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We study metric valued fields in continuous logic, following Ben Yaacov's approach, thus working in the metric space given by the projective line. As our main result, we obtain an approximate Ax-Kochen-Ershov principle in this framework, completely describing elementary equivalence in equicharacteristic 0 in terms of the residue field and value group. Moreover, we show that, in any characteristic, the theory of metric valued difference fields does not admit a model-companion. This answers a question of Ben Yaacov.

Introduction

In [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF] Ben Yaacov introduced a formalism to consider certain valued fields, called metric valued fields, as structures in continuous logic, namely complete valued fields with value group embedded in the group (R + , •). Given a metric valued field K, for technical reasons Ben Yaacov associates to it a continuous logic structure KP 1 with base set the projective line over K. Still in [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF], he further established a quantifier elimination result for the theories of (projective lines over) algebraically closed and of real closed metric non-trivially valued fields.

In this article, we will deepen the study of metric valued fields in this context. Naturally the question arises, whether there exists a connection between residue field and value group of a metric valued field in equicharacteristic 0 and its elementary (continuous logic) theory, similarly to the Ax-Kochen-Ershov (AKE) principle in the classical context. This question is non-trivial since in general the residue field of K is not interpretable in the continuous logic structure KP 1 and the value group is directly given by the metric. Consequently, we not only have to investigate to which extent the elementary theories of residue field and value group determine the elementary theory of the metric valued field but also vice-versa, unlike in the classical context. In our analysis, we restrict ourselves mainly to the case of equicharacteristic 0 metric valued fields with dense (in (R + , •)) value group, as non-dense metric valued fields resemble classical logic structures.

As our main result, we obtain an approximate AKE principle, showing that the elementary theory of a metric valued field of equicharacteristic 0 with dense value group determines and is determined by the elementary theories of its residue field and value group, up to what we will call a residue shift. For this, we introduce the classes C(∆, l). The idea is that for countably incomplete metric ultrapowers of metric valued fields as above the residue field carries an infinitesimal valuation and the potentially changing elementary theory of the residue field is still controllable since this infinitesimal valuation is determined up to elementary equivalence.

We call a pair (∆, l), consisting of a field l of characteristic 0 and a regular dense (non-trivial) ordered abelian group ∆, a generating pair if either (i) ∆ is not divisible or if (ii) ∆ is divisible and l ̸ ≡ l ′ ((t ∆ ′ )) in L ring for any such pairs (∆ ′ , l ′ ) with ∆ ′ non-divisible or with ∆ ′ divisible and l ̸ ≡ l ′ (see Definition 4.1). Given a generating pair (∆, l) we define the class C(∆, l) to consist of all metric valued fields K = (K, Γ K , k K ) that belong to one of the following cases:

• Unshifted: ∆ ≡ Γ K and k K ≡ l.

• Shifted:

Γ K ≡ R + and k K ≡ l((t ∆ )) where k K ̸ ≡ l if ∆ ≡ R + .
Now, the main result reads as follows.

Theorem A (Theorem 4.4). Let K, F be metric valued fields of equicharacteristic 0 with dense value groups. Then the following holds:

(1) K belongs to a uniquely (up to elementary equivalence) determined class C(∆, l) of the above form. (2) KP 1 and F P 1 are elementarily equivalent if and only if they are in the same class C(∆, l) for some generating pair (∆, l).

To establish this result, a key tool will be to relate the metric ultrapowers of metric valued fields to their classical logic counterparts. We will build on the fact, that the metric value group is always archimedean and hence regular in the sense of [START_REF] Robinson | Elementary properties of ordered abelian groups[END_REF]. Moreover, due to a result of Hong [START_REF] Hong | Definable non-divisible henselian valuations[END_REF] (building on Koenigsmann [START_REF] Koenigsmann | Elementary characterization of fields by their absolute Galois group[END_REF]), the valuation is then definable (in classical logic) in the non-divisible case. As a consequence of our main theorem, we can retrieve the following as a corollary, showing that despite the existence of the valuation and its presence as the underlying metric, elementary equivalence in the continuous context in the end reduces to elementary equivalence in the language L ring .

