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Time-explicit Hybrid High-Order method for the nonlinear acoustic

wave equation

Morgane Steins ∗ Alexandre Ern † Olivier Jamond ‡ Florence Drui §

January 27, 2023

Abstract

We devise a fully explicit scheme for the nonlinear acoustic wave equation in its second-order formula-
tion in time, using the HHO method for space discretization and the leapfrog scheme for time integration.
The key idea for the explicitation is an iterative procedure to approximate at each time step the static
nonlinear coupling between the cell and face unknowns. This procedure is based on a splitting of the
HHO stabilization operator and, in the linear case, is proved to converge for a large enough weight of the
stabilization uniformly in the mesh size. Increasing the stabilization weight turns out to have a moderate
impact on the CFL condition. The numerical experiments demonstrate the computational efficiency of
the splitting procedure compared to a semi-implicit scheme for the static coupling between cell and face
unknowns.

Mathematics Subjects Classification. 65M22, 65M60, 35L05, 74J30, 65F10.

Keywords. Hybrid high-order methods, wave equation, explicit time scheme, operator splitting.

1 Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, denote an open bounded polyhedral domain with Lipschitz boundary ∂Ω, and let
J = (0,Θ) be a time interval with final time Θ > 0. The problem under study is a generic nonlinear acoustic
wave equation: Find the potential u : Ω× J → R such that

∂2t u+∇ · (µ(u,∇u)2∇u) = f, in Ω, ∀t ∈ J, (1a)

u|t=0 = u0, in Ω, (1b)

∂tu|t=0 = v0, in Ω, (1c)

with f : Ω× J → R the source term, µ : R×Rd → R+ a nonlinear function representing the speed of sound,
and u0, v0 the initial data for the potential, u, and the velocity, ∂tu. Homogeneous Dirichlet boundary
conditions are enforced on u, and we assume that the initial data satisfies these conditions. The nonlinear
acoustic wave equation can be used in the modelling of various physical phenomena, such as seismic studies
or sound and water waves. It is also a valuable tool to study numerical schemes before using them on more
complex equations such as structural dynamics.
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When tackling fast transient or nonlinear phenomena, an explicit time integration is favored, as it is often
more robust than an implicit scheme. Indeed, an explicit scheme avoids at each time step the inversion of a
matrix (other than block-diagonal) in linear problems, and the use of a fixed-point or a Newton algorithm
in nonlinear problems. In both cases, these operations are costly in terms of computational time, especially
when the simulation requires a large number of time steps. This work focuses on the second-order formulation
in time of the nonlinear acoustic wave equation and considers the hybrid high-order (HHO) method for space
discretization and the classical leapfrog (central finite difference) scheme for time integration. Other possible
approaches for space discretization include conforming finite elements with mass lumping [11, 18, 19, 24] and
interior penalty discontinuous Galerkin (DG) with a block-diagonal matrix [25]. A recent application of DG
for the simulation of nonlinear sound waves is presented in [4].

The HHO method was introduced for linear diffusion in [22] and for linear elasticity in [21]. It was
extended to various applications such as solid mechanics with the Biot problem [6], nonlinear elasticity
[7], hyperelasticity [1] and elastoplasticity [2, 3]. The HHO method belongs to the class of hybridizable
discontinuous Galerkin (HDG) methods [16], as shown in [17]. Moreover, the HHO method is closely related
to nonconforming virtual element methods [5] and shares the same devising principles as weak Galerkin
(WG) methods [35], as shown in [14, 23]. Two books were recently devoted to the HHO method [20, 13].
This method offers numerous advantages: support of polyhedral meshes, optimal convergence rates, local
conservation principles, and computational efficiency. In particular, the support of polyhedral meshes allows
for a natural use of mesh refinement with hanging nodes. The HHO unknowns are polynomials attached to
the mesh cells and to the mesh faces. The setting is said to be of equal-order if both unknowns have the
same polynomial degree, and of mixed-order if the degree of the cell unknowns is one order higher than that
of the face unknowns.

The space discretization of the linear acoustic wave equation by the HHO method has been devised in [8],
for both second- and first-order formulations in time. Optimal convergence rates in space in the space semi-
discrete case are established in [10], and an unfitted version of the HHO method is devised in [9]. As shown in
[8], combining the classical leapfrog scheme in time with the HHO method for the second-order formulation in
time of the wave equation leads to a semi-implicit scheme, where, at each time step, the equation for the cell
unknowns is explicit, but there is a static coupling between the face and the cell unknowns. Instead, for the
first-order formulation in time, a fully explicit scheme can be devised by combining an explicit Runge–Kutta
time-stepping scheme with the HHO method in the mixed-order setting. The same difficulty is encountered
when using HDG and WG schemes for space discretization. For instance, for the first-order formulation,
both implicit [32, 31] and explicit HDG schemes [34] were devised for the wave equation, with a better
computational efficiency for the explicit version reported in [28]. A symplectic HDG formulation is derived
in [33]. The second-order formulation in time with HDG discretization is conducted in [15] using a Störmer–
Numerov scheme, and leads to a fully implicit scheme (both on the cell and the face unknowns). Similarly,
in the WG context, a fully implicit scheme is developed in [26, 27]. The goal of the present work is to derive
a fully explicit time discretization of the wave equation in its second-order formulation in time. As shown in
the above discussion, this is a novel development for HHO methods. Moreover, leveraging on the close links
between HHO, HDG and WG methods, the present work should also be beneficial when using HDG and WG
methods. Our main result is an explicitation method built on a suitable splitting of the HHO stabilization
operator. In the linear case, we prove the convergence of this procedure provided that the stabilization is
scaled by a large enough weight uniformly in the mesh size. This weight has only a moderate impact on the
CFL condition. Moreover, numerical experiments illustrate that the splitting procedure is computationally
more efficient compared to the semi-implicit scheme.

This work is organized as follows. Section 2 recalls from [8] the principles of the HHO space semi-
discretization for the linear acoustic wave equation and extends the method to the present nonlinear setting.
Section 3 presents the time discretization of the nonlinear acoustic wave equation with the explicit leapfrog
scheme and discusses its algebraic formulation. Section 4 is dedicated to the splitting procedure in the
nonlinear case, followed by a stability analysis in the linear case and some numerical tests on the splitting
parameters. Finally, Section 5 studies the computational efficiency of the proposed method, first on the linear
wave equation and then on two nonlinear model problems: a so-called p-structure operator and a vibrating
membrane.
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2 Space semi-discretization by the HHO method

In this section, the HHO semi-discretization in space of the acoustic wave equation is presented.

2.1 Discrete setting

Standard notation is used for Lebesgue, Sobolev and Bochner spaces. Let (·, ·)Ω denote the L2-inner product
on Ω and ∥ · ∥ the associated norm. Boldface notation is used for vectors and vector-valued fields, and
calligraphic notation is used for matrices and matrix-valued fields. Assuming f ∈ L2(J ;L2(Ω)), we seek the
solution of (1) in U := H2(J ;L2(Ω)) ∩ L2(J ;H1

0 (Ω)) such that

(∂2t u,w)Ω +
(
µ(u,∇u)2∇u,∇w

)
Ω
= (f, w)Ω , ∀t ∈ J, ∀w ∈ H1

0 (Ω). (2)

Let (Th)h>0 be a sequence of polyhedral meshes of Ω, such that each mesh Th covers exactly Ω. For all
h > 0, let T denote a generic mesh cell in Th, hT its diameter and FT the collection of its faces. The collection
of all faces of the mesh is denoted Fh. For a face F ∈ Fh, hF denotes its diameter, and for a cell T ∈ Th
and one of its faces F ∈ FT , nTF denotes the unit normal to F oriented outward from T . We also define
nT as the unit outward normal to the cell T so that nT |F = nTF , for all F ∈ FT . We set h := maxT∈Th

hT
for the mesh size. The mesh sequence is assumed to be shape-regular in the sense of [21]. This implies, in
particular, that for all Th, all T ∈ Th and all F ∈ FT , hF is uniformly comparable to hT .

Let the integer k ⩾ 0 be the polynomial order of the face unknowns and let l ∈ {k, k+ 1} be the order of
the cell unknowns. Recall that the setting is said to be of equal-order if l = k and of mixed-order if l = k+1.
Let Pl

d(T ) (resp. Pk
d−1(F )) denote the set of d-variate (resp. (d− 1)-variate) polynomials of degree at most

l (resp. k) restricted to the cell T ∈ Th (resp. to the face F ∈ Fh). The collection of all the cell degrees of
freedom is denoted U l

T , and the collection of all the face degrees of freedom is denoted Uk
F . These sets are

defined as
U l
T := ×

T∈Th

Pl
d(T ), Uk

F := ×
F∈Fh

Pk
d−1(F ). (3)

The collection of all the cell and face degrees of freedom is the hybrid space

Û l,k
h := U l

T × Uk
F . (4)

A generic element of Û l,k
h is denoted ŵh := (wT , wF ) ∈ U l

T × Uk
F and, in what follows, variables with hats

refer to hybrid variables. For a given cell T ∈ Th, one also defines a local hybrid space of degrees of freedom

Û l,k
T := Pl

d(T )× Uk
∂T , Uk

∂T := ×
F∈FT

Pk
d−1(F ). (5)

Then ŵT := (wT , w∂T = (wF )F∈FT
) ∈ Û l,k

T denotes a generic local hybrid unknown in T , composed of one
cell unknown and the collection of the face unknowns for all the faces in FT . Let Uk

F,0 := {vF ∈ Uk
F , s.t vF =

0, ∀F ⊂ ∂Ω} be the space of faces unknowns respecting the homogeneous Dirichlet conditions. The space of
hybrid unknowns respecting the homogeneous Dirichlet conditions is denoted

Û l,k
h,0 := U l

T × Uk
F,0. (6)

L2-orthogonal projections onto polynomial spaces are denoted with the symbol Π. For instance, for all
T ∈ Th, Πl

