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Abstract

Multi-layer silicone composites are commonly used to mold deformable sili-
cone vocal folds replicas. Nevertheless, so far the stress-strain characterisa-
tion of such composite specimens is limited to their effective Young’s modulus
(up to 40 kPa) characterising the elastic low-strain range, i.e. up to about
0.3. Therefore, in this work, the characterisation is extended to account for
the non-linear strain range. Stress-strain curves on 6 single-layer and 34
multi-layer silicone specimens, with different layer stacking (serial, parallel,
combined or arbitrary), are measured at room temperature using uni-axial
tensile tests for strains up to 1.36, which amounts to about 4.5 times the
extent of the linear low-strain range. Cubic polynomial and exponential
two-parameter relationships are shown to provide accurate continuous fits
(coefficient of determination R2 ≥ 99%) of the measured stress-strain data.
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It is then shown that the parameters can be a priori modelled as a constant
or as a linear function of the effective low-strain Young’s modulus for strains
up to 1.55, i.e. 5 times the low-strain range. These a priori modelled pa-
rameter are confirmed by approximations of the best fit parameters for all
assessed specimens as a function of the low-strain Young’s modulus. Thus,
the continuous stress-strain behaviour up to 1.55 can be predicted analyti-
cally from the effective low-strain Young’s modulus either using the modelled
parameters (R2 ≥ 85%) or the approximations of the best fit parameter sets
(R2 ≥ 94%). Accurate stress-strain predictions are particularly useful for the
design of composites with different composition and stacking. In addition,
analytical expressions of the linear high-strain Young’s modulus and the lin-
ear high-strain onset, again as a function of the effective low-strain Young’s
modulus, are formulated as well.

Keywords:

1. Introduction

Human voice production is due to the auto-oscillation of the vocal folds
following the fluid-structure interaction (FSI) between the airflow coming
from the lungs and the surrounding vocal folds tissue. Since 2008 [1, 2], phys-
ical studies of this fluid-structure interaction (FSI) often rely on deformable5

molded multi-layer (ML) composite silicone vocal fold (VF) replicas. Their
usage is mainly motivated by the possibility to mimick – up to some degree –
the (micro-)anatomical ML representation of the human VF structure, which
consists of overlapping muscle (Mu), vocal ligament (Li), superficial (Su) and
cover epithelium (Ep) layers [3]. Elastomer silicone mixtures (either Thinner-10

Ecoflex (TE) or Thinner-Dragonskin (TD)) at different mass mixing ratios
M = rT : rE(D) (with constant rE(D) = 2) allow to vary the low-strain elastic
Young’s modulus E of individual layers in order to match the range reported
for human VF layers, i.e. 8-29 kPa for Mu, 10-45 kPa for Li, 2-9 kPa for
Su and 40-60 kPa for Ep [4, 5, 6, 7, 8, 9, 10, 11]. Commonly used silicone15

mixtures (In, n = 1 . . . 6) are summarised in Table 1. Mixtures I1 up to I5
(with 2 ≤ E ≤ 65 kPa) are used to mold the two-layer M5 replica (Mu and
Su with I3 and I2 [12]), the three-layer MRI replica (Mu, Su and Ep with
I2, I1 and I5 [12, 13, 14]) and the four-layer EPI replica (Mu, Li, Su and Ep
with I4, I2, I1 and I5 [15, 13, 14]). An additional mixture I6 with greater20

low-strain Young’s modulus so that 4 ≤ EI6/EI1...5 ≤ 150, is considered to
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Table 1: Molded single layer properties at room temperature: mixture TE or TD (Mix),
mass mixing ratio M, low-strain Young’s modulus E in the strain range εt ≤ εl.

Label
Composition E [kPa] εl
Mix M [-]

I1 TE 8:2 2 0.24
I2 TE 4:2 4 0.41
I3 TE 2:2 14 0.21
I4 TE 1:2 23 0.25
I5 TD 1:2 65 0.16
I6 TD 0:2 298 0.26

represent a local stiffening within the VF as reported for some structural
VF abnormalities or disorders [16, 17, 18]. Low-strain Young’s moduli E in
Table 1 characterising the linear stress-strain curves σt(εt) at room temper-
ature (21± 2 ◦C, mean and standard deviation) are obtained as the slope of25

a linear fit (coefficient of determination R2 ≥ 98%) to the low-strain range
with upper low-strain limit εl of measured stress-strain curves σt(εt) gathered
from uni-axial tensile tests on molded specimens [19, 20].

Despite the anatomical structural relevance of the low-strain elastic Young’s30

moduli E of the molded silicone layers, so far ML silicone VF replicas (e.g.
M5, MRI, EPI) are omitted in systematic physical studies on the influence
of the VF structure on the FSI due the lack of an a priori mechanical char-
acterisation. Recently, in [19, 20], the low-strain Young’s modulus of ML
silicone composites for which perfectly bounded adjacent layers are stacked35

either parallel (‖), serial (⊥), a combination of both (‖⊥) or arbitrary (Arb)
with respect to the force direction as illustrated in Fig. 1(a), is modeled
considering the low-strain effective Young’s modulus Eeff of an equivalent
homogenised composite. This has been obtained by exploiting firstly Voigt’s
hypothesis [21] of homogeneous strain for parallel stacked layers and then40

Reuss’s hypothesis [22] of homogeneous stress for the remaining serial stacked
layers. The model approach was extensively validated against measured Eeff
values using uni-axial tensile testing (at room temperature) on molded ML
specimens with 5 ≤ Eeff ≤ 40 kPa. Validation was first done in [19], us-
ing I1...5, on six two-layer and seven three-layer silicone molded specimens45

