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AN APPROXIMATE AKE PRINCIPLE FOR METRIC VALUED

FIELDS

MARTIN HILS AND STEFAN MARIAN LUDWIG

Abstract. We study metric valued fields in continuous logic, following Ben

Yaacov’s approach, thus working in the metric space given by the projec-
tive line. As our main result, we obtain an approximate Ax-Kochen-Ershov

principle in this framework, completely describing elementary equivalence in

equicharacteristic 0 in terms of the residue field and value group. Moreover, we
show that, in any characteristic, the theory of metric valued difference fields

does not admit a model-companion. This answers a question of Ben Yaacov.

1. Introduction

In [5] Ben Yaacov introduced a formalism to consider certain valued fields, called
metric valued fields, as structures in continuous logic, namely complete valued fields
with value group embedded in the group (R+, ·). Given a metric valued field K, for
technical reasons Ben Yaacov associates to it a continuous logic structure KP1 with
base set the projective line over K. Still in [5], he further established a quantifier
elimination result for the theories of (projective lines over) algebraically closed and
of real closed metric non-trivially valued fields.

In this article, we will deepen the study of metric valued fields in this context.
Naturally the question arises, whether there exists a connection between residue
field and value group of a metric valued field in equicharacteristic 0 and its elemen-
tary (continuous logic) theory, similarly to the Ax-Kochen-Ershov (AKE) principle
in the classical context. This question is non-trivial since in general the residue
field of K is not interpretable in the continuous logic structure KP1 and the value
group is directly given by the metric. Consequently, we not only have to inves-
tigate to which extent the elementary theories of residue field and value group
determine the elementary theory of the metric valued field but also vice-versa, un-
like in the classical context. In our analysis, we restrict ourselves mainly to the case
of equicharacteristic 0 metric valued fields with dense (in (R+, ·)) value group, as
non-dense metric valued fields resemble classical logic structures.
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As our main result, we obtain an approximate AKE principle, showing that the
elementary theory of a metric valued field of equicharacteristic 0 with dense value
group determines and is determined by the elementary theories of its residue field
and value group, up to what we will call a residue shift. For this, we introduce
the classes C(∆, l). The idea is that for countably incomplete metric ultrapowers of
metric valued fields as above the residue field carries an infinitesimal valuation and
the potentially changing elementary theory of the residue field is still controllable
since this infinitesimal valuation is determined up to elementary equivalence.

We call a pair (∆, l), consisting of a field l of characteristic 0 and a regular
dense (non-trivial) ordered abelian group ∆, a generating pair if either (i) ∆ is not

divisible or if (ii) ∆ is divisible and l ̸≡ l′((t∆
′
)) in Lring for any such pairs (∆′, l′)

with ∆′ non-divisible or with ∆′ divisible and l ̸≡ l′ (see Definition 4.1). Given
a generating pair (∆, l) we define the class C(∆, l) to consist of all metric valued
fields K = (K,ΓK , kK) that belong to one of the following cases:

• Unshifted: ∆ ≡ ΓK and kK ≡ l.
• Shifted: ΓK ≡ R+ and kK ≡ l((t∆)) where kK ̸≡ l if ∆ ≡ R+.

Now, the main result reads as follows.

Theorem A (Theorem 4.4). Let K,F be metric valued fields of equicharacteristic
0 with dense value groups. Then the following holds:

(1) K belongs to a uniquely (up to elementary equivalence) determined class
C(∆, l) of the above form.

(2) KP1 and FP1 are elementarily equivalent if and only if they are in the same
class C(∆, l) for some generating pair (∆, l).

To establish this result, a key tool will be to relate the metric ultrapowers of
metric valued fields to their classical logic counterparts. We will build on the fact,
that the metric value group is always archimedean and hence regular in the sense
of [23]. Moreover, due to a result of Hong [15] (building on Koenigsmann [19]), the
valuation is then definable (in classical logic) in the non-divisible case. As a conse-
quence of our main theorem, we can retrieve the following as a corollary, showing
that despite the existence of the valuation and its presence as the underlying metric,
elementary equivalence in the continuous context in the end reduces to elementary
equivalence in the language Lring.

Theorem B (Corollary 4.6). Let K,F be metric valued fields of equicharacteristic
0 with dense value groups. Then KP1 ≡ FP1 if and only if K ≡ F in Lring.

The model theory of fields enriched with an automorphism proved to be an
interesting object of study leading to striking applications, e.g., in diophantine
geometry [16] and in algebraic dynamics [8, 21]. The theory of difference fields
(fields endowed with an automorphism) admits a model-companion ACFA, a sim-
ple unstable theory which has been developed in fundamental work by Chatzidakis-
Hrushovski [7] and which lies at the heart of these applications.

By a classical result of A. Robinson, the theory ACV F of algebraically closed
non-trivially valued fields is the model-companion of the theory of valued fields in
classical logic. Ben Yaacov obtained the analogous result in the metric setting.
While all completions of ACV F are NIP and unstable, the completions of the
model-companion ACMV F of the theory of metric valued fields are stable.
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By [18] the theory of valued fields with an automorphism does not admit a model-
companion, even when restricted to equicharacteristic 0. Although, by requiring
the induced automorphism on the value group to be the identity, one may overcome
this. This theory does admit a model-companion in equicharacteristic 0, by work
of Bélair-Macintyre-Scanlon [4], whose completions are NTP2, as shown in [9].

Ben Yaacov asked in 2018 whether the theory of (projective lines over) metric
valued fields in equicharacteristic 0, endowed with an isometric automorphism,
admits a model-companion, which is a very natural question given the results we
mentioned. If the model-companion existed, it would be a candidate for a natural
continuous-logic example of a simple unstable theory. In our paper, we answer this
question. Rather surprisingly, we show that a model-companion does not exist in
the continuous context. Concretely, we obtain the following result.

Theorem C (Theorem 6.8). Fix any (a, b) ∈ {(0, 0), (0, p), (p, p) | p prime}. Then
the theory of metric valued difference fields of characteristic (a, b) does not have a
model-companion.

The key idea behind the proof is, that whereas in the context without automor-
phism the phenomenon of the residue shift is controllable, the interaction of residue
shift and automorphism is not.

Structure of the article. In Section 2 we first recall some facts from the classical
model theory of valued fields and then focus on regular (ordered) abelian groups.
Here, we present Hong’s definability result and deduce the consequences we will
use in the proof of the main theorem. Further we give an introduction to the
continuous logic used and to Ben Yaacov’s formalism to handle metric valued fields
in continuous logic. In Section 3 we investigate ultraproducts of metric valued fields
and obtain what we call the residue shift. In Section 4 we state the main theorem
together with some examples, while Section 5 is devoted to its proof. Finally, in
Section 6, we prove Theorem C.

Acknowledgements. The results of this article were obtained in the master thesis
of the second author at the University of Münster, supervised by the first author.
The second author would like to thank Itäı Ben Yaacov for introducing him to the
topic and many helpful discussions during an extended research stay at Université
Claude Bernard Lyon 1.

2. Preliminaries

2.1. Notation and Prerequisites. We will briefly recall some notations and re-
sults from the model theory of valued fields. For an in-depth treatment of valued
fields we refer the reader to [12]. As we will later work in a metric context the
valuations will be written mutliplicatively throughout the paper.

Definition 2.1. Let K be a field. Then (K, v) is called a valued field if v : K →
Γ∪ {0} is a valuation map (or simply valuation), i.e., we have that v(x) = 0 if and
only if x = 0 and further v(xy) = v(x) · v(y) and v(x+ y) ≤ max{v(x), v(y)} holds
for all x, y ∈ K. Here, Γ = (Γ, ·, 1, <) is required to be an ordered abelian group
with 0 < Γ and it will be called the value group. Further, Ov := {x ∈ K | v(x) ≤ 1}
is the valuation ring of K with maximal ideal mv := {x ∈ K | v(x) < 1}.

