimal diffeomorphisms). In more physical terms, the algebra of differential operators can

be seen as a non-commutative algebra of functions on the quantum phase space, whose classical

limit is a commutative algebra of functions on phase space. In more mathematical terms, the

associative algebra of differential operators is called “almost-commutative”, in the sense that the

product of two differential operators has order strictly higher than their commutator. In other

words, differential operators commute modulo lower order terms.

The various steps of increasing abstraction that one performs when passing from the manifold

itself to its almost-commutative algebra of differential operators can be summarised as follows:

Manifold
duality
ðñ Commutative algebra of functions

derivations
ðñ Lie-Rinehart algebra of 1st-order differential operators

enveloping
ðñ Almost-commutative algebra of differential operators

The arrow “duality” illustrates the modern algebraic view on geometry where a manifold is

equivalently described in terms of the commutative algebra of functions on this manifold. The

arrow “derivations” stands for the addition of vector fields to the previous algebra of functions,

thereby leading to the vector space of 1st-order differential operators endowed with a structure

of Lie algebra via the commutator. The arrow “enveloping” corresponds to the step where one

removes the bound on the number of derivatives, thereby obtaining the associative algebra of

differential operators.

But one can also proceed backward and reconstruct step by step the manifold itself from its

almost-commutative algebra of differential operators by considering subalgebras as follows:

Almost-commutative algebra of differential operators

1st-order sub.
ðñ Lie-Rinehart algebra of 1st-order differential operators

0th-order sub.
ðñ Commutative algebra of functions

max. ideals
ðñ Manifold

However, there is a price to pay to interpret differential operators (with derivatives higher

than one) as infinitesimal symmetries of the algebra of functions: one should relax the com-

patibility with the pointwise product, in so far as higher-order differential operators are not

derivations of the commutative algebra of functions. Nevertheless, in a sense they preserve its

module structure. Still, one may consider the commutative algebra of functions to be just the

tip of the iceberg, a small subalgebra of the almost-commutative algebra of differential operators.
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While it is by now standard to admit that all the geometric information about a manifold is

equivalently encoded into the algebraic properties of its commutative algebra of functions (on

the manifold), one might go one step further and stress that it is also encoded into the almost-

commutative algebra of differential operators on the manifold, i.e. to adopt the following point

of view:

Manifold ðñ Commutative algebra of functions

ðñ Lie-Rinehart algebra of vector fields (1)

ðñ Almost-commutative algebra of differential operators

For the sake of simplicity, rather than looking at finite automorphisms one may rather start

by focusing on the infinitesimal automorphisms of the algebras, i.e. their derivations. On the

one hand, all derivations of the commutative algebra of functions on a manifold are outer and

provide an algebraic definition of vector fields on the manifold. On the other hand, all derivations

of the Lie algebra of vector fields are inner. The Lie bracket of two vector fields identifies with

their commutator and defines the Lie derivative of a vector field along another one. Analogously,

all derivations of the almost-commutative algebra of differential operators are inner, at least

locally. In this sense, the adjoint action of any differential operator on the associative algebra of

differential operators provides a natural higher-order generalisation of the Lie derivative along a

vector field.

However, as can be expected from the equivalence between all the above notions (in a sense

made mathematically precise via the generalised Milnor exercises reviewed in the following sec-

tions), the almost-commutative algebra of differential operators must have (essentially) the same

collection of symmetries as the commutative algebra of functions. Locally, the automorphisms of

the almost-commutative algebra of differential operators are indeed in one-to-one correspendence

with the automorphisms of the commutative algebra of functions. Moreover, diffeomorphisms

are (exactly) in one-one-correspondence with automorphisms of the commutative algebra of

functions. This means that the automorphisms of the almost-commutative algebra of differen-

tial operators remain too narrow to look for a higher-order generalisation of diffeomorphisms.

Pursuing the above analogy and motivated by higher-spin gravity, one may consider some-

what larger classes of automorphisms that are called higher-spin diffeomorphisms. In more phys-

ical terms, higher-spin diffeomeorphisms can be thought of as the quantum version of canonical

transformations.4 Indeed, in a sense higher-spin diffeomeorphisms generalise the usual diffeo-

4Let us stress that the word “quantum” should be taken in a mathematical technical sense, not in a physical
literal sense. As in deformation quantisation, “quantum” must be understood here as synonymous of “associative”
while “classical” is synonymous of “Poisson”.
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Geometry Manifold Zeroth-order First-order Higher-order Infinite-order
(smooth) structure structure structure structure

Algebra Maximal Commutative Lie-Rinehart Almost-comm. Associative
spectrum algebra algebra algebra algebra

Elements Points Functions Vector fields Differential Beyond diff.
operators operators

Infinitesimal Infinitesimal Vector 1st-order Differential Beyond diff.
automorphisms diffeos fields diff. ops operators operators
Automorphisms Diffeos Diffeos Diffeos Diffeos Higher-spin

diffeos

Table 1: Algebraic/geometrical structures and their symmetries

morphisms of a manifold in much the same way that canonical transformations generalise the

diffeomorphisms of the configuration space in classical mechanics. Turning back to differential

operators, let us repeat that they can be seen as derivations of the almost-commutative algebra

of functions on the quantum phase space. Since the derivations of commutative algebras of func-

tions can be interpreted as vector fields on the corresponding manifold, one may in this sense

assert that differential operators are nothing but some specific class of Hamiltonian vector fields

on the quantum phase space. Moreover, differential operators are infinitesimal higher-spin dif-

feomorphisms, so with this terminology in mind one might also view them as higher-spin vector

fields. These side comments may be taken as possible justifications for the provocative subtitle

of this section (“Differential operators as higher vector fields”) since there are several ways in

which differential operators can be seen as generalisations of vector fields.

This whole philosophical discussion can be summarised in the table 1.
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3 Differential structures of order zero: points and zeroth-

order (co)jets

To any manifold is associated the algebra of functions on it. But the converse is also true, in

the sense that the manifold can sometimes be defined purely in terms of its algebra of functions,

as the infinite family of maximal ideals of this commutative algebra.

Indeed, a possible definition of a point is as a maximal ideal of the algebra of functions on

the manifold. This definition is, unfortunately, very abstract. But it has the virtues of being

at the same time purely algebraic and coordinate-free. This point of view proves to be fruitful

to address the geometry of differential operators who lack some intuitive support (contrarily

to vector fields, which one can always think as infinitesimal flows or as vectors tangent to a

congruence of parametrised curves).

3.1 Maximal ideal: What’s the point?

In order to get a flavor of how this abstract definition of a point is equivalent to more intuitive

ones, consider a smooth manifold M of finite dimension n. Associated with this manifold M

comes the commutative algebra C8pMq of smooth functions on M taking values in a field K (in

practice R here, but one may also replace it by C). The pointwise product will be denoted by ¨

and is defined by the equality

pf ¨ gq|m “ f |m g|m , @m P M , (2)

where f, g : M Ñ K denote two functions on M and the symbol |m stands for the evaluation at

the pointm. When considered as a commutative algebra, the set C8pMq of smooth functions will

often be called the structure algebra, because it encodes algebraically the geometric structure

of the manifold.

Consider a given point m P M . The commutative subalgebra

I0pmq :“ t f P C8pMq : f |m “ 0 u (3)

of functions f vanishing at m is an ideal of the structure algebra C8pMq that will be called

the contact ideal of order zero at m. Indeed, the pointwise product f ¨ g of a function

f P I0pmq vanishing at m with any function g P C8pMq is an element f ¨ g P I0pmq, since

pf ¨ gq|m “ f |m g|m “ 0 .

The quotient

J0
mM :“ C8pMq { I0pmq (4)

8



is called the zeroth-order jet space at the point m. By definition, it is the algebra of functions

on M quotiented by the equivalence relation: f „ g ô f ´ g P I0pmq . In other words, two

functions f and g are equivalent if and only if they take the same value atm: f „ g ô f |m “ g|m .

Such an equivalence class rf s P J0
mM , is called a jet of order zero or zeroth-order jet (or

simply 0-jet) at m. The equivalence class rf s is completely determined by the value of f at

m, so it is simply determined by a number f |m P K. Therefore, the 0-jet space (4) at m is

one-dimensional and isomorphic to K. The field K is a vector space of dimension one over itself.

Therefore the contact ideal I0pmq is of codimension one inside C8pMq since the quotient (4) is

of dimension one. Moreover, a standard theorem of abstract algebra [11, Chap.1] states that a

proper ideal of a commutative algebra is maximal iff the quotient of the commutative algebra by

this ideal is isomorphic to a field. Therefore, the isomorphism J0
mM – K, between the quotient

of the commutative algebra C8pMq by the contact ideal I0pmq and the field K, shows that the

contact ideal I0pmq is of codimension one and maximal in C8pMq.

Retrospectively, the point m P M can be identified with the maximal (or, equivalentely,

codimension-one) ideal I0pmq of the commutative algebra C8pMq of functions on the manifold.

The collection of all maximal ideals of a commutative algebra A is called the spectrum of

maximal ideals of this commutative algebra and will be denoted mpAq. For a compact mani-

fold, the spectrum m
`
C8pMq

˘
– M of maximal ideals of the commutative algebra of smooth

functions on M provides an algebraic reconstruction of the manifold M .5

Example 1 (Polynomials) : Consider the vector space K
n with Cartesian coordinates py1, ¨ ¨ ¨ , ynq

and the commutative subalgebra Kry1, ¨ ¨ ¨ , yns Ă C8pKnq of polynomial functions on K
n where K is

an algebraically closed field. By a theorem of Hilbert (often called the “weak form of Nullstellensatz”,

see e.g. [11, Ex.17,Chap.5]), the maximal ideals I0px1, ¨ ¨ ¨ , xnq Ă Kry1, ¨ ¨ ¨ , yns are the zeroth-order

contact ideals spanned by polynomials vanishing at py1, ¨ ¨ ¨ , ynq “ px1, ¨ ¨ ¨ , xnq, i.e.

I0px1, ¨ ¨ ¨ , xnq :“ tP py1, ¨ ¨ ¨ , ynq “
nÿ

a“1

pya ´ xaqPapy1, ¨ ¨ ¨ , ynq u , (5)

where Pa (a “ 1, ¨ ¨ ¨ , n) are polynomials. The spectrum mpKry1, ¨ ¨ ¨ , yns q of maximal ideals is thus

isomorphic to K
n, which should be seen as an affine space (indeed the origin is not singled out any

more in this construction). In a coordinate-free and basis-independent way, one would consider a vector

space V of finite dimension n P N and the symmetric algebra dpV ˚q over its dual (i.e. the commutative

algebra of totally symmetric multinear forms on V ). The spectrum of its maximal ideals can be taken

as a (rather abstract) definition of the affine space A modeled on the vector space V , as would be done

in algebraic geometry. The symmetric algebra dpV ˚q is then interpreted as the commutative algebra of

polynomial functions on the affine space A. One recovers the previous construction by choosing a basis

5For non-compact manifolds, extra “points at infinity” actually arise as maximal ideals, c.f. the “ghosts”
discussed in [9, Chap.8].
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teau of V and denoting the components of vectors in this basis as the Cartesian coordinates ya (i.e.

y “ yaea P V ). Then V identifies with K
n and the symmetric algebra dpV ˚q of symmetric multilinear

forms α over V ˚,

αpyq “
ÿ

rě0

Ta1¨¨¨are
˚a1 d ¨ ¨ ¨ d e

˚ar , (6)

identifies with the commutative algebra Kry1, ¨ ¨ ¨ , yns of polynomials

P pyq “
ÿ

rě0

Ta1¨¨¨ar y
a1 ¨ ¨ ¨ yar . (7)

From now on, one will treat explicitly the case K “ R (although many statements hold for

K “ C as well). A commutative algebra over R with a unique maximal ideal will be called a

local algebra. According to the algebraic geometry viewpoint, it corresponds to an algebra

of real functions on a space made of a single point. Although this case may look somewhat

exotic, later on it will appear repeatedly as fibres in jet bundles. A paradigmatic example of

local algebra is the commutative algebra of formal power series.

Example 2 (Formal power series) : Consider the commutative algebra RJε1, ¨ ¨ ¨ , εnK of formal power

series in n variables with real coefficients. In contrast with the algebra Rrε1, ¨ ¨ ¨ , εns of polynomials, the

algebra RJε1, ¨ ¨ ¨ , εnK of formal power series is a local algebra: its unique maximal ideal is the subalgebra

mpRJε1, ¨ ¨ ¨ , εnK q of formal power series with vanishing constant term (i.e. with terms which are at least

linear). This fact may look surprising at first sight, but the analogues of the zeroth-order contact ideals

I0px1, ¨ ¨ ¨ , xnq with px1, ¨ ¨ ¨ , xnq ‰ p0, ¨ ¨ ¨ , 0q are not6 proper ideals of RJε1, ¨ ¨ ¨ , εnK. This is related to

the fact all formal power series with non-vanishing constant term are invertible. The algebra of formal

power series can be defined in a coordinate-free way by considering a vector space V of finite dimension

n P N and the commutative algebra of Taylor series at the origin of smooth functions on V . This

commutative algebra will be denoted either dpV ˚q (to stress that it is a completion of the symmetric

algebra dpV ˚q ) or J8
0 V (for consistency with notations to be introduced later). Two remarks are in

order. The linear dual of the vector space dpV q is isomorphic to the vector space mentioned above

dpV ˚q –
`

d pV q
˘˚

. (8)

The commutative algebra dpV ˚q “ J8
0 V is local, hence it must be interpreted as an algebra of functions

over a single point: the origin of V . Again, one recovers the previous construction by choosing a basis

teau of V and denoting the components of vectors in this basis as Cartesian coordinates ya. Then the

6For instance, consider the case n “ 1 of formal power series in the single variable ε. The space I0p1q of
formal power series of the form fpεq “ pε ´ 1qgpεq with gpεq P RJεK (i.e. gpεq “

ř
8

r“0
gr ε

r) is not a proper ideal
in RJεK. In fact, the formal power series gpεq “ p1 ´ εq´1 “

ř
8

r“0
εr P RJεK is such that pε ´ 1qgpεq “ ´1, hence

I0p1q “ RJεK.
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commutative algebra dpV ˚q is spanned by linear forms over dpV q taking the form (6) where infinite

sums are allowed and identifies with the commutative algebra KJy1, ¨ ¨ ¨ , ynK of formal power series

taking the form (7) where infinite sums are allowed.

3.2 Zeroth-order jet bundle

The zeroth-order jet bundle J0M “
Ť

m J0
mM is the reunion of all 0-jet spaces. Let xµ be

local coordinates on M . Then local coordinates on J0M are pxµ, φq. Retrospectively, one may

define the algebra of smooth functions on M as the space ΓpJ0Mq – C8pMq of global sections

of the 0-jet bundle J0M . Indeed a function φ can be identified with a global section of the

bundle J0M since such a section is precisely specified by the values φpxq at each point.