(5 ≤ Eeff ≤ 40 kPa) with parallel (‖), serial (⊥) or combined (‖⊥) stacking
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(a) (b)

Figure 1: a) Illustration of specimen’s test section dimensions and different layer stacking
with respect to the applied force (F) direction: serial stacking (⊥) between layers 1 and
2, parallel (‖) between 3 and 4, combined (‖⊥) between 3, 4, and 2 and arbitrary (Arb)
between 5 and 6, b) Degree of deformation ∆l/l0 for true strain 0 ≤ εt ≤ 1.5. The overall
low-strain range εt ≤ εl with εl ≈ 0.3 is indicated.

and then in [20], using fourteen specimens obtained as a three-layer compos-
ite (I1, I2 and I5) embedding a stiff inclusion (I6) with variable size, position
and stacking. That resulted in more complex specimens with at least four
layers which are stacked either parallel (‖), serial (⊥), combined (‖⊥) or50

arbitrary (Arb). For each molded specimen in [19, 20], the low-strain ef-
fective Young’s modulus Eeff of the equivalent homogenised composite was
estimated (R2 ≥ 96%) on the measured stress-strain curves σt(εt) as the
slope characterising the linear low-strain region εt ≤ εl with εl = 0.30±0.10.
It follows that the low-strain effective Young’s modulus Eeff , in the strain55

range up to εl ≈ 0.3, of an equivalent homogenised ML silicone composite
can be accurately modelled (maximum difference of 5.2 kPa [19, 20]) from
its layers E and stacking geometry.

The degree of deformation of a specimen of length l0 and elongation ∆l60

along the force direction,
∆l

l0
= eεt − 1 (1)

associated with the low-strain range up to εl ≈ 0.3 is limited to deformations
up to about 35% as illustrated in Fig. 1(b). As it is well established [23, 24]
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that biological soft tissues, and thus human VF tissues [5, 6, 25, 26, 10],
are characterised by small stresses in response to relatively large strains65

εt, greater than one and thus deformations larger than 100% as shown in
Fig. 1(b), it is needed to assess how the stress-strain relationship of silicone
ML composites behaves beyond the linear range and how the non-linear be-
haviour compares to the one typically observed in biological soft tissues.

70

Therefore, in this work, the stress-strain relationship of silicone ML com-
posite specimens is investigated beyond the low-strain elastic range. In par-
ticular, 63 measured stress-strain curves on 40 molded specimens from uni-
axial stretching at room temperature described in [19, 20] are further anal-
ysed in order to characterise and model the stress-strain curves for εt > εl.75

It is aimed to propose a validated phenomenologically-based continuous a
priori analytical model of the elastic stress-strain curves within and beyond
the elastic low-strain range resulting in analytical models for which model
parameters are expressed as a function of the low-strain Young’s modulus.
Thus, this approach aims to predict the stress-strain behaviour without data80

fitting to estimate the model parameters. Therefore, the approach is based
on continuous hyper-elastic stress-strain models characterised firstly by few
(i.e. two) model parameters and secondly by a reported accuracy to fit soft
biological tissues stress-strain behaviour [23, 28, 29, 24, 5, 30]. It was verified
that the best fit accuracy found for the used two-parameter models is similar85

as the accuracy associated with other hyperelastic models. The total strain
range of interest is limited to εt ≤ 1.5 due to the proposed model approach
as well as due to the data strain-range used for validation. This corresponds
to a degree of deformation ∆l/l0 up to 350% (see Fig. 1(b)), or about 10
times the maximum elongation of 35% associated with the overall low-strain90

upper limit εl = 0.3.

Experimental methods and measured stress-strain data are briefly out-
lined in section 2. In section 3, continuous two-parameter stress-strain re-
lationships are introduced and analytical parameter expressions are derived.95

Fitted and analytical stress-strain characterisation on measured data are
compared in section 4. The conclusion is formulated in section 5.
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2. Experimental stress-strain data at room temperature

ML silicone composites are molded using 3D-printed bone-shaped speci-100

men molds (Stratasys ABS-P430, accuracy 0.33 mm). Molded silicone com-
posites have a rectangular test section of length 80 mm, width 15 mm, and
height 10 mm as indicated in Fig. 1(a). In total, 40 silicone specimens were
molded following the procedure detailed in [19, 27]. Six single-layer specimens
are molded with one of the silicone mixtures shown in table 1, which indicates105

measured low-strain Young’s moduli E and low-strain upper limits εl. These
6 silicone mixtures are combined in order to mold 34 ML specimens. Molded
layer dimensions are measured using a laser transceiver (Panasonic HL-G112-
A-C5, wavelength 655 nm, accuracy 8 µm). Table 2 gives an overview of these
ML specimens in terms of their stacking, number of layers n, the uni-axial110

tension test method (mechanical press MP or/and precision loading PL),
and the measured low-strain effective Young’s modulus Eeff characterising
the low-strain range up to εl ≈ 0.3. Measured force-elongation data F(∆l)
were collected from uni-axial tensile testing at room temperature 21± 2 ◦C.
Two methods (MP and PL), previously cross-validated (difference less than115

3.5 kPa [19, 20]), were used. Briefly, an electro-mechanical press (MP, 3369

Table 2: Molded ML specimens: stacking (‖, ⊥, ‖⊥, Arb), number of layers n, total
number (No.) of specimens and tensile test method (MP or PL), measured low-strain
effective Young’s modulus Eeff in the range up to εl ≈ 0.3 at room temperature 21±2 ◦C.

.