The quotient Ov/mv is called the residue field of K, mostly denoted by k, kv or
kK . We write res : Ov → k for the projection which is called the residue map.
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Definition 2.2. Given fields K and k, a place pl : K → k ∪ {∞} is a surjective
map with pl(1) = 1 such that pl(x+y) = pl(x)+pl(y) and pl(xy) = pl(x)pl(y) hold
whenever they are defined using the conventions that ∞+a = ∞ = ∞+∞ = a+∞
for all a ∈ k and ∞ · a = ∞ = ∞ ·∞ = a · ∞ for all a ∈ k×. The expressions ∞ · 0
and 0 · ∞ are not defined.

Remark 2.3. Recall that there is a 1:1-correspondence between valuation rings of
a field K and valuations of K up to equivalence. Concretely, a valuation v on K
gives rise to the valuation ring Ov, and a valuation ring O determines a valuation v
with values in the abelian group K×/O× ordered by setting xO× ≤ yO× whenever
xy−1 ∈ O, where v is defined on K× by v(x) := xO× and v(0) := 0. Moreover we
have the following connection between places and valuations: A valuation v : K → Γ
with residue map res : Ov → k determines a place plv : K → k ∪ {∞} by setting
plv(x) = res(x) if x ∈ Ov and plv(x) = ∞ otherwise. On the other hand given a
place pl : K → k we can deduce a corresponding valuation by setting pl−1(k) to be
the valuation ring with maximal ideal pl−1({0}).

Recall that a valued field (K,ΓK , kK) is of equicharacteristic 0 (resp. p) if
char(K) = 0 = char(kK) (resp. char(K) = p = char(kK)). If char(K) = 0 but
char(kK) = p for some prime p one says K is of mixed characteristic (0,p).

Definition 2.4. The language Lval consists of a sort VF for the main field in the
language of rings Lring, a sort VG for the value group in Log ∪ {0}, the language
of ordered groups with a constant symbol for 0 and a sort RF for the residue field
in Lring again. Furthermore Lval contains function symbols v : VF → VG and

Res : VF2 → RF.
In a valued field v shall be interpreted as the valuation and

Res(x, y) :=

{
res(xy−1), if 0 < v(x) ≤ v(y),

0, otherwise.

The theory of henselian valued fields of equicharacteristic 0 (with the above inter-
pretations) in Lval shall be denoted by Tval.
Moreover the language Lc-val shall consist of an additional constant symbol c in the
value group sort and Tc-val shall contain an additional axiom stating that neither c
is the identity element of the value group, nor c = 0.

Now we state the so-called AKE principle which will play a significant role
throughout this paper. It was first obtained by Ax and Kochen [1–3] and Eršhov [13]
independently. Note that the statement for Lc-val can be easlily obtained from the
statement in Lval using the pure stable embeddedness of the value group.

Theorem 2.5. Let K = (K,ΓK , kK) and F = (F,ΓF , kF ) be henselian valued fields
in equicharacteristic 0. Then the following holds in Lval (resp. Lc-val):

K ≡ F if and only if kK ≡ kF and ΓK ≡ ΓF .

2.2. Regular valuations. Value groups of metric valued fields will be subgroups
of R+ = (R+, ·, 1, <) and consequently archimedean ordered abelian groups. While
archimedeanity itself is not axiomatizable in classical discrete model theory one can
consider a larger class of groups called regular ordered abelian groups. This class
was introduced by A. Robinson and Zakon in [23] and further elaborated in [25].
It is indeed an elementary class.
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Returning to fields, it is in general an interesting question to ask when the existence
of a (henselian) valuation already implies the definability of this valuation in the
language Lring, i.e., that the valuation ring is a definable set. When determining
the complete theory of a metric valued field in terms of its residue field and value
group we will later often deal with the case of a residue field that itself carries a
valuation with regular value group. In order to capture this valuation we will make
use of a definability result as given by Hong [15].

Definition 2.6. A non-trivial ordered abelian group G is called

• discrete if it has a minimal positive element, and dense otherwise;
• regular, if for any non-trivial convex subgroup H ⊆ G the quotient group
G/H is divisible;

• regular discrete (resp. regular dense) if it is regular and discrete (resp.
regular and dense).

A valuation with regular value group is called a regular valuation.

Fact 2.7 ( [20,23,25]). For an ordered abelian group G the following are equivalent:

(1) G is regular.
(2) G is elementarily equivalent to some archimedean ordered abelian group.
(3) For any prime number p and any infinite convex subset A ⊆ G there is an

element a ∈ A such that a = p · b for some b ∈ G.

If we assume in addition that G is dense, then the above statements are moreover
equivalent to the following:

(4) G is dense in its divisible hull.

Fact 2.8 ( [23]). (1) All regular discrete ordered abelian groups are elemen-
tarily equivalent to (Z,+, <).

(2) Two non-trivial regular dense ordered abelian groups G and H are elemen-
tarily equivalent if and only if for any prime number p we have that both
|G/pG| and |H/pH| are infinite or |G/pG| = |H/pH| holds. In particu-
lar a regular ordered abelian group is elementarily equivalent to any of its
non-trivial convex subgroups.

As stated in [15] the following result follows for the equicharacteristic 0 case
already from a result of Koenigsmann in [19].

Fact 2.9 ( [15, Theorem 4]). For any prime number p there is a parameter-free
Lring-formula ψp(x) such that for any field K and any henselian valuation v on K
with regular dense value group Γv which is not p-divisible, one has ψp(K) = Ov,
i.e., the valuation v is defined by ψp(x).

We will use several times the following fact from general valuation theory.

Fact 2.10 ( [12, Theorem 4.4.2]). Let v, w be henselian valuations with valuation
rings Ov, Ow on a field K, such that not both kv and kw are separably closed.
Then Ov and Ow are comparable, i.e., Ov ⊆ Ow or Ow ⊆ Ov holds.

We assume the following result to be well-known but since we could not find it
in the literature we will give a proof.

Proposition 2.11. Let v, w be henselian valuations with valuation rings Ov, Ow

on a field K, both with non-divisible regular dense value groups Γv, Γw and residue
fields kv, kw of characteristic 0. Then Ov = Ow already holds.
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Proof. First assume that kv or kw is not separably closed. Then Ov and Ow are
comparable by Fact 2.10, i.e., Ov ⊆ Ow or Ow ⊆ Ov. Let us assume w.l.o.g. that
Ow ⊆ Ov. Then by [12, Lemma 2.3.1] we have w = π◦v, where π : Γv ↠ Γv/C = Γw

for some convex subgroup C ⊆ Γv. If C were non-trivial, Γw would be divisible by
regularity of Γv, contradicting the assumptions.

Now assume kv and kw are both separably closed, thus algebraically closed since
they are of characteristic 0 by assumption. If Γv and Γw are not p-divisible for a
common prime p, then Ov and Ow are defined by the same parameter-free formula,
by Theorem 2.9, whence Ov = Ow. Otherwise let p be a prime such that Γv is
p-divisible but Γw is not. From the latter we infer that not every element of K is a
p-th power. On the other hand, using the former and the fact that kv is algebraically
closed, an easy application of Hensel’s Lemma yields that every element of K is a
p-th power. This contradiction completes the proof. □

Corollary 2.12. Let K,F be fields such that K ≡ F in Lring. If there is a henselian
valuation v on K with non-divisible regular dense value group Γv and residue field
kv of characteristic 0, then there is exactly one henselian valuation w on F with
non-divisible regular dense value group Γw and residue field kw of characteristic 0
and we have Γv ≡ Γw and kv ≡ kw.

Proof. Fact 2.9 yields that the valuation v is parameter-free definable whence F
has a valuation w similarly defined. The uniqueness directly follows from Proposi-
tion 2.11. Furthermore, by the interpretability of the residue field and of the value
group, we get kv ≡ kw and Γv ≡ Γw. □

We proceed with some further observations that will prove useful later on.

Notation 2.13. Given a field k and an ordered abelian group Γ we denote by k((tΓ))
the Hahn-series field with respect to k and Γ. If not explicitly stated otherwise ≡
will denote elementary equivalence in Lring for fields and in Log for ordered groups.

