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Modelling and validation of the non-linear elastic stress-strain behaviour of multi-layer silicone composites

Multi-layer silicone composites are commonly used to mold deformable silicone vocal folds replicas. Nevertheless, so far the stress-strain characterisation of such composite specimens is limited to their effective Young's modulus (up to 40 kPa) characterising the elastic low-strain range, i.e. up to about 0.3. Therefore, in this work, the characterisation is extended to account for the non-linear strain range. Stress-strain curves on 6 single-layer and 34 multi-layer silicone specimens, with different layer stacking (serial, parallel, combined or arbitrary), are measured at room temperature using uni-axial tensile tests for strains up to 1.36, which amounts to about 4.5 times the extent of the linear low-strain range. Cubic polynomial and exponential two-parameter relationships are shown to provide accurate continuous fits (coefficient of determination R 2 ≥ 99%) of the measured stress-strain data.

Introduction

Human voice production is due to the auto-oscillation of the vocal folds following the fluid-structure interaction (FSI) between the airflow coming from the lungs and the surrounding vocal folds tissue. Since 2008 [START_REF] Riede | Mammalian laryngseal air sacs add variability to the vocal tract impedance: Physical and computational modeling[END_REF][START_REF] Drechsel | Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model[END_REF], physical studies of this fluid-structure interaction (FSI) often rely on deformable molded multi-layer (ML) composite silicone vocal fold (VF) replicas. Their usage is mainly motivated by the possibility to mimick -up to some degreethe (micro-)anatomical ML representation of the human VF structure, which consists of overlapping muscle (Mu), vocal ligament (Li), superficial (Su) and cover epithelium (Ep) layers [START_REF] Rosen | Operative techniques in laryngology[END_REF]. Elastomer silicone mixtures (either Thinner-Ecoflex (TE) or Thinner-Dragonskin (TD)) at different mass mixing ratios M = r T : r E(D) (with constant r E(D) = 2) allow to vary the low-strain elastic Young's modulus E of individual layers in order to match the range reported for human VF layers, i.e. 8-29 kPa for Mu, 10-45 kPa for Li, 2-9 kPa for Su and 40-60 kPa for Ep [START_REF] Hirano | Vocal fold physiology: contempory research and clinical issues[END_REF][START_REF] Alipour | Elastic models of vocal fold tissues[END_REF][START_REF] Min | Stress-strain response of the human vocal ligament[END_REF][START_REF] Chan | Relative contributions of collagen and elastin to elasticity of the vocal fold under tension[END_REF][START_REF] Chhetri | Measurement of Young's modulus of vocal folds by indentation[END_REF][START_REF] Smith | Effect of inferior surface angle on the selfoscillation of a computational vocal fold model[END_REF][START_REF] Miri | Mechanical characterization of vocal fold tissue: a review study[END_REF][START_REF] Zhang | Droplet squeezing through a narrow constriction: minimum impulse and critical velocity[END_REF]. Commonly used silicone mixtures (I n , n = 1 . . . 6) are summarised in Table 1. Mixtures I 1 up to I 5 (with 2 ≤ E ≤ 65 kPa) are used to mold the two-layer M5 replica (Mu and Su with I 3 and I 2 [START_REF] Pickup | Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models[END_REF]), the three-layer MRI replica (Mu, Su and Ep with I 2 , I 1 and I 5 [START_REF] Pickup | Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF][START_REF] Bouvet | Influence of water spraying on an oscillating channel[END_REF]) and the four-layer EPI replica (Mu, Li, Su and Ep with I 4 , I 2 , I 1 and I 5 [START_REF] Murray | Vibratory responses of synthetic, self-oscillating vocal fold models[END_REF][START_REF] Bouvet | Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas[END_REF][START_REF] Bouvet | Influence of water spraying on an oscillating channel[END_REF]). An additional mixture I 6 with greater low-strain Young's modulus so that 4 ≤ E I 6 /E I 1...5 ≤ 150, is considered to represent a local stiffening within the VF as reported for some structural VF abnormalities or disorders [START_REF] Hansen | Current understanding and review of the literature: Vocal fold scarring[END_REF][START_REF] Friedrich | Vocal fold scars: current concepts and future directions. Consensus report of the Phonosurgery Committee of the European Laryngological Society[END_REF][START_REF] Mattei | Cell therapy and scarred vocal folds[END_REF]. Low-strain Young's moduli E in Table 1 characterising the linear stress-strain curves σ t (ε t ) at room temperature (21 ± 2 • C, mean and standard deviation) are obtained as the slope of a linear fit (coefficient of determination R 2 ≥ 98%) to the low-strain range with upper low-strain limit ε l of measured stress-strain curves σ t (ε t ) gathered from uni-axial tensile tests on molded specimens [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF].

Despite the anatomical structural relevance of the low-strain elastic Young's moduli E of the molded silicone layers, so far ML silicone VF replicas (e.g. M5, MRI, EPI) are omitted in systematic physical studies on the influence of the VF structure on the FSI due the lack of an a priori mechanical characterisation. Recently, in [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF], the low-strain Young's modulus of ML silicone composites for which perfectly bounded adjacent layers are stacked either parallel ( ), serial (⊥), a combination of both ( ⊥) or arbitrary (Arb) with respect to the force direction as illustrated in Fig. 1(a), is modeled considering the low-strain effective Young's modulus E ef f of an equivalent homogenised composite. This has been obtained by exploiting firstly Voigt's hypothesis [START_REF] Voigt | Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper[END_REF] of homogeneous strain for parallel stacked layers and then Reuss's hypothesis [START_REF] Reuss | Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[END_REF] of homogeneous stress for the remaining serial stacked layers. The model approach was extensively validated against measured E ef f values using uni-axial tensile testing (at room temperature) on molded ML specimens with 5 ≤ E ef f ≤ 40 kPa. Validation was first done in [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF], using I 1...5 , on six two-layer and seven three-layer silicone molded specimens and then in [START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF], using fourteen specimens obtained as a three-layer composite (I 1 , I 2 and I 5 ) embedding a stiff inclusion (I 6 ) with variable size, position and stacking. That resulted in more complex specimens with at least four layers which are stacked either parallel ( ), serial (⊥), combined ( ⊥) or arbitrary (Arb). For each molded specimen in [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF], the low-strain effective Young's modulus E ef f of the equivalent homogenised composite was estimated (R 2 ≥ 96%) on the measured stress-strain curves σ t (ε t ) as the slope characterising the linear low-strain region ε t ≤ ε l with ε l = 0.30 ± 0.10. It follows that the low-strain effective Young's modulus E ef f , in the strain range up to ε l ≈ 0.3, of an equivalent homogenised ML silicone composite can be accurately modelled (maximum difference of 5.2 kPa [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF]) from its layers E and stacking geometry.