Stacking n
No. of ML specimens Eeff [kPa]
Total MP PL

‖ 2 3 3 3 7 – 33
3 1 1 1 20

⊥
2 5 3 5 5 – 29
3 8 1 8 5 – 38
4 2 0 2 6

‖⊥

3 2 1 2 9 – 17
4 4 0 4 27 – 32
5 6 0 6 12 – 31
7 1 0 1 18

Arb / 2 0 2 11 – 20

Overview ≥ 2 34 9 34 6 – 38

vi



Instron Corp.) or a developed precision loading setup (PL) were used to
exert the forcing. The mechanical press (MP) was set for displacement con-
trol (INSTRON 3369 series, precision of ±0.2 mm at least) up to maximum
elongations of 100 mm and 150 mm following the procedure detailed in [19].120

The deformation rate was set to 1 mm/s and 2 mm/s for the 100 mm and
150 mm elongation respectively. Force and elongation time series (sampling
rate of 10 Hz) were measured during loading and unloading of the specimens.
No plastic deformation was observed following unloading. Additional cross-
sectional area measurements are made for each specimen without loading125

and for elongations set to 25, 50, 100 and 150 mm. For the developed PL
setup [19], the force is the controlled parameter and is exerted by adding
precision loads (PL) of mass m (Vastar 500G X 0.01G, accuracy 0.01 g) at a
single rate for each specimen, while measuring the elongation at every force
increment with an accuracy of 0.05 mm as described in [19, 20]. Depending130

on the specimen, total added weight ranges from 46 to 426 g, correspond-
ing to a total elongation from 23 up to 255 mm. The cross-sectional area
is measured whenever the elongation increment due to added weights yields
about 15± 5 mm. For both methods, the cross-sectional area A is measured
with an accuracy of 0.02 mm. A quadratic fit (coefficient of determination135

R2 ≥ 99%) is used to have a continuous approximation of the average area-
elongation relationship Aq(∆l) for each specimen. The incompressibility of
the specimens was verified by estimating the area-elongation relationship as
A = A0 l0/l (R2 ≥ 84%), with A0 denoting the initial cross-sectional area of
the specimen and l = l0 + ∆l the length of the specimen. The longitudinal140

stress σt and strain εt are then obtained as

σt =
F
Aq
, (2)

εt = ln

(
l0 + ∆l

l0

)
, (3)

using measured elongation ∆l, force F , and area Aq and with length l0 and
deformation ∆l as defined in Eq. (1). Here, the true definitions of stress
and strain, which are based on the instantaneous values of length and cross-145

section area, are adopted. The measured maximum strain max(εt) depends
on the specimen and is limited to max(εt) ≤ 1.36. An overview of max(εt) as
a function of E(eff) is given in Fig. 2. Respectively, 52 and 25 of the measured

vii



Figure 2: Measured maximum strain max(εt) as a function of low-strain Young’s modulus
E(eff). The linear low-strain upper limit εl ≈ 0.3 is indicated (dashed line).

stress-strain data curves satisfy max(εt) ≥ 0.4 and max(εt) ≥ 0.77, which
corresponds to an extension of the strain range of about 33% and 156% be-150

yond the upper limit of the low-strain region εl ≈ 0.3.

3. Continuous elastic stress-strain relationships and a priori mod-
elled parameter expressions

3.1. Continuous two-parameter relationships155

The typical stress-strain data curve plotted in Fig. 3(a) shows that the
elastic linear low-strain range εt ≤ εl, expressed with Hooke’s law using the
low-strain effective Young’s modulus E(eff) as

σt(εt) = E(eff) εt, (4)

transitions to a more rapid increase of stress σt with strain εt indicating
elastic non-linear stress-strain behaviour for ε > εl. In accordance with
models proposed for soft biological tissues accounting for the rapid non-
linear increase of stress with strain for εt > εl [23, 28, 29, 24, 5, 30], the
exponential and third order polynomial (cubic) non-linear continuous two-
parameter relationships with C1 continuity are assessed in order to represent
stress-strain curves σt(εt) of the ML composites:

exponential : σt(εt) = A (eB εt − 1), (5a)

cubic : σt(εt) = a ε3t + b εt, (5b)
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(a) Linear model (b) Non-linear models

Figure 3: Experimental stress-strain data curve σt(εt) (symbols) and stress-strain models
(lines) with fit accuracy R2 ≥ 99.5% for a five-layer (n = 5) specimen with combined
(‖⊥) stacking: a) linear (full line) low-strain (εt ≤ εl) fit with slope Eeff = 36 kPa, b)
continuous non-linear cubic (dotted line) and exponential (dashed line) fits.

with (A,B) and (a, b) their respective two parameter sets.
Fig. 3 illustrates the linear fit of Eq. (4) (in Fig. 3(a)) to the low-strain160

region εt ≤ εl and the continuous exponential and cubic fits of Eq. (5) (in
Fig. 3(b)) to a typical measured stress-strain data set. For each measured

stress-strain curve, best fit parameter sets (Â, B̂) and (â, b̂) are estimated by
minimising the root mean square error (rmse),

rmse =

√√√√ 1

N

N∑
i=1

[
(σ̂t)i − (σt)i

]2
(6)

between measured σt and fitted σ̂t stresses with N the number of strain data165

points within the analysis range and i the index of individual data points.
The goodness of fit, expressed by the coefficient of determination R2, yields
R2 > 99.5% for each continuous model to the measured stress-strain curves,
obtained using either MP or PL uni-axial tensile testing. Therefore, both
continuous two-parameter relationships can be used to provide an accurate170

estimation of the measured stress-strain curves. The linear low-strain (Sec-
tion 3.2) and non-linear (Section 3.3) behaviour of these relationships in
terms of their parameters is considered next.
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3.2. Modelled low-strain behaviour of continuous stress-strain relationships175