Note that, when working with Hahn-series fields, one usually uses the additive
notation for valuations. Since we use the multiplicative notation, we get, e.g.,
t1 = 1 ∈ k((tΓ)). This abuse of notation should not lead to any confusion.

Lemma 2.14. Let Γ be a non-trivial regular ordered abelian group (this includes di-
visible) and k a field of characteristic 0. Then for any field K which is elementarily
equivalent to k((tΓ)) in Lring, the following holds in Lring:

k((tΓ)) ≡ K((tR
+

)).

Proof. By the AKE principle, we may assume that K = k((tΓ)). There is a natural

henselian valuation v on k((tΓ))((tR
+

)) with value group Γ×R+ equipped with the
anti-lexicographical order. But then (Γ×R+)/Γ ∼= R+ is divisible and Γ is regular
by definition and convex in the regular group Γ×R+ so by Fact 2.8 it follows that
Γ × R+ ≡ Γ. We apply the AKE principle and obtain(

k((tΓ)),Γ, k
)
≡

(
k((tΓ))((tR

+

)),Γ × R+, k
)

in the language of valued fields Lval, so in particular in Lring. □

Lemma 2.15. Let k and k′ be fields of characteristic 0, and let Γ and Γ′ be non-
trivial regular dense ordered abelian groups. If k((tΓ)) ≡ k′((tΓ

′
)) in Lring, then

(i) Γ ≡ Γ′ and k ≡ k′, or
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(ii) k′ ≡ k((tΓ)) and Γ′ is divisible, or

(iii) k ≡ k′((tΓ
′
)) and Γ is divisible.

Proof. We may find, e.g., by the Keisler-Shelah Theorem, a common field exten-
sion K̃ of k((tΓ)) and k′((tΓ

′
)) and henselian valuations v and v′ on K̃ such that

(K̃, v) ≽Lval
k((tΓ)) and (K̃, v′) ≽Lval

k′((tΓ
′
)). Note that Γ ≡ Γv and Γ′ ≡ Γv′ ,

analogously for the residue fields involved.
Case 1: Γ and Γ′ are both non-divisible. Then Ov = Ov′ by Proposition 2.11, so

(i) holds.

Case 2: Both Γ and Γ′ are divisible. In particular, it follows that Γ ≡ Γ′. If K̃
is algebraically closed, so are kv and kv′ , and thus (i) holds. Otherwise, kv and kv′

are not separably closed, so v and v′ are comparable by Fact 2.10. If Ov = Ov′ , we
are in case (i). If Ov ⊊ Ov′ , there is a convex subgroup (0) ⊊ C ⊊ Γv such that
Γv′ ∼= Γv/C, and we get k′ ≡ kv′ ≡ kv((tC)) ≡ k((tΓ)), so (ii) holds. Similarly, one
shows that (iii) holds if Ov ⊋ Ov′ .

Case 3: Exactly one of Γ′ and Γ is divisible. W.l.o.g. we may assume that Γ′

is divisible and Γ is not. Then K̃ is not algebraically closed, so k′ ≡ kv′ is not
separably closed (by the AKE principle, as k′ is of characteristic 0), and thus v and
v′ are comparable by Fact 2.10. As in Case 2, we infer that Γv′ ∼= Γv/C for some
convex subgroup (0) ⊊ C ⊊ Γv, as Γv

∼= Γv′/C ′ is impossible in this case. So again
(ii) holds. □

2.3. Continuous Logic. In the following we will very briefly recall some notions
from continuous logic but in general the reader shall be referred to [6] which will
also be the main source for the rest of this section.

Notation 2.16. A continuous logic language consists of non-logical symbols for pred-
icates, functions and constants where the first two are all equipped with a fixed arity
and a modulus of uniform continuity. Technically speaking, the non-logical part of
the language also has to contain a positive real number D which denotes an upper
bound on the diameter of structures in this language and for each predicate P a
closed interval IP where P takes its values. Throughout this text we will always
assume D = 1 and IP = [0, 1] for any P .
As logical symbols we have a symbol for the metric d(x, y) treated in a similar way
as the equality symbol = in classsical model theory, two quantifiers sup and inf, as
well as a set of connective symbols for the continuous functions u : [0, 1]n → [0, 1].
Note that in general we do not have to allow the whole set of continuous functions
u : [0, 1]n → [0, 1] since it will be enough to uniformly approximate formulas. We
can even restrict ourselves to using finitely many connectives. See [6, Chapter 6]
for a discussion of this topic.

Notation 2.17. Given a continuous logic language L we define an L-prestructure
to be a pseudo-metric space (M0, d0) of diameter ≤ 1 with interpretations of the
functions, predicates and constants from L. Here, each constant shall be interpreted
by an element of M0. Furthermore, each function symbol f with arity n shall
be interpreted by a uniformly continuous map Mn

0 → M0 having the modulus
of uniform continuity as specified by f . Finally, each predicate symbol P with
arity m shall be interpreted by a uniformly continuous function Mm

0 → [0, 1] with
modulus of uniform continuity as specified by P . The associated L-structure will
then be the completion of the quotient metric space of the prestructure where the
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interpretations of predicates and functions are in such a way that they extend those
on the quotient metric space and are continuous. Hence, those interpretations are
uniquely determined.

In the following we will denote by M,N the underlying metric space of L-
structures M,N and often we will even identify M with M (or N with N ), i.e.,
the structure and its underlying metric space might be used interchangeably.

Remark 2.18. All those notions can be easily generalised to multi-sorted structures
and respective languages. Also, in a similar fashion as in the classical context
we can inductively define terms, formulas, etc. and many concepts generalise to
this setting. Especially, we can note that the continuous setting indeed includes the
classical framework using the metric defined by d(x, y) := 0 if x = y and d(x, y) := 1
otherwise and restricting predicate values to the set {0, 1}.

However, some concepts as definability (of sets) might not generalize completely
intuitively at first glance. Again, for a full treatment we refer to [6, Chapter 9].

Definition 2.19 ( [6, 9.1 and 9.16]). Given a continuous logic L-structure M, a
subset A ⊆M and a uniformly continuous function P : Mn → [0, 1] we say that P
is definable in M over A if there is a sequence (ϕn(x))n∈N of L(A)-formulas such
that the interpretations ϕMn (x) converge to P (x) uniformly on Mn. In this case we
call P a definable predicate (over A).

A closed set D ⊆ Mn is a definable set in M over A if the distance (predicate)
dist(x,D) is definable in M over A.

Next, we will focus on the ultraproduct construction in the continuous logic
setting, namely metric ultraproducts. Metric ultraproducts have been studied and
proved useful in several applications outside of model theory as well, for example in
the context of Banach spaces [10] or in metric geometry in the build-up to a proof
of Gromov’s famous theorem on groups of polynomial growth [24]. We will give
a short introduction to ultraproducts in continuous logic stating some definitions
and results from [6, Chapter 5]. Later we will deal with metric ultraproducts and
classical logic ultraproducts at the same time. Thus, we will distinguish between
them and label them either by me or by cl.

Notation 2.20. Let D be an ultrafilter on the set I, X a topological space and let
(xi)i∈I be a sequence in X. Recall that x is called an ultralimit of (xi)i∈I with
respect to D, denoted by limi→D xi = x, if for every neighbourhood U of x the set
{i ∈ I | xi ∈ U} is in D.

Fact 2.21 ( [6, Lemma 5.1]). A topological space X is compact Hausdorff if and
only if for every D an ultralimit as above exists and is unique. Given a contin-
uous function f : X → X

′
between topological spaces X and X ′ we have that

limi→D xi = x implies limi→D f(xi) = f(x).