The zeroth-order jet bundle J0M defined above is actually a trivial line bundle over M :

J0M – M ˆ R . (9)

Geometrically, the image σpMq Ă J0M of a global section σ P ΓpJ0Mq of the zeroth-order jet

bundle is nothing but the graph of the corresponding function φ P C8pMq.

3.3 Multiplicative functionals: Again, what’s the point?

In some sense, the dual notion of a maximal ideal I P mpAq of a commutative algebra A with

unit7 over a fieldK is amultiplicative linear form, i.e. a morphism α : A Ñ K of commutative

algebras, that is to say a form on A which (i) is linear and (ii) preserves the product,

αpλ1φ1 ` λ2φ2q “ λ1αpφ1q ` λ2αpφ2q , αpφ1 ¨ φ2q “ αpφ1qαpφ2q (10)

for any two elements φ1 and φ2 of A and any two scalars λ1 and λ2 of K. To be more precise, the

kernel of such a multiplicative linear form is a maximal ideal of codimension-one. Moreover, the

kernel determines uniquely the multiplicative linear form. These facts can be seen as follows.

Proof: Firstly, the kernel of an algebra morphism is an ideal. In particular, the kernel of a multiplicative

linear form is indeed an ideal. Secondly, consider a nontrivial multiplicative linear form α P HompA,Kq,

in other words a non-zero element α P A˚ of the linear dual of the algebra A which is also a morphism of

commutative algebras, i.e. it satisfies (10). Since α is nontrivial by assumption, it is clearly surjective,

Imα “ K. Therefore, its kernel Kerα Ă A is an ideal of codimension-one (and hence maximal) since

A {Kerα – Imα “ K. Any codimension-one ideal is necessarily a maximal proper ideal. Thirdly, let

1A P A denote the unit element. Since K is a field, the algebra morphism property of α implies that

7All associative algebras will be assumed to possess a unit element in this paper.

11



αp1Aq “ 1 (or α “ 0). Any element φ P A decomposes as a sum φ “ λ 1A ` v where λ P K and

v P Kerα. Finally, one has αpφq “ λ.

When A can be interpreted “geometrically” as an algebra of K-valued functions on a “mani-

fold” whose “points” are the multiplicative linear forms on A, then one can interpret the latter

as the functional “evaluation at the corresponding point”.8

3.4 Zeroth-order cojet bundle

A linear form α : C8pMq Ñ K on the structure algebra C8pMq whose kernel is the contact

ideal I0pmq at the point m P M will be called a zeroth-order cojet (or 0-cojet for short) at

m P M . The one-dimensional space of zeroth-order cojets at m will be denoted D0
mM . The

zeroth-order cojet bundle D0M “
Ť

mD0
mM is the reunion of all 0-cojet spaces.

By definition, the zeroth-order cojets at m are linear functionals (on the space of smooth

functions) that vanish on the contact ideal I0pmq, so one can see them as generalised functions

(aka distributions) on M with support at m. More explicitly, let

δm : C8pMq Ñ R : f ÞÑ f |m (11)

denote the functional “evaluation at the point” m, i.e. the Dirac distribution at m defined

by x δm , f y “ f |m for any f P C8pMq. This functional is multiplicative, i.e. it is a morphism

of commutative algebras. Indeed, the definition (2) of the pointwise product of two functions f

and g is precisely such that the evaluation at each point m is an algebra morphism sending the

product of functions to the product of real numbers. Moreover, the kernel of δm is obviously the

maximal ideal I0pmq. The space D0
mM of 0-cojets at m is isomorphic to the dual of the space

J0
mM “ C8pMq{I0pmq – R (12)

of 0-jets at m, that is to say

D0
mM – pJ0

mMq˚ – R . (13)

In fact, the space D0
mM can be thought of as the one-dimensional space spanned by the eval-

uation functional δm. In this vector space, the Dirac distribution δm is singled out as the only

multiplicative linear form among them (because there is a unique linear form α : J0
mM Ñ R such

that αp1q “ 1). The set Hom
`
C8pMq , R

˘
of multiplicative linear forms on the commutative

algebra of smooth functions on M provides an algebraic reconstruction of the manifold M . In

8See [9, Chap.3] for a criterion on commutative algebras over K “ R to be geometric.
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fact, there is a bijection

δ‚ : M
„
Ñ Hom

`
C8pMq , R

˘
: m ÞÑ δm (14)

between the set of multiplicative linear forms on the structure algebra C8pMq and the set of

points of a smooth manifold M . This fact is often called the “Milnor exercise” [12, Problem

1-C] (for a short proof, see e.g. [13, Corollary 35.9]).

Algebraic vs geometric formulation of points

For compact manifolds, the following notions are equivalent:
‚ a point m of a smooth manifold M ,
‚ a multiplicative functional on the commutative algebra C8pMq whose kernel is the contact
ideal I0pmq of order zero at m: the evaluation functional δm P D0

mM

‚ a maximal ideal of the commutative algebra C8pMq: the contact ideal I0pmq of order zero
at m.
For smooth non-compact manifolds, only the first two notions are equivalent.

3.5 Pullback of functions

Let F : M Ñ N be a map from the manifold M (source) to the manifold N (target).

The pullback of a function g P C8pNq on the target by the smooth map F : M Ñ N is

the function on the source defined as the precomposition of g by F

F ˚g :“ g ˝ F P C8pMq . (15)

The pullback by F is the following map between the corresponding structure algebras

F ˚ : C8pNq Ñ C8pMq : g ÞÑ g ˝ F . (16)

It is the dual of the map F : M Ñ N in the sense that it is an algebra homomorphism between

the structure algebras of the corresponding manifolds with the direction of the arrow in F ˚

reversed with respect to the arrow in F : it is a map from the structure algebra C8pNq of the

target manifold to the structure algebra C8pMq of the source manifold.

The pullback operation itself,

˚ : HomSmooth Man.pM,Nq Ñ HomComm.Alg.

`
C8pNq , C8pMq

˘
: F ÞÑ F ˚ , (17)
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is an antihomomorphism (i.e. it reverses the order of multiplication) from the associative alge-

bra of maps between smooth manifolds to the associative algebra of morphisms between their

structure algebras, pF ˝ Gq˚ “ G˚ ˝F ˚. If F is bijective (e.g. a diffeomorphism) then F ˚ also is.

More precisely, pF´1q˚ “ pF ˚q´1 as can be checked from the previous property. More generally,

if F is surjective (e.g. a fibration) then F ˚ is injective.

Along this line, an algebraic definition of a diffeomorphism of a smooth manifold M (or

between two manifolds) is as an automorphism of its structure algebra C8pMq (respectively,

isomorphism) of their structure algebras. This algebraic definition is justified by the following

theorem, sometimes called “Milnor exercise” with a slight abuse of terminology.9

Theorem (Grabowski) : A map Φ : C8pNq
„
Ñ C8pMq between two structure algebras is an

isomorphism of commutative algebras iff it is the pullback of a diffeomorphism F : M
„
Ñ N

between these two manifolds, i.e. Φ “ F ˚.

Therefore, the group of geometric diffeomorphisms of the manifold M and the group of au-

tomorphisms of its structure algebra C8pMq are isomorphic, DiffpMq – AutpC8pMq q. The

above theorem admits a generalisation where the algebra isomorphism (respectively, diffeomor-

phism) is replaced with an algebra homomorphism (respectively, smooth map), c.f. [13, Corollary

35.10], for which the original Milnor exercise [12, Problem 1-C] corresponds to the case when M

is a single point and C8pMq “ R.

9See e.g. [14] for a version of this theorem with extremely mild assumptions.
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4 Differential structures of order one: tangent (co)vectors

As we saw in the previous section, diffeomorphisms of a smooth manifold M can be seen alge-

braically as automorphisms of the structure algebra C8pMq. The infinitesimal automorphisms

of a commutative algebra are its derivations. Vector fields are the infinitesimal generators of

flows on a manifold, i.e. one-parameter groups of diffeomorphisms. Therefore, it is natural to

consider the algebraic definition of vector fields on a manifold as derivations of the commutative

algebra of functions.

4.1 Tangent vector fields as derivations

4.1.1 Derivations

Let V be a vector space. A linear map D : V Ñ V is sometimes called an endomorphism of

the vector space V . The space EndpV q of endomorphisms of V is an associative algebra for the

composition ˝ .

Any associative algebra A with product ‹ can be endowed with a Lie algebra structure via the

commutator r ‹, s as Lie bracket, in which case it will be called the commutator algebra and

denoted A when it is necessary to distinguish it from its associative counterpart. In particular,

the general linear algebra glpV q :“ EndpV q is the space EndpV q of endomorphisms endowed

with a structure of Lie algebra via the commutator r ,̋ s.

A derivation of an algebra A is a linear map D : A Ñ A obeying to the Leibniz rule:

Dpa ‹ bq “ Dpaq ‹ b ` a ‹ Dpbq , @a, b P A . (18)

The subspace derpAq Ă glpAq of derivations is a Lie subalgebra of the general linear algebra of

endomorphisms of the vector space A.

All representations of a Lie algebra g on an algebra A will be assumed to be morphisms

of Lie algebras from g to derpAq. In particular, the adjoint representation of the commutator

algebra of an associative algebra A is the morphism of Lie algebras

ad : A Ñ derpAq : a ÞÑ ada (19)

where

adapbq :“ r a ‹, b s “ a ‹ b ´ b ‹ a , (20)

is a morphism of Lie algebras from the commutator algebra A to the Lie algebra derpAq of

derivations, i.e.

r ada1 ,̋ ada2 s “ adr a1 ‹, a2 s . (21)

15



The image

innpAq :“ adA Ă derpAq (22)

of the adjoint representation (19) is called the Lie subalgebra of inner derivations. One has

the chain of inclusions:

innpAq Ă derpAq Ă glpAq . (23)

To be more explicit, an inner derivation is a derivation D P derpAq of the form D “ ada for

some element a P A. All other derivations, i.e. D P derpAq but D R adA, are called outer

derivations. All nontrivial derivations of a commutative algebra A are outer. They can in fact

be interpreted as vector fields on the spectrum mpAq of maximal ideals.

Example (polynomial vs formal vector fields) : Consider the affine (vs vector) space A (respec-

tively, V ) isomorphic to R
n with the Cartesian coordinates py1, ¨ ¨ ¨ , ynq. The Lie algebra of derivations

of the commutative algebra A “ Rry1, ¨ ¨ ¨ , yns (vs A “ RJy1, ¨ ¨ ¨ , ynK ) of polynomial (vs formal) func-

tions on this affine space (respectively, at the origin of this vector space) is called the Lie algebra of

polynomial (vs formal) vector fields. Its elements take the form X̂ “ Xapyq B
Bya with components

Xapyq which are polynomial (vs formal power series), i.e. derpAq – A b V as vector spaces, where V

is the vector space on which the affine space A is modeled.

4.1.2 Vector fields on a manifold

In purely algebraic and coordinate-free terms, a (tangent) vector field X̂ on M can be defined

as a derivation of the commutative algebra C8pMq of functions on M .10 In more concrete terms,

a vector field is a linear map

X̂ : C8pMq Ñ C8pMq : f ÞÑ X̂rf s (24)

where X̂rf s denotes the action11 of the vector field X̂ on the function f , which is such that

X̂rf ¨ gs “ X̂rf s ¨ g ` f ¨ X̂rgs , @f, g P C8pMq . (25)

Alternatively, it will also be identified with the Lie derivative of a function f along the

vector field X̂ , in which case it is denoted

LX̂f :“ X̂rf s . (26)

10Vector fields are hatted in order to emphasise their algebraic definition as differential operators and anticipate
their higher-order generalisation.

11This action will sometimes also be denoted by X̂f for short.
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In local coordinates, this reads:

`
X̂rf s

˘
pxq “ Xµpxq Bµfpxq . (27)

Accordingly, the local expression of vector fields is X̂ “ Xµpxq Bµ where the collection of vector

fields eµ :“ Bµ will be called the vector fields of a coordinate basis. The vector space

spanned by vector fields is usually denoted XpMq, but it will often be denoted in this text by

T pMq for consistency with other choices of notation. Nevertheless, when the space T pMq of

vector fields is endowed with a structure of Lie algebra via the commutator bracket, it will be

denoted XpMq “ der
`
C8pMq

˘
to emphasise its Lie algebra structure. In fact, when vector

fields are seen as derivations, the Lie bracket between two vector fields X̂ and Ŷ is simply

a fancy name for their commutator rX̂ ,̋ Ŷ s with respect to the composition product ˝. In this

context, it will be denoted rX̂ , Ŷ s for simplicity.

4.1.3 Flow of a vector field

A vector field X̂ on the manifold M is said complete if it generates an action of the additive

group R on the structure algebra C8pMq, i.e. a group morphism

expp‚LX̂q : R Ñ AutpC8pMq q : t ÞÑ expp tLX̂ q , (28)

where exppRLX̂q Ă Autp C8pMq q denotes a one-parameter group of automorphisms expp tLX̂q P

Autp C8pMq q of the structure algebra C8pMq,

expp tLX̂ q : C8pMq
„
Ñ C8pMq : f ÞÑ ft “ expp tLX̂ q rf s . (29)

Geometrically, these automorphisms (29) of the structure algebra C8pMq correspond to diffeo-

morphisms of the manifold M ,

expp t X̂q : M
„
Ñ M : xµ ÞÑ x

1µ
t pxq “ expp tLX̂ q rxµs , (30)

where we identified a point with its coordinates in a patch in order to relate explicitly the two

viewpoints (29)-(30). Any complete vector field X̂ defines an action of the additive group R on

the manifold M , i.e. a group morphism

expp‚X̂q : R Ñ DiffpMq : t ÞÑ expp tX̂q , (31)
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called the (global) flow on the manifold M generated by the (complete) vector field

X̂ .12 Explicitly, the relation between these two equivalent views (algebraic vs geometric) of

diffeomorphisms is the following relation between the change of functions versus the change of

coordinates: ftpx
µq “ fpxµ

t q.

Remark 1: Note that, the Lie derivative has been removed in the notation (30) with respect to (29),

in order to distinguish between these two (equivalent) formulations: the (algebraic) formulation as

automorphisms expp tL
X̂

q P AutpC8pMq q of the structure algebra and the (geometric) formulation as

diffeomorphisms expp t X̂q P DiffpMq of the manifold. However, one will often be sloppy in the sequel

and use the same notation for these equivalent notions.

Remark 2: If the vector field X̂ on M is incomplete, then the one-parameter group of automorphisms

that it generates is not defined for some values of the parameter t P R. In practice, this means that the

corresponding trajectories go to infinity for some finite value of the parameter. Nevertheless, any vector

field X̂ P XpMq is integrable to a local flow expp‚X̂q : I Ñ DiffpNq defined for an open subset I Ď R

(e.g. an open interval I “sa, br ) and a submanifold N Ď M . In the sequel, the adjective “complete”

will often be dropped since local considerations are implicitly understood.