The degree of deformation of a specimen of length l 0 and elongation ∆l along the force direction, ∆l

l 0 = e εt -1 (1) 
associated with the low-strain range up to ε l ≈ 0.3 is limited to deformations up to about 35% as illustrated in Fig. 1(b). As it is well established [START_REF] Fung | Elasticity of soft tissues in simple elongation[END_REF][START_REF] Fung | Biomechanics[END_REF] that biological soft tissues, and thus human VF tissues [START_REF] Alipour | Elastic models of vocal fold tissues[END_REF][START_REF] Min | Stress-strain response of the human vocal ligament[END_REF][START_REF] Zhang | A constitutive model of the human vocal fold cover for fundamental frequency regulation[END_REF][START_REF] Alipour | Measurement of vocal folds elastic properties for continuous modeling[END_REF][START_REF] Miri | Mechanical characterization of vocal fold tissue: a review study[END_REF], are characterised by small stresses in response to relatively large strains ε t , greater than one and thus deformations larger than 100% as shown in Fig. 1(b), it is needed to assess how the stress-strain relationship of silicone ML composites behaves beyond the linear range and how the non-linear behaviour compares to the one typically observed in biological soft tissues.

Therefore, in this work, the stress-strain relationship of silicone ML composite specimens is investigated beyond the low-strain elastic range. In particular, 63 measured stress-strain curves on 40 molded specimens from uniaxial stretching at room temperature described in [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF] are further analysed in order to characterise and model the stress-strain curves for ε t > ε l .

It is aimed to propose a validated phenomenologically-based continuous a priori analytical model of the elastic stress-strain curves within and beyond the elastic low-strain range resulting in analytical models for which model parameters are expressed as a function of the low-strain Young's modulus. Thus, this approach aims to predict the stress-strain behaviour without data fitting to estimate the model parameters. Therefore, the approach is based on continuous hyper-elastic stress-strain models characterised firstly by few (i.e. two) model parameters and secondly by a reported accuracy to fit soft biological tissues stress-strain behaviour [START_REF] Fung | Elasticity of soft tissues in simple elongation[END_REF][START_REF] Demiray | A note on the elasticity of soft biological tissues[END_REF][START_REF] Tanaka | A continuous method to compute model parameters for soft biological materials[END_REF][START_REF] Fung | Biomechanics[END_REF][START_REF] Alipour | Elastic models of vocal fold tissues[END_REF][START_REF] Burks | Characterization of the continuous elastic parameters of porcine vocal folds[END_REF]. It was verified that the best fit accuracy found for the used two-parameter models is similar as the accuracy associated with other hyperelastic models. The total strain range of interest is limited to ε t ≤ 1.5 due to the proposed model approach as well as due to the data strain-range used for validation. This corresponds to a degree of deformation ∆l/l 0 up to 350% (see Fig. 1(b)), or about 10 times the maximum elongation of 35% associated with the overall low-strain upper limit ε l = 0.3.

Experimental methods and measured stress-strain data are briefly outlined in section 2. In section 3, continuous two-parameter stress-strain relationships are introduced and analytical parameter expressions are derived.

Fitted and analytical stress-strain characterisation on measured data are compared in section 4. The conclusion is formulated in section 5. v 2. Experimental stress-strain data at room temperature ML silicone composites are molded using 3D-printed bone-shaped specimen molds (Stratasys ABS-P430, accuracy 0.33 mm). Molded silicone composites have a rectangular test section of length 80 mm, width 15 mm, and height 10 mm as indicated in Fig. 1(a). In total, 40 silicone specimens were molded following the procedure detailed in [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Bouvet | Experimental and theoretical contribution to the analysis and the modelling of the vocal folds vibration[END_REF]. Six single-layer specimens are molded with one of the silicone mixtures shown in table 1, which indicates measured low-strain Young's moduli E and low-strain upper limits ε l . These 6 silicone mixtures are combined in order to mold 34 ML specimens. Molded layer dimensions are measured using a laser transceiver (Panasonic HL-G112-A-C5, wavelength 655 nm, accuracy 8 µm). Table 2 gives an overview of these ML specimens in terms of their stacking, number of layers n, the uni-axial tension test method (mechanical press MP or/and precision loading PL), and the measured low-strain effective Young's modulus E ef f characterising the low-strain range up to ε l ≈ 0.3. Measured force-elongation data F(∆l) were collected from uni-axial tensile testing at room temperature 21 ± 2 • C. Two methods (MP and PL), previously cross-validated (difference less than 3.5 kPa [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF]), were used. Briefly, an electro-mechanical press (MP, 3369 [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF].

The deformation rate was set to 1 mm/s and 2 mm/s for the 100 mm and 150 mm elongation respectively. Force and elongation time series (sampling rate of 10 Hz) were measured during loading and unloading of the specimens.