Definition 2.22. Let D be an ultrafilter on I and (Mi, di)i∈I a family of metric
spaces, all with diameter ≤ 1. Then there is pseudo-metric on the cartesian product∏

i∈I Mi defined by d(x, y) = limi→D di(xi, yi), where x = (xi)i∈I and y = (yi)i∈I .
This naturally induces a metric on the quotient space

∏
i∈I Mi/∼D where x ∼D y if

and only if d(x, y) = 0. This space denoted by
∏me

D Mi is called the D-ultraproduct
of (Mi, di)i∈I and the corresponding equivalence classes are denoted by ((xi)i∈I)D
for (xi)i∈I ∈

∏
i∈I Mi.
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Fact 2.23 ( [6, Proposition 5.3]). A metric ultraproduct of uniformly bounded
complete metric spaces (as above) is always complete.

Now, bearing in mind that in a continuous logic structure we have functions,
predicates and constants given as uniformly continuous functions, for a family
(Mi)i∈I of metric structures in a given language we can define

∏me
D Mi, the D-

ultraproduct of (Mi)i∈I , as a structure over the same language with the underlying
space given by the metric space ultraproduct of the underlying metric spaces of the
Mi and with functions, predicates and constants formed in the following manner:

Let ((Mi, di)i∈I) and ((M
′

i , d
′

i)i∈I) be families of metric spaces of diameter ≤ 1

and (for a fixed n ≥ 1) fi : Mn
i →M

′

i uniformly continuous functions for each i ∈ I
such that all have the same modulus of uniform continuity. Then we can define a
function fD :

∏me
D Mn

i →
∏me

D M
′

i that is still uniformly continuous with the same
modulus of uniform continuity via:

fD
(
((x1i )i∈I)D, . . . , ((x

n
i )i∈I)D

)
= ((fi(x

1
i , . . . , x

n
i ))i∈I)D.

(Note that we use here that the D-ultrapower of the real interval [0, 1] can be
identified with [0, 1] itself.) We also use that the underlying metric space of

∏me
D Mi

is complete by Fact 2.23.
In the special case that Mi = M for all i, we write (M)me

D for
∏me

D Mi, and we
call it the D-ultrapower of M.

By induction on the complexity of formulas we obtain the following equivalent
of  Loś’s Theorem in the metric setting.

Fact 2.24 ( [6, Theorem 5.4 and 5.5]). Let (Mi)i∈I be a family of L-structures, D
an ultrafilter on I and let M =

∏me
D Mi. Then for every L-formula φ(x1, . . . , xn)

and elements ak =
((
aki

)
i∈I

)
D

from M, for k = 1, . . . , n, one has

φM (a1, . . . , an) = lim
i→D

φMi
(
a1i , . . . , a

n
i

)
.

Moreover, the diagonal embedding ∆ : M → (M)me
D is elementary.

There is also a clean connection between ultraproducts of structures of a given
class and the axiomatisability of that class. In addition we state the extension of
the Keisler-Shelah Theorem to continuous logic which we will use later.

Fact 2.25 ( [6, Proposition 5.14]). Suppose that C is a class of metric structures
for some fixed language. Then C is axiomatisable if and only if C is closed under
isomorphisms, ultraproducts and ultraroots. (Here, if N is an ultrapower of some
L-structure M, then we call M an ultraroot of N .)

Fact 2.26 ( [6, Theorem 5.7]). If M and N are metric structures and M ≡ N ,
then there exists an ultrafilter D such that (M)me

D is isomorphic to (N )me
D .

2.4. Metric valued fields. In the following we will recall the basic notions from [5]
which will allow us to consider certain valued fields as continuous logic structures.
Precisely, we will restrict ourselves to metric valued fields. All results and notions
in this chapter can be attributed to [5].

Notation 2.27. A pre-metric valued field is a valued field where the value group is
a subgroup of the mutliplicative group of the positive real numbers. Let K be such
a field carrying a valuation | · | : K → R≥0 then this naturally induces a metric on
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K by d(x, y) := |x − y|. We will sometimes also write a pre-metric valued field as
K = (K,Γ, k) together with an ordered group embedding α : Γ ↪→ (R+, ·).

A metric valued field is a complete pre-metric valued field.

The problem we face if we want to consider a metric valued field as a continuous
logic structure is that it is in general unbounded. Moreover, the straight-forward
approach of working in a multi-sorted language containing sorts for closed balls
of increasing radii does not work as well (see [5, Proposition 1.2]). We will now
briefly present Ben Yaacov’s idea to overcome this problem which is to work in the
projective line over a metric valued field instead of working in the field itself. To
recover the addition and multiplication from the field one uses a purely relational
language with predicates for homogeneous polynomials. For the details of this
approach and its necessity we refer to [5].

Notation 2.28. Given a (pre-)metric valued field K, the projective line KP1 is
the quotient K2\{0}/K×. For any class we can find a representative (x, y) with
|x| ∨ |y| = 1 and thus the elements of KP1 can be written as the classes [x : y]
where |x| ∨ |y| = 1. Note that this is of course not a unique representation since we
can always multiply (both x and y) with elements of {z ∈ K | |z| = 1}. In order
to simplify computations we will often even assume that our representatives are of
the form [x : 1] or [1 : y]. In general, elements of KP1 shall be denoted by bold
letters. Furthermore we fix to write a = [a◦ : a∗].

Definition 2.29. Let X̄ = (X1, . . . , Xn), X̄∗ = (X∗
1 , . . . , X

∗
n) and define Zh[X̄] ⊆

Z[X̄, X̄∗] to be the ring of polynomials which are homogeneous in each pair (Xi, X
∗
i )

separately, i.e., polynomials P (X̄, X̄∗) such that for every 1 ≤ i ≤ n there exists ri ∈
N such that for every monomial PS(X̄, X̄∗) of P (X̄, X̄∗) one has degXi

PS(X̄, X̄∗)+

degX∗
i
PS(X̄, X̄∗) = ri.

The homogenisation Ph(X̄, X̄∗) ∈ Zh[X̄] of a polynomial P (X̄) ∈ Z[X̄] is
then given by Ph(X̄, X̄∗) := P (X̄/X̄∗)P ∗(X̄∗) where P ∗(X̄∗) = (X̄∗)degX̄ P and
degX̄ P = (degX1

P, . . . , degXn
P ).

Definition 2.30 (See [5, Definition 1.4]). The language LP shall consist of predi-
cates ∥Pn(x̄)∥ for every polynomial Pn(X̄) ∈ Z[X̄]. The arity of ∥Pn(x̄)∥ is n where
Pn(X̄) ∈ Z[X1, . . . , Xn]. For any ∥Pn(x̄)∥ the modulus of uniform continuitiy shall
be given by the identity. Additionally LP shall contain a constant symbol ∞.

Definition 2.31 (See [5, 1.5]). Let KP1 be the projective line over a (pre-)metric
valued field (K, | · |). We define an LP-(pre-)structure on KP1 by setting ∞ := [1, 0]
and ∥P (ā)∥ := |Ph(ā◦, ā∗)| as well as d(a,b) := ∥a − b∥ = |a◦b∗ − a∗b◦|. We will

write ∥x∗∥ for the formula d(x,∞) and ∥P ∗(x̄)∥ for Π∥x∗i ∥
degXi

P .

Note that KP1 is an LP-structure if and only if K is a metric valued field.

Fact 2.32. There is an LP-theory MV F (an explicit set of axioms is given in [5,
Definition 1.6]) such that a given LP-structure is a model of MV F if and only if it
is (canonically) isomorphic to KP1 for some metric valued field K.

Moreover, extensions of models of MVF naturally correspond to embeddings of
metric valued fields.

Proof. This is proved in [5, Theorem 1.8]. The moreover part is not explicitly stated
in [5, Theorem 1.8], but it easily follows from the proof given there. □
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Definition 2.33. The LP-theory of projective lines over metric valued fields of
equicharacteristic 0 shall be denoted by MV F0,0. Moreover, the theory MV F d

0,0

shall consist of MV F0,0 together with axioms stating that the value group is dense.

Remark 2.34. The above is indeed axiomatizable in the continuous context by
axioms expressing that |p| = 1 for all prime numbers p ∈ N and infx ∥x∥ − q = 0
for all q ∈ Q ∩ [0, 1].