4.1.4 Lie derivative of vector fields via infinitesimal flow and via adjoint action

The algebraic point of view suggests a natural definition for the Lie derivative of a vector

field Ŷ along another vector field X̂ (denoted by LX̂ Ŷ ) through the Leibniz rule: LX̂pŶ fq “

pLX̂ Ŷ qf ` Ŷ pLX̂fq. This leads to

pLX̂ Ŷ qf “ LX̂pŶ fq ´ Ŷ pLX̂fq “ X̂pŶ fq ´ Ŷ pX̂fq “ pX̂ ˝ Ŷ ´ Ŷ ˝ X̂qf (32)

so that the Lie derivative of a vector field Ŷ along another vector field X̂ is indeed equal to the

Lie bracket: LX̂ Ŷ “ rX̂, Ŷ s.

Another perspective on the Lie derivative of a vector field Ŷ along a vector field X̂ is that

the flow generated by the vector field X̂ induces a one-parameter group Adexp tX̂ P AutpXpMq q

of automorphisms of the Lie algebra XpMq of vector fields:

Adexp tX̂ : XpMq
„
Ñ XpMq : Ŷ ÞÑ Ŷ X̂

t “ expp tX̂q ˝ Ŷ ˝ expp´tX̂q . (33)

In fact, the infinitesimal transformation d
dt

pŶ X̂
t q|t“0 of a vector field Ŷ induced by the flow

generated by the vector field X̂ is the geometric definition of the Lie derivative of Ŷ along X̂ .

It leads to LX̂ Ŷ “ d
dt

pŶtq|t“0 “ rX̂, Ŷ s as it should. The expression for the components of the

12For technical details and proofs related to geometric flows, see e.g. [15].
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Lie derivative of the vector field Y µ along the vector field Xν reads

pLX̂ Ŷ qµ “ XνBνY
µ ´ Y νBνX

µ . (34)

The Lie derivative itself

L : XpMq
„
Ñ inn

´
XpMq

¯
: X̂ ÞÑ LX̂ (35)

is nothing but the adjoint representation of the Lie algebra XpMq of vector fields on itself. In

particular, it is indeed a Lie algebra morphism in the sense that

rLX̂ ,̋ LŶ s “ LrX̂,Ŷ s . (36)

Although this algebraic definition of the Lie derivative L “ ad on XpMq may look somewhat

tautological, let us stress that nevertheless the Lie derivatives LX̂ P inn
´
XpMq

¯
along vector

fields X̂ P XpMq are extremely important since they exhaust all infinitesimal symmetries of the

Lie algebra of vector fields. More precisely, a classical theorem of Takens [16] asserts that all

derivation of the Lie algebra of vector fields are inner derivations:

inn
´
XpMq

¯
“ der

´
XpMq

¯
. (37)

As one can see, when vector fields are seen as differential operators, the geometric notions

of Lie bracket and Lie derivatives of vector fields are redundant with the commutator bracket

and the adjoint representation. However, one knows that Lie derivatives also have a geomet-

rical interpretation as infinitesimal diffeomorphisms pulled back to the point of origin. The

conceptual distinction between the Lie bracket and the commutator bracket may be pertinent

in ordinary gravity theories such as general relativity due to its clear geometric roots. However

the identification between Lie bracket and commutator bracket might suggest a generalisation of

the infinitesimal symmetries of ordinary gravity to higher-spin gravity where one should better

leave some of our geometrical prejudices (since it is not obvious what the analogue of the role

played by diffeomorphisms in the general covariance principle should be in higher-spin gravity).

4.2 Tangent vectors

Abstractly, the tangent space TmM at a point m of a manifold M can be defined as the space

of equivalence classes of vector fields, where two vector fields X̂ and Ŷ are equivalent if they

produce the same result, at the point m, on any given function . An element of the tangent

space TmM is called a tangent vector at m. The equivalence class will be denoted X̂|m and
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called the value of the vector field at the point m. One has

X̂|m “ Ŷ |m ðñ X̂rf s|m “ Ŷ rf s|m , @f P C8pMq . (38)

Equivalently, a tangent vector v at m can be defined as a linear form v : C8pMq Ñ R on the

structure algebra C8pMq that obeys the Leibnitz rule

vrf ¨ gs “ vrf s g|m ` f |m vrgs , @f, g P C8pMq . (39)

The relation between the latter and the former definitions is that such a linear map takes the form

v “ X̂|m “ δm ˝ X̂ for some vector field X̂ P der
`
C8pMq

˘
“ XpMq, where δm : C8pMq Ñ R is

the evaluation functional at the point m. The equivalence relation in the first definition arises

from the fact that the kernel of δm is the zeroth-order contact ideal I0pmq.

Let eµ :“ Bµ be the coordinate basis vector fields in some local coordinates xµ. Consider

the n linear forms eµ|m on C8pMq acting on any function f as eµ|mf :“ pBµfq|m. They can

be interpreted as the coordinate basis of the tangent space TmM at m. The point m will

sometimes be replaced with its coordinates x.

As usual, one may thus define the tangent bundle TM “
Ť

m TmM as the union of all

tangent spaces. Local coordinates of this bundle are pxµ, Xνq where Xν are the components of

a tangent vector (in the coordinate basis located at the point of coordinates xµ). A change of

coordinate xµ ÞÑ x1µ on the base M induces the transformation law Xν ÞÑ X 1ν “ Bx1ν

Bxµ Xµ in the

fibre. One can reinterpret the vector space XpMq of vector fields as the vector space of global

sections ΓpTMq of the tangent bundle.

A classical theorem of Pursell and Shanks provides a Lie-algebraic analogue of the generalised

Milnor exercise of Subsection 3.5, where the commutative algebra of functions is replaced with

the Lie algebra of vector fields [17].

Theorem (Pursell & Shanks) : A map Φ : XpMq
„
Ñ XpNq between the Lie algebras of

vector fields on two manifolds is an isomorphism of Lie algebras iff it is the pushforward of a

diffeomorphism F : M
„
Ñ N between these two manifolds, i.e. Φ “ F˚.

This means that smooth manifolds somehow realise the perfect dream of group theorists:

they provide objects characterised uniquely by their symmetries. Indeed, two smooth manifolds

are isomorphic iff they have the same algebra of infinitesimal symmetries (i.e. vector fields).
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4.3 Cotangent vectors

The dual space T ˚
mM of linear forms α on the tangent space TmM is the cotangent space at m.

An element of the cotangent space T ˚
mM is called a cotangent vector, or tangent covector,

or a one-form, at the point m. The cotangent bundle is the manifold T ˚M “
Ť

m T ˚
mM and

it has local coordinates pxµ, pνq where a change of coordinate xµ ÞÑ x1µ on the base M induces

the transformation law pµ ÞÑ p1
µ “ Bxν

Bx1µ pν in the fibre.

The sections of the cotangent bundle are called differential one-forms αpxq of Ω1pMq :“

ΓpT ˚Mq. Their components take the form αµpxq in the dual basis to the coordinate basis,

usually written dxµ, which is a basis of the cotangent space T ˚
mM . This standard notation is

motivated by the definition of the differential of functions as the linear map

d : C8pMq Ñ Ω1pMq : f ÞÑ df (40)

where the differential of the function f P C8pMq is the differential one-form df P Ω1pMq

defined via its action on any vector field X̂ P XpMq,

x df , X̂ y :“ X̂rf s . (41)

In local coordinates, the right-hand-side of (41) is given by (27). Therefore, df “ dxµBµf in the

coordinate basis since the left-hand-side of (41) then reads

x dxµ Bµf , Xν Bνy “ Bµf Xν x dxµ , Bνy “ Xµ Bµf (42)

by definition of the dual basis, x dxµ , Bνy “ δµν .

4.4 Tangent tensors

We will focus on totally symmetric tensors for later purpose.

4.4.1 Symmetric contravariant tensor fields as functions on the cotangent bundle

Since the tangent space is a vector space one may also define in a natural way the bundle of

symmetric contravariant tensors d TM “
Ť

m dTmM together with the space Γpd TMq of

symmetric contravariant tensor fields. To indicate the rank, one adds an upper index, e.g.

the bundle of contravariant tensors of rank one is the bundle d1TM – TM . Local coordinates

of the bundle drTM are pxµ, T µ1...µrq and the components of a symmetric tensor field of rank r

are written as T µ1...µrpxq in the coordinate basis Bµ1
d ¨ ¨ ¨ d Bµr

. Therefore, local coordinates of
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the infinite-dimensional bundle dTM are

pxµ, T, T µ, . . . , T µ1...µr , . . . q . (43)

An N-graded vector space V is a collection tVi uiPN of vector spaces such that Vi X Vj “ t0u

for i ‰ j and V “ ‘iPNVi. An element of Vi is called a homogeneous element of grading i.

An algebra A with product ‹ is N-graded if it is so as vector space and if its product ‹ obeys

Ai ‹ Aj Ď Ai`j. Moreover, if the algebra possesses a unit element 1 P A, then one further

requires that 1 P A0. The space ΓpdTMq of symmetric contravariant tensor fields endowed with

the symmetric product (inherited from the fibres) is a commutative N-graded algebra (with the

rank of tensors as grading).

A function on the cotangent bundle which is a homogeneous polynomial of degree r in the

fibre will be called a symbol of degree r on the manifold M . The commutative algebra of

symbols will be denoted by SpMq Ă C8pT ˚Mq. It is N-graded by the polynomial degree in the

Cartesian coordinates on the cotangent spaces, which will be called the polynomial degree

in the momenta. The symmetric contravariant tensor fields of rank r can be identified with

symbols of degree r. This is clear in coordinates via the identification of the coordinate basis

Bµ with the fibre coordinates pµ and of the symmetric product d with the obvious product of

the variables pµ, thus one has the isomorphism ΓpdTMq – SpMq of N-graded commutative

algebras. Indeed, an element T “
ř

1
r!
T µ1...µrpxq Bµ1

d ¨ ¨ ¨ d Bµr
of dT pMq can be mapped to

a function T px, pq “
ř

1
r!
T µ1...µrpxq pµ1

¨ ¨ ¨ pµr
on T ˚M which is a smooth function in x and a

polynomial in p. The symmetric product d in ΓpdTMq given by

pT1 d T2qµ1...µr1`r2 pxq “
pr1 ` r2q!

r1! r2!
T

pµ1...µr1

1 pxqT
µr1`1...µr2

q
2 pxq (44)

is mapped in SpMq to the pointwise product of functions on the cotangent bundle. Throughout

these notes, curved brackets over a set of indices denote complete symmetrisation over all this

indices, with weight one, i.e. T pµ1...µrq “ T µ1...µr .

Via the Leibniz rule, one can deduce the Lie derivative of the symmetric contravariant tensor

field T “ T µ1...µrBµ1
d ¨ ¨ ¨ d Bµr

along the vector field X̂ “ XνBν from the expression of the Lie

derivative of vector fields Ŷ “ Y νBν . In components, it takes the form

pLX̂T qµ1...µr “ XνBνT
µ1...µr ´

rÿ

k“1

BνX
µkT µ1...µk´1νµk`1...µr (45)

“ XνBνT
µ1...µr ´ r BνX

pµ1T µ2...µrqν . (46)

The Lie derivative can be written in a suggestive way through the canonical Poisson bracket
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on the commutative algebra C8pT ˚Mq of functions on the cotangent bundle (as detailed in the

next subsection).

4.4.2 Poisson algebra of symmetric contravariant tensor fields

A Poisson bracket t , u for a commutative algebra A with product ¨ is a Lie bracket which is

also a (bi)derivation, i.e. tx, y ¨zu “ y ¨tx, zu`tx, yu¨z for any x, y, z P A . A Poisson algebra is

both a commutative algebra and a Lie algebra endowed respectively with an associative product

and a Poisson bracket. An algebra A is said central if its center coincides with the field K of

A. A Poisson algebra is central as a Lie algebra iff its Poisson bracket is non-degenerate (up to

scalars elements).

A Poisson manifold is a manifold whose algebra of functions is a Poisson algebra. A

symplectic manifold is a Poisson manifold whose algebra of functions is central as a Lie

algebra or, equivalently, whose Poisson bracket is non-degenerate (up to constant functions).

The cotangent bundle has a canonical structure of symplectic manifold, whose coordinate-

free definition will be introduced later on. The canonical Poisson bracket is the usual Poisson

bracket of Hamiltonian mechanics and reads in coordinates as

t , u
C

:“

ÐÝ
B

Bxµ

ÝÑ
B

Bpµ
´

ÐÝ
B

Bpµ

ÝÑ
B

Bxµ
, (47)

where the arrows indicate on which factor they act. Locally, it acts as follows

tP px, pq , Qpx, pq u
C

“
BP

Bxµ

BQ

Bpµ
´

BP

Bpµ

BQ

Bxµ
. (48)

The suspension V r1s of an N-graded vector space V is the graded vector space whose

grading is obtained by shifting down the grading of V by one: V r1s i “ Vi`1. For instance, the

suspension Ar1s of an associative algebra is an an N-graded algebra iff the product ‹ of the

initial algebra A obeys

Am`1 ‹ An`1 Ď Am`n`1 ô Ai ‹ Aj Ď Ai`j´1 . (49)

A Poisson algebra P which is N-graded as a commutative algebra and such that its suspension

Pr1s is N-graded as a Lie algebra is called a Schouten algebra.13 Concretely, this condition

means that the commutative product ¨ of P is such that Pi ¨Pj Ď Pi`j while the Poisson bracket

t , u is such that tPi,Pju Ď Pi`j´1.

Example (Symbols) : The canonical Poisson bracket endows the space SpMq of symbols with a

13Note that a Gerstenhaber algebra is the supercommutative analogue of a Schouten algebra.
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structure of Schouten algebra (since the canonical Poisson bracket decreases the grading by one) which

is furthermore central. Due to the isomorphism SpMq – ΓpdTMq between the vector space of symbols

and the vector space of symmetric contravariant tensor fields, one may infer that the latter can be

endowed with a structure of Schouten algebra.

Example (Symmetric contravariant tensor fields) : It can be checked by direct computation

that the Lie derivative (46) of the symmetric contravariant tensor fields encoded into the function

T px, pq “
ř 1

r! T
µ1...µrpxqpµ1

¨ ¨ ¨ pµr on the cotangent bundle T ˚M merely corresponds to the Poisson

bracket with the function Xpx, pq “ Xνpxq pν corresponding to the vector field X̂ “ XµpxqBµ:

pL
X̂
T qpx, pq “ tT px, pq , Xpx, pqu

C
. (50)

More generally, the canonical Poisson bracket of functions on T ˚M with polynomial dependence in the

fibre coordinates induces the Schouten bracket of symmetric contravariant tensor fields (see

e.g. [18] and refs therein)

t , uS : Γpdr1TMq b Γpdr2TMq Ñ Γpdr1`r2´1TMq

: T
ν1...νr1
1 pxq b T

ν1...νr2
2 pxq ÞÝÑ tT1 , T2 u

ν1...νr1`r2´1

S pxq , (51)

where

tT1 , T2 u
ν1...νr1`r2´1

S :“ r2 BµT
pν1...νr1
1 T

νr1`1...νr1`r2´1qµ
2

´ r1 T
µpν1...νr1´1

1 BµT
νr1 ...νr1`r2´1q
2 . (52)

As one can see, together with the symmetric product d, the Schouten bracket t , uS (which decreases

the rank by one) endows the algebra ΓpdTMq of symmetric contravariant tensors with a structure of

Schouten algebra.