T is the projection onto Pl
d(T ) and for all F ∈ Fh, Π

k
F the projection onto Pk

d−1(F ). The L2-

orthogonal projection onto the broken polynomial spaces U l
T and Uk

F is denoted by Πl
T and Πk

F respectively.
Let (·, ·)T and (·, ·)F respectively denote the L2-inner product in the cell T ∈ Th and a face F ∈ Fh. For all

v̂T , ŵT ∈ Û l,k
T , we also define (v∂T , w∂T )∂T :=

∑
F∈FT

(vF , wF )F .
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2.2 Discrete HHO operators

The HHO discretization relies on two key operators: a gradient reconstruction operator and a stabilization
operator. Both operators are local, i.e. they are defined independently in every cell T ∈ Th. The gradient
reconstruction operator builds a gradient in the cell T from the local cell and face unknowns. This operator
Gk

T : Û l,k
T → Pk

d(T ;Rd) is evaluated by solving the following problem: For all v̂T ∈ Û l,k
T ,

(Gk
T (v̂T ), q)T = (∇vT , q)T + (v∂T − vT , q · nT )∂T , ∀q ∈ Pk

d(T ;Rd), (7)

where Pk
d(T ;Rd) denotes the set of Rd-valued d-variate polynomials of degree k in the cell T . In practice,

each component of the reconstructed gradient is found by inverting the mass matrix associated with a chosen
basis of Pk

d(T ). One can also build a potential reconstruction operator Rk+1
T : Û l,k

T → Pk+1
d (T ) solving, for

all ŵT ∈ Û l,k
T , the following Neumann problem:

(∇Rk+1
T (ŵT ),∇q)T = (∇wT ,∇q)T + (w∂T − wT ,∇q · nT )∂T , ∀q ∈ Pk+1

d (T ), (8)

and the mean-value condition (Rk+1
T (v̂T ), 1)T = (vT , 1)T . In this case, the computation of Rk+1

T (v̂T ) requires

inverting the stiffness matrix for a chosen basis of Pk+1,0
d (T ) := {q ∈ Pk+1

d (T ), such that (q, 1)T = 0}.
The role of the stabilization is to weakly enforce the matching between cell and face unknowns on each

face F ∈ Fh. Let T ∈ Th. For all ŵT ∈ Û l,k
T , set δT (ŵT ) := w∂T − wT |∂T on ∂T and δTF (ŵT ) := δT (ŵT )|F .

In the mixed-order case, the local stabilization operator STF is defined as

STF (ŵT ) := Πk
F (δTF (ŵT )), ∀ŵT ∈ Û l,k

T , (9)

and leads to the so-called the Lehrenfeld-Schöberl stabilization in the HDG setting (see, e.g. [29, 30]). In the
equal-order case, the definition of STF requires the computation of Rk+1

T and writes

STF (ŵT ) := Πk
F

(
δTF (ŵT ) + (I −Πk

T )R
k+1
T (0, δT (ŵT ))|F

)
, ∀ŵT ∈ Ûk,k

T =: Ûk
T . (10)

In both equal- and mixed-order settings, we define, for all ŷT , v̂T , ŵT ∈ Û l,k
T , the local stabilization form as

σT (ŷT ; v̂T , ŵT ) = γµ̄T (ŷT )
2
∑

F∈FT

ηTF (STF (v̂T ), STF (ŵT ))F , (11)

with µ̄T (ŷT ) an approximation of the local speed of sound in T evaluated using ŷT , the scaling factor ηTF

equal to h−1
F or h−1

T , and γ > 0 a scaling parameter. Choosing ηTF = h−1
T is often more relevant. Finally, in

each cell T , one defines the local stiffness form bT , such that, for all ŷT , v̂T , ŵT ∈ Û l,k
T ,

bT (ŷT ; v̂T , ŵT ) := (µ(yT ,G
k
T (ŷT ))

2Gk
T (v̂T ),G

k
T (ŵT ))T . (12)

Both forms bT and σT are nonlinear w.r.t. ŷT and linear w.r.t. v̂T and ŵT .

Remark 2.1 (Choice of γ). Any positive value can be chosen for the scaling parameter γ. For the plain HHO
method, the choice γ = 1 is made in [21, 22]. In the present setting, this parameter is introduced to tune the
scale of the stabilization compared to the stiffness term. If γ ≪ 1, the stabilization is much smaller than the
stiffness, and the problem is close to being singular. The case γ ≫ 1 does not entail singularity issues but
may lead to larger errors than γ = 1. Taking larger values of γ also lowers the CFL stability restriction on
the time step as we shall see below. Very large values of γ are thus not computationally efficient due to the
large number of time steps. We refer the reader to Section 5.1.2 and Appendix A for further insight.

2.3 HHO semi-discretization of the wave equation

The global forms bh and σh are defined, for all ŷh, v̂h, ŵh ∈ Û l,k
h,0, as

bh(ŷh; v̂h, ŵh) :=
∑
T∈Th

bT (ŷT ; v̂T , ŵT ), σh(ŷh; v̂h, ŵh) :=
∑
T∈Th

σT (ŷT ; v̂T , ŵT ). (13)
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The space semi-discrete scheme for the nonlinear wave equation (1) consists of finding ûh := (uT , uF ) ∈
C2(J̄ ; Û l,k

h,0) such that, for all t ∈ J̄ and all ŵh := (wT , wF ) ∈ Û l,k
h,0,

(∂2t uT , wT )Ω + bh(ûh(t); ûh(t), ŵh) + σh(ûh(t); ûh(t), ŵh) = (f(t), wT )Ω . (14)

Notice that the homogeneous Dirichlet boundary condition is enforced by the condition ûh(t) ∈ Û l,k
h,0 at all

times t ∈ J̄ . The initial conditions translate into conditions on uT only:

uT (0) := Πl
T (u0), ∂tuT (0) := Πl

T (v0). (15)

Remark 2.2 (Linear case). In the linear case, the speed of sound µ is assumed to be piecewise constant
on a polyhedral partition of Ω, and is assumed to take a constant value denoted by µT in each cell T . The
dependence of the local forms on the variable ŷT disappears, so that these forms become bilinear:

bT (v̂T , ŵT ) := µT (G
k
T (v̂T ),G

k
T (ŵT ))T , σT (v̂T , ŵT ) = γµ2

T

∑
F∈FT

ηTF (STF (v̂T ), STF (ŵT ))F , (16)

and the global bilinear forms read bh(v̂h, ŵh) :=
∑

T∈Th
bT (v̂T , ŵT ) and σh(v̂h, ŵh) :=

∑
T∈Th

σT (v̂T , ŵT ).

3 Time discretization and algebraic formulation

In this section, a time discretization of the space semi-discrete wave equation is presented using the leapfrog
scheme. The algebraic formulation is also presented to highlight the implicit coupling between cell and face
unknowns.

3.1 Time discretization

Let N be the number of discrete time intervals such that (tn)0⩽n⩽N are the discrete time nodes with t0 = 0
and tN := Θ. For the sake of simplicity, we consider a fixed time step ∆t := Θ

N . The time discrete unknown

ûnh = (unT , u
n
F ) ∈ Û l,k

h,0 is meant to be an approximation of ûh(t
n). We also define the projection of a function

in H1(Ω) onto the space of hybrid degrees of freedom Û l,k
h as

Îh(v) := ((Πl
T (v))T∈Th

, (Πk
F (v))F∈Fh

) ∈ Û l,k
h , ∀v ∈ H1(Ω). (17)

Notice that if v ∈ H1
0 (Ω), then Îh(v) ∈ Û l,k

h,0.

A classical explicit scheme for the time integration of the wave equation is the leapfrog (central finite
difference) scheme. In the context of the HHO space semi-discretization, this scheme consists of solving, for

all n ⩾ 1 and all ŵh ∈ Û l,k
h,0,

1

∆t2
(un+1

T − 2unT + un−1
T , wT )Ω + bh(û

n
h; û

n
h, ŵh) + σh(û

n−1
h ; ûnh, ŵh) = (f(tn), wT )Ω , (18)

with unT , u
n−1
T known from prior time steps or given by the initial conditions as follows:

u0T = Πl
T (u0) (19a)

bh(û
0
h; û

0
h, (0, wF )) + σh(Îh(u0); û

0
h, (0, wF )) = 0, (19b)(

u1T , wT
)
Ω
=
(
u0T +∆tΠl

T (v0), wT
)
Ω
+

∆t2

2
[(f(0), wT )Ω − bh(û

0
h; û

0
h, (wT , 0))− σh(û

0
h; û

0
h, (wT , 0))], (19c)

where (19b) holds for all wF ∈ Uk
F,0 and (19c) for all wT ∈ U l

T . Notice that, in equation (18), the stabilization

term is linear w.r.t ûnh and that in the second equation (19b), the stabilization is linear with respect to û0h.
This linearization does not influence the accuracy because the speed of sound in the stabilization only aims
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at equilibrating the magnitude of the stabilization and stiffness terms. More precisely, the approximation of
the local speed of sound in a cell T ∈ Th is evaluated as

µ̄T (u
n−1
T ) := µ(un−1

T (xT ),G
k
T (û

n−1
T )(xT )), (20)

where xT is the barycenter of T . If the speed of sound does not vary too much across the mesh and during
the simulation, a constant value µ0 can be taken in all the cells and at all the time steps. For the stiffness
operator bh, the above linearization is not considered in order to preserve the second-order convergence rate
in time of the discrete scheme.

Remark 3.1 (Linear case). In this case, σh does not depend on ûn−1
h and the fully discrete equation reads

for all n ⩾ 1 and all ŵh ∈ Û l,k
h,0,

1

∆t2
(un+1

T − 2unT + un−1
T , wT )Ω + bh(û

n
h, ŵh) + σh(û

n
h, ŵh) = (f(tn), wT )Ω . (21)

3.2 Algebraic formulation

Let NT := dim(U l
T ) and NF := dim(Uk

F,0) and {ϕi}1⩽i⩽NT , {ψi}1⩽i⩽NF be bases of U l
T and Uk

F,0 respectively.