No plastic deformation was observed following unloading. Additional crosssectional area measurements are made for each specimen without loading and for elongations set to 25, 50, 100 and 150 mm. For the developed PL setup [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF], the force is the controlled parameter and is exerted by adding precision loads (PL) of mass m (Vastar 500G X 0.01G, accuracy 0.01 g) at a single rate for each specimen, while measuring the elongation at every force increment with an accuracy of 0.05 mm as described in [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF]. Depending on the specimen, total added weight ranges from 46 to 426 g, corresponding to a total elongation from 23 up to 255 mm. The cross-sectional area is measured whenever the elongation increment due to added weights yields about 15 ± 5 mm. For both methods, the cross-sectional area A is measured with an accuracy of 0.02 mm. A quadratic fit (coefficient of determination

R 2 ≥ 99%
) is used to have a continuous approximation of the average areaelongation relationship A q (∆l) for each specimen. The incompressibility of the specimens was verified by estimating the area-elongation relationship as A = A 0 l 0 /l (R 2 ≥ 84%), with A 0 denoting the initial cross-sectional area of the specimen and l = l 0 + ∆l the length of the specimen. The longitudinal stress σ t and strain ε t are then obtained as

σ t = F A q , (2) 
ε t = ln l 0 + ∆l l 0 , (3) 
using measured elongation ∆l, force F, and area A q and with length l 0 and deformation ∆l as defined in Eq. ( 1). Here, the true definitions of stress and strain, which are based on the instantaneous values of length and crosssection area, are adopted. The measured maximum strain max(ε t ) depends on the specimen and is limited to max(ε t ) ≤ 1.36. An overview of max(ε t ) as a function of E (ef f ) is given in Fig. 2. Respectively, 52 and 25 of the measured vii stress-strain data curves satisfy max(ε t ) ≥ 0.4 and max(ε t ) ≥ 0.77, which corresponds to an extension of the strain range of about 33% and 156% be-
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yond the upper limit of the low-strain region ε l ≈ 0.3.

3. Continuous elastic stress-strain relationships and a priori modelled parameter expressions

Continuous two-parameter relationships 155

The typical stress-strain data curve plotted in Fig. 3(a) shows that the elastic linear low-strain range ε t ≤ ε l , expressed with Hooke's law using the low-strain effective Young's modulus E (ef f ) as

σ t (ε t ) = E (ef f ) ε t , (4) 
transitions to a more rapid increase of stress σ t with strain ε t indicating elastic non-linear stress-strain behaviour for ε > ε l . In accordance with models proposed for soft biological tissues accounting for the rapid nonlinear increase of stress with strain for ε t > ε l [START_REF] Fung | Elasticity of soft tissues in simple elongation[END_REF][START_REF] Demiray | A note on the elasticity of soft biological tissues[END_REF][START_REF] Tanaka | A continuous method to compute model parameters for soft biological materials[END_REF][START_REF] Fung | Biomechanics[END_REF][START_REF] Alipour | Elastic models of vocal fold tissues[END_REF][START_REF] Burks | Characterization of the continuous elastic parameters of porcine vocal folds[END_REF], the exponential and third order polynomial (cubic) non-linear continuous twoparameter relationships with C 1 continuity are assessed in order to represent stress-strain curves σ t (ε t ) of the ML composites: with (A, B) and (a, b) their respective two parameter sets. Fig. 3 illustrates the linear fit of Eq. ( 4) (in Fig. 3(a)) to the low-strain region ε t ≤ ε l and the continuous exponential and cubic fits of Eq. ( 5) (in Fig. 3(b)) to a typical measured stress-strain data set. For each measured stress-strain curve, best fit parameter sets ( A, B) and ( a, b) are estimated by minimising the root mean square error (rmse),

exponential : σ t (ε t ) = A (e B εt -1), (5a) cubic : σ t (ε t ) = a ε 3 t + b ε t , (5b) viii 
rmse = 1 N N i=1 ( σ t ) i -(σ t ) i 2 (6) 
between measured σ t and fitted σ t stresses with N the number of strain data points within the analysis range and i the index of individual data points. The goodness of fit, expressed by the coefficient of determination R 2 , yields R 2 > 99.5% for each continuous model to the measured stress-strain curves, obtained using either MP or PL uni-axial tensile testing. Therefore, both continuous two-parameter relationships can be used to provide an accurate estimation of the measured stress-strain curves. The linear low-strain (Section 3.2) and non-linear (Section 3.3) behaviour of these relationships in terms of their parameters is considered next. ix
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The first order derivatives of Eq. (5a) and Eq. (5b) with respect to ε t become exponential :

dσ t dε t = A B e B εt , (7a) 
cubic :

dσ t dε t = 3 a ε 2 t + b. (7b) 
The linear low-strain behaviour for ε t ≤ ε l of the exponential Eq. (5a) and cubic Eq. (5b) relationship is then obtained from the first order Taylor expansion near ε t ≈ 0 as:

exponential : σ t (ε t ≈ 0) = A B ε t , (8a) cubic : σ t (ε t ≈ 0) = b ε t , ( 8b 
)
where it is used that both the exponential and cubic relationships have no residual stress at zero strain so that σ t (ε t ≈ 0) ≈ 0 kPa. Consequently, the elastic low-strain (effective) Young's modulus E (ef f ) , describing the linear stress-strain behaviour in the low-strain range ε t ≤ ε l (Eq. ( 4)) can be expressed in terms of the parameters of the continuous relationships as:

exponential :

E (ef f ) = A B, (9a) cubic : E (ef f ) = b.
(9b)

Modelled non-linear behaviour of continuous stress-strain relationships

Using A = E (ef f ) /B (Eq. (9a)) and b = E (ef f ) (Eq. (9b)) and assuming that low-strain linear Young's modulus E (ef f ) is a known quantity, the twoparameter relationships of Eq. (5a) and Eq. (5b) can be rewritten as oneparameter relationships exponential :