Theorem B (Corollary 4.6). Let K, F be metric valued fields of equicharacteristic 0 with dense value groups. Then KP 1 ≡ F P 1 if and only if K ≡ F in L ring .

The model theory of fields enriched with an automorphism proved to be an interesting object of study leading to striking applications, e.g., in diophantine geometry [START_REF] Hrushovski | The Manin?Mumford conjecture and the model theory of difference fields[END_REF] and in algebraic dynamics [START_REF] Chatzidakis | Difference fields and descent in algebraic dynamics[END_REF][START_REF] Medvedev | Invariant varieties for polynomial dynamical systems[END_REF]. The theory of difference fields (fields endowed with an automorphism) admits a model-companion ACF A, a simple unstable theory which has been developed in fundamental work by Chatzidakis-Hrushovski [START_REF] Chatzidakis | Model theory of difference fields[END_REF] and which lies at the heart of these applications.

By a classical result of A. Robinson, the theory ACV F of algebraically closed non-trivially valued fields is the model-companion of the theory of valued fields in classical logic. Ben Yaacov obtained the analogous result in the metric setting. While all completions of ACV F are NIP and unstable, the completions of the model-companion ACM V F of the theory of metric valued fields are stable.

By [START_REF] Kikyo | The strict order property and generic automorphisms[END_REF] the theory of valued fields with an automorphism does not admit a modelcompanion, even when restricted to equicharacteristic 0. Although, by requiring the induced automorphism on the value group to be the identity, one may overcome this. This theory does admit a model-companion in equicharacteristic 0, by work of Bélair-Macintyre-Scanlon [START_REF] Bélair | Model theory of the Frobenius on the Witt vectors[END_REF], whose completions are N T P 2 , as shown in [START_REF] Chernikov | Valued difference fields and NTP 2[END_REF].

Ben Yaacov asked in 2018 whether the theory of (projective lines over) metric valued fields in equicharacteristic 0, endowed with an isometric automorphism, admits a model-companion, which is a very natural question given the results we mentioned. If the model-companion existed, it would be a candidate for a natural continuous-logic example of a simple unstable theory. In our paper, we answer this question. Rather surprisingly, we show that a model-companion does not exist in the continuous context. Concretely, we obtain the following result.

Theorem C (Theorem 6.8). Fix any (a, b) ∈ {(0, 0), (0, p), (p, p) | p prime}. Then the theory of metric valued difference fields of characteristic (a, b) does not have a model-companion.

The key idea behind the proof is, that whereas in the context without automorphism the phenomenon of the residue shift is controllable, the interaction of residue shift and automorphism is not.

Structure of the article. In Section 2 we first recall some facts from the classical model theory of valued fields and then focus on regular (ordered) abelian groups. Here, we present Hong's definability result and deduce the consequences we will use in the proof of the main theorem. Further we give an introduction to the continuous logic used and to Ben Yaacov's formalism to handle metric valued fields in continuous logic. In Section 3 we investigate ultraproducts of metric valued fields and obtain what we call the residue shift. In Section 4 we state the main theorem together with some examples, while Section 5 is devoted to its proof. Finally, in Section 6, we prove Theorem C.
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Preliminaries

2.1. Notation and Prerequisites. We will briefly recall some notations and results from the model theory of valued fields. For an in-depth treatment of valued fields we refer the reader to [START_REF] Engler | Springer Monographs in Mathematics[END_REF]. As we will later work in a metric context the valuations will be written mutliplicatively throughout the paper. Definition 2.1. Let K be a field. Then (K, v) is called a valued field if v : K → Γ ∪ {0} is a valuation map (or simply valuation), i.e., we have that v(x) = 0 if and only if x = 0 and further v(xy) = v(x) • v(y) and v(x + y) ≤ max{v(x), v(y)} holds for all x, y ∈ K. Here, Γ = (Γ, •, 1, <) is required to be an ordered abelian group with 0 < Γ and it will be called the value group. Further,