The first order derivatives of Eq. (5a) and Eq. (5b) with respect to εt
become

exponential :
dσt
dεt

= AB eB εt , (7a)

cubic :
dσt
dεt

= 3 a ε2t + b. (7b)

The linear low-strain behaviour for εt ≤ εl of the exponential Eq. (5a) and
cubic Eq. (5b) relationship is then obtained from the first order Taylor ex-
pansion near εt ≈ 0 as:

exponential : σt(εt ≈ 0) = AB εt, (8a)

cubic : σt(εt ≈ 0) = b εt, (8b)

where it is used that both the exponential and cubic relationships have no
residual stress at zero strain so that σt(εt ≈ 0) ≈ 0 kPa. Consequently,
the elastic low-strain (effective) Young’s modulus E(eff), describing the lin-
ear stress-strain behaviour in the low-strain range εt ≤ εl (Eq. (4)) can be
expressed in terms of the parameters of the continuous relationships as:

exponential : E(eff) = AB, (9a)

cubic : E(eff) = b. (9b)

3.3. Modelled non-linear behaviour of continuous stress-strain relationships

Using A = E(eff)/B (Eq. (9a)) and b = E(eff) (Eq. (9b)) and assuming
that low-strain linear Young’s modulus E(eff) is a known quantity, the two-
parameter relationships of Eq. (5a) and Eq. (5b) can be rewritten as one-
parameter relationships

exponential : σt(εt) =
E(eff)
B

(eB εt − 1), (10a)

cubic : σt(εt) = a ε3t + E(eff) εt, (10b)

with the unknown parameters B and a (already in Eq. (5)) determining the
non-linear behaviour in the range εt > εl.

180
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From the first order expansion of the relationships in Eq. (5) follows that
the local linear slopes ENL associated with their linear approximations near
any εt are expressed as:

exponential : ENL = E(eff) eB εt , (11a)

cubic : ENL = 3 a ε2t + E(eff). (11b)

At low-strain (for εt ≈ 0), these expressions reduce to ENL(εt ≈ 0) ≈ E(eff)
in accordance with the linear low-strain behaviour described in Section 3.2.

In Section 3.1 is shown that both the exponential (Eq. (10a)) and cubic
(Eq. (10b)) relationship can provide accurate estimations of the measured185

stress-strain data sets as the fit accuracy holds R2 > 99.5%. Therefore,
estimated stresses obtained with both relationships are assumed to match.
Equating Eq. (10a) and Eq. (10b) for any matching strain value εmt and mak-
ing use of Eq. (11a) and Eq. (11b) gives the following relationship between
ENL and the low-strain Young’s modulus E(eff)190

ENL ln
( ENL
E(eff)

)
+ 2 E(eff) ln

( ENL
E(eff)

)
− 3 ENL + 3 E(eff) = 0. (12)

In Fig. 4 is shown that the solution ENL(E(eff)) is accurately approximated
as ENL = 8.58 E(eff) (R2 = 99.9%) for E(eff) ∈

[
0.1, 350

]
, which includes the

range of interest indicated in Table 1 and in Table 2.

Figure 4: Solutions ENL from Eq. (12) as a function of E(eff) (thick full line) and linear
fit (light dotted line) with R2 = 99.9%. Both curves superimpose.
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The two-parameter sets (A,B) and (a, b) of the non-linear exponential
and cubic relationships at any matching strain value εmt are then a priori
given in terms of E(eff) and ENL as,

exponential : B =
1

εmt
ln
( ENL
E(eff)

)
, A =

εmt E(eff)
ln
(
ENL

E(eff)

) , (13a)

cubic : b = E(eff), a =
ENL − E(eff)

3 (εmt )2
. (13b)

Using the ratio ENL/E(eff) ≈ 8.58, the two-parameter sets of Eq. (5) become:

exponential : B ≈ 2.15
1

εmt
, A ≈ 0.47 E(eff) εmt , (14a)

cubic : b ≈ E(eff), a ≈ 2.53 E(eff)
1

(εmt )2
. (14b)

These a priori modelled (positive) parameter expressions respect the low-195

strain behaviour in Eq. (9a) and Eq. (9b) as AB ≈ E(eff) and b ≈ E(eff).
Beyond the low-strain region, the cubic parameter a and the exponential
parameter A are proportional to E(eff). In addition, the cubic parameter a
and exponential parameters (A,B) not only depend on E(eff), but also on the
considered strain εmt at which the cubic and exponential model are imposed200

to match. Note that from a third order Taylor series expansion of the expo-
nential function given in Eq. (10a) follows that, under the condition that the
quadratic term of the expansion is negligible compared to the linear or cubic
expansion term, nearly matching of the exponential and cubic functions in
Eq. (5) leads to the condition a = 1

6
B2E(eff), which is the case considering205

expressions a and B in Eq. (14).
For εmt = 1, this gives B ≈ 2.15, A/E(eff) ≈ 0.5 and a/E(eff) ≈ 2.5. For
εmt 6= 1, the model parameters B, A and a will decrease or increase with
respect to their value at εmt = 1, depending on εmt < 1 or εmt > 1, since
B ∝ ε−1t , A ∝ εt and a ∝ ε−2t . Consequently, the influence of the value of210

matching strain εmt needs to be considered.