3. Ultraproducts and Residue Shift

Now we will turn to metric ultraproducts of models of MV F d
0,0. The aim is to

understand them by the relation to the classical logic ultraproducts of their un-
derlying metric valued fields. The difference between both ultraproducts originates
firstly from the fact that in the metric ultraproduct two sequences that are almost
everywhere different can still give rise to the same element if the distances con-
verge to zero. Secondly the value group in the metric formalism is bounded in its
size, since it stays embedded in (R+, ·). Thus, given a sequence x := (xi)i∈I with
|xi| < 1 D-almost everywhere but limi→D |xi| = 1, the element x will give rise to a
new element in the residue field of the metric ultraproduct, whereas it does not in
the classical setting. This phenomenon possibly changes the elementary theory of
the residue field in the metric ultraproduct. But still this change will turn out to
be relatively tame and will be controlled by what we will call the residue shift.

Notation 3.1. Throughout the rest of this chapter let I denote some index set
and D an ultrafilter on I and x := (xi)i∈I , y := (yi)i∈I . For the moment we do
not impose any further conditions on the ultrafilter D. However the only case of
interest will be that of a countably incomplete (i.e., not closed under countable
intersections) ultrafilter as justified by Lemma 3.7. We further fix a family Ki of
metric valued fields with valuations vi, value groups Γi ⊆ (R+, ·) and residue fields
ki. Moreover we denote the embedding Γi ↪→ (R+, ·) by αi.

Definition 3.2. The metric ultraproduct Kme is the underlying metric valued field
of the structure (

∏
i∈I KiP1)me

D which is the metric ultraproduct of the structures

(KiP1)i∈I . We denote its residue field by kme and its value group by Γme ⊆ (R+, ·)
and the valuation either by vme or simply by | · |.

To relate Kme to its classical logic counterpart we have to fix some notations in
the classical setting.

Definition 3.3. Let Γ = (
∏

i∈I Γi)
cl
D be the classical logic D-ultraproduct taken

in the language of ordered groups. In a canonical way, Γ is an ordered subgroup of

the classical logic ultrapower (R+)
cl
D of the ordered group R+, with R+ ≤ (R+)

cl
D

diagonally embedded. Let R+
inf be the subgroup of infinitesimals, i.e., the largest

convex subgroup ∆ of (R+)
cl
D such that ∆ ∩ R+ = {1}. Let R+

fin be the the

subgroup of finite elements, which is given by the convex hull of R+ in (R+)
cl
D. Set

Γinf := Γ ∩ R+
inf and Γfin := Γ ∩ R+

fin.

Note that Γinf ≤ Γfin are convex subgroups of Γ.

Definition 3.4. Let Ki be the classical logic Lval-structure with the underlying field
Ki and K := (

∏
i∈I Ki)

cl
D the classical logic ultraproduct whose underlying field is

then given by K := (
∏

i∈I Ki)
cl
D with valuation v and value group Γ := (

∏
i∈I Γi)

cl
D
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and residue field k := (
∏

i∈I ki)
cl
D. Let Γinf ,Γfin be defined as above. Moreover,

let v̄ : K → Γ/Γfin be the coarsening of v and K̄ the corresponding residue field
with induced valuation vfin : K̄ → Γfin. Now let v̄fin : K̄ → Γfin/Γinf be the
coarsening of vfin and vinf : k̄ → Γinf the induced valuation on the residue field of
v̄fin. Additionally we set Γ̄ := Γfin/Γinf .

Lemma 3.5. There is a naturally induced embedding ᾱ : Γ̄ ↪→ (R+, ·, 1, <), i.e.,
we can assume Γ̄ ⊆ R+.

Proof. Let α : Γfin → R+ be the standard part map. Then α is a group homomor-
phism with kernel Γinf . The induced map ᾱ : Γ̄ → R+ is easily seen to preserve
<. □

Theorem 3.6. The metric valued field (Kme, vme) is given by (K̄, v̄fin), in the
sense that there is an isomorphism of valued fields f : (K̄, v̄fin) → (Kme, vme) that
moreover induces the identity on ᾱ(Γ̄).

Proof. We first show that there is a field isomorphism g : K̄ → Kme. Given the
projection β̃ :

∏
i∈I KiP1 → KmeP1 we have for z = (zi)i∈I ∈

∏
i∈I KiP1 that

β̃(z) = ∞, if limi→D ∥z∗i ∥ = 0. Consequently we obtain a map β :
∏

i∈I Ki →
Kme∪{∞} with β(x) = ∞ if and only if γ((vi(xi))i∈I) > Γfin where γ denotes the
projection on the equivalence class given by the classical logic ultraproduct. On
the other hand consider the sequence∏

i∈I
Ki

γ−→ K
plv̄−−→ K̄ ∪ {∞}

where plv̄ is the place corresponding to v̄. It follows from the definitions that
plv̄ ◦γ and β are homomorphisms on the subring

∏
i∈I Ki\Z of

∏
i∈I Ki, where

Z := (plv̄ ◦γ)
−1

(∞) = β−1(∞). Moreover we have that plv̄ ◦γ(x) = plv̄ ◦γ(y) if
and only if v̄(γ(xy−1)) < 1 in Γ/Γfin (for γ(x) ∈ Ov̄). Now the latter is equivalent
to β(x) = β(y) and it follows that K̄ ∼= Kme as fields.
It remains to show that v̄fin and vme define the same valuation on K̄ ∼= Kme. This
directly follows from the definitions: Given x ∈

∏
i∈I Ki we have

vme(β(x)) = lim
i→D

|xi| = lim
i→D

αi(vi(xi)) = α(vfin(plv̄ ◦γ(x))) = ᾱ(v̄fin(plv̄ ◦γ(x))).

□

Lemma 3.7. In the above setting, the following holds:

(1) If D is countably complete, then Γinf is trivial and Γfin = Γ, and so
(Kme,Γme, kme) = (K,Γ, k), canonically.

(2) If D is countably incomplete and the value groups Γi are dense (and non-
trivial) almost everywhere, then {1} ⊊ Γinf ⊊ Γfin ⊊ Γ and Γme = (R+, ·).

Proof. We clearly have that Γinf ⊋ {1} if and only if there is a sequence (xi)i∈I
for xi ∈ Ki such that limi→D |xi| = 1 but |xi| < 1 almost everywhere.

Let us first prove (2), so we assume that D is countably incomplete and Γi

is dense (and non-trivial) almost everywhere. Then such a sequence exists (see,
e.g., [11, Lemma 10.59]). Moreover, given any r ∈ R+, as αi(Γi) is dense in R+

for almost all i, for every n > 0 we find γn ∈ Γ such that |r − γn| ≤ 1/n. By ℵ1-
saturation of Γ, there is γ ∈ Γ with γ infinitesimally close to r. Then γ ∈ Γfin and
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α(γ mod Γinf ) = r. This shows that Γme = R+. Saturation also yields Γfin ⊊ Γ
in this case.

To prove (1), we assume that D is countably complete. Then limi→D |xi| = 1
implies that ∥xi∥ = 1 almost everywhere (see [11, Lemma 10.61]), from which it
follows by what we said at the beginning of the proof that Γinf is trivial. One shows
similarly that Γfin = Γ in this case. The result now follows from Theorem 3.6. □

From now on we assume the ultrafilter D to be countably incomplete if not stated
otherwise.

Diagram 3.8. The above proof shows that the metric ultraproduct is given by the
bottom line of this commutative diagram where the places are labeled with their
corresponding valuations. Moreover it follows from  Loś’s Theorem and general
valuation theory (see, e.g., [12, Corollary 4.1.4]) that all valuations occurring in
the diagram are henselian.

K k ∪ {∞} k

K̄ ∪ {∞} k̄

K̄ k̄ ∪ {∞}

v̄:K→Γ/Γfin

v:K→Γ

vinf :k̄→Γinf

vfin:K̄→Γfin

v̄fin:K̄→Γfin/Γinf

Remark 3.9. There is an induced valuation on the residue field of Kme, given by
vinf : k̄ → Γinf . We will call it the infinitesimal valuation. Though this valuation
exists, it is not captured by the valuation of the metric valued field, in other words,
it is not captured by its metric. While this phenomenon leads to a possible change
of the elementary theory of the residue field in an ultrapower we can use that the
infinitesimal value group has the same elementary theory as the value group of K
itself. As this value group is moreover regular it allows us to control the elementary
theory of the residue field.