Let also (Un
T ,U

n
F ) ∈ RNT × RNF be the vector of time-dependent degrees of freedom of the solution ûnh on

these bases, and Fn
T ∈ RNT the vector having components ((f(tn), ϕi)Ω)1⩽i⩽NT . The fully discrete problem

(18) can be written in algebraic form by considering the vector-valued nonlinear stiffness operator B(Un
T ,U

n
F )

associated with the linear form bh(û
n
h; û

n
h, ·), with BT ,BF respectively collecting the cell and face components.

The linearized stabilization bilinear form σh(û
n−1
h ; ·, ·) leads to a symmetric matrix depending on ûn−1

h and
denoted by Sn−1. Altogether, the algebraic formulation reads

1

∆t2

[
M 0
0 0

](
Un+1
T
·

)
+

(
BT (U

n
T ,U

n
F )

BF (U
n
T ,U

n
F )

)
+

[
Sn−1
T T Sn−1

T F
Sn−1
FT Sn−1

FF

](
Un
T

Un
F

)
=

[
Fn
T − 1

∆t2M(Un−1
T − 2Un

T )
0

]
,

(22)
withM the cell mass matrix. As a consequence of the structure of the global mass matrix, the face component
is replaced by a “·” in the acceleration term. The submatrix Sn−1

T T is block-diagonal, since σh(û
n−1
h ; ·, ·) does

not couple cell degrees of freedom from different cells. Is is useful to notice that in the mixed-order case, Sn−1
FF

is also block-diagonal, since it reduces on each face to the mass matrix associated with a local polynomial
basis. Finally, the cell mass matrix M is also block-diagonal.

The resolution of the wave equation discretized with HHO and the leapfrog scheme proceeds in two steps
for all n ⩾ 1:

1. Compute Un
F , i.e., solve BF (U

n
T ,U

n
F ) + Sn−1

FF Un
F = −Sn−1

FT Un
T using the second row in (22), where Un

T
is the data (known from the previous time step or the initial condition) and Un

F the unknown;

2. Compute Un+1
T , i.e., solve 1

∆t2MUn+1
T = Fn

T − 1
∆t2M(Un−1

T − 2Un
T )−BT (U

n
T ,U

n
F )−Sn−1

T T Un
T −Sn−1

T F Un
F

using the first row in (22).

The key observation is that (22) is a semi-implicit scheme, and not an explicit scheme. Indeed, the first step
above induces a static nonlinear coupling between cell and face unknowns. Solving this nonlinear equation at
each time step of the leapfrog scheme is not effective because of the heavy computational cost. This problem
is solved in the next section, leading to a fully explicit scheme.

Remark 3.2 (Linear case). In this case, the stabilization matrix does not depend on the previous time step
and is simply denoted by S. The stiffness form is bilinear and the operator B becomes linear so that it can
be replaced by a matrix product between a stiffness matrix B and the vector of hybrid unknowns (Un

T ,U
n
F ).

In order to have a more compact notation, we define the complete HHO stiffness matrix as

A := B + S. (23)

6



The cell-cell block matrix AT T is block-diagonal, but the face-face block matrix AFF is not block-diagonal
since the gradient reconstruction operator couples the degrees of freedom from all the faces of a given cell.
Equation (22) translates into the semi-implicit scheme

1

∆t2

[
M 0
0 0

](
Un+1
T
·

)
+

[
AT T AT F
AFT AFF

](
Un
T

Un
F

)
=

[
Fn
T − 1

∆t2M(Un−1
T − 2Un

T )
0

]
. (24)

The first step becomes the resolution of the linear system AFFU
n
F = −AFT U

n
T , where, as above, U

n
T is the

data and Un
F the unknown. This requires the inversion of the sparse matrix AFF , either by a direct inversion

or by an iterative process.

4 Splitting

In this section, a splitting procedure on the static coupling equation on the faces is devised. The procedure
is presented for the nonlinear acoustic wave equation and generic sufficient conditions for convergence are
given. A sharper convergence analysis is presented in the linear case. The procedure differs depending on
the setting for the polynomial order in the HHO method (mixed- or equal-order).

4.1 Mixed-order setting

We consider first the mixed-order setting since the definition of the stabilization is simpler. The iterative
splitting procedure proceeds as follows. For all n ⩾ 1, set un,0F = un−1

F and iterate on m ⩾ 0 by finding

un,m+1
F ∈ Uk

F,0 such that

σh(û
n−1
h ; (0, un,m+1

F ), (0, wF )) = −bh((unT , u
n,m
F ); (unT , u

n,m
F ), (0, wF ))− σh(û

n−1
h ; (unT , 0), (0, wF )), (25)

for all wF ∈ Uk
F,0. The algebraic form is as follows: Setting Un,0

F := Un−1
F , one seeks Un,m+1

F ∈ RNF such that

Sn−1
FF Un,m+1

F = −BF (U
n
T ,U

n,m
F )− Sn−1

FT Un
T . (26)

This splitting procedure is computationally effective since, as mentioned above, the face-face stabilization
submatrix Sn−1

FF is block-diagonal. The procedure is a fixed-point algorithm, so that its convergence is ensured
for δ < 1, where δ is the Lipschitz constant of the vector-valued function (Sn−1

FF )−1BF (U
n
T , ·), i.e.,

∥(Sn−1
FF )−1

(
BF (U

n
T , X)− BF (U

n
T , Y )

)
∥ ⩽ δ∥X − Y ∥ ∀X,Y ∈ RNF . (27)

Remark 4.1 (Linear case). In this case, the iterative scheme writes, for all m ⩾ 0,

σh((0, u
n,m+1
F ), (0, wF )) = −bh((unT , u

n,m
F ), (0, wF ))− σh((u

n
T , 0), (0, wF )), (28)

for all wF ∈ Uk
F,0, and its algebraic form becomes SFFU

n,m+1
F = −BFFU

n,m
F − AFT U

n
T . The convergence

criterion (27) on the Lipschitz constant translates into the algebraic condition

ρ(S−1
FFBFF ) < 1, (29)

where ρ(Q) designates the spectral radius of the matrix Q. This condition does not depend on the time index
n since, in the linear case, the stiffness and stabilization matrices do not depend on time.

4.2 Equal-order setting

The equal-order setting does not offer the same simplicity since the stabilization couples together the degrees
of freedom of all the faces of a cell. One can, however, draw on the mixed-order setting and split the
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stabilization form into the mixed-order stabilization form, which leads to a block-diagonal matrix, and the
remainder. Specifically, let ζT be the local form such that for all T ∈ Th, and all ŷT ∈ Û l,k

T , v∂T , w∂T ∈ Uk
∂T ,

ζT (ŷT ; (0, v∂T ), (0, w∂T )) = γµT (ŷT )
2
∑

F∈FT

ηTF

{(
(I −Πk

T )R
k+1
T (0, v∂T )|F , vF

)
F

+
(
vF , (I −Πk

T )R
k+1
T (0, w∂T )|F

)
F

+
(
Πk

F (I −Πk
T )R

k+1
T (0, v∂T ),Π

k
F (I −Πk

T )R
k+1
T (0, w∂T )|F

)
F

}
,

(30)

and let σ⋆
T be the local form defined by

σ⋆
T (ŷT ; (0, v∂T ), (0, w∂T )) := γµT (ŷT )

2
∑

F∈FT

ηTF (vF , wF )F . (31)

Then the equal-order stabilization form writes

σT (ŷT ; (0, v∂T ), (0, w∂T )) = σ⋆
T (ŷT ; (0, v∂T ), (0, w∂T )) + ζT (ŷT ; (0, v∂T ), (0, w∂T )). (32)

Let us introduce the global forms σ⋆
h(ŷh; (0, vF ), (0, wF )) :=

∑
T∈Th

σ⋆
T (ŷT ; (0, v∂T ), (0, w∂T )) and

ζh(ŷh; (0, vF ), (0, wF )) :=
∑

T∈Th
ζT (ŷT ; (0, v∂T ), (0, w∂T )), so that σh = σ⋆

h + ζh. This leads to the following
iterative procedure, with the same initial condition as for the mixed-order setting: For all m ⩾ 0, find
un,m+1
F ∈ Uk

F,0 such that

σ⋆
h(û

n−1
h ; (0, un,m+1

F ), (0, wF )) = −bh((unT , u
n,m
F ); (unT , u

n,m
F ), (0, wF ))

−ζh(ûn−1
h ; (0, un,mF ), (0, wF ))− σh(û

n−1
h ; (unT , 0), (0, wF )),

(33)

for all wF ∈ Uk
F,0. At the algebraic level, we define two matrices S⋆,n−1

FF and Zn−1
FF such that Sn−1

FF =

S⋆,n−1
FF + Zn−1

FF , Zn−1
FF corresponds to the bilinear form ζh(û

n−1
h ; ·, ·) and S⋆,n−1

FF to σ⋆
h(û

n−1
h ; ·, ·). Then the

splitting procedure translates into the following iterative algorithm: For all m ⩾ 0, find Un,m+1
F ∈ RNF such

that
S⋆,n−1
FF Un,m+1

F = −BF (U
n
T ,U

n,m
F )−Zn−1

FF Un,m
F − Sn−1

FT Un
T . (34)

As for the mixed-order setting, the convergence condition is that δ < 1, where δ is the Lipschitz constant of
the vector-valued function (S⋆,n−1

FF )−1(Zn−1
FF (·) + BF (U

n
T , ·)), i.e.,

∥(S⋆,n−1
FF )−1(Zn−1

FF (X − Y ) + BF (U
n
T , X)− BF (U

n
T , Y ))∥ ⩽ δ∥X − Y ∥, ∀X,Y ∈ RNF . (35)

Remark 4.2 (Linear case). In this case, the matrices S⋆
FF and ZFF are independent of the time index n,

and the stability condition (35) reads

ρ((S⋆
FF )

−1(BFF + ZFF )) < 1. (36)

4.3 Sharper convergence analysis in the linear case

In this section we show that, in the linear case, the convergence criteria (29) and (36) can be achieved by
choosing the coefficient γ scaling the stabilization large enough. Moreover, we derive explicit lower bounds
on the coefficient γ that are uniform in the mesh size.