σ t (ε t ) = E (ef f ) B (e B εt -1), ( 10a 
) cubic : σ t (ε t ) = a ε 3 t + E (ef f ) ε t , (10b) 
with the unknown parameters B and a (already in Eq. ( 5)) determining the non-linear behaviour in the range ε t > ε l .
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x From the first order expansion of the relationships in Eq. ( 5) follows that the local linear slopes E N L associated with their linear approximations near any ε t are expressed as:

exponential : E N L = E (ef f ) e B εt , (11a) cubic : E N L = 3 a ε 2 t + E (ef f ) . (11b) 
At low-strain (for ε t ≈ 0), these expressions reduce to

E N L (ε t ≈ 0) ≈ E (ef f )
in accordance with the linear low-strain behaviour described in Section 3.2.

In Section 3.1 is shown that both the exponential (Eq. (10a)) and cubic (Eq. (10b)) relationship can provide accurate estimations of the measured stress-strain data sets as the fit accuracy holds R 2 > 99.5%. Therefore, estimated stresses obtained with both relationships are assumed to match. Equating Eq. (10a) and Eq. (10b) for any matching strain value ε m t and making use of Eq. (11a) and Eq. (11b) gives the following relationship between E N L and the low-strain Young's modulus

E (ef f ) 190 E N L ln E N L E (ef f ) + 2 E (ef f ) ln E N L E (ef f ) -3 E N L + 3 E (ef f ) = 0. ( 12 
)
In Fig. 4 is shown that the solution E N L (E (ef f ) ) is accurately approximated as E N L = 8.58 E (ef f ) (R 2 = 99.9%) for E (ef f ) ∈ 0.1, 350 , which includes the range of interest indicated in Table 1 and in Table 2. xi

The two-parameter sets (A, B) and (a, b) of the non-linear exponential and cubic relationships at any matching strain value ε m t are then a priori given in terms of E (ef f ) and E N L as,

exponential : B = 1 ε m t ln E N L E (ef f ) , A = ε m t E (ef f ) ln E N L E (ef f ) , ( 13a 
) cubic : b = E (ef f ) , a = E N L -E (ef f ) 3 (ε m t ) 2 . ( 13b 
)
Using the ratio E N L /E (ef f ) ≈ 8.58, the two-parameter sets of Eq. ( 5) become:

exponential : B ≈ 2.15 1 ε m t , A ≈ 0.47 E (ef f ) ε m t , ( 14a 
) cubic : b ≈ E (ef f ) , a ≈ 2.53 E (ef f ) 1 (ε m t ) 2 . (14b) 
These a priori modelled (positive) parameter expressions respect the lowstrain behaviour in Eq. (9a) and Eq. (9b) as

A B ≈ E (ef f ) and b ≈ E (ef f ) .
Beyond the low-strain region, the cubic parameter a and the exponential parameter A are proportional to E (ef f ) . In addition, the cubic parameter a and exponential parameters (A, B) not only depend on E (ef f ) , but also on the considered strain ε m t at which the cubic and exponential model are imposed to match. Note that from a third order Taylor series expansion of the exponential function given in Eq. (10a) follows that, under the condition that the quadratic term of the expansion is negligible compared to the linear or cubic expansion term, nearly matching of the exponential and cubic functions in Eq. ( 5) leads to the condition a = 1 6 B 2 E (ef f ) , which is the case considering expressions a and B in Eq. ( 14). For ε m t = 1, this gives B ≈ 2.15, A/E (ef f ) ≈ 0.5 and a/E (ef f ) ≈ 2.5. For ε m t = 1, the model parameters B, A and a will decrease or increase with respect to their value at

ε m t = 1, depending on ε m t < 1 or ε m t > 1, since B ∝ ε -1 t , A ∝ ε t and a ∝ ε -2 t .
Consequently, the influence of the value of matching strain ε m t needs to be considered.

The relative difference (in percentage) between the estimated true stresses using the exponential (σ e t ) and cubic (σ c t ) relationships with the modelled parameter values (Eq. ( 14)) as a function of the normalised strain ε t /ε m t for xii any ε m t is plotted in Fig. 5(a). The difference is zero at ε t /ε m t ∈ {0, 1} as for these strains the stresses match. For 0 ≤ ε t /ε m t ≤ 1, the difference is less than the maximum of 12.6% associated with ε t /ε m t = 0.28. For ε t /ε m t > 1, the difference increases since σ e t (exponential) increases more rapidly than σ c t (cubic). Overall, the stress-difference remains less than 12.6% when fulfilling the condition ε t /ε m t ≤ 1.55 and increases thereafter. Thus ε m t should be at least 65% of the maximum assessed strain max(ε t ) to ensure this accuracy between both the exponential and cubic curves obtained with modelled parameters from Eq. ( 14). For 0.77 ≤ ε m t ≤ 1.36, which is reasonable considering the variation of the maximum strain (max(ε t ) ≤ 1.36) in the measured stress-strain curves (see Fig. 2), we get using Eq. ( 14) the model parameter ranges 1.58 ≤ B ≤ 2.79, 0.36 ≤ A/E (ef f ) ≤ 0.64, 1.36 ≤ a/E (ef f ) ≤ 4.27 and b = E (ef f ) . For convenience, concretely ε m t = 1 is considered so that Eq. ( 14) provides a priori modelled expressions of the two-parameter sets as a function of E (ef f ) only.