O v := {x ∈ K | v(x) ≤ 1} is the valuation ring of K with maximal ideal m v := {x ∈ K | v(x) < 1}.
The quotient Ov /mv is called the residue field of K, mostly denoted by k, k v or k K . We write res : O v → k for the projection which is called the residue map. Definition 2.2. Given fields K and k, a place pl : K → k ∪ {∞} is a surjective map with pl(1) = 1 such that pl(x + y) = pl(x) + pl(y) and pl(xy) = pl(x)pl(y) hold whenever they are defined using the conventions that ∞+a

= ∞ = ∞+∞ = a+∞ for all a ∈ k and ∞ • a = ∞ = ∞ • ∞ = a • ∞ for all a ∈ k × . The expressions ∞ • 0 and 0 • ∞ are not defined.
Remark 2.3. Recall that there is a 1:1-correspondence between valuation rings of a field K and valuations of K up to equivalence. Concretely, a valuation v on K gives rise to the valuation ring O v , and a valuation ring O determines a valuation v with values in the abelian group K × /O × ordered by setting xO × ≤ yO × whenever xy -1 ∈ O, where v is defined on K × by v(x) := xO × and v(0) := 0. Moreover we have the following connection between places and valuations: A valuation v : K → Γ with residue map res :

O v → k determines a place pl v : K → k ∪ {∞} by setting pl v (x) = res(x) if x ∈ O v and pl v (x) = ∞ otherwise.
On the other hand given a place pl : K → k we can deduce a corresponding valuation by setting pl -1 (k) to be the valuation ring with maximal ideal pl -1 ({0}).

Recall that a valued field (K, Γ

K , k K ) is of equicharacteristic 0 (resp. p) if char(K) = 0 = char(k K ) (resp. char(K) = p = char(k K )). If char(K) = 0 but char(k K ) = p for some prime p one says K is of mixed characteristic (0,p).
Definition 2.4. The language L val consists of a sort VF for the main field in the language of rings L ring , a sort VG for the value group in L og ∪ {0}, the language of ordered groups with a constant symbol for 0 and a sort RF for the residue field in L ring again. Furthermore L val contains function symbols v : VF → VG and Res : VF 2 → RF. In a valued field v shall be interpreted as the valuation and Res(x, y) := res(xy -1 ), if 0 < v(x) ≤ v(y), 0, otherwise.

The theory of henselian valued fields of equicharacteristic 0 (with the above interpretations) in L val shall be denoted by T val . Moreover the language L c-val shall consist of an additional constant symbol c in the value group sort and T c-val shall contain an additional axiom stating that neither c is the identity element of the value group, nor c = 0. Now we state the so-called AKE principle which will play a significant role throughout this paper. It was first obtained by Ax and Kochen [START_REF] Ax | Diophantine problems over local fields[END_REF][START_REF] Ax | Diophantine problems over local fields. II. A complete set of axioms for p-adic number theory[END_REF][START_REF] Ax | Diophantine problems over local fields. III. Decidable fields[END_REF] and Eršhov [START_REF] Eršov | On the elementary theory of maximal normed fields[END_REF] independently. Note that the statement for L c-val can be easlily obtained from the statement in L val using the pure stable embeddedness of the value group. Theorem 2.5. Let K = (K, Γ K , k K ) and F = (F, Γ F , k F ) be henselian valued fields in equicharacteristic 0. Then the following holds in L val (resp. L c-val ):

K ≡ F if and only if k K ≡ k F and Γ K ≡ Γ F .

Regular valuations.

Value groups of metric valued fields will be subgroups of R + = (R + , •, 1, <) and consequently archimedean ordered abelian groups. While archimedeanity itself is not axiomatizable in classical discrete model theory one can consider a larger class of groups called regular ordered abelian groups. This class was introduced by A. Robinson and Zakon in [START_REF] Robinson | Elementary properties of ordered abelian groups[END_REF] and further elaborated in [START_REF] Zakon | Generalized archimedean groups[END_REF]. It is indeed an elementary class.