Invoking a discrete trace inequality, we infer that there exists a trace constant Ctr independent of h and
which only depends on the polynomial order k and the mesh regularity parameter ρ such that

max
T∈Th

max
F∈FT

max
v∈Pk

d(T )

|T |1/2∥v∥F
|F |1/2∥v∥T

⩽ Ctr. (37)
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Moreover, we introduce a nondimensional geometric constant ρ♯ such that

max
T∈Th

( ∑
F∈FT

ηTF |F |
|T |

) 1
2

⩽ ρ♯ (38)

recalling that ηTF is the length scale used in the stabilization. The value of ρ♯ can be chosen to be independent
of h owing to the regularity of the mesh sequence.

Lemma 4.3 (Convergence in the mixed-order setting). In the linear case, a sufficient condition ensuring
the convergence of the iterative algorithm (28) in the mixed-order setting is

γ > (Ctrρ♯)
2. (39)

Proof. The main idea of the proof is the following equivalence regarding the convergence condition (29):

ρ(S−1
FFBFF ) < 1 ⇐⇒ σh((0, wF ), (0, wF )) > bh((0, wF ), (0, wF )), ∀wF ∈ Uk

F,0. (40)

Let wF ∈ Uk
F,0 and let T ∈ Th. Recalling that µT denotes the constant value taken by µ in the cell T ∈ Th,

we have

bT ((0, w∂T ), (0, w∂T )) = µT

∥∥Gk
T (0, w∂T )

∥∥2
T
= µT

∑
F∈FT

(
Gk

T (0, w∂T ) · nTF , wF

)
=
∑

F∈FT

µ
1
2

T η
1
2

TF

∥∥Gk
T (0, w∂T ) · nTF

∥∥
F
µ

1
2

T η
− 1

2

TF ∥wF ∥F

⩽

( ∑
F∈FT

µT ηTF

∥∥Gk
T (0, w∂T ) · nTF

∥∥2
F

) 1
2
( ∑

F∈FT

µT η
−1
TF ∥wF ∥2F

) 1
2

, (41)

where we used the definition of the gradient reconstruction operator and the Cauchy–Schwarz inequality.
Since Gk

T (0, w∂T ) · nTF ∈ Pk
d(T ) because nTF is a constant vector, one can use the discrete inverse trace

inequality (37) on each face F ∈ FT to infer that

η
1
2

TF

∥∥Gk
T (0, w∂T ) · nTF

∥∥
F
⩽ Ctr∥Gk

T (0, w∂T )∥T
(ηTF |F |

|T |

) 1
2

.

Recognizing the definition of the mixed-order stabilization form without γ in the rightmost sum of (41), one
obtains

bT ((0, w∂T ), (0, w∂T )) ⩽ Ctrµ
1
2

T

∥∥∥Gk
T (0, w∂T )

∥∥∥
T

( ∑
F∈FT

ηTF |F |
|T |

) 1
2 (

1

γ
σT ((0, w∂T ), (0, w∂T ))

) 1
2

.

Using the definition of ρ♯ and that bT ((0, w∂T ), (0, w∂T )) = µT

∥∥Gk
T (0, w∂T )

∥∥2
T
gives

bT ((0, w∂T ), (0, w∂T )) ⩽
C2

trρ
2
♯

γ
σT ((0, w∂T ), (0, w∂T )).

Summing over all the mesh cells, one obtains

bh((0, wF ), (0, wF )) ⩽
C2

trρ
2
♯

γ
σh((0, wF ), (0, wF )).

Thus, the splitting converges if
C2

trρ
2
♯

γ < 1, which proves the claim.

9



The equal-order setting does not provide the same simplicity and requires a hypothesis on the spectrum
of the matrix (S⋆

FF )
−1SFF . Let us define

α := max
λ∈Sp((S⋆

FF )−1ZFF )
λ = max

λ∈Sp((S⋆
FF )−1SFF )

λ− 1, (42)

where Sp(Q) denotes the spectrum of the matrix Q. Notice that the value of α does not depend on γ and
that the matrices considered in (42) are symmetric.

Lemma 4.4 (Convergence in the equal-order setting). In the linear case and under the assumption α < 1,
a sufficient condition for the convergence of the iterative algorithm (33) in the equal-order setting is

γ >
(Ctrρ♯)

2

1− α
. (43)

Proof. The following equivalence holds regarding the convergence condition (36):

ρ((S⋆
FF )

−1(BFF + ZFF )) < 1

⇐⇒ σ⋆
h((0, wF ), (0, wF )) > bh((0, wF ), (0, wF )) + ζh((0, wF ), (0, wF )), ∀wF ∈ Uk

F,0.
(44)

Since ζh and σ⋆
h are symmetric and σ⋆

h is nonnegative, the definition of α means that

ζh((0, wF ), (0, wF )) ⩽ ασ⋆
h((0, wF ), (0, wF )), ∀wF ∈ Uk

F,0. (45)

Considering this, a sufficient condition to obtain the bound announced in (44) is

(1− α)σ⋆
h((0, wF ), (0, wF )) > bh((0, wF ), (0, wF )), ∀wF ∈ Uk

F,0. (46)

Indeed, if (46) holds, we infer that

bh((0, wF ), (0, wF )) < σ⋆
h((0, wF ), (0, wF ))−ασ⋆

h((0, wF ), (0, wF )) ⩽ σ⋆
h((0, wF ), (0, wF ))−ζh((0, wF ), (0, wF )).

Lemma 4.3 established that, if γ > (Ctrρ♯)
2, then,

σ⋆
h((0, wF ), (0, wF )) > bh((0, wF ), (0, wF )), ∀wF ∈ Uk

F,0. (47)

Therefore, taking γ >
(Ctrρ♯)

2

1−α ensures the condition (46). This concludes the proof.

Remark 4.5 (Local vs. global spectral radius). We notice that the minimal value of γ given in Lemmas 4.3
and 4.4 is derived by reasoning locally on a single mesh cell T ∈ Th. Slightly sharper values can be derived
by reasoning globally on the mesh and taking into account the homogeneous Dirichlet boundary conditions.
This point is further quantified in the next section.

4.4 Numerical study of the stability parameter in the linear case

In this section, we evaluate numerically the influence of the stability parameter γ on the splitting procedure
for various polynomial orders. Both equal-order and mixed-order settings are tested, with polynomial orders
k ∈ {0, 1, 2, 3, 4}, as well as various mesh types: Cartesian in two and three dimensions, unstructured
quadrangles, structured and unstructured triangles and unstructured tetrahedra. The polynomial order for
the HHO method is indicated via the pair of integers (l, k) with l for the cell unknowns and k for the face
unknowns.

We first verify that the minimum value of the parameter γ ensuring the convergence of the splitting
procedure is bounded, for all the polynomial orders, uniformly in the mesh size. To this purpose, we first
consider a series of refined right-triangular meshes of Ω := (0, 1)2 and compute the value of γ via the spectral
radius of S−1

FFBFF in the mixed-order setting and the spectral radius of S−1
FF (BFF +ZFF ) in the equal-order

setting, with homogeneous Dirichlet boundary conditions. We compare the resulting values to the value
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Figure 1: Spectral radius as a function of the mesh size in right-triangular cells with homogeneous Dirichlet
conditions in 2D, compared to the reference value on a single cell without boundary conditions (horizontal
lines).

γ⋆ obtained in a single cell without boundary conditions. Figure 1 illustrates, as expected, that γ⋆ gives a
reliable upper bound on γ. This upper bound turns out to be quite sharp even on moderately refined meshes.
Therefore, γ⋆ is a very good minimal value for γ to be used in practice.

Table 1 reports the value of γ⋆ for a square cell, a right-isoceles triangular cell as well as estimates for
general quadrangular and triangular cells belonging to shape-regular sequences of unstructured meshes. The
triangular meshes are generated using gmsh, and the quadrangular meshes are created from the triangular
meshes by merging pairs of adjacent triangles. For these two meshes, the reported value of γ⋆ is the largest
observed value, rounded to the above integer on all the mesh cells and for all the meshes in the sequence.
One notices that, in all cases, the value of γ⋆ increases with the polynomial order. Moreover, for a given
polynomial order, the smallest value of γ⋆ is obtained on square cells, and the largest value on unstructured
triangular meshes.

Order (cell, face) (0,0) (1,1) (2,2) (3,3) (4,4) (1,0) (2,1) (3,2) (4,3) (5,4)
Squares 1 5 11 19 29 2 6 12 20 30
Right triangles 5 13.48 25.67 42.10 62.10 6 14.33 26.37 42.78 62.69
Unstructured quadrangles 3 9 19 32 48 4 9 19 32 48
Unstructured triangles 6 15 28 45 65 7 15 28 45 65

Table 1: γ⋆ computed via the spectral radius of S−1
FFBFF or S−1

FF (BFF +ZFF ) on a single cell (first two lines)
and on a shape-regular mesh sequence (last two lines), k ∈ {0, 1, 2, 3, 4}, equal- and mixed-order settings.

As a second verification, we check the condition α < 1 in the equal-order setting on all the previous cases.
The value of α appears not to depend on the mesh size when homogeneous Dirichlet boundary conditions are
enforced. As before, when unstructured meshes are used, the largest value observed on the mesh sequence is
reported. As seen in Table 2, the value of α is in all cases smaller than 1, thereby confirming the assumption
made in Lemma 4.4. The lowest-order setting even yields α close to zero. The value of α increases with the
polynomial order before it stabilizes for higher orders. For unstructured mesh sequences, the finer meshes
are more uniform leading to a smaller value of α. Therefore, the values reported in Table 2 are pessimistic
on finer meshes.