Introducing the elongation parameter λ = l/l 0 so that λ = e εt and λ ≥ 1, the strain energy density function expressing the strain energy per unit volume of the deformed material is obtained as the work done by the load

W(λ) = λ 1 σ t (λ) λ 2 dλ. (15) 
Inserting the exponential σ e t and the cubic σ c t stress relationship with the modelled parameters expressions of Eq. ( 14), W normalised by the linear xiii low-strain modulus E (ef f ) becomes, exponential :

W e (λ)

E ef f ≈ 0.47 λ 1.15 1.15 + 1 λ -1.87 , (16a) 
cubic : 

W c (λ) E ef f ≈ - 1 λ 2.
W e and W c are plotted in Fig. 5(b) as a function of ε t /ε m t . As observed, the curves are similar within the range 0 ≤ ε t /ε m t ≤ 1.55 because the normalised difference (W e -W c )/W e is limited to within 12.6% with a single maximum at ε t /ε m t = 0.39.

Stress-strain characterisation

Parameter values: best fit, best fit approximation and a priori modelled

Best fit parameter values obtained by minimising the rmse (Eq. ( 6)) between the continuous exponential ( a and b) or cubic ( A and B) fits for σ t (ε t ) and the measured stress-strain curves σ t (ε t ) for the complete strain range up to max(ε t ) are plotted in Fig. 6 as a function of the low-strain Young's modulus E (ef f ) . As detailed in section 3.3, the best fit accuracy yields R 2 > 99.5% for all specimens so that both the exponential and cubic two-parameter relationships provide accurate estimates of the measured stress-strain data curves.

As the rmse-minimisation is a constraint optimisation, resulting best fit parameter estimations depend on the extent of the strain range ε t ≤ max(ε t ) and thus on max(ε t ). This is shown in Fig. 6 for best fit parameter estimations on data sets with max(ε t ) ≥ 0.40 (light gray dots) and max(ε t ) ≥ 0.77 (dark gray dots). Best fit parameter estimations A, B and a for data sets with max(ε t ) ≥ 0.77 can be approximated (dashed black lines) as : In accordance with a priori modelled parameter expressions, (A, B) in Eq. (14a) and a in Eq. (14b), approximations of best fit parameters A and a depend linearly on the low-strain Young's modulus E (ef f ) whereas B is approximately constant. For comparison, modelled parameter ranges for 0.77 ≤

A ≈ 0.33 E (ef f ) , (fit accuracy R 2 = 84%), (17a) 
ε m t ≤ 1.36 (1.58 ≤ B ≤ 2.79, 0.36 ≤ A/E (ef f ) ≤ 0.64, 1.36 ≤ a/E (ef f ) ≤ 4.27)
are indicated (shaded regions). Thus, best fit parameters and their approxixv mations are of the order of magnitude of the modelled parameters.

Following the modelled expressions in Eq. ( 9), the linear low-strain stress behaviour is determined by the cubic parameter b (Eq. ( 9a)) or the exponential parameter product AB (Eq. ( 9b)). Therefore, the best fit parameter b (light gray dots), the product A B (dark gray dots) as well as the low-strain Young's modulus E (ef f ) (full line, identity function) are plotted as a function of E (ef f ) for all data sets in Fig. 6(d). It is seen that b and A B can be approximated as

b ≈ 0.92 E (ef f ) , (fit accuracy R 2 = 95%), ( 18a 
) A B ≈ 0.79 E (ef f ) , (fit accuracy R 2 = 94%). ( 18b 
)
As the slopes 0.92 and 0.79 are smaller than one, b and A B underestimate the measured low-strain Young's modulus E (ef f ) with 8% and 21% respectively. Note that for the exponential best fit parameters A and B a trade-off can be observed from Fig. 6(a) and Fig. 6(b) since e.g. for E (ef f ) ≈ 32 kPa large values of A are compensated by low values of B and vice-versa. This trade-off partly explains the slightly reduced performance of the exponential best fit compared to the cubic one within the low-strain region in order to predict E (ef f ) . The mean and standard deviation between the measured E (ef f ) and best fit parameter estimations ( b and A B) mounts to 3.7±2.8 kPa (exponential) and 1.9 ± 1.8 kPa (cubic). The accuracies of the measurement (3.5 kPa, see Section 2) or the model (5.2 kPa, see Section 1) of the lowstrain Young's modulus E (ef f ) are of the same order of magnitude so that, in particular, the cubic best fit parameter b provides an accurate estimation of

E (ef f ) .
Thus, the parameter values of the cubic and exponential relationships can be estimated in three different ways. Besides the best fit parameters sets (exponential ( A, B) or cubic ( a, b)), best fit parameter approximations as a function of E (ef f ) are obtained combining Eq. ( 17) and Eq. (18a) whereas a priori modelled parameter values are obtained as a function of E (ef f ) from Eq. ( 14) with for convenience ε m t = 1 as outlined in section 3.3 (Fig. 5).

As the best fit parameter approximations and the a priori modelled parameters both depend solely on the low-strain Young's modulus E (ef f ) , the fit accuracy might vary when either measured E ef f or modelled E ef f (as outlined in [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF]) effective Young's modulus values for ML silicone composites Table 3: Mean and standard deviation of the accuracy (R 2 in %) of cubic and exponential two-parameter relationships to stress-strain data using either best fit parameters (dark dots in Fig. 6), best fit approximated parameters (Eq. ( 17) and Eq. (18a)), or a priori modelled parameters at ε m t = 1 (Eq. ( 14)) for data sets with max(ε t ) ≥ {ε l , 0. are used. Examples of cubic (C-•) and exponential (E-•) fits for three-layered specimens with the best fit parameter approximation sets (•-A) and the modelled parameter sets (•-M) are plotted in Fig. 7. An overview of the exponential and cubic fit accuracies for the different parameter sets for all stress-strain data curves is given in Table 3 where the mean and standard deviation of R 2 are reported. Overall, both the cubic and exponential fits exhibit similar tendencies. The overall mean fit performance is at least R 2 ≥ 85% illustrating that all parameter sets can be used to obtain a continuous fit of the measured stress-strain curves. For modelled E ef f , best fit parameter approximations and modelled parameters result in mean R 2 values of respectively more than 94% and 85%. Consequently, these parameter estimations in combination with the model of the low-strain effective Young's modulus outlined in [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF] can be used to obtain an a priori, and hence measurement free, characterisation of stress-strain curves up to ε t ≤ 1.5 for ML silicone composites. xviii