A diffeomorphism of a symplectic manifold preserving the Poisson bracket is called a sym-

plectomorphism. Algebraically, a symplectomorphism can be defined as an automorphism of

the Poisson algebra of functions on the symplectic manifold, i.e. it is an automorphism for both

its commutative and its Lie algebra structures. A derivation of the Poisson algebra of functions

on a symplectic manifold, with respect to both the pointwise product and the Poisson bracket,

is called a symplectic vector field. A symplectic vector field corresponds to an infinitesimal

symplectomorphism since it is a vector field on a symplectic manifold that preserves the Poisson

bracket.

Let h be a function on a symplectic manifold. A Hamiltonian vector field for the func-

tion h, then called its Hamiltonian, is a symplectic vector field X̂h whose corresponding Lie
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derivative is the inner derivation

LX̂h
“ t , hu , (53)

i.e. X̂hrgs “ tg, hu for all functions g on the symplectic manifold. A symplectic/Hamiltonian

flow is a one-parameter group of symplectomorphisms generated by a symplectic/Hamiltonian

vector field. For instance, a Hamiltonian flow on a symplectic manifold M is a one-parameter

group of symplectomorphisms expptX̂hq of M generated by a Hamiltonian vector field X̂h P

T pMq defined by a Hamiltonian h P C8pMq. All symplectic flows are locally Hamiltonian

because, locally, all symplectic vector fields (i.e. derivations of the Poisson algebra of functions

on a symplectic manifold) are Hamiltonian vector fields (i.e. inner derivations).14 This remains

true for the Schouten algebra of symbols on M [19]: locally, all derivations of the Schouten

algebra SpMq are inner, i.e. Hamiltonian vector fields X̂h with h P SpMq.

14To be more precise, the number of linearly independent outer derivations of the Poisson algebra of functions
on M is equal to the first Betti number of M (which vanishes for a topologically trivial manifold M).
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5 Differential structures of order one: first-order (co)jets

In quantum mechanics (and, more generally, in classical or quantum field theory), infinitesimal

space-time symmetries must sometimes be represented as differential operators of order one

rather than vector fields (this happens, for instance, when one considers projective represen-

tations). Therefore, field theory is a physical motivation for considering first-order differential

operators as a natural generalisation of vector fields, discussed in this section.

5.1 Functions as differential operators of order zero

Any function f on a manifold M can also be seen as a linear operator f̂ on the structure algebra

C8pMq acting by multiplication, i.e. mapping any function g on M to the function

f̂ r gs :“ f ¨ g , (54)

where ¨ is the pointwise product. Retrospectively, the function f can be reconstructed from the

corresponding linear operator f̂ via the action of the operator on the constant function equal to

unity, f̂ r1s “ f ¨ 1 “ f .

The structure algebra C8pMq of the manifold M is a C8pMq-(bi)module via the pointwise

product. A C8pMq-linear operator on C8pMq is called a differential operator of order zero

on M . The space of differential operators of order zero will be denoted by D0pMq.

Due to the above remark, any function f on M can be seen as a differential operator f̂ of

order zero on M , and conversely. In other words, D0pMq – C8pMq. For the sake of simplicity,

from now on differential operators of order zero will sometimes be identified with functions.

5.2 First-order differential operators

A differential operator of order one on M can be defined as a linear operator X̂ on C8pMq

such that its commutator with any differential operator f̂ of order zero is also a differential

operator of order zero: rX̂, f̂ s P D0pMq. The space of differential operators on M of order

one will be denoted by D1pMq. The commutator closes on first-order differential operators.

Therefore, the space of first-order differential operators D1pMq can be endowed with a structure

of Lie algebra with the commutator as Lie bracket. In such case, it will sometimes be denoted

D1pMq in order to emphasise its Lie algebra structure.
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5.2.1 Vector fields as first-order differential operators

An equivalent definition of a vector field on M is as a differential operator X̂ of order one such

that its action on any constant function on M is zero, e.g. X̂r1s “ 0.

Proof: One can check that if an operator X̂ is such that X̂r1s “ 0 and, moreover, rX̂, f̂ s is a zeroth-

order operator for any function f , then its action on a function f (that is to say X̂rf s) identifies with

its adjoint action (in other words rX̂, f̂ s) on the associated operator f̂ . Indeed,

X̂rf s “ X̂rf ¨ 1s “ X̂
“
f̂ r1s

‰
“ pX̂ ˝ f̂qr1s “ pX̂ ˝ f̂ ´ f̂ ˝ X̂qr1s “

´
rX̂, f̂ s

¯
r1s . (55)

In a similar way, one can then obtain the property that X̂ is a derivation as a consequence of the Jacobi

identity for the commutator.

The previous definitions lead to the following unique (and coordinate-independent) decompo-

sition of any first order differential operator into a sum X̂ “ X̂0`X̂1 of a zeroth-order differential

operator X̂0, associated to the function X0 :“ X̂r1s, and a vector field X̂1 :“ X̂ ´ X̂0.

5.2.2 Semidirect sum of Lie algebras

A semidirect sum of Lie algebras is a Lie algebra decomposing as the linear sum of a Lie

subalgebra h Ă g and a Lie ideal i Ă g. It is sometimes denoted in the following ways:

g “ h A i “ i B h . (56)

Concretely, the Lie bracket obeys

rh, hs Ă h , ri, is Ă i , rh, is Ă i . (57)

Therefore the linear decomposition g “ h A i is actually a direct sum of h-modules.

In fact, one can define equivalently a semidirect sum as a Lie algebra g with a Lie subalgebra

h Ă g such that the adjoint representation adg : g Ñ derpgq of the Lie algebra g on itself,

restricted to the adjoint representation adg|h : h Ñ derpgq of the Lie subalgebra h Ă g on the

whole Lie algebra g is fully reducible. It decomposes as the direct sum adg|h “ adh ‘ r of

1. the adjoint representation adh : h Ñ derphq of the Lie subalgebra h on itself, and

2. a representation

r : h Ñ derpiq : v ÞÑ rv (58)

of the Lie subalgebra h on the Lie ideal i with rvpwq :“ rv, ws for v P h and w P i.
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Conversely, given two Lie algebras h and i together with a representation (58) of the Lie algebra

h on the Lie algebra i one can form their semidirect sum g “ h Ar i by endowing their linear

sum with a Lie algebra structure via the Lie bracket

r v1 ‘ w1 , v2 ‘ w2 sg “ r v1 , v2 sh ‘
´
rv1pw2q ´ rv2pw1q ` rw1 , w2 si

¯
(59)

for all v1, v2 P h and w1, w2 P i.

Example (First-order differential operators) : For instance, the Lie algebra of first-order differ-

ential operators splits into the semidirect sum

D1pMq – XpMq A C8pMq (60)

of the Lie subalgebra XpMq of vector fields and the Abelian ideal D0pMq – C8pMq of differential

operators of order zero.

5.2.3 Some general facts

A theorem of Grabowski and Poncin provides an analogue of the generalised Milnor exercise for

the Lie algebra of first-order differential operators [20].

Theorem (Grabowski & Poncin) : A map Φ : D1pMq
„
Ñ D1pNq between the Lie algebras of

first-order differential operators on two manifolds is an isomorphism of Lie algebras iff there is

a diffeomorphism F : M
„
Ñ N between these two manifolds.

On the one hand, the Lie algebra XpMq of vector fields may be endowed with a structure

of left C8pMq-module via the composition product ˝ (which will often be implicit in the sequel)

since the operator f̂ ˝ X̂ is again a vector field if f is a function and X̂ is a vector field. The

previous product will be called pointwise product of a function f and a vector field X̂ , and it

will be denoted as f ¨ X̂ :“ f̂ ˝ X̂ . However, the Lie bracket of vector fields is not C8pMq-linear,

rather it obeys to the Leibniz rule

r X̂ , f ¨ Ŷ s “ X̂rf s ¨ Ŷ ` f ¨ rX̂, Ŷ s , (61)

for XpMq seen as a left C8pMq-module.15

On the other hand, the space D1pMq of first-order differential operators is a left and right

C8pMq-module, i.e. a C8pMq-bimodule, since f̂ ˝ X̂ ˝ ĝ is a first-order differential operator if

f and g are functions while X̂ is a first-order differential operator. Notice that this composition

product X̂ ˝ ĝ with a function on the right is no more pointwise (i.e. it does not only depend

15By default, the modules will be considered to be left modules therefore the word “left” will often be implicit.
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on the values of the objects at the same point) since it includes a derivative of the function f .

More explicitly, for a first order differential operator decomposing into the sum X̂ “ X̂1 ` X̂0 of

a vector field X̂1 and a zeroth-order differential operator X̂0 one has

X̂ ˝ f̂ “ rX̂ ,̋ f̂ s ` f̂ ˝ X̂ “ X̂1rf s ¨ ` f ¨ X̂ . (62)

5.3 First-order jets

Let m be a point of M . Consider the commutative ideal I1pmq of C8pMq spanned by the

functions f such that f |m “ 0 and df |m “ 0, i.e. the functions whose value and first derivatives

vanish at the point m. It will be called contact ideal of order one. The quotient of the

contact ideal of order zero by the contact ideal of order one is isomorphic to the cotangent space:

T ˚
mM – I0pmq { I1pmq , (63)

as can be expected since one retains only the information about the first derivative of functions

at m and not about the value of the function (at the same point m).

The contact ideal of order one I1pmq Ă C8pMq defines an equivalence relation whose equiv-

alence classes rf s, denoted by j1mf , are called jets of order one or first-order jets (or simply

1-jets) of functions. More concretely, two functions f and g are said to have the same jet j1mf

of order one at m if they only differ by an element of the commutative ideal I1pmq, i.e. if these

two functions together with their first derivatives have the same value at m. The point m is

sometimes called the source of the jet j1mf . The quotient

J1
mM :“ C8pMq { I1pmq (64)

is called the first-order jet space at m. From the isomorphism (63), it follows that the

cotangent space is isomorphic to the quotient of the first-order jet space by the zeroth-order one:

T ˚
mM – J1

mM { J0
mM . (65)

The first-order jet bundle is the manifold J1M :“
Ť

m J1
mM and it has local coordinates

pxµ, φ, φνq. As one may suspect from the coordinate expression and the above isomorphisms,

the first-order jet bundle is isomorphic to the direct sum over M of the zeroth-order jet bundle

J0M “ M ˆ R and the cotangent bundle T ˚M , i.e.

J1M – J0M ‘ T ˚M . (66)

The first-order jet bundle is the paradigmatic example of “contact manifold” but one will not
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dwelve on this notion.

A compact notation for a 1-jet is as a polynomial of degree one in an auxiliary variables

εµ, i.e. φpεq “ φ ` εµφµ. A section of the 1-jet bundle J1M is called a 1-jet field therefore

compactly summarised into the local expression

φpx; εq “ φpxq ` εµφµpxq . (67)

The commutative algebra of 1-jet fields will be denoted J 1pMq :“ ΓpJ1Mq.

The first-order prolongation of a function f P C8pMq is a 1-jet field j1f P J 1pMq

whose value at a point m is the 1-jet j1mf of the function. Its local expression is

pj1fqpx; εq “ fpxq ` εµBµfpxq, (68)

i.e. pj1fqpx; 0q “ fpxq and pj1fqµpxq “ Bµfpxq. This defines the first-order prolongation

j1 : C8pMq Ñ J 1pMq.

In more geometrical terms, the 1-jet j1mf at a point m can be interpreted as the equivalence classes

of sections of the structure bundle that touch each other till order 1. In other words, they are (nowhere

vertical) codimension-one submanifolds that intersect and are tangent at the point pm, f |m q P M ˆ R.

5.4 First-order cojets

The dual space D1
mM :“ pJ1

mMq˚ of linear forms on the first-order jet space J1
mM is called the

1-cojet space at m. In local coordinates, a compact notation for a 1-cojet (or first-order

cojet) X is as a polynomial of degree one in the auxiliary variables B
Bεµ

, i.e. Xp Bεq “ Xµ B
Bεµ

`X .

Concretely, in this representation a 1-cojet X acts on a 1-jet φ at the same point, as a first-order

differential operator with respect to the auxiliary coordinate ε followed by an evaluation at ε “ 0:

xX, φ y “
`
XpBεqφpεq

˘ ˇ̌
ε“0

“ Xµφµ ` Xφ . (69)

since the representative of φ is the polynomial φp εq “ φ ` εµφµ of degree one.

The 1-cojet bundle D1M “
Ť

mD1
mM has local coordinates pxµ, X,Xνq. A section of the 1-

cojet bundle D1M will be called a 1-cojet field and is compactly summarised into a generating

function Xpx; Bεq “ Xµpxq B
Bεµ

`Xpxq. The space GammapD1Mq of such sections will be denoted

by the same symbol D1pMq as the space of differential operators of order one since they are

isomorphic. Notice that any 1-cojet field can be interpreted as a map X : J 1pMq Ñ C8pMq

where the explicit action of a 1-cojet field Xpx, Bεq in D1pMq on a 1-jet field φpx; εq in J 1pMq

is given by (69), where the dependence on x would be implicit.

30



Retrospectively, first-order differential operators on M can be defined as linear operators

X̂ : C8pMq Ñ C8pMq : f ÞÑ X̂rf s (70)

which factor through the 1-jet bundle J1M in the sense that

X̂ “ X ˝ j1 , (71)

where X : J 1pMq Ñ C8pMq is a 1-cojet field in D1pMq and j1 : C8pMq Ñ J 1pMq is the first-

order prolongation. Concretely this means that a first-order differential operator whose local

expression is X̂ “ Xµpxq B
Bxµ `Xpxq obviously defines a 1-cojet field Xpx; Bεq “ Xµpxq B

Bεµ
`Xpxq.

Moreover, the action of X̂ “ X ˝ j1 on f is indeed

pX̂fqpxq “ Xµpxq Bµfpxq ` Xpxq fpxq

“
`
Xpx; Bεq pj1fqpx; εq

˘ ˇ̌
ε“0

“ xX , j1f ypxq . (72)

where one made use of (68) to obtain the second line.
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6 Differential structures of higher order: (co)jets

The time is ripe to generalise the previous constructions and aim at our goal: provide a global

and coordinate-free definition of higher-order differential operators (as well as their relatives,

such as cojet fields, etc).

6.1 Higher-order differential operators

6.1.1 Rings over an algebra

Let A and B be two associative algebras with respective zeros 0A and 0B, and respective units

1A and 1B, and respective products ‹A and ‹B.