A classical result on the leapfrog scheme (24) gives a stability condition on the time step depending on
the spectral radius of the matrix

D(γ) := M−1(AT T (γ)−AT F (γ)AFF (γ)
−1AFT (γ)), (48)
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Order (cell, face) (0,0) (1,1) (2,2) (3,3) (4,4)
Squares ≈ 0 ≈ 0 0.19 0.26 0.23
Right triangles ≈ 0 0.28 0.38 0.36 0.39
Unstructured quadrangles 0.13 0.21 0.44 0.52 0.61
Unstructured triangles ≈ 0 0.17 0.25 0.24 0.32

Table 2: α, the largest eigenvalue of S−1
FFZFF , k ∈ {0, 1, 2, 3, 4}, equal- and mixed-order settings.

where A(γ) is the stiffness matrix defined in (23) with the dependence on γ made explicit. The stability
condition on ∆t reads

∆t(γ) ⩽ ∆topt(γ) :=
2√

ρ(D(γ))
. (49)

This allows us to compare stability conditions for different values of γ. In Table 3, we compare values for
γ = 1, i.e. without splitting, to those for γ = γ⋆ from Table 1. The results show that using the splitting
procedure leads to a reduction of the time step by at most a factor of two on squares and by at most three
on right-isoceles triangles.

Order (cell, face) (0,0) (1,1) (2,2) (3,3) (4,4) (1,0) (2,1) (3,2) (4,3) (5,4)

Squares 1.00 0.75 0.63 0.68 0.60 0.66 0.54 0.52 0.54 0.52

Right triangles 0.37 0.58 0.65 0.54 0.70 0.40 0.36 0.41 0.53 0.63

Unstructured quadrangles 0.60 0.43 0.32 0.37 0.43 0.45 0.41 0.39 0.47 0.51

Unstructured triangles 0.38 0.30 0.42 0.47 0.56 0.25 0.32 0.39 0.44 0.51

Table 3: ∆topt(γ⋆)/∆topt(1), showing the tightening of the stability condition induced by γ⋆ on 2D meshes,
h = 0.1, k ∈ {0, 1, 2, 3, 4}, equal- and mixed-order settings.

The same studies can be performed on 3D meshes. Only Cartesian hexahedral and unstructured tetrahe-
dral meshes with polynomial orders up to k ⩽ 2 are presented. Table 4 summarizes the results. Comparing
square and hexahedral meshes, going to 3D does not deteriorate too much the stability condition. On tetra-
hedral meshes, however, γ⋆ grows faster with the polynomial degree, and the splitting procedure impacts
more strongly the stability condition, by at most a factor of five.

Order (cell, face) (0,0) (1,1) (2,2) (1,0) (2,1) (3,2)

γ⋆ hexahedra 1.83 8.5 17 2.83 9.5 18

∆topt(γ⋆)/∆topt(1) hexahedra 0.57 0.58 0.58 0.5 0.42 0.48

γ⋆ tetrahedra 33 60 90 34 60 90.5

∆topt(γ⋆)/∆topt(1) tetrahedra 0.19 0.17 0.51 0.16 0.26 0.57

Table 4: Value of γ⋆ and tightening of the stability condition induced by γ⋆ on 3D meshes (Cartesian
hexahedra and unstructured tetrahedra), h = 0.55, k ∈ {0, 1, 2}, equal- and mixed-order settings.

5 Numerical results

In this section, we present numerical results on both linear and nonlinear wave propagation problems. We
start with an analytical linear test case, where we analyze the impact of the number of splitting iterations
and the value of the stabilization parameter γ on the error and on the execution time. We then discuss
two nonlinear test cases, in order to compare the splitting procedure with the implicit version in terms of
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execution time. We also compare the HHO method with first- and second-order finite elements for the space
semi-discretization.

All the computations are performed with MANTA, a C++ library developed at CEA Saclay. It relies on
PETSc for the algebraic solvers, and the computations are spatially and equally distributed on MPI processes.
The computations are run on the TGCC (Très Grand Centre de Calcul) computers, on Intel architecture cores,
Skylake@2.7GHz (AVX512) with 3.75 Gb of RAM. All the computations can use the memory of the entire
node, composed of 48 cores.

5.1 Linear test cases

We consider a manufactured solution in Ω := (0, 1)2 with a nonpolynomial behavior in space and a quadratic
time behavior. Specifically, we set µ := 1 in (1) and

u(x, y, t) := t2 sin(πx) sin(πy), (50)

leading to homogeneous Dirichlet conditions and zero initial conditions. The source term is f(x, y, t) :=
2(π2t2 + 1) sin(πx) sin(πy). Here, there is no time discretization error, since the time integration scheme is
of order 2.

5.1.1 Convergence rates

Figure 2 illustrates the convergence of the L2-error with respect to the number of iterations in the splitting
procedure on a series of spatially refined square meshes, focusing on the equal-order setting. (The results for
the mixed-order setting show the same behavior and are not displayed for brevity.) The time step is computed
so that the ratio h

∆t remains constant and smaller than the stability condition (49). The reference curve is
the error without splitting. The value of γ is determined from Table 1 by setting γ := 1.5γ⋆. For a given
number of iterations in the splitting procedure, the error ends up stagnating below a certain value of h, which
corresponds to the splitting error being larger than the discretization error. The stagnation value and the
mesh size for which stagnation starts both decrease as the number of iterations increases. When the splitting
error is sufficiently small, the space discretization error prevails. Moreover, the higher the polynomial order,
the more iterations needed to converge. Figure 2 also shows the convergence order of the L2-error depending
on the mesh size h, which is, as expected, hk+2.
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Figure 2: Linear wave problem - Convergence of the L2-error as a function of the mesh size for varying
numbers of splitting iterations m, k ∈ {0, 1, 2, 3}, equal-order setting. The reference corresponds to the
semi-implicit scheme (m→ ∞).

5.1.2 Impact of the stabilization parameter γ

We now focus on the dependence of the error and of the execution time on the value of γ. Since there is
no error in time, the error is the sum of two errors, coming from the space discretization on the one hand
and the splitting procedure on the other hand. The splitting error has two sources: the truncation error of
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the iterative procedure and the error caused by the variation of γ. The previous test case illustrated the
convergence of the truncation error. The impact of the value of γ on the error is actually quite moderate
(see Appendix A for further insight). Regarding the execution time, we expect that the critical time step
decreases as γ increases, thus impacting the computational cost. Further insight into this impact is again
provided in Appendix A.
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Figure 3: Linear wave problem - Energy error at t = 0.1 as a function of the computation time, γ ∈
{1.5γ⋆, 3γ⋆, 5γ⋆, 10γ⋆}, k ∈ {0, 1, 2}, equal- and mixed-order settings.

Figure 3 shows the discrete energy error at t = 0.1 as a function of the computation time for the equal-
and mixed-order settings, with k ∈ {0, 1, 2}. Order 3 is not shown for brevity. The discrete energy error
is computed using the projection of the analytic solution onto the mesh cells and faces. Computations are
performed on a sequence of unstructured triangular meshes, obtained by repeated refinements of a coarse
initial mesh. This ensures that all the meshes have the same regularity. Computations are run on 16 cores, and
the meshes are equally distributed on all the processors. Each marker on the curves of Figure 3 corresponds
to the error and execution time on a mesh from the sequence. The scaling parameter γ takes the values
{1.5γ⋆, 3γ⋆, 5γ⋆, 10γ⋆} and, when the computation cost is reasonable, 20γ⋆. For each value of γ, the critical
time step ∆topt(γ) can be computed via equation (49), and the time step is then ∆t := 0.8∆topt(γ). Unlike
the experiments in Figure 2, the number of iterations for the splitting procedure is not fixed here. We rather
stop the splitting procedure when the relative norm of the increment is smaller than ϵ := 10−11.

The first salient point is that, for a given mesh, the error does not depend on γ. Indeed, all the corre-
sponding markers are almost horizontally aligned (in Figure 3f some slight variations are observed, when the
values of γ are quite large and the errors are quite small (less than 10−9), so that round-off errors may play a
role). This means that a reasonable increase in γ does not deteriorate the quality of the solution. The second
salient point concerns the computation time. Indeed, the behavior differs between equal- and mixed-order
settings. In the equal-order setting, the larger γ, the more expensive the computation. This could have two
origins: a smaller critical time step for larger γ, requiring more time steps to reach the final time, or a higher
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number of splitting iterations. Figure 4 and Table 5 answer this question. The mean number of splitting
iterations for each time step is displayed in Figures 4a and 4b for (0,0) and (1,1), respectively. As γ increases,
more iterations are needed for the splitting procedure to converge. Moreover, Table 5 reports the critical
time step ∆t(γ) for the mesh size h = 0.1 and all polynomial orders. We observe that the critical time step
∆t(γ) decreases when γ increases. When both factors are combined, this leads to a swift increase of the
computational cost with γ. On the contrary, in the mixed-order setting, there seems to be an optimal value
of γ, for which the computation cost is the smallest. Indeed, the number of iterations per time step decreases
as γ increases, reducing the computational cost. At the same time, the critical time step decreases too. For
the considered polynomial orders, this optimum is in the interval γ ∈ [3γ⋆, 5γ⋆]. Figure 4 also highlights
that, for a given polynomial order, the number of iterations in the mixed-order setting is smaller than that
in the equal-order setting, by a factor of 10 or more. At the same time, Table 5 shows that the critical time
step is just slightly smaller in the mixed-order setting. Combining these two factors makes the mixed-order
computations faster than the equal-order ones, on a given mesh and for a given polynomial order.
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Figure 4: Linear wave problem - Mean number of splitting iterations per time step (top) and total number of
splitting iterations (bottom) in log scale, as a function of the mesh size, k ∈ {0, 1}, equal- and mixed-order
settings.

Order (0,0) (1,1) (2,2) (3,3) (1,0) (2,1) (3,2) (4,3)
1.5γ⋆ 4.61e-2 1.40e-2 3.75e-3 1.12e-3 4.25e-2 7.57e-3 1.75e-3 4.037e-4
3γ⋆ 2.30e-2 8.23e-3 2.33e-3 7.11e-4 2.75e-2 5.09e-3 1.23e-3 2.88e-4
5γ⋆ 1.39e-2 5.51e-3 1.67e-3 5.14e-4 2.06e-2 3.84e-3 9.46e-4 2.23e-4
10γ⋆ 7.07e-3 2.75e-3 1.09e-3 3.34e-4 1.42e-2 2.66e-3 6.58e-4 1.58e-4
20γ⋆ 3.59e-3 1.27e-3 5.56e-4 1.82e-4 9.89e-3 1.86e-3 4.61e-4 1.11e-4

Table 5: Linear wave problem - Critical time step ∆t(γ), h = 0.1, γ ∈ {1.5γ⋆, 3γ⋆, 5γ⋆, 10γ⋆, 20γ⋆}, k ∈
{0, 1, 2, 3}, equal- and mixed-order settings.