The relative difference (in percentage) between the estimated true stresses
using the exponential (σet ) and cubic (σct ) relationships with the modelled
parameter values (Eq. (14)) as a function of the normalised strain εt/ε

m
t for215
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(a) (b)

Figure 5: For the exponential (superscript e) and cubic (superscript c) relationship: a)
relative difference (%) between modelled true stresses σt as a function of normalised strain
εt/ε

m
t , b) strain energy density function W normalised by low-strain Y(eff).

any εmt is plotted in Fig. 5(a). The difference is zero at εt/ε
m
t ∈ {0, 1} as

for these strains the stresses match. For 0 ≤ εt/ε
m
t ≤ 1, the difference is less

than the maximum of 12.6% associated with εt/ε
m
t = 0.28. For εt/ε

m
t > 1,

the difference increases since σet (exponential) increases more rapidly than σct
(cubic). Overall, the stress-difference remains less than 12.6% when fulfill-220

ing the condition εt/ε
m
t ≤ 1.55 and increases thereafter. Thus εmt should be

at least 65% of the maximum assessed strain max(εt) to ensure this accu-
racy between both the exponential and cubic curves obtained with modelled
parameters from Eq. (14). For 0.77 ≤ εmt ≤ 1.36, which is reasonable consid-
ering the variation of the maximum strain (max(εt) ≤ 1.36) in the measured225

stress-strain curves (see Fig. 2), we get using Eq. (14) the model parameter
ranges 1.58 ≤ B ≤ 2.79, 0.36 ≤ A/E(eff) ≤ 0.64, 1.36 ≤ a/E(eff) ≤ 4.27
and b = E(eff). For convenience, concretely εmt = 1 is considered so that
Eq. (14) provides a priori modelled expressions of the two-parameter sets as
a function of E(eff) only.230

Introducing the elongation parameter λ = l/l0 so that λ = eεt and λ ≥
1, the strain energy density function expressing the strain energy per unit
volume of the deformed material is obtained as the work done by the load

W(λ) =

∫ λ

1

σt(λ)

λ2
dλ. (15)

Inserting the exponential σet and the cubic σct stress relationship with the
modelled parameters expressions of Eq. (14), W normalised by the linear
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low-strain modulus E(eff) becomes,

exponential :
We(λ)

Eeff
≈ 0.47

(
λ1.15

1.15
+

1

λ
− 1.87

)
, (16a)

cubic :
Wc(λ)

Eeff
≈ −

1

λ

(
2.53 ln3(λ) + 7.59 ln2(λ) + 16.18 ln(λ) + 16.18

)
.

(16b)

We and Wc are plotted in Fig. 5(b) as a function of εt/ε
m
t . As observed, the235

curves are similar within the range 0 ≤ εt/ε
m
t ≤ 1.55 because the normalised

difference (We−Wc)/We is limited to within 12.6% with a single maximum
at εt/ε

m
t = 0.39.

4. Stress-strain characterisation240

4.1. Parameter values: best fit, best fit approximation and a priori modelled

Best fit parameter values obtained by minimising the rmse (Eq. (6))

between the continuous exponential (â and b̂) or cubic (Â and B̂) fits for
σ̂t(εt) and the measured stress-strain curves σt(εt) for the complete strain
range up to max(εt) are plotted in Fig. 6 as a function of the low-strain245

Young’s modulus E(eff). As detailed in section 3.3, the best fit accuracy
yields R2 > 99.5% for all specimens so that both the exponential and cu-
bic two-parameter relationships provide accurate estimates of the measured
stress-strain data curves.

250

As the rmse-minimisation is a constraint optimisation, resulting best fit
parameter estimations depend on the extent of the strain range εt ≤ max(εt)
and thus on max(εt). This is shown in Fig. 6 for best fit parameter estima-
tions on data sets with max(εt) ≥ 0.40 (light gray dots) and max(εt) ≥ 0.77

(dark gray dots). Best fit parameter estimations Â, B̂ and â for data sets
with max(εt) ≥ 0.77 can be approximated (dashed black lines) as :

Â ≈ 0.33 E(eff), (fit accuracy R2 = 84%), (17a)

B̂ ≈ 2.21, (mean with standard deviation± 0.52), (17b)

â ≈ 1.78 E(eff), (fit accuracy R2 = 83%). (17c)
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(a) Â (b) B̂

(c) â (d) b̂, Â B̂

Figure 6: Exponential (Â, B̂) and cubic (â, b̂) best fit (R2 > 99.5%) parameters to mea-

sured stress-strain curves in the range εt ≤ max(εt) as a function of E(eff): a) Â for

max(εt) ≥ {0.40, 0.77}, b) B̂ for max(εt) ≥ {0.40, 0.77}, c) â for max(εt) ≥ {0.40, 0.77}
and d) b̂, Â B̂ and E(eff). In a,b,c) shaded regions indicate modelled parameter ranges for
0.77 ≤ εmt ≤ 1.36, dashed lines show fitted parameter approximations for max(εt) ≥ 0.77.
In d) the identity function (full line) and linear fits (dashed and dotted line) are plotted.

In accordance with a priori modelled parameter expressions, (A,B) in

Eq. (14a) and a in Eq. (14b), approximations of best fit parameters Â and

â depend linearly on the low-strain Young’s modulus E(eff) whereas B̂ is ap-
proximately constant. For comparison, modelled parameter ranges for 0.77 ≤
εmt ≤ 1.36 (1.58 ≤ B ≤ 2.79, 0.36 ≤ A/E(eff) ≤ 0.64, 1.36 ≤ a/E(eff) ≤ 4.27)255

are indicated (shaded regions). Thus, best fit parameters and their approxi-
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mations are of the order of magnitude of the modelled parameters.