An injective morphism i : A ãÑ B of algebras,

ipa1 ‹A a2q “ ipa1q ‹B ipa2q , @a1, a2 P A , (73)

will be called a unit map.16 An associative algebra B endowed with a unit map i : A ãÑ B

will be called a ring B over the algebra A (or an A-ring for short). Equivalently, B admits

a subalgebra isomorphic to A: the image ipAq Ď B. The unit map endows an A-ring B with

a structure of A-bimodule where an element a P A acts by (left or right) multiplication by

ipaq P B. Conversely, an A-bimodule structure on B such that a ‚ 1B “ 0B iff a “ 0A, endows

the associative algebra B with a structure of A-ring, by considering the action of A on the unit

element 1B (i.e. defining the unit map by ipaq :“ a ‚ 1B for all a P A).

Equivalent formulations of A-rings

Given two associative algebras A and B, the following notions are equivalent:

1. an A-ring B defined by an injective algebra morphism i : A ãÑ B.

2. an algebra B containg a copy of A, i.e. the image ipAq Ď B.

3. an A-bimodule structure on B such that the action of the nonvanishing elements of A
on the unit element of B is nonvanishing.

16This terminology is standard in the context of bialgebroids, where the assumption of injectivity is dropped.
The terminology originates from the fact that, in particular, the unit map somehow relates the two units in the
sense that ip1Aq “ 1B). Note that the injectivity can be assumed without loss of generality, in the sense that one
can always focus on the quotient algebra A{ ker i.
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Example (Endomorphism algebra) : Let A be an associative algebra whose product ¨ is non-

degenerate (in the sense that f ¨ g “ 0 for all g P A iff f “ 0). Any element f of A defines an A-linear

map f̂ P EndpAq acting on A by multiplication by f , i.e. in a compact notation f̂ :“ f ¨ or, more

explicitly, f̂ : g ÞÑ f ¨ g. The left multiplication provides a canonical representation

‚̂ : A ãÑ EndpAq : f ÞÑ f̂ , (74)

of A on itself which is faithful (since the product is non-degenerate, a property which will always be

assumed implictly below).

6.1.2 Algebraic definition of differential operators

Let B be an associative algebra with a commutative subalgebra A Ă B. An element a P B such

that, for any set tf1, f2, ¨ ¨ ¨ , fku Ă A of k elements in the commutative subalgebra A, the kth

commutator with each of them belongs to A, i.e.

r r . . . ra , f1s , f2s . . . , fks P A , (75)

will be called a differential element of order k with respect to the commutative sub-

algebra A. The motivation for this terminology is the particular case of scalar-valued linear

operators on a commutative algebra A.

A (scalar-valued linear) differential operator of order k acting on the commutative

algebra A is an endomorphism X̂ P EndpAq such that, for any set tf1, f2, ¨ ¨ ¨ , fku Ă A of k

elements in the commutative algebra A (identified with the commutative algebra of zeroth-order

differential operators on A), the kth commutator with each of them belongs to A, in the sense

that

r r . . . rX̂ , f̂1s , f̂2s . . . , f̂ks P D0pAq . (76)

This abstract definition of differential operators is by now standard and was introduced in the

sixties by Grothendieck in his seminal Éléments de géométrie algébrique [21, Section 16.8].

This provides a purely algebraic (and coordinate-free) definition of a differential operator

of order k on the manifold M as a (scalar-valued) linear differential operator of order k acting

on the structure algebra C8pMq of functions on M . A convenient representation of a differential

operator X̂ of order k is through its normal symbol in some local coordinates

Xnormalpx, pq “
kÿ

r“0

1

r!
Xµ1...µrpxq pµ1

. . . pµr
(77)
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which is a symbol of degree k corresponding to the “normal ordering” of the operator

X̂px, Bq “
kÿ

r“0

1

r!
Xµ1...µrpxq Bµ1

. . . Bµr
, (78)

where all derivatives are on the right and all coordinates on the left.17 Note that this choice of

ordering is not a coordinate-independent statement.

The multi-index notation consists in denoting the collection µ1 . . . µr of r symmetrised indices

as µprq. Moreover, there will be an implicit sum over repeated multi-indices and over the number

r of them. More precisely, one will stick to the weight one convention, i.e.

SµprqTµprq :“
ÿ

r

1

r!
Sµ1...µr Tµ1...µr

.

Adopting the multi-index convention, one could have written (78) simply as a suggestive gen-

eralisation of vector fields X̂ “ Xµprqpxq Bµprq by introducing the convenient notation Bµprq :“

Bµ1
. . . Bµr

. The normal symbol (77) is obtained from the action of the operator (78) on the

exponential function (which would be a “plane wave” in quantum mechanics), i.e.

Xnormalpx, pq :“ expp´pµx
µq X̂r expppµx

µq s . (79)

The principal symbol of a differential operator (78) is its leading (highest order) part

Xprincipalpx, pq “
1

r!
Xµ1...µkpxq pµ1

. . . pµk
, (80)

which admits a coordinate-independent definition.

The space of differential operator of order k will be denoted by DkpMq, while the space

of all differential operators (of any finite order) will be denoted by DpMq. The collection

tBµ1
. . . Bµr

| r ď ku of commuting differential operators is a finite generating set of the C8pMq-

module DkpMq which will be called the coordinate basis.

Example (Grothendieck algebra) : The algebra morphism

‚̂ : A ãÑ DpAq : f ÞÑ f̂ , (81)

which reinterprets elements f of a commutative algebra A as zeroth-order differential operators f̂ on

17Strictly speaking, this is not the normal ordering prescription in quantum mechanics if x’s are treated as
position operators. Rather, here x’s are treated as creation operators while B’s are treated as annihilation
operators. Despite the inaccurate terminology, we will use the adjective “normal” (order, symbol, etc) in this
case, following the common usage in deformation quantisation.
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A, via left multiplication, endows the Grothendieck algebra DpAq of differential operators on A with

the structure of A-ring. The corestriction ‚̂ : A
„
Ñ D0pAq provides an isomorphism between the

commutative algebra A and the subalgebra D0pAq of zeroth-order differential operators on A.

Example (Differential operators on a manifold) : The canonical embedding of commutative

algebras from the structure algebra C8pMq into the algebra DpMq of differential operators on the

manifold M , which reinterprets functions as zeroth-order differential operators,

‚̂ : C8pMq ãÑ DpMq : f ÞÑ f̂ , (82)

will be called the unit map on the algebra of differential operators on the manifold M . It

induces a canonical isomorphism of commutative algebras from C8pMq to D0pMq,

‚̂ : C8pMq
„
Ñ D0pMq : f ÞÑ f̂ . (83)

6.1.3 Filtration

An N-filtered vector space V is a collection tViu of vector spaces where i P N and such that

Vi Ă Vj for i ă j and V “
Ť

iPN Vi. An algebra A is N-filtered if it is so as a vector space and

if its product ‹ obeys Ai ‹ Aj Ď Ai`j. Moreover, if the algebra A has a unit element, then one

further requires that 1 P A0. The component A0 of degree zero of any N-filtered algebra A is

always a subalgebra. In other words, the N-filtered algebra A is a ring over A0 (in the absence

of left divisors of zero).

The filtered algebra associated to a graded algebra B “ ‘iPNBi is the filtered algebra

which will be denoted Bď “
Ť

iPN Bďi and which is defined via the direct sums Bďi “ ‘jďi Bj .

Conversely, the graded algebra associated to a filtered algebra A “
Ť

iPN Ai is denoted

grA “ ‘iPN grAi and defined via the quotients grAi “ Ai{Ai´1. The equivalence class ras P grA

of an element a P A of a filtered algebra is an element of the associated graded algebra called

the principal symbol of a. This defines an infinite collection of surjective linear maps

σi : Ai ։ grAi : a ÞÑ ras , (84)

which will be collectively denoted (with a slight abuse of notation) as

σ : A ։ grA : a ÞÑ ras . (85)

Example (Polynomials) : For instance, the algebra dR
n˚ of polynomial functions on the affine
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(respectively, vector) space Rn is the filtered (respectively, graded) algebra of polynomials of n variables.

The distinction between these two cases comes from the fact that translations do not preserve the

grading while they preserve the filtration. The principal symbol of a polynomial of degree k is identified

with its homogeneous piece of highest degree k.

6.1.4 Almost-commutative algebra of differential operators

The N-graded algebra grA associated to an N-filtered associative algebra A is commutative iff

the commutator obeys to rAi,Ajs Ď Ai`j´1. In such case, the N-filtered associative algebra A

is called almost commutative.

Equivalently, an almost-commutative algebra A is an N-filtered (i.e. AiAj Ď Ai`j) associa-

tive algebra whose filtration is such that the suspension Ar1s of its commutator algebra A is

a filtered Lie algebra (i.e. rAi`1,Aj`1s Ď Ai`j`1). This equivalent definition makes clear that

the N-graded algebra grA of an almost-commutative algebra A is endowed with a canonical

structure of Schouten algebra, where the Poisson bracket t , u is inherited from the commutator

bracket r ‹, s via the principal symbol:

tσpaq, σpbqu :“ σ
´

r a ‹, b s
¯
. (86)

The Schouten algebra grA associated to an almost commutative algebra A will be called the

classical limit of the almost-commutative algebra. Accordingly, some authors use the term

“quantum” (respectively “classical”) Poisson algebra A as a synonym for “almost-commutative”

(respectively, “Schouten”) algebra [20]. Note that an almost-commutative algebra is central iff

its classical limit is central.

Another equivalent way to characterise an almost-commutative algebra is as an associative

algebra A with a commutative subalgebra A0 Ă A such that all elements of A are differential

with respect to A0. Indeed, such an algebra A is filtered by the order of elements and one can

check that this filtration obeys to rAi,Ajs Ď Ai`j´1.

Example (Grothendieck algebra) : The composition product ˝ endows the space DpA0q of all

differential operators acting on a commutative algebra A0 with a structure of almost-commutative

algebra. This algebra will be called the Grothendieck algebra of differential operators acting

on the commutative algebra A0.

These abstract constructions can be illustrated in the two simpler cases of polynomial and

formal power series, before turning back to smooth functions.

Example (Polynomial differential operators) : The Grothendieck algebra DpAq :“ D
`

dpV ˚q
˘
of
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Equivalent formulations of almost-commutative algebras

The following notions are equivalent:

1. an almost-commutative algebra,

2. an N-filtered associative algebra A such that one of the following equivalent properties
holds:

(a) its associated N-graded algebra grA is commutative,

(b) its commutator decreases the degree by one: rAi,Ajs Ď Ai`j´1,

(c) the suspension Ar1s of its commutator algebra A is a filtered Lie algebra:
rAi`1,Aj`1s Ď Ai`j`1.

3. an associative algebra A with a commutative subalgebra A0 Ă A such that all elements
of A are differential with respect to A0.

differential operators acting on the commutative algebra of polynomial functions on the affine space A

modeled on the vector space V of finite dimension n is the almost-commutative algebra of polynomial

differential operators on the affine space A. The Grothendieck algebra DpAq of polynomial differen-

tial operators is called the Weyl algebra. The Weyl algebra is simple (i.e. it has no nontrivial ideal)

and central (i.e. its center is the field K of the underlying commutative algebra A), thus all its deriva-

tions are inner (i.e. they arise from the adjoint action of some element of the algebra). The polynomial

differential operators of order k take the form X̂ “
řk

r“0
1
r!X

a1¨¨¨arpyq B
Bya1 ¨ ¨ ¨ B

Byar with coefficients

Xa1¨¨¨arpyq which are polynomials in y’s. The associated graded algebra grD
`
Rryas

˘
is isomorphic to

the commutative algebra Rrya, pbs of polynomials on the cotangent bundle T ˚
R
n – R

n ‘ R
n˚.

Example (Formal differential operators) : The Grothendieck algebra D
`

dpV ˚q
˘
of differential

operators acting on the commutative algebra dpV ˚q of formal power series at the origin of the vector

space V of finite dimension n is the almost-commutative algebra of formal differential operators

at the origin of the vector space V . A formal differential operator of order k takes the form X̂ “
řk

r“0
1
r!X

a1¨¨¨ar pyq B
Bya1 ¨ ¨ ¨ B

Byar with coefficients Xa1¨¨¨arpyq “
ř8

q“0
1
q!X

a1¨¨¨ar
b1¨¨¨bq

yb1 ¨ ¨ ¨ ybq which are formal

power series at the origin. The graded algebra grD
`
RJyaK

˘
in the case of formal power series is

isomorphic to the commutative algebra RJya, pbs of formal power series in the Cartesian coordinates

ya on the base but of polynomials in the vertical coordinates pb on T ˚
R
n. In coordinate-independent

terms, one has the isomorphism grDpAq – dpV ˚q b dpV q of commutative algebras.

The Grothendieck algebra of differential operators acting on the commutative algebra C8pMq

37



of smooth functions on a manifold M is the almost-commutative algebra DpMq of smooth

differential operators on the manifold M endowed with the composition product ˝. Among

other thing, it is an N-filtered associative algebra, i.e. the two following properties hold:

C8pMq – D0pMq Ă D1pMq Ă D2pMq Ă . . . Ă DkpMq Ă Dk`1pMq Ă . . . (87)

and

DkpMq ˝ DlpMq Ă Dk`lpMq . (88)

The above infinite sequence (87) of inclusions provides an abstract definition of DpMq as the

direct limit. Remember that the map

‚̂ : C8pMq
„
Ñ D0pMq : f ÞÑ f̂ , (89)

which associates to any function f its corresponding differential operator f̂ : g ÞÑ f ¨ g of order

zero, is an isomorphism of commutative algebras mapping the unit function 1 to the identity

operator 1̂ and the pointwise product f ¨ g of functions to the composition product f̂ ˝ ĝ of

differential operators of order zero (i.e. yf ¨ g “ f̂ ˝ ĝ).

The commutator algebra DpMq is the space DpMq of differential operators endowed with a

structure of Lie algebra through the commutator as Lie bracket rX̂, Ŷ s between two differential

operators X̂ and Ŷ .18 Notice that

rDkpMq , DlpMq s Ă Dk`l´1pMq . (90)

As one can see, the first-order differential operators span the non-abelian Lie subalgebra D1pMq

while the zeroth-order differential operators (i.e. the functions) span the abelian Lie subalgebra

D0pMq – C8pMq. The N-filtered associative algebra DpMq is almost-commutative due to (90)

and one has the following canonical isomorphisms

grDpMq – SpMq – ΓpdTMq , (91)

of Schouten algebras. In more concrete terms, there is a one-to-one correspondence between prin-

cipal symbols (85) of differential operators and symmetric contravariant tensor fields Xµ1...µkpxq

relating the two commutative products (the pointwise product of functions on the cotangent

space to the symmetrised product of symmetric contravariant tensor fields) and the two Poisson

brackets (the canonical Poisson bracket of functions on the cotangent space to the Schouten

18Sometimes, one will not specify which product structure (associative or Lie) is chosen and one will colloquially
refer to it as the algebra of differential operators.

38



bracket of symmetric contravariant tensor fields).