The above results allow us to determine the optimal value of γ: γ = γ⋆ in the equal-order setting and
γ ∈ [3γ⋆, 5γ⋆] in the mixed-order setting. Using these values of γ, we can now compare the error as a function
of the computational cost for all polynomial orders. Figure 5 shows the energy error for polynomial degrees
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k ∈ {0, 1, 2, 3}. These results illustrate the fact that, for a given error or a given execution time, taking
higher orders on a coarse mesh is more efficient than lower orders on a fine mesh. Moreover, the mixed- and
equal-order settings essentially lead to overlapping curves, but with an offset. Indeed, on a given mesh, the
mixed-order setting is faster than the equal-order in order to reach the same error.
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Figure 5: Linear wave problem - Energy error for different polynomial orders with optimal γ as a function
of the computation time, γ ∈ {9, 22.5, 42, 67.5} in the equal-order setting and γ = {1, 45, 84, 135} in the
mixed-order setting, k ∈ {0, 1, 2, 3}.

5.2 Nonlinear wave equation with p-structure

In this section, we study the splitting algorithm on a nonlinear wave equation where the diffusion operator
in space has a so-called p-structure:

∂2t u+∇ ·
(
(µ0 + |∇u|2)

p−2
2 ∇u

)
= f, in Ω, ∀t ∈ J, (51)

with µ0 ∈ R+ and p ∈ (1,+∞). For the value p = 2, (51) corresponds to the linear wave equation. The
associated Hamiltonian writes Hp(g) := 1

p (µ0 + |g|)p for all g ∈ R2, and the nonlinear wave equation (51)

can be rewritten as ∂2t u+∇ · (∇gHp(∇u)) = f . The local nonlinear stiffness form bT now writes

bT (ŷT ; v̂T , ŵT ) :=
(
(µ0 + |Gk

T (ŷT )|2)
p−2
2 Gk

T (v̂T ),G
k
T (ŵT )

)
. (52)

We set Ω := (0, 1)2,Θ := 0.8, f := 0 and we enforce homogeneous Dirichlet boundary conditions, null initial
condition for u, and an initial velocity such that v0(x, y) := 5 cos(

√
2πt) sin(πx) sin(πy). In the linear case

(p = 2), the exact solution is u(x, y, t) = 5√
2π

sin(
√
2πt) sin(πx) sin(πy). When p ̸= 2, the exact solution is

not known and the error is computed using a reference solution (obtained with high polynomial orders (4, 3)
and a fine mesh with h ≈ 0.0003). If µ0 = 0, the diffusion operator essentially behaves as the p-Laplace
operator. On the contrary, if µ0 is much larger than |∇u|, the problem is nearly linear and the behavior does
not differ too much from a linear diffusion operator. In order to avoid such cases, the value of µ0 is chosen
to be of the same magnitude of |∇u|. Here, we take µ0 := 0.5. In this case, the value of the nonlinear speed
of sound µT in each cell T ∈ Th does not vary strongly during the simulation and in different parts of the
domain. This allows us to take the same value for µT := 5 in each cell and at each time step to scale the
stabilization.

In our numerical experiments, we consider an unstructured mesh sequence, obtained by repeatedly refining
an initial coarse mesh, thus preserving the same regularity in the entire mesh sequence. To compute the errors,
we consider ten sensors placed in the triangle

{
x ∈ [0, 0.5], 0 ⩽ y ⩽ x

}
, and compute the value of the solution,

u, the velocity, ∂tu, the acceleration, ∂2t u, and of both gradient components, ∂xu, ∂yu, over the simulation
at these ten sensors. The sensors are placed only in the above triangle by symmetry arguments. In Figure
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6, the solution at three sensors is shown for seven values of p. The values for which p ̸= 2 can be regrouped
into pairs of conjugated values (p, p′) such that 1

p + 1
p′ = 1. Specifically, we choose p ∈ {2.5, 3, 5} and the

conjugate values p′ ∈ {1.67, 1.5, 1.25}. The larger |p − 2|, the harder the simulation, and the more refined
the mesh needs to be in order to capture the nonlinear variations.

We first make computations with various values of the stability parameter γ and p = 3. The minimal
value γ⋆ leading to a converging splitting depends on the polynomial order and on the value of p, and cannot
be deduced from the linear study. Table 6 reports the smallest value of γ observed numerically, denoted by
γmin in what follows. Since this value is an estimation, it is rounded to the smallest larger integer.
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Figure 6: Nonlinear (p-structure) wave problem with p ∈ {1.25, 1.5, 1.67, 2, 2.5, 3, 5} - Solution at sensors
placed at (0.167, 0.333), (0.025, 0.333) and (0.5, 0.5) on the time interval [0, 0.8].

(0,0) (1,1) (2,2) (3,3) (1,0) (2,1) (3,2) (4,3)
p = 3 2 10 20 25 5 20 20 25

Table 6: Nonlinear (p-structure) wave problem with p = 3 - Minimal value γmin for the splitting procedure
to converge, k ∈ {0, 1, 2, 3}, equal- and mixed-order settings.

The objective of the splitting being a reduction of computational costs, we first compare computation times
between the splitting procedure and the semi-implicit scheme (based on a Newton solver). Computations are
run sequentially. The Newton linear system is solved with a direct solver since experiments with iterative
solvers yield similar computation times. The time step is chosen so that the time discretization error and
the space discretization error are equilibrated. For all values of γ, this leads to an equilibrated time step
that is smaller than the critical time step. Thus, the computation time is not affected by the reduction of
the critical time step for larger γ. On the one hand, Figure 7 reports the discrete energy error, which is
the maximal value over all the time steps of the sum of the L2-error on the velocity and on the gradient
components, evaluated at the ten sensor points using the reference solution at each time step. On the other
hand, Figure 7 also reports the mean number of splitting and Newton iterations per time step for each value
of γ and each mesh. The results in Figure 7 deals with the lowest-order cases (0, 0) and (1, 0). The first salient
observation is that, as for the linear case, the behavior differs between the equal- and mixed-order settings.
In the equal-order setting, the number of iterations is higher when γ increases, whereas there is an optimal
value in the mixed-order setting, which is not γ⋆. In the equal-order setting, the splitting procedure takes
more time than the semi-implicit scheme on the coarsest meshes, but is (much) faster on the finest meshes.
The gain in computation time (i.e. the ratio of the semi-implicit time over the splitting time) is reported in
Table 7. In the mixed-order setting, the splitting procedure is always (much) faster than the semi-implicit
scheme, and the gain in computation time increases as the mesh is refined. The number of iterations for the
splitting and the semi-implicit scheme decreases when the mesh is refined. This is due to the time step being
also refined to satisfy the requirement on error balancing. Hence, the static problem on the face unknowns
becomes easier to solve. On the four coarsest meshes, in the equal-order setting, the number of splitting
iterations is very large (more than 100 on the coarsest mesh). This explains the not so good performance of
the splitting procedure on the coarsest meshes (see Figure 7a). In the mixed-order setting, the number of
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Figure 7: Nonlinear (p-structure) wave problem with p = 3 - Energy error as a function of compu-
tation time (up) and mean number of iterations per time step as a function of mesh size (bottom),
γ ∈ {γmin, 2γmin, 5γmin, 10γmin}, polynomial orders (0, 0) and (1, 0).

Mesh size h 0.0063 0.0031 0.0016
(0,0) 2.34 6.19 6.80
(1,0) 3.44 5.19 5.74

Table 7: Nonlinear (p-structure) wave problem with p = 3 - Gain in computation time of the splitting
procedure over the semi-implicit scheme on the three finest meshes, γ = γmin, polynomial orders (0, 0) and
(1, 0).

iterations is always quite low (less than 10), which explains the better performances observed in Figure 7b.
Since the number of iterations for all the values of γ becomes small on the finest meshes, the value of γ does
not impact the execution time.

The above experiments in the linear case and in the lowest-order nonlinear case show that the error does
not depend on γ as long as this parameter remains in the range [1, 150]. Thus, for higher polynomial degrees,
we only focus on the execution time. Figure 8 displays the average execution time of a single time step for
each method and each polynomial order on the same family of unstructured triangular meshes as above. Here,
we compare the sequential execution times for the splitting procedure with γ ∈ {γmin, 2γmin, 5γmin} and the
semi-implicit scheme with either a direct solver or a GMRES iterative solver with a Jacobi preconditioner.
The gain in computation time is reported in Table 8 only for γ = γmin since the value of γ does not impact
strongly the execution time on the considered meshes. The gain is given on the four finest meshes, exception
made for the polynomial order k = 3, for which the semi-implicit scheme on the finest mesh is too expensive
with our current implementation. As expected, the equal- and mixed-order settings behave differently on the
coarse meshes. In the equal-order setting, the splitting procedure takes more time on the coarse meshes, but
this execution time is reduced as the number of iterations diminishes, so that the splitting procedure becomes
computationally efficient for mesh sizes smaller than h ≈ 0.006. In the mixed-order setting, the execution
time of the splitting procedure is always smaller or equivalent to the execution time of the semi-implicit
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(1,1) (2,1) (2,2) (3,2) (3,3) (4,3)
Mesh size direct gmres direct gmres direct gmres direct gmres direct gmres direct gmres
0.00613 1.01 1.46 2.84 1.62 1.87 1.89 2.42 1.94 2.19 2.13 2.33 1.60
0.00306 3.41 3.01 2.73 1.49 2.04 1.94 3.21 2.11 2.02 2.13 2.90 1.71
0.00156 5.84 3.06 3.97 1.54 3.24 2.21 3.77 2.17 3.01 2.17 3.16 1.67
0.00078 5.15 2.85 4.13 2.07 6.43 2.23 4.25 2.63 NA NA NA NA

Table 8: Nonlinear (p-structure) wave problem with p = 3 - Gain in computation time of the splitting
procedure over the semi-implicit scheme on the four finest meshes, γ = γmin, k ∈ {1, 2, 3}, equal- and mixed-
order settings.

scheme, but the gain (ratio of execution times) also increases as the mesh is refined. The gain on the four
finest meshes is larger than 2 and reaches 6 for polynomial orders (1,1) and (2,2) when a direct solver is
employed in the semi-implicit scheme.
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Figure 8: Nonlinear (p-structure) wave problem with p = 3 - Comparison of execution times of a sin-
gle time step with splitting procedure and semi-implicit scheme (direct or iterative linear solvers), γ ∈
{γmin, 2γmin, 5γmin}, k ∈ {1, 2, 3} equal- and mixed-order setting.