Following the modelled expressions in Eq. (9), the linear low-strain stress
behaviour is determined by the cubic parameter b (Eq. (9a)) or the exponen-

tial parameter product AB (Eq. (9b)). Therefore, the best fit parameter b̂

(light gray dots), the product ÂB̂ (dark gray dots) as well as the low-strain
Young’s modulus E(eff) (full line, identity function) are plotted as a func-

tion of E(eff) for all data sets in Fig. 6(d). It is seen that b̂ and ÂB̂ can be
approximated as

b̂ ≈ 0.92 E(eff), (fit accuracy R2 = 95%), (18a)

Â B̂ ≈ 0.79 E(eff), (fit accuracy R2 = 94%). (18b)

As the slopes 0.92 and 0.79 are smaller than one, b̂ and ÂB̂ underestimate
the measured low-strain Young’s modulus E(eff) with 8% and 21% respec-260

tively. Note that for the exponential best fit parameters Â and B̂ a trade-off
can be observed from Fig. 6(a) and Fig. 6(b) since e.g. for E(eff) ≈ 32 kPa

large values of Â are compensated by low values of B̂ and vice-versa. This
trade-off partly explains the slightly reduced performance of the exponen-
tial best fit compared to the cubic one within the low-strain region in order265

to predict E(eff). The mean and standard deviation between the measured

E(eff) and best fit parameter estimations (̂b and Â B̂) mounts to 3.7±2.8 kPa
(exponential) and 1.9± 1.8 kPa (cubic). The accuracies of the measurement
(3.5 kPa, see Section 2) or the model (5.2 kPa, see Section 1) of the low-
strain Young’s modulus E(eff) are of the same order of magnitude so that, in270

particular, the cubic best fit parameter b̂ provides an accurate estimation of
E(eff).

Thus, the parameter values of the cubic and exponential relationships
can be estimated in three different ways. Besides the best fit parameters sets275

(exponential (Â, B̂) or cubic (â, b̂)), best fit parameter approximations as a
function of E(eff) are obtained combining Eq. (17) and Eq. (18a) whereas a
priori modelled parameter values are obtained as a function of E(eff) from
Eq. (14) with for convenience εmt = 1 as outlined in section 3.3 (Fig. 5).

280

As the best fit parameter approximations and the a priori modelled pa-
rameters both depend solely on the low-strain Young’s modulus E(eff), the
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(a) (b)

Figure 7: Examples of measured stress-strain data (symbols) and Eeff (in kPa), resulting
cubic (C-·) and exponential (E-·) fits with the best fit approximation parameter sets (·-A)
and the modelled parameter sets (·-M) for three-layered silicone composites with: a) serial
(⊥) stacking and b) combined (‖⊥) stacking. The fit accuracy (R2, rmse) with R2 (in
%) and root mean square error rmse (in kPa) is indicated for each fit. In a) curves E-A
and C-A overlap measured data. In b) E-A and C-A as well as C-M and measured data
overlap.

fit accuracy might vary when either measured Eeff or modelled Êeff (as out-
lined in [19, 20]) effective Young’s modulus values for ML silicone composites

Table 3: Mean and standard deviation of the accuracy (R2 in %) of cubic and exponential
two-parameter relationships to stress-strain data using either best fit parameters (dark
dots in Fig. 6), best fit approximated parameters (Eq. (17) and Eq. (18a)), or a priori
modelled parameters at εmt = 1 (Eq. (14)) for data sets with max(εt) ≥ {εl, 0.40, 0.77}.

Best fit Approximations Modelled with εmt = 1

Cubic Exponential Cubic Exponential Cubic Exponential

max(εt) ≥ εl 99.9± 0.1 99.9± 0.1
98± 2a 98± 2a 92± 10a 87± 12a

95± 5b 94± 5b 91± 13b 87± 19b

max(εt) ≥ 0.40 99.8± 0.2 99.8± 0.1
98± 2a 98± 2a 90± 11a 86± 13a

95± 5b 94± 5b 91± 16b 89± 16b

max(εt) ≥ 0.77 99.8± 0.2 99.8± 0.1
97± 3a 98± 3a 88± 12a 85± 14a

95± 4b 95± 4b 89± 16b 87± 18b

a using measured low-strain Eeff .
b using modelled low-strain Êeff [19, 20].
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(a) (b)

Figure 8: Examples of measured stress-strain data (symbols) and low-strain linear slope
Eeff (in kPa) and resulting exponential best fits without (E) and with (EO) linear high

strain range with slope ÊNL and onset εNL
t for three-layered silicone composites with: a)

serial (⊥) stacking, Eeff = 21.8 kPa, ÊNL = 145.6 kPa and εNL
t = 0.98, b) combined (‖⊥)

stacking, Eeff = 7.4 kPa, ÊNL = 60.1 kPa and εNL
t = 0.92. The fit accuracy (R2, rmse)

with R2 (in %) and root mean square error rmse (in kPa) is indicated for each fit.

are used. Examples of cubic (C-·) and exponential (E-·) fits for three-layered285

specimens with the best fit parameter approximation sets (·-A) and the mod-
elled parameter sets (·-M) are plotted in Fig. 7. An overview of the exponen-
tial and cubic fit accuracies for the different parameter sets for all stress-strain
data curves is given in Table 3 where the mean and standard deviation of
R2 are reported. Overall, both the cubic and exponential fits exhibit similar290

tendencies. The overall mean fit performance is at least R2 ≥ 85% illus-
trating that all parameter sets can be used to obtain a continuous fit of the
measured stress-strain curves. For modelled Êeff , best fit parameter approx-
imations and modelled parameters result in mean R2 values of respectively
more than 94% and 85%. Consequently, these parameter estimations in com-295

bination with the model of the low-strain effective Young’s modulus outlined
in [19, 20] can be used to obtain an a priori, and hence measurement free,
characterisation of stress-strain curves up to εt ≤ 1.5 for ML silicone com-
posites.