6.1.5 Differential operators as almost-linear operators

A commutative algebra A can be seen as a (bi)module over itself (via multiplication). An A-

linear map from A (i.e. an operator on A which is a morphism of A-modules) to an A-module

is entirely determined by its action on the unit element 1 P A. In particular, the operator f̂ “ f ¨

is the unique A-linear map from A to itself, which maps the unit element to the function f , i.e.

such that f̂ : 1 ÞÑ f .

Equivalent formulations of zeroth-order differential operators

Consider a commutative algebra A. The following notions are equivalent:

1. a differential operator X̂ P D0pAq of order zero on A,

2. an endomorphism X̂ P EndApAq of the A-module A, i.e. an operator which is A-linear
in the sense that X̂rf ¨ gs “ f ¨ X̂rgs for any f, g P A,

3. an endomorphism X̂ P EndpAq of the vector space A which is such that X̂ ˝ f̂ “ f̂ ˝ X̂
for any f P A.

The definition of zeroth-order differential operators as A-linear endomorphisms motivates a

recursive definition of higher-order differential operators. A differential operator X̂ P DkpAq on

A of order k can be equivalently defined as an endomorphism X̂ P EndpAq of the vector space

A which will be said almost A-linear, in the sense that rX̂, f̂ s P Dk´1pAq for any f P A, i.e.

it is A-linear up to lower-order terms. In other words, the Grothendieck algebra of differential

operators acting on the commutative algebra A can be defined as the algebra of almost A-linear

operators on A.

A ring B over a commutative algebra A such that the image of the unit map i : A ãÑ B lies

in the center of B, is called an A-algebra. Any commutative A-ring is an A-algebra.

Example (Algebra over a field) : In the particular case when A “ K is a field, a K-algebra coincides

with the usual notion of an associative algebra over K.

An N-filtered algebra A, which is such that its associated N-graded algebra grA is an A0-

algebra over its component A0 of degree zero, will be called an almost A0-algebra. In terms
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of the commutator, the condition reads rAi,A0s Ď Ai´1. Any almost-commutative algebra A

is an almost A0-algebra, but the converse is not true in general. The recursive definition of

the Grothendieck algebra can be summarised as follows: the Grothendieck algebra DpAq of

differential operators on the commutative algebra A is the maximal subalgebra of the A-ring

EndpAq of endomorphisms of the vector space A which is an almost A-algebra.

6.1.6 Differential operators as infinitesimal automorphisms

Let us now introduce the notation

LX̂f :“ X̂rf s . (92)

Motivated by higher-spin gravity, it will be called the higher-spin Lie derivative LX̂f of a

function f along a differential operator X̂ for reasons that will become clear later. The

corresponding Lie algebra morphism (i.e. rLX̂ ,LŶ s “ LrX̂,Ŷ s)

L : DpMq Ñ gl
´
C8pMq

¯
: X̂ ÞÑ LX̂ (93)

will be called the fundamental representation of the algebra of differential operators.

The commutative algebra of functions is the representation space of this fundamental represen-

tation. Let us stress the obvious point that the higher-spin Lie derivative along a differential

operator is not a derivation of the commutative algebra of functions, except when the differential

operator is a vector field (a tautology from the algebraic definition of vector fields as derivations),

i.e. LX̂ R der
´
C8pMq

¯
for X̂ R XpMq. This is clear from the definition of the higher-spin Lie

derivative but our choice of notation and terminology might obscure this point. Nevertheless,

one will stick to this choice because it suggests a natural generalisation for the Lie derivative of

differential operators.

We define the higher-spin Lie derivative LX̂ Ŷ of a differential operator Ŷ along

another differential operator X̂ from compatibility with the Leibniz rule LX̂

`
Ŷ rf s

˘
“

pLX̂ Ŷ qrf s ` Ŷ rLX̂f s, i.e. we set

pLX̂ Ŷ qrf s :“ LX̂

`
Ŷ rf s

˘
´ Ŷ rLX̂f s (94)

“ X̂
“
Ŷ rf s

‰
´ Ŷ

“
X̂rf s

‰
(95)

“ rX̂ ,̋ Ŷ s rf s (96)

where (92) was used to get (95). The last line (96) results into the mere identification of the

higher-spin Lie derivative of a differential operator Ŷ along the differential operator X̂ with

their commutator, i.e. LX̂ Ŷ “ rX̂ ,̋ Ŷ s. This generalisation of the Lie derivative leads to the

following notation for the adjoint representation of the algebra of differential operators
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(on itself)

L : DpMq Ñ inn
´
DpMq

¯
: X̂ ÞÑ LX̂ (97)

via inner derivations of the almost-commutative algebra of differential operators. Locally, all

derivations of the almost-commutative algebra DpMq of differential operators are inner deriva-

tions.19 Therefore, these higher-spin Lie derivatives essentially exhaust all infinitesimal sym-

metries of the almost-commutative algebra of differential operators. The associative algebra

of differential operators is comparable to the Lie algebra of vector fields: they are both self-

referential objects in that they coincide with their own collection of infinitesimal symmetries.

Strictly speaking, this is only true locally for DpMq while this is true globally for XpMq.

Let us stress an important subtlety and potential source of confusion related to the fact that

any function f P C8pMq can be seen as a differential operator f̂ P D0pMq of order zero. As a

differential operator, f̂ transforms into the adjoint representation, its higher-spin Lie derivative

along X̂ P DkpMq is LX̂ f̂ “ rX̂, f̂ s P Dk´1pMq. When X̂ is a higher-order differential operator,

then the higher-spin Lie derivative of f̂ along X̂ is not a differential operator of order zero, i.e.

LX̂ f̂ R D0pMq in general. However, one may extract a function by acting on the unit element.

More precisely, the relation between the fundamental and adjoint representation is as follows:

LX̂f “ pLX̂ f̂qr1s.

6.1.7 No-go theorem against (naive) higher-spin diffeomorphisms

The almost-commutative algebra of differential operators and the Schouten algebra of principal

symbols admit somewhat few finite symmetries, while there is a plethora of infinitesimal symme-

tries (see Section 7 of [20] and Section 8 of [19] for more details). The finite automorphisms of

the almost-commutative algebra DpMq of differential operators are very scarce with respect to

the infinitesimal automorphisms. In fact, the finite automorphisms of the almost-commutative

algebra DpMq essentially coincide with internal Abelian gauge symmetries (as in Maxwell elec-

tromagnetism) and standard diffeomorphisms of the manifold M (as in general relativity), for

which the commutative subalgebra D0pMq of functions is an invariant subspace. While the in-

finitesimal automorphisms (the higher-spin Lie derivative) are perfectly well defined (and just a

fancy name for the adjoint action of differential operators) however their formal exponentiation

is not (see e.g. [22, Sect.2] for more details) in general, except for the inner automorphisms

generated by first-order differential operators.

This prevents a too naive definition of “higher-spin diffeomorphisms” (attempting to over-

come this obstacle was the focus of [22]). One may expect these subtleties to be related to

the elusive (non)locality properties of higher-spin gravity. Let us stress that this feature is not

19To be more precise, the number of linearly independent outer derivations of the almost-commutative algebra
of differential operators on the manifold M is equal to the first Betti number of M [19].

41



specific to the almost-commutative algebra DpMq of differential operators, the same holds for

the automorphisms of the Schouten algebra SpMq of symbols.

Theorem (Grabowski & Poncin) : Any one-parameter group of automorphisms of the asso-

ciative algebra DpMq of differential operators (respectively, of the symplectic algebra SpMq of

symbols) is generated by a first-order differential operator (respectively, by a symbol of degree

one).

By contraposition, this result of [20] can be expressed equivalently as a no-go theorem.

No-go theorem : Higher-spin Lie derivatives along a higher-order differential operator on

M (respectively, higher-degree Hamiltonian vector fields on T ˚M) cannot be integrated to one-

parameter groups of automorphisms of the associative algebra DpMq of differential operators

(respectively, of the symplectic algebra SpMq of symbols).

Concretely, the obstruction is that the polynomiality in the momenta is not preserved by the

formal exponentiation of symplectic vector fields on T ˚M , even if this symplectic vector field

is itself polynomial in the momenta. This problem was addressed at length in [22] so it will

not be reviewed here. In any case, not much is actually known about automorphism groups of

algebras of differential operators. These infinite-dimensional groups have surprising properties

and remain difficult mathematical objects of current study, even in the polynomial case, as

examplified by the following two conjectures.

Example (Kontsevitch conjecture) : It was argued in 2005 that the automorphism group of the

Weyl algebra DpAq, the associative algebra of polynomial differential operators on a finite-dimensional

affine space A, must be isomorphic to the automorphism group of the associated Poisson algebra SpAq

of polynomial symbols [23],

Aut
`
DpAq

˘
– Aut

`
SpAq

˘
, (98)

but it was only in 2018 that a complete proof of this conjecture was outlined [24]. Note that, by

construction, the automorphism group of the Poisson algebra of polynomial symbols is isomorphic to the

group of polynomial symplectomorphisms (i.e. polynomial diffeomorphisms preserving the symplectic

structure of the cotangent bundle T ˚A). The isomorphism (98) may come as a surprise because it is

not true at the level of infinitesimal automorphisms: the Lie algebra of derivations of the associative

algebra DpAq of polynomial differential operators is not isomorphic to the Lie algebra of derivations of

the Poisson algebra SpAq of polynomial symbols,

der
`
DpAq

˘
fl der

`
SpAq

˘
(99)
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although they are isomorphic as vector spaces [23].20

Example (Dixmier conjecture) : In 1968, Dixmier asked [25] if any endomorphism of the Weyl

algebra of polynomial differential operators on a finite-dimensional affine space A is an automorphism.

In other words, whether any endomorphism of the Weyl algebra is invertible. A positive answer to

this question is referred to as the Dixmier conjecture. This conjecture is equivalent to its Poisson

counterpart (sometimes called the Poisson conjecture [26]) : that any endomorphism of the Poisson

algebra of polynomial symbols is an automorphism. If the Dixmier conjecture is true, this means that

the endomorphism algebra End
`
DpAq

˘
and the automorphisms group Aut

`
DpAq

˘
of the Weyl algebra

are isomorphic, as associative algebras.

Let us summarise again the situation in the smooth case: Firstly, if one requires to preserve

the filtration/graduation then the only inner derivations of the almost-commutative algebra

DpMq of differential operators (respectively, of the Schouten algebra SpMq of principal symbols)

which are integrable to one-parameter groups of automorphisms of the same filtered (respectively,

graded) algebra(s), are the (complete) Lie derivatives along vector fields on M . Secondly, even

if one does not require a priori to preserve the filtration/graduation, the only inner derivations

of the associative algebra DpMq of differential operators (respectively, of the Poisson algebra

SpMq of symbols) which are integrable to one-parameter groups of automorphisms of the same

associative (respectively, Poisson) algebra(s), are again the (complete) Lie derivatives along

vector fields onM . In other words, the automorphisms of these associative/Poisson algebras must

necessarily preserve their filtration/graduation and, consequently, higher-spin Lie derivatives

along higher-derivative differential operators (respectively, Hamiltonian vector fields with higher-

degree symbols as Hamiltonians) are not integrable to one-parameter groups of automorphisms

of the associative algebra DpMq of differential operators (respectively, of the Poisson algebra

SpMq of symbols).21 If a Lie algebra22 is integrable to a Lie group, then one would expect (for

any reasonable topology) that all its inner derivations are integrable to one-parameter groups

of automorphisms of the Lie algebra (via the exponential map). Accordingly, an important

corollary of these negative results is the strong no-go theorem of Grabowski and Poncin [20,

Cor.4]:

No-go theorem (Grabowski & Poncin) : The two infinite-dimensional Lie algebras, DpMq

of differential operators and SpMq of symbols on a manifold M , are not integrable to (infinite-

20Note that all derivations of the Poisson algebra SpAq and of the associative algebraDpAq are inner (hence they
are polynomial Hamiltonian vector fields and higher-spin Lie derivatives along polynomial differential operators,
respectively).

21A way out is that these inner derivations can be integrated to one-parameter groups of automorphisms of
larger algebras, see e.g. the two proposals in [22].

22Note that the so-called “Lie’s third theorem” stating that every finite-dimensional real Lie algebra g is
associated to a real Lie group G does not hold in general for infinite-dimensional Lie algebras.
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dimensional) Lie groups (of which they are the Lie algebras).

This no-go theorem may be responsible for the elusive locality properties of higher-spin inter-

actions. In any case, it makes manifest that if finite higher-spin symmetries are taken seriously,

then they require to leave the realm of operators with bounded number in the derivatives (the

landmark of locality). A toy-model example [22, Sect.6] of completion of the almost-commutative

algebra of differential operators bypassing the no-go theorem of Grabowski and Poncin is re-

viewed in the next subsection.

6.1.8 Yes-go theorem on (formal) higher-spin diffeomorphisms

One simple trick to go beyond differential operators is to make use of a formal deformation

parameter, say ~.

Let V be a vector space over the field K. Then V J~K denotes the vector space of formal power

series in ~ with coefficients that are elements of V . The vector space V J~K is a KJ~K-module.

A KJ~K-linear map U P EndKJ~K

´
V J~K

¯
is said ~ -linear and is uniquely determined from its

restriction T “ U |V : V Ñ V J~K to the subspace V Ă V J~K of power series independent of ~.

This restriction is a K-linear map from V to V J~K, hence it can be thought of as an element

of the space EndpV qJ~K of formal power series in ~ with coefficients that are endomorphisms of

the vector space V . This leads to the isomorphism EndKJ~K

´
V J~K

¯
– EndpV qJ~K of associative

algebras. With a slight abuse of notation, the K-linear map T and its unique ~-linear extension

U will be denoted by the same symbol from now on.

Let us assume that V is N-filtered and denote by V xx~yy the vector space spanned by formal

power series in ~ with coefficients which are of degree smaller or equal to the power of ~,

vp~q P V xx~yy ðñ vp~q “
8ÿ

n“0

vn ~
n with vn P Vn . (100)

It will be called the ~-filtered extension of the N-filtered space V . Let us now assume

that V is N-graded and denote by V ‖~‖ the vector space spanned by formal power series in ~

with coefficients which are of grading equal to the power of ~. It will be called the ~-graded

extension of the N-graded space V .

Consider an associative algebra A . The ~ -linear extension of its product endows the vector

space AJ~K with a structure of KJ~K-algebra. Furthermore, if the associative algebra is N-

filtered (respectively, N-graded) then the ~ -linear extension of the product of the associative

algebra A endows the vector space A xx~yy Ă AJ~K (respectively, A‖~‖ Ă AJ~K) with a structure

of associative (sub)algebra.