Accounting for a linear high-strain elastic region

Fit accuracies reported in Table 3 for the continuous exponential and cubic relationships, inspired on stress-strain models proposed for soft biological tissues [START_REF] Fung | Elasticity of soft tissues in simple elongation[END_REF][START_REF] Demiray | A note on the elasticity of soft biological tissues[END_REF][START_REF] Tanaka | A continuous method to compute model parameters for soft biological materials[END_REF][START_REF] Fung | Biomechanics[END_REF][START_REF] Alipour | Elastic models of vocal fold tissues[END_REF][START_REF] Burks | Characterization of the continuous elastic parameters of porcine vocal folds[END_REF], suggest that ML silicone composites behave, at least partly, in a similar manner. For soft tissues, the continuous stress-strain behaviour is generally described as consisting of an exponential strain range, which includes the linear low-strain elastic range, followed by a linear elastic high-strain range. Eq. ( 12), for which the solution is plotted in Fig. 4, suggests that the high-strain elastic Young's modulus E N L can be expressed as a linear function of the low-strain elastic Young's modulus E (ef f ) with slope 8.58. Since this relationship E N L = 8.58 E (ef f ) underlies the modelled parameters for which the mean fit accuracy amounts to R 2 ≥ 85%, the high-strain elastic region ε t ≥ ε N L t is explicitly accounted for by considering high-strain onset ε N L t and high-strain Young's modulus E N L . In the range ε t ≤ ε N L t , the stress is as before described using the continuous two-parameter exponential and cubic relationships defined in Eq. ( 5). Best fit parameter estimations are again obtained by minimising the rmse given in Eq. ( 6). Overall, it is found that the best fit accuracy is slightly improved, at the cost of two additional parameters, from R 2 ≥ 99.5% to R 2 ≥ 99.6 % for the cubic and to R 2 ≥ 99.7% for the exponential relationship, respectively. An example of best fits with (EO) and without (E) high-strain linear elastic range is plotted in Fig. 8.

When accounting explicitly for a linear high-strain stress behaviour, expressions in Eq. ( 17) and Eq. ( 18) become

A ≈ 0.40 E (ef f ) , (fit accuracy R 2 = 87%), (19a) 
B ≈ 2.07, (mean with standard deviation ± 0.67), (19b)

a ≈ 1.60 E (ef f ) , (fit accuracy R 2 = 74%) (19c) and b ≈ 0.92 E (ef f ) , (fit accuracy R 2 = 98%), ( 20a 
) A B ≈ 0.81 E (ef f ) , (fit accuracy R 2 = 98%). (20b) 
Thus, cubic and exponential best fit parameters can again be approximated as a constant or linear function of the low-strain elastic Young's modulus

E (ef f ) .
Comparing expressions of b and A B in Eq. ( 18) with those in Eq. ( 20)
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shows that the best fit approximations, describing the linear low-strain behaviour (ε t ≤ ε l ), remain similar since the slopes vary with less than 2.5%. The change to best fit parameter approximations a, A and B, determining the non-linear stress-strain behaviour for ε t ≤ ε N L t , remains limited as well since the slopes in Eq. ( 19), which respectively differ with 11%, 18% and 10% from those in Eq. [START_REF] Friedrich | Vocal fold scars: current concepts and future directions. Consensus report of the Phonosurgery Committee of the European Laryngological Society[END_REF].

Parameters E N L and ε N L t determining the linear high-strain behaviour are plotted in Fig. 9. From Fig. 9(b) it is seen that the ratio between the estimated high-strain and low-strain Young's moduli E N L /E (ef f ) is mostly smaller than 5 for ε N L t < 0.77 and smaller than 7 for ε N L t < 0.90, whereas the ratio is greater than 7 for ε N L t ≥ 0.90. This implies, as plotted for ε N L t ≥ {0.40, 0.77, 0.90} in Fig. 9(a), that the slopes characterising the linear fits (R 2 = 87%, R 2 = 88% and R 2 = 91%) of E N L (E (ef f ) ) increase with ε N L t . For ε N L t ≥ 0.9, the resulting slope of 8.55 ( E N L = 8.55 E (ef f ) ) is within 1% of the slope of 8.58 (left border of the shaded region in Fig. 9(a)) found as the solution of Eq. ( 12) (see Fig. 4). This suggests that although augmenting the number of parameters increases the best fit accuracy, high-strain linear behaviour is only retrieved for ε N L t ≥ 0.9 in which case the high-strain Young's modulus is about 8.55 times the low-strain Young's modulus. From Fig. 9(c) it is seen that the onset of the high-strain region is approximated as a linear fit (R 2 = 96%) of max(ε t ), namely ε N L t ≈ 0.82 max(ε t ), with max(ε t ) ≤ 1.36 for the assessed data sets.

An overview of the overall fit accuracies with different parameter sets for the non-linear exponential and cubic relationships in the range ε t < ε N L t and a high-strain linear range for ε t ≥ ε N L t is given in Table 4 where the mean and standard deviation of R 2 are reported. Comparing these values with those in Table 3 shows that fit accuracies are similar are either similar or deteriorate. Consequently, accounting for a linear high-strain range does not significantly improve the fit accuracy. Note that without explicitly accounting for a high-strain linear range E N L can still be estimated as E max denoting the slope of the stress-strain curves near max(ε t ) since a linear high-strain region implies a constant slope for ε t ≥ ε N L t . This is illustrated in Fig. 10 where the relative difference ∆ E N L (in percentage) between E max and E N L is plotted for max(ε t ) ≥ {0. ∆ E N L decreases for increasing max(ε t ). This supports the observation that a linear high-strain range does only occur for ε N L t ≥ 0.9 and thus requires max(ε t ) > 0.9. xxi [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF], E N L and ε N L t .