Proposition 3.10. (Residue shift). Let (Ki)i∈I be a family of equicharacteristic
0 metric valued fields, and let D be a countably incomplete ultrafilter on I, such
that Γi ≡ ∆ in the language of ordered groups for almost all i ∈ I and some fixed
dense ∆ ⊆ (R+, ·). Furthermore, let l ≡ k in Lring. Then Kme has value group
Γme = (R+, ·) and residue field kme ≡ l((t∆)) in Lring.

Proof. We start by noting that the value group of any metric valued field is regular.
Moreover, if it is densely embedded in (R+, ·), then it is regular dense. Thus
Γme = (R+, ·) by Lemma 3.7(2). As we have seen in Remark 3.9, kme carries an
infinitesimal valuation vinf : kme → Γinf , with residue field k, that is henselian and
non-trivial by Lemma 3.7. Moreover, Γinf ⊆ Γ is a non-trivial convex subgroup
and since ∆ ≡ Γ by  Loś’s Theorem, Γ is regular, so by Proposition 2.8 we get
Γinf ≡ Γ ≡ ∆. Now since vinf is henselian we can apply the classical logic AKE-
principle and obtain that

(kme,Γinf , k) ≡
(
l((t∆)),∆, l

)
as valued fields and thereby in particular kme ≡ l((t∆)) in Lring. □
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4. Main theorem

Definition 4.1. We say that a pair (∆, l) consisting of a field l of characteristic
0 and a regular dense (non-trivial) ordered abelian group ∆ is a generating pair if
either

(i) ∆ is not divisible or

(ii) ∆ is divisible and l ̸≡ l′((t∆
′
)) in Lring for any such pairs (∆′, l′) with ∆′

non-divisible or with ∆′ divisible and l′ ̸≡ l.

Definition 4.2. Given a generating pair (∆, l) we define the class C(∆, l) to consist
of all metric valued fields K = (K,ΓK , kK) with dense value group that belong to
one of the following cases:

• Unshifted: ΓK ≡ ∆ and kK ≡ l.
• Shifted: ΓK ≡ R+ and kK ≡ l((t∆)) where kK ̸≡ l if ∆ ≡ R+.

Remark 4.3. We have C(∆, l) = C(∆′, l′) if and only if ∆ ≡ ∆′ and l ≡ l′ for any
generating pairs (∆, l) and (∆′, l′).

We now state our main theorem which is a metric version of the Ax-Kochen-
Ershov Theorem (later called metric AKE ) as by Remark 4.3 elementary equiv-
alence of two metric valued fields is reduced to elementary equivalence of residue
field and value group defining the respective classes.

Theorem 4.4 (Theorem A). Let K,F be metric valued fields of equicharacteristic
0 with dense value groups. Then the following holds:

(1) K belongs to a uniquely (up to elementary equivalence) determined class
C(∆, l) of the above form.

(2) KP1 and FP1 are elementarily equivalent if and only if they are in the same
class C(∆, l) for some generating pair (∆, l).

Examples 4.5. We will now give several examples of classes C(∆, l) to shed some
light on when shifted structures as in Definition 4.2 occur.

If ∆ is non-divisible (and, e.g., l is algebraically closed) then the class C(∆, l)
consists of unshifted and shifted structures, by the residue shift.

If ∆ is divisible, two different cases can occur. Either C(∆, l) only contains
unshifted structures, or it contains both unshifted and shifted ones. The former

holds precisely when (∆, l) is a generating pair such that l ≡ l((tR
+

)). We will call
those classes fixed-point classes. Many classes that naturally arise (e.g. all classes
with residue field a local field of characteristic 0) are indeed fixed-point classes. But
not all classes C(∆, l) with ∆ divisible are fixed-point classes.

• Some fixed-point classes. For the following fields l of characteristic 0, (R+, l)
is a generating pair such that C(R+, l) is a fixed-point class:
(1) l = C. The corresponding class is that of all algebraically closed metric

non-trivially valued fields of equicharacteristic 0.
(2) l = R. The corresponding class is that of all real closed metric non-

trivially valued fields, with convex valuation ring.
(3) l a finite extension of Qp for some prime p. The corresponding class is

that of all p-adically closed metric valued fields, which are elementarily
equivalent to l in Lring and such that the metric valuation is non-trivial
and a proper coarsening of the p-adic valuation.
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(4) l = k((t)), where k is an arbitrary field of characteristic 0. Letting ϕ(x)
be an Lring-formula such that ϕ(l) = k[[t]], the corresponding class is
that of all metric valued fields, which are elementarily equivalent to l
in Lring and such that the metric valuation is non-trivial and a proper
coarsening of the valuation defined by ϕ(x).

The axiomatizability and completeness of the classes in 1. and 2. follow
from Theorem A, but they were already obtained in [5], where the cor-
responding theories are further investigated. In 4., in order to show that
(R+, k((t))) is a generating pair, one may argue as in Case 3 in the proof
of Lemma 2.15. We leave the details to the reader.

• Some non-fixed-point classes. For the following fields l of characteristic 0,
(R+, l) is a generating pair such that C(R+, l) is not a fixed-point class:

(1) l non-large (e.g., l any number field). Indeed, then l ̸≡ l((tR
+

)), as

l((tR
+

)) is large and being large is first-order axiomatizable in Lring.1

(We refer to [22] for results on large fields.)
(2) l PAC and non-algebraically closed (e.g., l any pseudofinite field).

Then l is large, but l ̸≡ l((tR
+

)). Indeed, it follows from [14, The-

orem 10.14] that l((tR
+

)) is not PAC, which yields the result since
being PAC is first-order axiomatizable in Lring.

Remarkably the statement of the main theorem reduces now to elementary equiv-
alence of metric valued fields seen as classical logic structures in Lring.

Corollary 4.6 (Theorem B). Let K,F be metric valued fields of equicharacteristic
0 with dense value groups. Then KP1 ≡ FP1 if and only if K ≡ F in Lring.

Proof. We have to show that K and F are elementarily equivalent in Lring if and
only if they are in the same class C(∆, l). If K, F are in the same C(∆, l), then
this is a direct consequence of Lemma 2.14, taking into account the definition of
C(∆, l).
For the other direction let K ≡ F in Lring and the metric value groups on K and
F shall be denoted by ΓK and ΓF , the residue fields by kK and kF . As K and F
are metric valued fields it follows that the following holds in Lring:

kK((tΓK )) ≡ K ≡ F ≡ kF ((tΓF )).

Now, we can invoke Lemma 2.15 and directly conclude that K and F are in the
same class C(∆, l). □

As we have already mentioned, the discrete case is considerably easier. Given a
metric valued field K, let us define the discreteness gap dgK of K to be dgK :=
supx∈K, |x|<1 |x|. Then K is trivially valued if and only if dgK = 0, K is discretely
valued if and only if 0 < dgK < 1, and K is non-trivially valued with dense value
group if and only if dgK = 1.

Proposition 4.7. Let K,F be metric valued fields of equicharacteristic 0 with
discrete valuation. Then KP1 ≡ FP1 if and only if dgK = dgF and kK ≡ kF .

1Let us sketch an elementary proof of the fact that Q ̸≡ Q((tR
+

)). One may prove by elementary

arguments that there are no a, b ∈ Q\{0} such that 1+a3 = b3. On the other hand, the polynomial

P (X) := X3 − (1 + t1/2) has a solution in Q((tR
+

)), by Hensel’s Lemma.
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Proof. We only sketch the argument and leave the details to the reader. The
discreteness gap is determined by the theory of a metric valued field. Moreover, in
discrete metric valued fields the residue field is interpretable as an Lring- structure.
This proves ”⇒”. For ”⇐”, note that in the discrete case Theorem 3.6 works
similarly (with trivial infinitesimal valuation and exact same value group in the
ultraproduct). Then we can conclude for example by applying Lemma 5.1 on some
isomorphic ultrapowers. □

5. Proof of the main theorem

The first goal is to prove a transfer for elementary equivalence of valued fields
as classical logic structures to metric valued fields.