The elements of the form ap~q “ ~ bp~q, where bp~q P AJ~K , form a proper ideal ~AJ~K Ă
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AJ~K . Similarly, the elements of the same form but where bp~q P A xx~yy , form a proper ideal of

~A xx~yy Ă A xx~yy . The quotient algebra of the ~-filtered extension A xx~yy of the filtered asso-

ciative algebra A by the ideal ~A xx~yy is isomorphic to the ~-graded extension of the associated

N-graded algebra B “ grA,

A xx~yy { ~A xx~yy – grA‖~‖ . (101)

An N-filtered associative algebra A is almost-commutative iff its ~-filtered extension A xx~yy

is commutative modulo ~, “
A xx~yy , A xx~yy

‰
Ď ~A xx~yy . (102)

which is equivalent to say that the quotient algebra (101) is commutative. A Poisson algebra

B is a Schouten algebra iff it is an N-graded vector space such that B ‖~‖ is an algebra for the

~-linear extension of the product of the commutative algebra B and the ~-linear extension of the

Poisson bracket obeys  
B ‖~‖ , B xx~yy

(
Ď ~B ‖~‖ . (103)

The quotient algebra of the ~-filtered extension A xx~yy of an almost commutative algebra A

by the ideal ~A xx~yy is endowed with a structures of Poisson algebra via the commutative

product induced from the associative product and via the Poisson bracket induced from 1
~
r , s.

Furthermore, this quotient is isomorphic to the ~-graded extension of the associated Schouten

algebra B “ grA.

Let A be a commutative algebra. The KJ~K-subalgebra B Ă EndpAqJ~K of ~-linear endomor-

phisms of the vector space AJ~K which are A-linear modulo ~, i.e.

“
B xx~yy , D0pAq

‰
Ă ~B xx~yy , (104)

is the ~-filtered extension DpAqxx~yy of the Grothendieck algebra of differential operators on A,

as can be checked by spelling out the condition (104) in powers of ~.

Remember that for any associative algebraA, one can form the Lie algebra A by endowing the

vector space A with the commutator as Lie bracket. Consider an almost-commutative algebra A,

one can define the following representation of the Lie algebra A xx~yy on the associative algebra

A xx~yy

ad~ : A xx~yy Ñ der
`
A xx~yy

˘
: b ÞÑ ad~b (105)

where

ad~b :“
1

~
adb (106)

is an ~ -linear derivation of the associative algebra A xx~yy .

Technical Lemma [22] : Consider an almost-commutative algebra A. Let us assume that the adjoint
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action ad|A1
: A1 Ñ derpAq of the Lie subalgebra A1 Ă A of degree one is integrable in the sense that

there are one-parameter groups of automorphisms of the almost-commutative algebra A with elements

of the form expp t adaq P AutpAq for some a P A1. Then the action ad~ of the Lie algebra A xx~yy on the

associative algebra A xx~yy is essentially integrable, in the sense that all elements ap~q “
ř8

n“1 an ~
n P

A xx~yy X ~AJ~K generate one-parameter groups of automorphisms of the associative algebra A of the

form expp t ad~aq P AutpA xx~yyq when the coefficient a1 is integrable in the previous sense.

This lemma applies in particular for the Grothendieck algebra of differential oeprators on

any commutative algebra. Therefore, a direct corollary is that the no-go theorem of Grabowski

and Poncin can be bypassed by considering instead the ~-filtered completion DpMq xx~yy of the

associative algebra DpMq of differential operators. It is spanned by formal power series in ~

with coefficients that are differential operators on M of order smaller or equal to the power of ~,

X̂~ “
8ÿ

r“0

X̂r ~
r , X̂r P DrpMq . (107)

They were called almost-differential operators on the manifold M in [22].

Yes-go proposition : Any almost-differential operator X̂~ P DpMq xx~yy X ~DpMqJ~K is lo-

cally integrable to a one-parameter group of automorphisms of the algebra DpMqxx~yy of almost-

differential operators.

6.2 Higher-order jets

6.2.1 Higher-order contact ideals

Consider a point m of M and let k be a non-negative integer (or infinity). The commutative

ideal Ikpmq of C8pMq is spanned by the functions f such that pBµ1
. . . Bµr

fq|m “ 0 for 0 ď r ď k

(respectively, for all r when k “ 8). It will be called the contact ideal of order k at the

point m. Notice that, although one would make use of a specific coordinate system to write

down these partial derivatives, the commutative ideal Ikpmq does not depend on the choice

of coordinates, as can be checked explicitly. Therefore, all the following notions will also be

coordinate-free, although this may not be obvious at first sight. Since one deals with smooth

functions, one may easily check that the order-k contact ideal is identical to the pk ` 1q-fold

pointwise power of the maximal ideal I0pmq:

Ikpmq “
´
I0pmq

¯k`1

. (108)
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While the maximal ideal I0pmq captures algebraically the geometric notion of the point m on

the manifold, the commutative ideal Ikpmq captures something more refined: the infinitesimal

vicinity of the point m till order k.

One can see the structure algebra as the contact ideal of order ´1, i.e. introduce the notation

I´1pmq :“ C8pMq in order to have the following infinite sequence of canonical inclusions

. . . ãÑ Ik`1pmq ãÑ Ikpmq ãÑ . . . ãÑ I1pmq ãÑ I0pmq ãÑ I´1pmq , (109)

of vector spaces whose inverse limit defines the contat ideal I8pmq of infinite order at m. There-

fore C8pMq is a Z-filtered vector space, with decreasing filtration, and the corresponding N-

graded vector space is isomorphic to the symmetric tensor product dT ˚
mM of the cotangent

space, i.e.

dT ˚k`1
m M – Ikpmq { Ik`1pmq . (110)

The contact ideal Ikpmq of order k is a commutative ideal of the structure algebra C8pMq

so it defines an equivalence relation among functions f , whose equivalence classes are denoted

by jkmf and are called jets of order k at the point m (or simply k-jets) of functions. By

definition, two functions f and g define the same k-jet jkmf at m iff all their derivatives till order

k have the same value at m.

The quotient

Jk
mM :“ C8pMq { Ikpmq (111)

is the k-jet space at m. The infinite-jet space J8
mM will often be called simply “jet space at

m” for short. Since the k-jet spaces are defined as the quotient of a commutative algebra by

an ideal, they are commutative algebras as well. In order to emphasise this property, they will

sometimes be referred to as k-jet space algebras. However, they will be more often called jet

spaces because it is their structure of vector spaces which is usually the most relevant.

6.2.2 Truncated polynomials and formal power series

Let V be a finite-dimensional vector space. Consider the symmetric algebra dpV ˚q (thought as

the commutative algebra of polynomials on V ) with maximal idea m “ dą0pV ˚q of symmetric

tensors of non-vanishing rank (thought as the contact ideal Ip0q of polynomials vanishing at the

origin). Its pk ` 1q-th power mk`1 – dąkV ˚ is spanned by symmetric tensors of rank higher

than k (thought as the k-contact ideal Ikp0q of polynomials vanishing till order k at the origin).

The quotient

Jk
0V :“ dpV ˚q { dąk pV ˚q (112)
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is the k-jet space algebra at the origin. The (inverse) limit J8
0 V of these quotients for k “ 8

is a local algebra which can be thought of as the commutative algebra dpV ˚q of formal power

series at the origin of V . A theorem of Borel states that any formal power series is the Taylor

series of a smooth function [27]. Therefore, the commutative algebra of formal power series at

the origin of the vector space V is isomorphic to the commutative algebra of smooth functions

on V quotiented by the contact ideal of infinite order

J8
0 V :“ C8pV q { I8p0q . (113)

A finite-dimensional local algebra A is called a Weil algebra [28] (see also [13, Sec.35]). Any

Weil algebra A is a direct sum A “ R ‘ N , where the maximal ideal N Ă A is nilpotent (i.e.

N k “ 0 for some finite k P N). For any Weil algebra A, there exists a finite-dimensional vector

space V such that A is a quotient of the local algebra dpV ˚q – J8
0 V of formal power series at

the origin, by a commutative ideal I of finite codimension.

Example (Truncated polynomials) : The k-jet space algebra Jk
0V at the origin of the vector space

V is the quotient J8
0 V { Ik`1p0q of the local algebra J8

0 V of power series at the origin by the pk`1q-fold

power of its maximal ideal Ip0q. The k-jet space algebras Jk
0 V are important examples of Weil algebras.

Its elements are equivalence classes of power series modulo terms of order k ` 1, which are sometimes

called truncated polynomials of degree k. In order to see this more concretely, let us introduce

Cartesian coordinates εµ on R
n, then the k-jet space algebra Jk

0R
n at the origin of Rn is isomorphic

to the commutative algebra of truncated polynomials of degree k in the variable εµ, i.e. power series

modulo terms of order k ` 1,

Jk
0R

n – RJεµK {
´
m
`
RJεµK

˘ ¯k`1
. (114)

A convenient representation for a k-jet atm of a smooth function is as the Taylor expansion of

degree k (for k “ 8, this representation is actually a formal power series). It is uniquely defined

by all its derivatives at m till order k. A compact expression for a k-jet is as an equivalence

class of power series φpεq in the auxiliary variable εµ:

φpεq ` O
`

|ε|k`1
˘

“
kÿ

r“0

1

r!
φµ1...µr

pxq εµ1 . . . εµr modulo |ε|k`1 . (115)

For k “ 8, the extra term (“modulo ...”) can be consistently dropped in the previous expression.

The equivalence class (115) can be seen as a Taylor series at m modulo terms of order εk`1.

The product is well defined on the above equivalence classes (truncated polynomials) but is

not preserved by a choice of representatives (genuine polynomials) since the product of two
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polynomials of degree k is a polynomial of degree 2k rather than k.

6.2.3 Higher-order jet bundles

The k-jet bundle is the manifold JkM “
Ť

m Jk
mM and it has local coordinates

p xν , φ , φµ , φµ1µ2
, . . . , φµ1¨¨¨µk

q .

The transformation law of a k-jet under the coordinate transformation xµ ÞÑ x1µpxq is as follows:

φ1 “ φ , φ1
µ “

Bxν

Bx1µ
φν , φ1

µ1µ2
“

Bxν1

Bx1µ1

Bxν2

Bx1µ2

φν1ν2 `
B2xν

Bx1µ1Bx1µ2

φν , ¨ ¨ ¨ (116)

As one can see, the component φµ1¨¨¨µr
with r indices does not transform as a rank-r symmetric

covariant tensor because the lower rank components contribute in the transformation law of a

given component of a k-jet. In other words, only the collection of all its non-trivial components

φµ, φµ1µ2
, ..., φµ1¨¨¨µk

is a coordinate-free object (the rank-zero can of course be separated).

There is an infinite tower of vector bundles fibrations:

. . . ։ Jk`1M ։ JkM ։ . . . ։ J2M ։ J1M ։ J0M – M ˆ R , (117)

the inverse limit of which provides an abstract definition of the infinite-jet bundle JM .23 The

kernel of the projection JkM ։ Jk´1M is the bundle of symmetric covariant tensors of rank k,

i.e. dkT ˚M , in agreement with the previous isomorphism for the quotients of contact ideals.

The sections of the kth jet bundle JkM will be called k-jet fields. The commutative algebra

of k-jet fields will be denoted J kpMq :“ ΓpJkMq. As mentioned above, a convenient represen-

tative for a k-jet is a truncated polynomial of degree k (or a formal power series for k “ 8). A

k-jet field φ is therefore compactly written as a function of two variables

φpx; εq ` Op|ε|k`1q “
kÿ

r“0

1

r!
φµ1...µr

pxq εµ1 . . . εµr modulo |ε|k`1 . (118)

A very important point is that, for a generic r, the coefficient φµ1...µr
pxq in the k-jet field φpx; εq

is not a symmetric covariant tensor fields of rank r, although the notation may suggest this

misleading interpretation. This subtlety is more obvious if ones considers the kth prolongation

of a function f that is the section jkf of the kth jet bundle JkM whose local expression is the

23Although it is very tempting, one will refrain from calling the set of jets JM the “jet set” of the manifold
M .
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Taylor expansion of order k:

pjkfqpx; εq “
kÿ

r“0

1

r!
Bµ1

. . . Bµr
fpxq εµ1 . . . εµr modulo |ε|k`1 (119)

“ fpx ` εq modulo |ε|k`1 , (120)

where the last equality holds for any finite k by virtue of Taylor’s theorem. Obviously, the

coefficients Bµ1
. . . Bµr

fpxq do not transform as symmetric covariant tensor fields of rank r

under general coordinate transformations. Notice that the kth prolongation is a linear map

jk : C8pMq Ñ J kpMq which has the following concrete representation in coordinates

jk “ exp

ˆ
εµ

B

Bxµ

˙
` O

`
|ε|k`1

˘
, (121)

in agreement with (119). The infinite prolongation j8 : C8pMq Ñ J 8pMq plays an important

role in the theory of partial differential equations (see e.g. the textbook [6]) and has a particularly

simple representation j8 “ exppεµ B
Bxµ q in local coordinates as a formal power series in ε.

Remark: For analytic functions, their infinite prolongation can formally be understood as a mere

translation: pj8fqpx; εq “ fpx ` εq . However, this equality is not correct for generic smooth functions

since the Taylor series of a smooth function at a point does not necessarily converge, and even if it

converges this Taylor series is not necessarily equal to the value of the function at this point. Along

the same lines, one should always keep in mind the theorem according to which there is an infinite

collection of smooth functions defining the same 8-jet at a given point.

Jets have been introduced by mathematicians in order to make sense of locality (in the sense

of classical field theory) without necessarily going into the details of functional space analysis.

Indeed, the k-jet spaces of finite order k are finite-dimensional. Therefore, jet spaces allow to

study (some aspects of) functions on a manifold via the basic tools of abstract algebra. Another

motivation for introducing jets is that they allow to provide a coordinate-independent definition

of higher-order partial differential equations.

Remark: Note that the k-th derivative alone is not a coordinate-free object, only the collection of all

its derivatives till order k is a geometric object (since the coefficients Bµ1
. . . Bµrfpxq do not transform

as symmetric covariant tensor fields of rank r but are mixed under general coordinate transformations).

However, as can be expected from the coordinate expression and as can be checked from the trans-

formation law (116) under coordinate changes, the space of symmetric covariant tensors of rank k is

isomorphic to the quotient of the contact ideal of order k´1 by the contact ideal of order k, cf. (110). In

other words, the space of symmetric covariant tensors is the cokernel (i.e. the quotient of the codomain
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by the image) of the canonical inclusions (109).

6.3 Higher-order cojets

As will become clear, the algebraic definition of differential operators via commutators is equiv-

alent to another possible definition of differential operators insisting on locality: differential

operators are those operators on the vector space C8pMq that are local in the sense that their

action at a point only depends on the smooth structure (i.e. the jet) of the given function at that

point (in other words, the contact ideal is annihilated). To be more precise, the restriction X̂|m

of a differential operator of order k at a single point m P M is a linear form on the k-jet space

Jk
mM . This motivates the introduction of some specific terminology for the values of differential

operators at a given point: cojets.