Figure 10: Relative difference ∆ E N L between the linear stress-strain slope E max estimated near max(ε t ) and E N L near ε N L t for max(ε t ) ≥ {0.4, 0.77, 0.9}. The shaded region indicates the mean (0.8%, dotted line) plus and minus the standard deviation for max(ε t ) ≥ 0.9.

Conclusion

In agreement with polynomial and exponential stress-strain relationships for soft biological tissues, best fits (in terms of root mean square error) of 370 two-parameter cubic and exponential relationships are shown to provide an xxii accurate (R 2 > 99.5%) and continuous description of measured low-strain (up to ≈0.3) and subsequent non-linear stress-strain behaviour of ML silicone composite specimens. These composites are characterised by their layer stacking (serial, parallel, combined or arbitrary), measured effective low-strain Young's modulus E (ef f ) up to 40 kPa, and some contain a stiff (E = 298 kPa) inclusion as observed in certain structural vocal fold pathologies.

The best fit parameters, minimising the root mean square error between the fitted and measured data (mean fit accuracy R 2 ≥ 99.8%), can be approximated as a constant or linear function of E (ef f ) with a very limited accuracy loss regardless of the assessed maximum strain as the mean fit accuracy yields R 2 ≥ 97% and R 2 ≥ 94% when respectively the measured or modelled E (ef f ) is considered. Besides, the best fit parameters and their approximations, a priori modelled parameter sets are derived as well. These modelled parameters depend on E (ef f ) in the same way as the approximated best fit parameters. Contrary to the best fit parameter sets and subsequent approximated best fit parameters, no data are used to derive the modelled parameter sets so that the found accuracy (mean fit accuracy R 2 ≥ 85% with measured or modelled E (ef f ) ) supports the model approach which uses the assumption that the cubic and exponential relationship match at a strain-value corresponding to at least 64% of the maximum strain. This ensures that both relationships as well as their strain energy density functions agree to within 12.6% for the full strain range. Thus for a matching strain value of 1.0, the cubic and exponential relationships, and hence the modelled two-parameter sets, can be applied for strains up to 1.55, which is about 4.5 times the lowstrain limit. In addition, a modelled expression for the high-strain elastic Young's modulus E N L , characterising a linear high-strain stress behaviour, is obtained as 8.58 E (ef f ) . Consequently, both approximated best fit parameters and a priori modelled parameters can be used to characterise the linear and non-linear stress-strain relationship once E (ef f ) is known, where E (ef f ) is either measured or modelled. Therefore, combining the previously proposed low-strain Young's modulus model [START_REF] Ahmad | Modelling and validation of the elasticity parameters of multi-layer specimens pertinent to silicone vocal fold replicas[END_REF][START_REF] Ahmad | Lowstrain effective Young's modulus model and validation for multi-layer vocal fold based silicone specimens with inclusions[END_REF] with the cubic or exponential stress-strain characterisation and approximated or modelled two-parameter sets as a function of E (ef f ) results in an a priori stress-strain characterisation. This is of particular benefit for the design of ML silicone composites and thus in term for the design of vocal fold replicas which so far relied on a tedious and a posteriori experimental characterisation. It is of interest to further investigate stress-strain curves with strains up to 1.55 or more in order to further xxiii confirm the linear high-strain behaviour. In addition, the proposed modelled non-linear two-parameter relationships, with a priori modelled parameter, can be compared with other hyperelastic multi-parameter constitutive laws requiring a more extensive data based fitting.

( 5 ≤Figure 1

 51 Figure1: a) Illustration of specimen's test section dimensions and different layer stacking with respect to the applied force (F) direction: serial stacking (⊥) between layers 1 and 2, parallel ( ) between 3 and 4, combined ( ⊥) between 3, 4, and 2 and arbitrary (Arb) between 5 and 6, b) Degree of deformation ∆l/l 0 for true strain 0 ≤ ε t ≤ 1.5. The overall low-strain range ε t ≤ ε l with ε l ≈ 0.3 is indicated.

Figure 2 :

 2 Figure2: Measured maximum strain max(ε t ) as a function of low-strain Young's modulus E (ef f ) . The linear low-strain upper limit ε l ≈ 0.3 is indicated (dashed line).

Figure 3 :

 3 Figure3: Experimental stress-strain data curve σ t (ε t ) (symbols) and stress-strain models (lines) with fit accuracy R 2 ≥ 99.5% for a five-layer (n = 5) specimen with combined ( ⊥) stacking: a) linear (full line) low-strain (ε t ≤ ε l ) fit with slope E ef f = 36 kPa, b) continuous non-linear cubic (dotted line) and exponential (dashed line) fits.

Figure 4 :

 4 Figure 4: Solutions E N L from Eq. (12) as a function of E (ef f ) (thick full line) and linear fit (light dotted line) with R 2 = 99.9%. Both curves superimpose.

Figure 5 :

 5 Figure 5: For the exponential (superscript e) and cubic (superscript c) relationship: a) relative difference (%) between modelled true stresses σ t as a function of normalised strain ε t /ε m t , b) strain energy density function W normalised by low-strain Y (ef f ) .