Lemma 5.1. Let (K1,Γ1, k1) and (K2,Γ2, k2) be complete valued fields, and let
αj : Γj ↪→ (R+, ·) be embeddings, for j = 1, 2. Let σ : K1

∼= K2 be an isomorphism
of valued fields such that the induced isomorphism σ̃ : Γ1

∼= Γ2 satisfies α2 ◦ σ̃ = α1.
Then σ induces an isomorphism σme : K1P1 ∼= K2P1 of metric structures, where
the metrics are induced by the embeddings α1 and α2.

Proof. Clear. □

Proposition 5.2. If two metric valued fields of equicharacteristic 0 have (full)
value group (R+, ·) and are elementarily equivalent as classical logic structures in
Lval, then their projective lines are elementarily equivalent as metric structures.

Proof. Let K1 := (K1,Γ1, k1) with α1 : Γ1
∼= (R+, ·) and K2 := (K2,Γ2, k2) with

α2 : Γ2
∼= (R+, ·) be metric valued fields of equicharacteristic 0 with full value group.

Assume that K1 and K2 are elementarily equivalent as classical logic structures in
Lval.

The idea is to use the Keisler-Shelah Theorem to construct an isomorphism
between classical logic ultrapowers of K1 and K2 that allows us to apply Lemma 5.1.
To do so we will work in the language Lc-val and choose constants cj ∈ Γj for j = 1, 2
such that 0 < α1(c1) = α2(c2) < 1. As (Γ1, ·, <, c1) ∼= (Γ2, ·, <, c2), in particular we
have (Γ1, c1) ≡ (Γ2, c2). Thus, K1 ≡ K2 in Lc-val by Theorem 2.5.

Now by Keisler-Shelah we find an ultrafilter D on an index set I such that there
is an isomorphism σcl between classical logic ultrapowers in Lc-val. Let Kme

j denote

the underlying valued field of the metric ultrapowers (
∏
KjP1)me

D for j = 1, 2.
We want to show that σcl induces an Lval-isomorphism σ : Kme

1
∼= Kme

2 fulfill-
ing the conditions of Lemma 5.1, thus inducing an isomorphism σme : Kme

1 P1 ∼=
Kme

2 P1. Using the relation between the classical and metric ultrapowers estab-

lished in Proposition 3.6 it suffices that for the isomorphism σΓ : ∆1 := (
∏

Γ1)
cl
D
∼=

(
∏

Γ2)
cl
D =: ∆2 induced by σcl we have that σΓ(c1) = c2 and σΓ(∆1,fin) = ∆2,fin.

The former is clear, since σcl is an Lc-val-isomorphism. The latter follows from
the former, as, by definition of the constants cj and of ∆j,fin, we have that ∆j,fin

is in both cases given as the smallest convex subgroup of ∆j that contains cj .
Consequently we obtain K1P1 ≡ K2P1 as metric structures in LP. □

Corollary 5.3. If two metric valued fields K1 and K2 are in the same class of the
main theorem, then K1P1 and K2P1 are elementarily equivalent.

Proof. Take a countably incomplete ultrafilter D on an index set I. Then by Propo-
sition 3.10 the ultrapowers Kme

1 and Kme
2 both have (full) value group (R+, ·) and
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their residue fields are elementarily equivalent as classical logic structures in Lring.
Therefore, by the classical AKE-principle (Theorem 2.5), they are elementarily
equivalent as structures in Lval and we can apply Corollary 5.2. Now using  Loś’s
Theorem again, we have in LP that K1P1 ≡ Kme

1 P1 ≡ Kme
2 P1 ≡ K2P1, which

completes the proof. □

To finalize the proof of Theorem 4.4 it now only remains to show that the classes
are indeed elementary. We will invoke Proposition 2.25, hence it suffices to show
that the classes are closed under taking ultraproducts and ultraroots.

Lemma 5.4. The classes defined in the main theorem are closed under taking
ultraproducts.

Proof. Let (Ki)i∈I be a family of metric valued fields from the same class C(∆, l)
in the main theorem, and let D be an ultrafilter on I. As before we denote the
underlying valued field of the metric ultraproduct by (Kme,Γme, kme), and the
classical logic ultraproduct of the family (Ki)i∈I by (K,Γ, k).

If D is countably complete, (Kme,Γme, kme) = (K,Γ, k) by Lemma 3.7(1), so
Kme ∈ C(∆, l) by  Loś’s Theorem. (Note that Kme is unshifted if and only if Ki is
unshifted almost everywhere.)

Assume from now on that D is countably incomplete. Either Ki is unshifted for
almost all i ∈ I or shifted for almost all i ∈ I. First assume the latter. By the

residue shift (Proposition 3.10) we get kme ≡ k((tR
+

)). Since the Ki are almost
everywhere shifted, we infer from  Loś’s Theorem that k ≡ l((t∆)) in Lring. Thus
kme ≡ l((t∆)) in Lring, by Lemma 2.14. Additionally, by Lemma 3.7(2), we get
Γme = (R+, ·), so in particular Γme is divisible, and we conclude that Kme is again
shifted and in the same class C(∆, l) .

Now assume Ki to be unshifted almost everywhere. Then using the residue shift
we obtain kme ≡ l((t∆)) in Lring, and as before we have Γme = (R+, ·), hence
Kme ∈ C(∆, l) in this case as well. □

Lemma 5.5. The classes defined in the main theorem are closed under taking
ultraroots.

Proof. Let K0 = (K0,Γ0, k0) be a metric valued field and D an ultrafilter on some
set. Let K = (K,Γ, k) = (K0)clD in Lval and let (Kme,Γme, kme) be the metric
valued field such that KmeP1 = (K0P1)me

D in LP. Assume that Kme ∈ C(∆, l) for
some generating pair (∆, l). We need to show that K0 ∈ C(∆, l).

If D is countably complete, then (Kme,Γme, kme) = (K,Γ, k) by Lemma 3.7(1).
As K0 ≡ K in Lval, it then follows that K0 ∈ C(∆, l).

From now on D is assumed to be countably incomplete.
First assume that ∆ is divisible. Now, Kme is either shifted or unshifted.
Case 1: Kme is unshifted. By the definition of being unshifted and by the residue

shift, we have

l ≡ kme ≡ k0((tΓ0)).

On the other hand, by definition of a class with respect to a divisible value group,
there is no pair (∆′, l′) with ∆′ non-divisible such that l ≡ l′((t∆

′
)), and there is

no l′ ̸≡ l such that l′((tR
+

)) ≡ l. It follows that Γ0 is divisible and l ≡ k0, proving
that K0 ∈ C(∆, l) in this case.
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Case 2: Kme is shifted. By the definition of being shifted and by the residue
shift, we have

l((t∆)) ≡ kme ≡ k0((tΓ0)).

By Lemma 2.15, either (i) Γ0 ≡ ∆ and k0 ≡ l, or (ii) k0 ≡ l((t∆)) and Γ0 is
divisible, or (iii) l ≡ k0((tΓ0)) and ∆ is divisible. By the definition of being shifted
in C(∆, l) in the case when ∆ is divisible, we have kme ̸≡ l, and so (iii) is impossible
since kme ≡ k0((tΓ0)) by the residue shift. Thus, (i) or (ii) holds, so Γ0 and either

k0 ≡ l or k0 ≡ l((tR
+

)). In both cases, K0 ∈ C(Γ, k) follows.
Now assume that ∆ is not divisible. Then, by Lemma 3.7(2), Kme is necessarily

shifted and we obtain again that

l((t∆)) ≡ kme ≡ k0((tΓ0)).