We now compare the discrete energy error as a function of the execution time for various polynomial
orders using either the HHO method or conforming finite elements for space discretization. We consider
k ∈ {0, 1, 2} for HHO in both mixed- and equal-order settings, and k ∈ {1, 2} for finite elements. Based on
the above results, we only consider the splitting procedure for HHO simulations, and we choose the best value
of γ in terms of computation time, i.e. γ = γmin in the equal-order setting and γ = 5γmin in the mixed-order
setting. Figure 9 first highlights the same behavior as in the linear case when comparing the different HHO
orders: higher orders and coarse meshes are more computationally efficient than lower orders on finer meshes.
Another salient point is the comparison between mixed- and equal-order settings. Mixed-order settings turns
out to be (much) more efficient. For instance, for the same error, the splitting procedure with polynomial
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orders (3,2) is ten times faster than the splitting procedure with polynomial orders (2,2). Furthermore, P1
finite elements are more efficient than the lowest equal-order HHO method, broadly equivalent to the lowest
mixed-order HHO method, and less efficient than the higher-order HHO methods. The efficiency of P2 finite
elements is between the first- and second-order HHO settings and quite close to HHO with polynomial orders
(2,1). Thus, for a given target error or time budget, high-order HHO with splitting remains the most effective
option.
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Figure 9: Nonlinear (p-structure) wave problem with p = 3 - Discrete energy error as a function of execution
time, HHO with k ∈ {0, 1, 2}, γ ∈ {2, 10, 20} in the equal-order setting and γ = {25, 100, 100} in the mixed-
order setting, P1 and P2 finite elements.

The above experiments have so far focused on the case p = 3 corresponding to a mild nonlinearities. We
now investigate other values of p. The same computations as in Figure 8 are performed, but only for k = 1.
Other polynomial orders yield similar results and are not shown for brevity. The considered values of γ are
{γmin, 2γmin, 5γmin}, unless they are larger than 150. This limit is set to avoid numerical errors induced by
larger values of γ. The computational setting is otherwise unchanged. Results are reported in Figure 10.
The conclusions are similar to the mildly nonlinear case p = 3 indicating that the variation in nonlinearity
as quantified by p does not impact the performance of the splitting procedure in the equal-order setting. In
the mixed-order setting, p < 2 seems to be more favorable to the splitting procedure, whereas with p > 2,
the gain in computation time is less pronounced.

In conclusion, this p-structure test case highlights the benefits of the splitting procedure on fine meshes
compared to the semi-implicit scheme. The results also indicate that, when working on fine meshes, the
choice of γ is not sensitive. Indeed, as long as γ > γmin and in a reasonable range, here [γmin, 150], the error
and the computation time are not affected by the choice of γ. Since γmin can be computed on coarse meshes
and extrapolated on finer meshes, the value of γ is easy to be set in practice.

5.3 Nonlinear 2D vibrating membrane

We now consider a model for a 2D vibrating membrane inspired from [12], where a one-dimensional string
is considered with two unknowns, the transversal and the longitudinal displacements. Here, we neglect the
longitudinal displacement, which leaves us with only the transversal displacement, u. This leads to the
following nonlinear wave equation (with zero source term):

∂2t u−∇ ·
(
µ(∇u)∇u

)
= 0, in Ω, ∀t ∈ J, (53)

with µ : R2 → R such that

µ(g) = 1− α
1√

|g|2 + 1
, ∀g ∈ R2, ∀α ∈ [0, 1). (54)
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Figure 10: Nonlinear (p-structure) wave problem with p ∈ {1.25, 1.5, 1.67, 2.5, 3, 5} - Comparison of execution
times for a single time step of the splitting procedure and of the semi-implicit scheme (with either a direct
or an iterative solver), polynomial orders (1, 1) and (2, 1).

The nonlinear function µ is also considered in the literature in the context of mean-curvature flows. The

associated Hamiltonian writes Hα(g) := 1
2 |g|

2 − α
[√

|g|2 + 1− 1
]
for all g ∈ R2, and equation (53) rewrites

∂2t u − ∇ · (∇gHα(∇u)) = 0. If α = 0, (53) is equivalent to the linear acoustic wave equation. Moreover, if
α ̸= 0 and if the gradient ∇u becomes very large, the nonlinear part of µ becomes negligible with respect
to the linear part. Thus, the most nonlinear behavior is expected for small deformations and α close to one.
Typically, α = 0.8 is considered to lead to a mildly nonlinear behavior, and α = 0.99 to a strongly nonlinear
behavior. Homogeneous Dirichlet boundary conditions on the displacement u are enforced. We consider a
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zero initial condition for u and an initial velocity

v0(x, y) := e−π2f2
pr(x,y)

2

, with r(x, y) := (0.5− x)2 + (0.5− y)2, fp := 3.33, (55)

which simulates an impact at the center of the domain. The solutions at three sensors located at the
points (0.167, 0.5), (0.333, 0.333) and (0.5, 0.5) are displayed in Figure 11 over the time interval [0, 1] for
α ∈ {0, 0.8, 0.99}. As α increases, the wave propagation is slower and the wave front is sharper.
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Figure 11: Vibrating membrane with α ∈ {0, 0.8, 0.99} - Reference solution at sensors placed at (0.167, 0.5),
(0.333, 0.333) and (0.5, 0.5) over the time interval [0, 1].

Figure 12 reports the discrete energy error on the displacement as a function of the computation time for
P1 and P2 finite elements as well as the HHO method with polynomial orders k ∈ {0, 1, 2} in the mixed- and
equal-order settings. This error is computed as above, but using now 120 sensors positioned in the triangle
{x ∈ [0, 0.5], y ∈ [x, 0.5]} using the points with barycentric coordinates ( i16 ,

i2
6 ,

i3
6 ) with i1 + i2 + i3 = 6.

More points are considered in this test case in order to precisely capture the wave propagation. The same
unstructured mesh sequence as for the p-structure test case is considered. The optimal value of γ is used
for each polynomial order, namely γ = γmin in the equal-order setting and γ = 5γmin in the mixed-order
setting (γmin being as before the smallest possible integer value of γ observed experimentally that leads to
a converging splitting procedure). Table 9 reports the value of γmin and the optimal value of γ used in
Figure 12. In the mildly nonlinear case, α = 0.8, the curve associated with P1 finite elements is between
those associated with the lowest- and the first-order HHO methods. Moreover, the first- and second-order
HHO methods and P2 finite elements are almost equivalent in terms of error as a function of the execution
time. In the strongly nonlinear case, α = 0.99, P1 finite elements are faster than the HHO method with
polynomial order (0,0) and equivalent to other equal-order HHO methods. Indeed, mixed-order settings are
(much) faster than equal-order settings and than P2 finite elements. The worse efficiency of the splitting
in the equal-order setting can be explained by the results of Figure 13, which displays the mean number of
splitting iterations per time step for each polynomial order and α ∈ {0.8, 0.99} as a function of the mesh size
h. In the equal-order setting, the number of iterations for α = 0.99 is much larger than that for α = 0.8, by
up to a factor of 10. Instead, in the mixed-order setting, the number of iterations at each time step remains
smaller than 10 for both values of α. To sum up, this experiment shows that the HHO method with splitting
and high polynomial orders is more efficient than P1 finite elements and at worst equivalent to P2 finite
elements in the mildly nonlinear case. In the strongly nonlinear case, the HHO method with polynomial
orders (2,1) and (3,2) is much faster than P2 finite elements. Hence, in this experiment as well, the mixed-
and high-order HHO method is the most efficient choice.

(0, 0) (1, 1) (2, 2) (1, 0) (2, 1) (3,2)
α = 0.8, (γmin, optimal value of γ) (2,2) (4,4) (6,6) (3,20) (5,25) (8,40)
α = 0.99, (γmin, optimal value of γ) (2,2) (4,4) (6,6) (3,20) (5,25) (8,40)

Table 9: Vibrating membrane with α ∈ {0.8, 0.99} - γmin defined as the smallest integer allowing the splitting
procedure to converge, and optimal value (in computation time) of γ.