6.3.1 Higher-order cojets as generalised functions

The dual of the kth jet space, i.e. the space

Dk
mM :“ pJk

mMq˚ , pk P Nq (122)

of linear forms on the k-jet space Jk
mM , will be called the space of k-cojets at m. Equivalently,

a k-cojet at m can be thought as the value at the point m of a differential operator

X̂ P DkpMq of order k, defined as the linear form

X̂|m :“ δm ˝ X̂ (123)

on C8pMq, where δm : C8pMq Ñ R is the evaluation functional at the point m. Since the

contact ideal Ikpmq of order k at the point m belongs to the kernel of any such linear form

X̂|m : C8pMq Ñ R, one may indeed consider that the latter effectively defines a linear form

on the k-jet space at m, c.f. (111). Furthermore, a k-cojet at m can be also be defined as an

equivalence classes of differential operators of order k, where two differential operators X̂ and

Ŷ are equivalent if they produce the same result, at the point m, on any given function. This

last definition agrees with the previous one, due to the relation (38).

For k “ 8, the above definitions require more care. The topological dual of the 8-jet space,

i.e. the space

DmM :“ pJ8
mMq1 . (124)

of continuous linear forms on the 8-jet space J8
mM , will be called the space of 8-cojets at

m. In the language of distribution theory, a smooth function with compact support is called
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Equivalent formulations of finite-order cojets

On a smooth manifold, the following notions are equivalent for any integer k P N:

1. a k-cojet at a point m,

2. a linear form on the k-jet space Jk
mM ,

3. the value X̂|m at m of a differential operator X̂ P DkpMq of order k.

a test function. The subspace of test functions is sometimes denoted C8
c pMq Ă C8pMq.

One may consider its topological dual C8
c pMq1 spanned by the continuous linear functionals on

C8
c pMq. These functionals are called generalised functions [29] (or “distributions” [30]) on

the manifold M . The space of 8-cojets at m can be defined as the space of generalised functions

on M whose support is the point m. A theorem of Schwartz states that a generalised function

whose support is a single point decomposes a finite linear combination of derivatives of the Dirac

distribution at this point [30, Th.35,Chap.3]. For instance, remember that the space D0
mM of

0-cojets at m, i.e. the vector space dual to J0
mM “ C8pMq{I0pmq – R, can be thought of as

the one-dimensional space spanned by the evaluation functional δm. More generally, the space

Dk
mM of k-cojets at m is spanned by all derivatives of the Dirac distribution at m till order k.

Accordingly, in a local coordinate system a possible representation for a k-cojet X at a point

m P M of coordinates yµ is as a generalised function:

Xpxq “
kÿ

r“0

1

r!
Xµ1...µrpyq

B

Bxµ1

. . .
B

Bxµr
δnpy ´ xq , (125)

Indeed, via this realisation, the k-cojet acts on a test function φ as follows:

xX, φy “

ż
dxXpxqφpxq “

kÿ

r“0

1

r!
Xµ1...µrpyq Bµ1

¨ ¨ ¨ Bµr
φpyq . (126)

In a more algebraic language, a compact expression for a k-cojet X is as a polynomial of

degree k in the auxiliary variable Bε:

XpBεq “
kÿ

r“0

1

r!
Xµ1...µr

B

Bεµ1

. . .
B

Bεµr
, (127)

where the location of the cojet was not specified. Indeed, via this choice of notation, the k-cojet
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XpBεq above acts on k-jets φpεq, realised as truncated polynomials, like a differential operator of

order k (for the auxilliary coordinate ε) followed by an evaluation at ε “ 0:

xX, φy “ XpBεqφpεq |ε“0 “
kÿ

r“0

1

r!
Xµ1...µr φµ1...µr

. (128)

Equivalent formulations of cojets

On a smooth manifold, the following notions are equivalent:

1. a cojet at a point m,

2. a continuous linear form on the 8-jet space J8
mM ,

3. the value X̂|m at m of a differential operator X̂ P DpMq,

4. a generalised function with support at m.

6.3.2 Higher-order cojet bundles

The k-cojet bundle DkM “
Ť

m Dk
mM has local coordinates

pxν , X,Xµ, Xµ1µ2 , . . . , Xµ1¨¨¨µkq.

The transformation law of a k-cojet under the coordinate transformation xµ ÞÑ x1µpxq is quite

complicated for high k, so we only give the transformation law of 2-cojets:

X 1 “ X , X 1µ “
Bx1µ

Bxν
Xν `

B2x1µ

Bxν1Bxν2
Xν1ν2 , X 1µ1µ2 “

Bx1µ1

Bxν1

Bx1µ2

Bxν2
Xν1ν2 . (129)

More generally, all (but only) the higher rank components contribute in the transformation

law of a given component of a k-cojet, thus its lower components Xµ1¨¨¨µr of rank 0 ă r ă k

do not transform as rank-r symmetric contravariant tensors. In other words, only the collec-

tion of all its non-trivial components Xµ, Xµ1µ2 , ..., Xµ1¨¨¨µk is a single coordinate-free object.

More accurately, only the rank-zero and rank-k components of a k-cojet can be separated in a

coordinate-invariant way. An important motivation behind jet theory is to allow a geometric def-

inition of differential operators. Contrarily to tangent and cotangent vectors, their higher-order

generalisation (cojets and jets, respectively) do not have nice transformation properties under
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coordinate transformations, so their transformation laws have not been written down here in

details although a tensor-like calculus can be designed to handle them [31]. If the components

of metric-like fields are, say cojets (as suggested by the higher-spin Lie derivative), then they

do not transform as symmetric tensor fields under diffeomorphisms. Such property might be

at the root of the well-known obstruction in higher-spin gravity to “naive” minimal coupling of

higher-spin particles to gravitons (see e.g. [2] and refs therein).

The sections of the k-cojet bundle DkM will be called k-cojet fields. Locally, the latter

are compactly expressed as generating functions Xpx; Bεq which are smooth in the coordinates

xµ and polynomial in the auxiliary variable B{Bεν. There is an infinite sequence of embeddings

(actually, an N-filtration) of vector bundles on M :

M ˆ R
˚ – D0M ãÑ D1M ãÑ D2M ãÑ . . . ãÑ DkM ãÑ Dk`1M ãÑ . . . (130)

the direct limit of which is the infinite-order cojet bundle DM that will be called the enveloping

bundle of M .24 Accordingly, the infinite-order cojet space DmM will be called the enveloping

space at m P M .

Example (jet vs cojet space) : The 8-cojet space D0V – dpV q at the origin of the vector space

V is the topological dual of the 8-jet space J8
0 V – dpV ˚q. Conversely, the 8-jet space J8

0 V is the

algebraic dual of the 8-cojet space D0V .

The cokernel of the kth embedding Dk´1M ãÑ DkM is the bundle of symmetric contravariant

tensors of rank k, i.e. dkTM . In other words, the quotient of k-cojet space by the (k ´ 1)-cojet

space is isomorphic to the space of symmetric contravariant tangent tensors of rank k:

dkTM – DkM {Dk´1M . (131)

A representative of the equivalence class of a k-cojet is its principal symbol.

6.3.3 Differential operators as cojet fields

Differential operators of order k can be defined as linear operators X̂ : C8pMq Ñ C8pMq which

factor through the k-jet bundle JkM in the sense that X̂ “ X ˝ jk where X P ΓpDkMq is a

k-cojet field, i.e. a section of the k-cojet bundle DkM , and jk : C8pMq Ñ J kpMq is the order-k

24This term is motivated by the importance of universal enveloping algebras of finite-dimensional Lie algebras
in higher-spin gravity. Moreover, this terminology is in line with the fact that the almost-commutative algebra of
differential operators DpMq is the universal enveloping algebra of the Lie-Rinehart algebra of vector fields XpMq.
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prolongation map. In local coordinates, the correspondence goes as follows:

pX̂fqpxq “
“
Xpx; Bεq pjkfqpx; εq

‰ˇ̌
ε“0

“
´
X
`
jkf

˘ ¯
pxq , (132)

which can be checked by making use of the previous explicit local expressions for the differential

operator X̂ : C8pMq Ñ C8pMq of order k, its k-cojet field X : J kpMq Ñ C8pMq and the

prolongation map jk : C8pMq Ñ J kpMq. Due to this equivalent definition of differential oper-

ators, we will often identify differential operators with cojet fields. Actually, the identification

corresponds to the formal replacement Bε with Bx together with the normal ordering prescription

(related to the previous subtlety in the isomorphism).

The many faces of differential operators

Given a smooth manifold M , the following notions are equivalent:

1. a linear scalar-valued differential operator X̂ P DkpMq of order k on M ,

2. an endomorphism X̂ P End
`
C8pMq

˘
of the vector space C8pMq such that

r r . . . rX̂ , f̂1s , f̂2s . . . , f̂ks P D0pMq for any functions f1, f2, ¨ ¨ ¨ , fk P C8pMq,

3. an endomorphism X̂ P End
`
C8pMq

˘
of the vector space C8pMq which is almost

C8pMq-linear in the sense that rX̂, f̂ s P Dk´1pMq for any function f P C8pMq,

4. a k-cojet field X P ΓpDkMq on M , i.e. a section of the k-cojet bundle DkM .

6.4 Pushforward of differential operators and cojets

Let F : M Ñ N be a map from the manifold M (source) to the manifold N (target). The

following definitions are the direct higher-order generalisations of their standard versions for

vector fields.

Two differential operators X̂ P DpMq and Ŷ P DpNq are said to be related by F if

X̂ ˝ F ˚ “ F ˚ ˝ Ŷ (133)

where F ˚ : C8pNq Ñ C8pMq is the pullback of F : M Ñ N . The equality (133) makes sense

since the differential operators X̂ and Ŷ are seen as endomorphisms of C8pMq and C8pNq
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respectively while F ˚ is a homomorphism from C8pNq to C8pMq. More explicitly, the condition

(133) reads as follows:

X̂
“
F ˚pgq

‰
“ F ˚

`
Ŷ rgs

˘
, @g P C8pNq . (134)

This condition is sufficiently subtle and important to deserve a third equivalent writing:

X̂r g ˝ F s “ Ŷ rgs ˝ F , @g P C8pNq . (135)

If F is bijective then any differential operator X̂ on the source M is related by F to a unique

differential operator Ŷ on the target N , which is called the pushforward of X̂ by F and the

corresponding Ŷ in (133) is denoted F˚X̂ . Therefore, the pushforward by a bijective F is

defined as the algebra isomorphism

F˚ : DpMq
„
Ñ DpNq : X̂ ÞÑ pF´1q˚ ˝ X̂ ˝ F ˚ . (136)

The pushforward preserves the filtration by the order of the differential operators. If F is injective

then its restriction is invertible when the codomain is restricted to F pMq Ď N . Therefore, the

pushforward by an injective F : M ãÑ N is a well defined map F˚ : D
`
M
˘

ãÑ D
`
F pMq

˘
.

However, if F is surjective, then the pushforward is not always well defined, which motivates

the following definition: when a differential operator X̂ on M is related by a surjective F to

a (well-defined) differential operator Ŷ on N , then the former X̂ is called projectable on N

(by the pushforward F˚) while the latter Ŷ is called the pushforward of X̂ by F and is denoted

F˚X̂(“ Ŷ ). The space of differential operators on M projectable on N by F will be denoted as

the preimage pF˚q´1DpNq. In this way, it becomes tautological to say that the pushforward

by a surjective F : M ։ N is a well defined map F˚ : pF˚q´1DpNq ։ DpNq.

All these definitions of pushforward by F are morphisms of algebras, i.e. F˚pX̂1 ˝ X̂2q “

pF˚X̂1q ˝ pF˚X̂2q for any differential operators X̂1 and X̂2 on the source M . Therefore the

kernel, KerF˚, of the pushforward by a surjective map F is an associative ideal of the algebra

of projectable differential operators. The corresponding quotient is isomorphic to the algebra of

differential operators on the target manifold: DpNq – pF˚q´1DpNq {KerF˚.

The pushforward map itself F ÞÑ F˚ is a homomorphism from the associative algebra of

smooth maps between manifolds to the associative algebra of morphisms between associative

algebras of differential operators, i.e. it preserves the order of multiplication: pF ˝ Gq˚ “ F˚ ˝ G˚.

In another generalisation of Milnor exercise by Grabowski and Poncin, the commutative

algebra of functions is replaced with the associative25 algebra of differential operators [20].

25Actually, the theorem holds for the weaker structure of Lie (rather than associative) algebra of differential
operators [20].

56



Theorem (Grabowski & Poncin) : A map Φ : DpMq
„
Ñ DpNq between the algebras of

differential operators on two smooth manifolds is an isomorphism of associative algebras iff it is

the pushforward of a diffeomorphism F : M
„
Ñ N between these two manifolds, i.e. Φ “ F˚.

The essence of the proof relies on showing that any such isomorphism of associative algebras

is also an isomorphism of filtered algebra (in which case, one can reduce the problem to the

genuine Milnor exercise). The various Milnor exercises that were reviewed till now gives a

mathematically precise meaning to the equivalences (1) pictured in Section 2:

Consider a differential operator X̂ on M related by F : M Ñ N to the differential operator

F˚X̂ on N , cf. (134). For any function g on N , the functions X̂rF ˚gs and F˚X̂rgs are functions

on M and N respectively. Moreover, the evaluation at the point m P M of the function X̂rF ˚gs

is equal to the evaluation at the point F pmq P N of the function F˚X̂rgs. In other words, we

have the familiar equality

X̂rF ˚gs|m “ F˚X̂rgs|F pmq. (137)

A k-cojet Xm at a point m P M can be identified with the equivalence class of differential

operators X̂ on M of order k with the same value X̂|m “ δm ˝ X̂ at m. The remarkable fact

about the equality (137) is that it only involves values at a single point of the relevant objects

(the k-cojet Xm and the k-jet jkmf). Therefore all the previous problems for pushforwards of

cojet fields do not arise for individual cojets, because the latter are only defined at a single point.

In particular, the pushforward of a cojet by a map F : M Ñ N is well-defined independently

of the injectivity/surjectivity properties of the map F . In fact, the following definition of the

pushforward

F˚X̂|m :“ X̂|m ˝ F ˚ (138)

of a k-cojet X̂|m at a point m agrees with (137).

The pushforward by F : M Ñ N is the vector bundle morphism F˚ : DkM Ñ DkN

corresponding in the fibre to the linear maps

F˚m : Dk
mM Ñ Dk

F pmqN : Xm ÞÑ pF˚XqF pmq , (139)

at each point. Actually this notion of pushforward ensures that the map D : M ÞÑ DM sending

a manifold to its enveloping bundle defines a covariant functor from the category of smooth

manifolds to the category of vector bundles, where any smooth map F : M Ñ N between

two manifolds is sent to the morphism F˚ : DM Ñ DN of vector bundles. In the language

of category theory, the pushforward F˚ : DM Ñ DN would be denoted as DF . The map

D : M ÞÑ DM sending a manifold to its enveloping bundle also defines a covariant functor from

the category of smooth manifolds to the category of vector bundles. In the first-order case k “ 1,
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one may restrict to the tangent bundle, in which case the pushforward by F : M Ñ N is the

vector bundle morphism TF : TM Ñ TN also known as the differential of F .
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