300

xviii



4.2. Accounting for a linear high-strain elastic region

Fit accuracies reported in Table 3 for the continuous exponential and cu-
bic relationships, inspired on stress-strain models proposed for soft biological
tissues [23, 28, 29, 24, 5, 30], suggest that ML silicone composites behave, at
least partly, in a similar manner. For soft tissues, the continuous stress-strain305

behaviour is generally described as consisting of an exponential strain range,
which includes the linear low-strain elastic range, followed by a linear elastic
high-strain range. Eq. (12), for which the solution is plotted in Fig. 4, sug-
gests that the high-strain elastic Young’s modulus ENL can be expressed as
a linear function of the low-strain elastic Young’s modulus E(eff) with slope310

8.58. Since this relationship ENL = 8.58 E(eff) underlies the modelled param-
eters for which the mean fit accuracy amounts to R2 ≥ 85%, the high-strain
elastic region εt ≥ εNLt is explicitly accounted for by considering high-strain
onset εNLt and high-strain Young’s modulus ENL. In the range εt ≤ εNLt , the
stress is as before described using the continuous two-parameter exponential315

and cubic relationships defined in Eq. (5). Best fit parameter estimations
are again obtained by minimising the rmse given in Eq. (6). Overall, it is
found that the best fit accuracy is slightly improved, at the cost of two ad-
ditional parameters, from R2 ≥ 99.5% to R2 ≥ 99.6 % for the cubic and to
R2 ≥ 99.7% for the exponential relationship, respectively. An example of320

best fits with (EO) and without (E) high-strain linear elastic range is plotted
in Fig. 8.

When accounting explicitly for a linear high-strain stress behaviour, ex-
pressions in Eq. (17) and Eq. (18) become

Â ≈ 0.40 E(eff), (fit accuracy R2 = 87%), (19a)

B̂ ≈ 2.07, (mean with standard deviation± 0.67), (19b)

â ≈ 1.60 E(eff), (fit accuracy R2 = 74%) (19c)

and

b̂ ≈ 0.92 E(eff), (fit accuracy R2 = 98%), (20a)

Â B̂ ≈ 0.81 E(eff), (fit accuracy R2 = 98%). (20b)

Thus, cubic and exponential best fit parameters can again be approximated
as a constant or linear function of the low-strain elastic Young’s modulus325

E(eff). Comparing expressions of b̂ and Â B̂ in Eq. (18) with those in Eq. (20)
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shows that the best fit approximations, describing the linear low-strain be-
haviour (εt ≤ εl), remain similar since the slopes vary with less than 2.5%.

The change to best fit parameter approximations â, Â and B̂, determining
the non-linear stress-strain behaviour for εt ≤ εNLt , remains limited as well330

since the slopes in Eq. (19), which respectively differ with 11%, 18% and 10%
from those in Eq. (17).

Parameters ÊNL and εNLt determining the linear high-strain behaviour
are plotted in Fig. 9. From Fig. 9(b) it is seen that the ratio between the335

estimated high-strain and low-strain Young’s moduli ÊNL/E(eff) is mostly
smaller than 5 for εNLt < 0.77 and smaller than 7 for εNLt < 0.90, whereas
the ratio is greater than 7 for εNLt ≥ 0.90. This implies, as plotted for
εNLt ≥ {0.40, 0.77, 0.90} in Fig. 9(a), that the slopes characterising the lin-

ear fits (R2 = 87%, R2 = 88% and R2 = 91%) of ÊNL(E(eff)) increase with340

εNLt . For εNLt ≥ 0.9, the resulting slope of 8.55 (ÊNL = 8.55 E(eff)) is within
1% of the slope of 8.58 (left border of the shaded region in Fig. 9(a)) found as
the solution of Eq. (12) (see Fig. 4). This suggests that although augment-
ing the number of parameters increases the best fit accuracy, high-strain
linear behaviour is only retrieved for εNLt ≥ 0.9 in which case the high-strain345

Young’s modulus is about 8.55 times the low-strain Young’s modulus. From
Fig. 9(c) it is seen that the onset of the high-strain region is approximated
as a linear fit (R2 = 96%) of max(εt), namely εNLt ≈ 0.82 max(εt), with
max(εt) ≤ 1.36 for the assessed data sets.

350

An overview of the overall fit accuracies with different parameter sets
for the non-linear exponential and cubic relationships in the range εt < εNLt
and a high-strain linear range for εt ≥ εNLt is given in Table 4 where the
mean and standard deviation of R2 are reported. Comparing these values
with those in Table 3 shows that fit accuracies are similar are either sim-355

ilar or deteriorate. Consequently, accounting for a linear high-strain range
does not significantly improve the fit accuracy. Note that without explic-
itly accounting for a high-strain linear range ÊNL can still be estimated as
Êmax denoting the slope of the stress-strain curves near max(εt) since a linear
high-strain region implies a constant slope for εt ≥ εNLt . This is illustrated360

in Fig. 10 where the relative difference ∆ÊNL (in percentage) between Êmax
and ENL is plotted for max(εt) ≥ {0.4, 0.77, 0.9}. It is seen that the mean
(7.2%, 3.4% and 0.8%) and standard deviation (12.3%, 8.3% and 7.9%) of
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(a) ÊNL (b) εNL
t

(c) εNL
t

Figure 9: Linear high-strain elastic parameters (ÊNL, ε
NL
t ) for εNL

t ≥ {0.40, 0.77, 0.90}:
a) estimated high-strain Young’s modulus ÊNL as a function of low-strain Young’s modulus
E(eff) with shaded region [1, 8.58] E(eff), linear fits (R2 = 87%, R2 = 88% and R2 = 91%)
are indicated (lines), b) normalised high-strain lower limit εNL

t /max(εt) as a function

of the ratio between high-strain and low-strain Young’s moduli ÊNL/E(eff), mean values
(horizontal lines) are indicated (standard deviation of 10%, 7% and 4%), c) εNL

t as a
function of max(εt), linear fit (dashed line) (R2 = 96%) and identity function (full line).