Remark 5.1 (Aitken acceleration). Considering the large number of iterations needed for the splitting
procedure to converge in the equal-order setting, it can be interesting to use acceleration techniques to
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Figure 12: Vibrating membrane with α ∈ {0.8, 0.99} - Discrete energy error as a function of the computation
time, P1 finite elements compared to HHO with k ∈ {0, 1, 2}, mixed- and equal-order settings with splitting
(only the best value of γ is displayed).
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Figure 13: Vibrating membrane with α ∈ {0.8, 0.99} - Mean number of iterations per time step for polynomial
orders k ∈ {0, 1, 2}, mixed- and equal-order settings, with splitting (only the best value of γ is displayed).

reduce the computational cost. We can consider for instance the ∆2 Aitken acceleration. Recalling that un,mF
denotes the solution at iteration m of the splitting procedure and at time iteration n, we define ∆un,mF :=

un,m+1
F − un,mF , ∆2un,mF := un,m+1

F − 2un,mF + un,m−1
F , and

ũmF := un,mF −
∆un,mF ∆un,m−1

F
∆2un,mF

. (56)

The sequence of (ũmF )m⩾0 converges faster to the same limit un+1
F as (un,mF )m⩾0 as long as

lim
m→∞

un,m+1
F − un+1

F
un,mF − un+1

F
= λ ̸= 1. (57)

Considering the same membrane setting as above, Figure 14 shows the computation time and the number
of iterations for the splitting procedure with and without Aitken’s acceleration. The optimal value of γ is
the one from Table 9. As expected, Aitken’s acceleration is more effective when the number of splitting
iterations is large, i.e. in the equal-order setting and the strongly nonlinear case (α = 0.99). Instead, the
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gain is quite moderate in the mixed-order setting where the number of iterations is very small (less than
4). The equal-order setting with (1,1) benefits from Aitken’s acceleration only in the strongly nonlinear case
for the same reason. In this case, the splitting procedure with Aitken’s acceleration is 30% faster than the
splitting procedure without acceleration. In the equal-order setting with polynomial orders (2,2), Aitken’s
acceleration turns out to be very efficient since the number of iterations is large and does not decrease with
mesh refinement. In this case, the gain in computation time is a factor of 5 for the mildly nonlinear case
(α = 0.8) and more than 10 in the strongly nonlinear case (α = 0.99 )and on the finest mesh. In conclusion,
Aitken’s acceleration is an effective tool that helps improve the performance of the equal-order setting in the
strongly nonlinear case.
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Figure 14: Vibrating membrane with α ∈ {0.8, 0.99} - Mean number of iterations per time step, polynomial
orders (1,1), (2,1), (2,2), splitting procedure with and without Aitken’s acceleration, optimal value of γ.

5.4 General conclusions from the numerical tests

The numerical experiments illustrated the effectivity of the splitting procedure. There are four points de-
serving to be put forward.

1. The behavior of the equal- and mixed-order is different. The mixed-order setting is more efficient than
the equal-order setting due to the reduced number of splitting iterations to achieve convergence (Figure
9 for the p-structure case and Figure 12 for the vibrating membrane).

2. The tuning of the parameter γ does not bring any significant difficulty. Indeed, both linear and nonlinear
experiments show that, for a value of γ smaller than 100, the quality of the solution is not impacted.
All experiments show minimal values of γ (γ⋆ in the linear case where it can be computed and its
approximation γmin in the nonlinear case) smaller than 100. Moreover, the results of Figures 7, 8 and
10 show that, on fine meshes, the value of γ does not impact the computation time. On coarse meshes,
both linear and nonlinear experiments give the same optimal choice: γ = γmin in the equal-order setting
and γ ∈ [3γmin; 5γmin] in the mixed-order setting.

3. In order to increase the accuracy of the solution, it is more efficient to increase the polynomial order
than to refine the mesh (see Figure 5 in the linear case and Figures 9 and 12 in the nonlinear case).

4. For nonlinear problems, the splitting procedure combined with a mixed-order setting is always faster
than the semi-implicit scheme. The gain in computation time depends on the nonlinearity and increases
with mesh refinement. In the equal-order setting, the splitting procedure becomes more efficient than
the semi-implicit scheme on refined meshes. Moreover, the HHO method with mixed-order setting,
splitting procedure and polynomial order k ⩾ 1 is always more efficient than the P1 finite element
method. In most cases, equal-order computations are also faster. The splitting procedure with mixed-
order and large k is therefore the most effective approach tested in the present work.
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A Scaling of the stabilization

This appendix is dedicated to provide some further insight into the impact of the scaling of the stabilization
parameter γ on the HHO method, and in particular to the case γ → ∞. We start with a study on the linear
diffusion equation, and measure the L2- and H1-errors for large values of γ on various meshes. Then, a study
of the eigenvalues of the splitting matrices is also performed as γ → ∞. Finally, we analyse the stability
condition on the time step as a function of γ and its behavior as γ increases.

A.1 Static case

We consider the following problem: Find u ∈ H1
0 (Ω) such that (µ∇u,∇w)Ω = (f, w)Ω for all w ∈ H1

0 (Ω).

The HHO discretization consists of finding ûh ∈ Û l,k
h,0 such that

bh(ûh, ŵh) + sh(ûh, ŵh) = (f, wT )Ω , ∀ŵh ∈ Û l,k
h,0. (58)

We consider an analytical test case with u(x, y) := sin(πx) sin(πy) obtained using µ = 1 in the domain
Ω := (0, 1)2 and the source term f(x, y) := 2π2 sin(πx) sin(πy). We study the L2-error on the cells, E1 :=

(∆UT
CMCC∆UC)

1
2 , on the faces, E2 := h−

1
2 (∆UT

FMFF∆UF )
1
2 (evaluated using the face mass matrix), as

well as the (broken) H1-error, E3 := (∆ÛTK(γ)∆Û)
1
2 , computed using the complete stiffness matrix (this

error thus includes the stabilization and is therefore affected by the value of γ). We test the values γ ∈
{1, 10, 100, 1000, 10000}. Figure 15 shows the three errors for the equal-order setting and k ∈ {0, 1}. Other
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Figure 15: Errors E1, E2, E3 on the scalar Laplacian as a function of the mesh size for γ ∈
{1, 10, 100, 1000, 10000}, equal-order setting with k ∈ {0, 1}.

polynomial orders are not displayed for brevity, since the results are similar. For the L2- and H1-errors, the
convergence rates are, as expected, (k + 2) and (k + 1), respectively. The main observation is that, for a
fixed h, the error converges to some value as γ increases. In other words, the limit γ → ∞ does not yield a
diverging solution, but a suitable solution with optimal convergence rates. Interestingly, this limit solution is
reached for a rather small value of γ since the error curves for γ ⩾ 10 almost overlap. Regarding the L2-error
on the faces, the behavior differs between k = 0 and the higher orders. For the higher orders, the behavior
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is the same as for the other errors, whereas for the lowest order, the error does not change when γ increases.
This indicates that the value on the faces is not affected by the scaling of the stabilization when k = 0.

The behavior as γ → ∞ can be partially explained by a series expansion in γ. Let us plug the Ansatz
ûh =

∑∞
n=0 û

n
hγ

−n into (58) and consider test functions having only nonzero face components. This yields

γsh(û
0
h, wF ) + bh(û

0
h, wF ) + sh(û

1
h, wF ) + . . . = 0, ∀wF ∈ Uk

F,0. (59)

The dominant term in γ gives sh(û
0
h, wF ) = 0 for all wF ∈ Uk

F,0. In the mixed-order setting, this condition
reads ∑

T∈Th

∑
F∈FT

ηTF (Π
k
F (u

0
T )− u0F , wF ) = 0, ∀wF ∈ Uk

F,0. (60)

Letting TF collect the one or two cells adjacent to a face F , this translates into the following direct expression
of the face unknowns:

u0F =
1

#TF

∑
T∈TF

Πk
F (u

0
T ). (61)

This means that, in the mixed-order setting, when γ → ∞, the face unknowns on F are equal to the
projection onto Pk

d(F ) of the mean-value of the cell unknowns from the two adjacent cells if F is an interface
and of the trace of the cell unknown if F is a boundary face. The equal-order setting does not lead to an
explicit expression of the face unknowns in terms of the cell unknowns. Indeed, in this case, the condition
sh(ûh, (0, wF )) = 0 for all wF ∈ Uk

F,0 is not sufficient to determine the face unknowns in terms of the cell
unknowns, because the spectrum of SFF contains at least one zero eigenvalue as shown in Figure 16. The
smallest eigenvalue is nonzero owing to round-off errors. Higher-order polynomials lead to the same behavior
and are not displayed for brevity.
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Figure 16: Eigenvalues of SFF on different meshes for polynomial orders (0,0).

A.2 Spectral radius of the iterated matrix as γ → ∞

Let us now focus on the spectral radius of S−1
FFBFF in the mixed-order setting and of (S⋆

FF )
−1(BFF +ZFF )

in the equal-order setting. In Section 4.4, a study of the value of γ⋆ as a function of the polynomial order
and the mesh regularity has been performed. Figure 17 reports the spectral radius of the iteration matrix
as γ → ∞ on an unstructured triangular mesh with h = 0.1. In the mixed-order setting, the spectral
radius of S−1

FFBFF goes to zero, whereas the spectral radius of (S⋆
FF )

−1(BFF +ZFF ) converges to one in the
equal-order setting. This is the expected behavior.

A.3 Stability condition as γ → ∞

Equation (49) gives a formula to obtain the critical time step ∆topt(γ) as a function of γ. Figure 18 reports
the rate ∆topt(γ)h on 2D unstructured quadrangular and triangular meshes, and 3D Cartesian hexahedral
and unstructured tetrahedral meshes. For each polynomial order, the value of γ⋆ is indicated by a bullet.
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Figure 17: Spectral radius of the iteration matrix as a function of γ, equal-order setting (left) and mixed-order
setting (right) on an unstructured triangular mesh with h = 0.1.
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Figure 18: Ratio ∆topt(γ)
h as a function of γ on 2D and 3D unstructured meshes.

As γ → ∞, ∆topt(γ) go to zero as 1√
γ . Thus, taking γ ≫ γ⋆ is not optimal, since this entails very small

time steps. Fortunately, Table 1 has already shown that the value of γ⋆ need not be too large. The fact that
∆topt(γ) → 0 as γ → ∞ is easily proven using the min-max theorem for the largest eigenvalue. Indeed, since
B is a positive matrix, we have

ρ(D(γ)) = max
X=(XT ,XF )∈Ûl,k

h,0

XTAX
XT MXT

⩾ max
XT ∈Ul

T

XT
T AT TXT

XT MXT
⩾ γρ(M−1ST T ).

This shows that ∆topt(γ) ⩽ 2√
γρ(M−1ST T )

∼
γ→∞

1√
γ . All the mixed-order curves in Figure 18 show the

expected asymptotic behavior. For the equal-order curves, this asymptotic behavior is recovered for the
larger values γ, but we also observe that there is a large range of values of γ for which ∆topt(γ) ≃ Cγ−1,
where C is some constant depending on the polynomial order and the mesh regularity. For the largest orders,
the asymptotic rate γ−

1
2 is not even reached for γ = 1010.
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