Figure 6 :

 6 Figure 6: Exponential ( A, B) and cubic ( a, b) best fit (R 2 > 99.5%) parameters to measured stress-strain curves in the range ε t ≤ max(ε t ) as a function of E (ef f ) : a) A for max(ε t ) ≥ {0.40, 0.77}, b) B for max(ε t ) ≥ {0.40, 0.77}, c) a for max(ε t ) ≥ {0.40, 0.77} and d) b, A B and E (ef f ) . In a,b,c) shaded regions indicate modelled parameter ranges for 0.77 ≤ ε m t ≤ 1.36, dashed lines show fitted parameter approximations for max(ε t ) ≥ 0.77. In d) the identity function (full line) and linear fits (dashed and dotted line) are plotted.
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Figure 7 :

 7 Figure 7: Examples of measured stress-strain data (symbols) and E ef f (in kPa), resulting cubic (C-•) and exponential (E-•) fits with the best fit approximation parameter sets (•-A) and the modelled parameter sets (•-M) for three-layered silicone composites with: a) serial (⊥) stacking and b) combined ( ⊥) stacking. The fit accuracy (R 2 , rmse) with R 2 (in %) and root mean square error rmse (in kPa) is indicated for each fit. In a) curves E-A and C-A overlap measured data. In b) E-A and C-A as well as C-M and measured data overlap.

Figure 8 :

 8 Figure 8: Examples of measured stress-strain data (symbols) and low-strain linear slope E ef f (in kPa) and resulting exponential best fits without (E) and with (EO) linear high strain range with slope E N L and onset ε N L t for three-layered silicone composites with: a) serial (⊥) stacking, E ef f = 21.8 kPa, E N L = 145.6 kPa and ε N L t = 0.98, b) combined ( ⊥) stacking, E ef f = 7.4 kPa, E N L = 60.1 kPa and ε N L t = 0.92. The fit accuracy (R 2 , rmse) with R 2 (in %) and root mean square error rmse (in kPa) is indicated for each fit.

Figure 9 :

 9 Figure 9: Linear high-strain elastic parameters ( E N L , ε N L t ) for ε N L t ≥ {0.40, 0.77, 0.90}: a) estimated high-strain Young's modulus E N L as a function of low-strain Young's modulus E (ef f ) with shaded region [1, 8.58] E (ef f ) , linear fits (R 2 = 87%, R 2 = 88% and R 2 = 91%) are indicated (lines), b) normalised high-strain lower limit ε N L t / max(ε t ) as a function of the ratio between high-strain and low-strain Young's moduli E N L /E (ef f ) , mean values (horizontal lines) are indicated (standard deviation of 10%, 7% and 4%), c) ε N L t as a function of max(ε t ), linear fit (dashed line) (R 2 = 96%) and identity function (full line).

Table 1 :

 1 Molded single layer properties at room temperature: mixture TE or TD (Mix), mass mixing ratio M, low-strain Young's modulus E in the strain range ε t ≤ ε l .

	Label	Composition E [kPa]	ε l
		Mix M [-]		
	I 1	TE	8:2	2	0.24
	I 2	TE	4:2	4	0.41
	I 3	TE	2:2	14	0.21
	I 4	TE	1:2	23	0.25
	I 5	TD	1:2	65	0.16
	I 6	TD	0:2	298	0.26

Table 2 :

 2 Molded ML specimens: stacking ( , ⊥, ⊥, Arb), number of layers n, total number (No.) of specimens and tensile test method (MP or PL), measured low-strain effective Young's modulus E ef f in the range up to ε l ≈ 0.3 at room temperature 21 ± 2 • C.

	Stacking	n	No. of ML specimens E ef f [kPa]
			Total MP	PL	
		2	3	3	3	7 -33
		3	1	1	1	20
		2	5	3	5	5 -29
	⊥	3	8	1	8	5 -38
	.	4	2	0	2	6
		3	2	1	2	9 -17
	⊥	4 5	4 6	0 0	4 6	27 -32 12 -31
		7	1	0	1	18
	Arb	/	2	0	2	11 -20
	Overview ≥ 2	34	9	34	6 -38
					vi	

  53 ln 3 (λ) + 7.59 ln 2 (λ) + 16.18 ln(λ) + 16.18 .

Table 4 :

 4 Mean and standard deviation of the accuracy (R 2 in %) of non-linear cubic and exponential two-parameter and linear two-parameter high-strain relationships to stressstrain data using either best fit parameters, best fit approximated parameters or a priori

	modelled parameters at ε m t = ε N L t	and ε N L t	= 0.85 max(ε t ) for data sets with max(ε t ) ≥
	{ε l , 0.40, 0.77, 0.90}.					
		Best fit		Approximations	Modelled with ε m t = ε N L t
		Cubic	Exponential	Cubic	Exponential	Cubic	Exponential
	max(ε t ) ≥ ε l	99.9 ± 0.1		99.9 ± 0.1		98 ± 2 a 89 ± 13 b	98 ± 2 a 87 ± 17 b	28 ± 37 a 31 ± 36 b	27 ± 36 a 32 ± 36

b max(ε t ) ≥ 0.40 99.9 ± 0.1 99.9 ± 0.1 98 ± 2 a 98 ± 2 a 32 ± 38 a 31 ± 37 a 92 ± 7 b 91 ± 10 b 39 ± 36 b 37 ± 36 b max(ε t ) ≥ 0.77 99.9 ± 0.1 99.9 ± 0.1 98 ± 2 a 98 ± 2 a 52 ± 39 a 54 ± 39 a 94 ± 4 b 94 ± 7 b 64 ± 31 b 62 ± 32 b max(ε t ) ≥ 0.90 99.9 ± 0.1 99.9 ± 0.1 98 ± 2 a 98 ± 2 a 71 ± 33 a 69 ± 33 a 94 ± 5 b 94 ± 7 b 61 ± 37 b 60 ± 37 b a using measured E ef f , E N L and ε N L t . b using modelled E ef f
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