As ∆ is not divisible, by Lemma 2.15 either Γ0 ≡ ∆ and k0 ≡ l, i.e., K0 ∈ C(∆, l)
unshifted, or Γ0 is divisible and k0 ≡ l((t∆)), i.e., K0 ∈ C(∆, l) shifted. □

6. Metric valued difference fields

In this last section, we will prove Theorem C on the non-existence of a model-
companion for the theory of metric valued difference fields, thus answering a ques-
tion of Ben Yaacov negatively.

Before we get to the proof, we will put our work into a larger context, recalling
some results on isometric valued difference fields in the classical context, where a
model-companion does exist in equicharacteristic 0.

6.1. Isometric valued difference fields in the classical context. An isometric
valued difference field is a valued field (K,ΓK , kK) together with an isomorphism
σ that induces the identity on the value group ΓK . We denote the induced Lring-
automorphism of kK by σ, and we consider isometric valued difference fields in the
language Lval,σ given by Lval augmented by function symbols for σ and for σ.

Let T iso
val be the theory of (henselian) isometric valued difference fields in equichar-

acteristic 0, considered in the language Lval,σ.

Fact 6.1 ( [4]). The theory T iso
val admits a model-compantion V FAiso, which may

be axiomatized as follows: For K = (K,ΓK , kK , σ) |= T iso
val , one has K |= V FAiso if

and only if the following conditions hold:

(1) K has enough constants, i.e., ΓK = ΓFix(σ).
(2) ΓK |= DOAG
(3) (kK , σ) |= ACFA
(4) K is σ-henselian2.

As both DOAG and ACFA are NTP2 theories, it follows from [9, Theorem 4.6]
that any completion of V FAiso is NTP2. Moreover, V FAiso is arithmetically mean-
ingful. Indeed, for p a prime number let vp be the p-adic valuation on Cp, and
let σp be an isometric lift of the Frobenius automorphism on kCp

= Falg
p . Using

Hrushovski’s deep characterization of the non-standard Frobenius automorphism
from [17], one may infer in an elementary way the following result from Fact 6.1.

Fact 6.2. V FAiso = {ϕ Lval,σ-sentence | (Cp, vp, σp) |= ϕ for all p≫ 0}.

2See [4] for the definition of σ-henslianity.
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6.2. Metric valued difference fields. We now get back to the continuous setting.
Again we will work in the projective line rather than in the field itself. We expand
the language LP to a language LP,σ that consists of all of LP together with an
additional function symbol σ having the identity as modulus of uniform continuity
(since σ will be isometric).

Definition 6.3. The theory of MV Fσ (metric valued fields with automorphism)
shall consist of the following set of axioms:

(I) MV F

(II) ∥P (x̄)∥ = ∥P (σ(x̄))∥ for any P (X̄) ∈ Z[X̄]

(III) d(∞, σ(∞)) = 0

(IV ) sup
y

inf
x

∥σ(x) − y∥ = 0

Proposition 6.4. (1) Any metric valued field K endowed with an isometric
automorphism σ̃ gives rise to an LP,σ-structure (KP1, σ) which is a model
of MV Fσ, by setting, for any a = [a◦ : a∗], σ(a) := [σ̃(a◦) : σ̃(a∗)].

(2) Any model of MV Fσ arises in this way, and the models of MV Fσ are
precisely the models of MV F endowed with an automorphism.

Proof. 1. is straight forward.
To prove 2., it is enough to show that for any model (KP1, σ) |= MV Fσ, the

function σ is an automorphism of the metric structure KP1, as it then automatically
comes from an isometric automorphism of K, by the moreover part of Fact 2.32.

By (II) and (III), σ is an isometric self-embedding of KP1, noting that d(x, y) =
∥Pd(x, y)∥, where Pd(x, y) = x− y, whereby (II) forces σ to be an isometry.

Now, σ(KP1) is dense in KP1 by (IV ), and it is a complete metric subspace.
Hence σ(KP1) = KP1, and so σ is surjective. This finishes the proof. □

Definition 6.5. We call a pair (K, σ̃) as above a metric valued difference field.
Further we will reduce to using σ for both the valued field automorphism on K and
the respective structure automorphism on KP1.

The following lemma is the key ingredient in our proof of the non-existence of a
model companion.

Lemma 6.6. Let M = (KP1, σ) |= MV Fσ and a = [a◦ : a∗] ∈ KP1. Consider the
LP,σ-formula

ϕ(x) = inf
y

[∥yx− σ(y)∥ + ((1 − ∥y∥) ∨ (1 − ∥y∗∥))] .

Then the following holds:

(1) If ∥a∥ ≠ 1 or ∥a∗∥ ≠ 1, then ϕM(a) = 1.
(2) If a corresponds to an element a ∈ K× such that a = σ(b)/b for some

b ∈ K× with |b| = 1 (so in particular ∥a∥ = ∥a∗∥ = 1), then ϕM(a) = 0.

Proof. To prove 1. it suffices to show that for every b ∈ KP1 we have

∥ba− σ(b)∥ = ∥b∥ ∨ ∥b∗∥.
Since σ is valuation-preserving, |σ(b)

◦| = |b◦| and |σ(b)
∗| = |b∗| hold, and as by

assumption either |a◦| < 1 or |a∗| < 1 we get, by using the ultra-metric inequality,
∥ba− σ(b)∥ = |b◦a◦σ(b∗) − σ(b◦)b∗a∗| = |b◦| ∨ |b∗| = ∥b∥ ∨ ∥b∗∥.
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The proof of 2. is clear. □

The next aim will be to find for every model M |= MV Fσ and every a ∈ M
such that ∥a∥ = ∥a∗∥ = 1 a model M ⊆ N |= MV Fσ such that ϕ(a) = 0 in N .

Lemma 6.7. Given a metric valued difference field (K,σ) and a ∈ K with |a| = 1
there exists a metric valued difference field (F, σ̃) extending (K,σ) and b ∈ F such
that |b| = 1 and a = σ(b)/b.

Proof. We directly construct (F, σ̃). Let A = K [X] and set

∣∣∣∣ n∑
i=0

cXi

∣∣∣∣ = max
0≤i≤n

|ci|

for any such polynomial. Further let σ̃ ↾K= σ and σ̃

(
n∑

i=0

cXi

)
=

n∑
i=0

σ(c)aiXi.

The metric valuation we obtain on K(X) is the Gauss extension of K. Let F be
the completion of (K(X), |·|). Then σ̃ extends to an isometric automorphism of F .
Moreover, σ̃(X)/X = a and |X| = 1, which completes the proof. □

Theorem 6.8 (Theorem C). Fix any (a, b) ∈ {(0, 0), (0, p), (p, p) | p prime}. Then
the theory MV F(a,b),σ does not have a model-companion.

Proof. Assume otherwise and let T denote the theory of the model companion.
Since MV F(a,b),σ is an inductive theory, it admits existentially closed models, and
the models of T are precisely the existentially closed models of MV F(a,b),σ.

Let now M = (KP1, σ) be an existentially closed model of MV Fσ.

Claim.

(1) The value group ΓK is a dense subgroup of R+.
(2) For any a ∈ KP1 with ∥a∗∥ = ∥a∥ = 1 one has ϕM(a) = 0.

Indeed, it easy to see that every metric valued difference field extends to an
algebraically closed non-trivially valued one, so in particular to one with value
group a dense subgroup of R+. Combining Lemma 6.7 with Lemma 6.6(2), we
obtain the second assertion, thus proving the claim.

We now consider the partial type over ∅ given by

π(x) := {ϕ(x) = 1} ∪ {(1 − ∥x∥) ∨ (1 − ∥x∗∥) ≤ 1/n : n ∈ N>0}.

Then π is finitely satisfiable in M by Lemma 6.6(1) and the first part of the claim.
Thus, in some elementary extension N of M there exists a |= π. As N |= T ,
in particular N is existentially closed. But, in N , we have ∥a∗∥ = ∥a∥ = 1 and
ϕ(a) = 1, contradicting the second part of the claim. □
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