∆ÊNL decreases for increasing max(εt). This supports the observation that
a linear high-strain range does only occur for εNLt ≥ 0.9 and thus requires365

max(εt) > 0.9.
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Table 4: Mean and standard deviation of the accuracy (R2 in %) of non-linear cubic and
exponential two-parameter and linear two-parameter high-strain relationships to stress-
strain data using either best fit parameters, best fit approximated parameters or a priori
modelled parameters at εmt = εNL

t and εNL
t = 0.85 max(εt) for data sets with max(εt) ≥

{εl, 0.40, 0.77, 0.90}.

Best fit Approximations Modelled with εmt = εNL
t

Cubic Exponential Cubic Exponential Cubic Exponential

max(εt) ≥ εl 99.9± 0.1 99.9± 0.1
98± 2a 98± 2a 28± 37a 27± 36a

89± 13b 87± 17b 31± 36b 32± 36b

max(εt) ≥ 0.40 99.9± 0.1 99.9± 0.1
98± 2a 98± 2a 32± 38a 31± 37a

92± 7b 91± 10b 39± 36b 37± 36b

max(εt) ≥ 0.77 99.9± 0.1 99.9± 0.1
98± 2a 98± 2a 52± 39a 54± 39a

94± 4b 94± 7b 64± 31b 62± 32b

max(εt) ≥ 0.90 99.9± 0.1 99.9± 0.1
98± 2a 98± 2a 71± 33a 69± 33a

94± 5b 94± 7b 61± 37b 60± 37b

a using measured Eeff , ENL and εNL
t .

b using modelled Êeff [19, 20], ENL and εNL
t .

Figure 10: Relative difference ∆ÊNL between the linear stress-strain slope Êmax esti-
mated near max(εt) and ENL near εNL

t for max(εt) ≥ {0.4, 0.77, 0.9}. The shaded re-
gion indicates the mean (0.8%, dotted line) plus and minus the standard deviation for
max(εt) ≥ 0.9.

5. Conclusion

In agreement with polynomial and exponential stress-strain relationships
for soft biological tissues, best fits (in terms of root mean square error) of370

two-parameter cubic and exponential relationships are shown to provide an
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accurate (R2 > 99.5%) and continuous description of measured low-strain
(up to ≈0.3) and subsequent non-linear stress-strain behaviour of ML sil-
icone composite specimens. These composites are characterised by their
layer stacking (serial, parallel, combined or arbitrary), measured effective375

low-strain Young’s modulus E(eff) up to 40 kPa, and some contain a stiff
(E = 298 kPa) inclusion as observed in certain structural vocal fold patholo-
gies.

The best fit parameters, minimising the root mean square error between
the fitted and measured data (mean fit accuracy R2 ≥ 99.8%), can be ap-380

proximated as a constant or linear function of E(eff) with a very limited
accuracy loss regardless of the assessed maximum strain as the mean fit ac-
curacy yields R2 ≥ 97% and R2 ≥ 94% when respectively the measured or
modelled E(eff) is considered. Besides, the best fit parameters and their ap-
proximations, a priori modelled parameter sets are derived as well. These385

modelled parameters depend on E(eff) in the same way as the approximated
best fit parameters. Contrary to the best fit parameter sets and subsequent
approximated best fit parameters, no data are used to derive the modelled
parameter sets so that the found accuracy (mean fit accuracy R2 ≥ 85% with
measured or modelled E(eff)) supports the model approach which uses the as-390

sumption that the cubic and exponential relationship match at a strain-value
corresponding to at least 64% of the maximum strain. This ensures that both
relationships as well as their strain energy density functions agree to within
12.6% for the full strain range. Thus for a matching strain value of 1.0, the
cubic and exponential relationships, and hence the modelled two-parameter395

sets, can be applied for strains up to 1.55, which is about 4.5 times the low-
strain limit. In addition, a modelled expression for the high-strain elastic
Young’s modulus ENL, characterising a linear high-strain stress behaviour, is
obtained as 8.58 E(eff). Consequently, both approximated best fit parame-
ters and a priori modelled parameters can be used to characterise the linear400

and non-linear stress-strain relationship once E(eff) is known, where E(eff) is
either measured or modelled. Therefore, combining the previously proposed
low-strain Young’s modulus model [19, 20] with the cubic or exponential
stress-strain characterisation and approximated or modelled two-parameter
sets as a function of E(eff) results in an a priori stress-strain characterisation.405

This is of particular benefit for the design of ML silicone composites and thus
in term for the design of vocal fold replicas which so far relied on a tedious and
a posteriori experimental characterisation. It is of interest to further inves-
tigate stress-strain curves with strains up to 1.55 or more in order to further
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confirm the linear high-strain behaviour. In addition, the proposed modelled410

non-linear two-parameter relationships, with a priori modelled parameter,
can be compared with other hyperelastic multi-parameter constitutive laws
requiring a more extensive data based fitting.
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