Returning to fields, it is in general an interesting question to ask when the existence of a (henselian) valuation already implies the definability of this valuation in the language L ring , i.e., that the valuation ring is a definable set. When determining the complete theory of a metric valued field in terms of its residue field and value group we will later often deal with the case of a residue field that itself carries a valuation with regular value group. In order to capture this valuation we will make use of a definability result as given by Hong [START_REF] Hong | Definable non-divisible henselian valuations[END_REF] [START_REF] Krapp | Ordered fields dense in their real closure and definable convex valuations[END_REF][START_REF] Robinson | Elementary properties of ordered abelian groups[END_REF][START_REF] Zakon | Generalized archimedean groups[END_REF]). For an ordered abelian group G the following are equivalent:

(1) G is regular.

(2) G is elementarily equivalent to some archimedean ordered abelian group.

(3) For any prime number p and any infinite convex subset A ⊆ G there is an element a ∈ A such that a = p • b for some b ∈ G. If we assume in addition that G is dense, then the above statements are moreover equivalent to the following:

(4) G is dense in its divisible hull.

Fact 2.8 ( [START_REF] Robinson | Elementary properties of ordered abelian groups[END_REF]).

(1) All regular discrete ordered abelian groups are elementarily equivalent to (Z, +, <).

(2) Two non-trivial regular dense ordered abelian groups G and H are elementarily equivalent if and only if for any prime number p we have that both |G/pG| and |H/pH| are infinite or |G/pG| = |H/pH| holds. In particular a regular ordered abelian group is elementarily equivalent to any of its non-trivial convex subgroups.

As stated in [START_REF] Hong | Definable non-divisible henselian valuations[END_REF] the following result follows for the equicharacteristic 0 case already from a result of Koenigsmann in [START_REF] Koenigsmann | Elementary characterization of fields by their absolute Galois group[END_REF]. Fact 2.9 ( [15, Theorem 4]). For any prime number p there is a parameter-free L ring -formula ψ p (x) such that for any field K and any henselian valuation v on K with regular dense value group Γ v which is not p-divisible, one has ψ p (K) = O v , i.e., the valuation v is defined by ψ p (x).

We will use several times the following fact from general valuation theory. We assume the following result to be well-known but since we could not find it in the literature we will give a proof. [START_REF] Engler | Springer Monographs in Mathematics[END_REF]Lemma 2.3.1] we have w = π •v, where π : Γ v ↠ Γv /C = Γ w for some convex subgroup C ⊆ Γ v . If C were non-trivial, Γ w would be divisible by regularity of Γ v , contradicting the assumptions. Now assume k v and k w are both separably closed, thus algebraically closed since they are of characteristic 0 by assumption. If Γ v and Γ w are not p-divisible for a common prime p, then O v and O w are defined by the same parameter-free formula, by Theorem 2.9, whence O v = O w . Otherwise let p be a prime such that Γ v is p-divisible but Γ w is not. From the latter we infer that not every element of K is a p-th power. On the other hand, using the former and the fact that k v is algebraically closed, an easy application of Hensel's Lemma yields that every element of K is a p-th power. This contradiction completes the proof. □ Corollary 2.12. Let K, F be fields such that K ≡ F in L ring . If there is a henselian valuation v on K with non-divisible regular dense value group Γ v and residue field k v of characteristic 0, then there is exactly one henselian valuation w on F with non-divisible regular dense value group Γ w and residue field k w of characteristic 0 and we have

Γ v ≡ Γ w and k v ≡ k w .
Proof. Fact 2.9 yields that the valuation v is parameter-free definable whence F has a valuation w similarly defined. The uniqueness directly follows from Proposition 2.11. Furthermore, by the interpretability of the residue field and of the value group, we get

k v ≡ k w and Γ v ≡ Γ w . □
We proceed with some further observations that will prove useful later on.

Notation 2.13. Given a field k and an ordered abelian group Γ we denote by k((t Γ )) the Hahn-series field with respect to k and Γ. If not explicitly stated otherwise ≡ will denote elementary equivalence in L ring for fields and in L og for ordered groups.

Note that, when working with Hahn-series fields, one usually uses the additive notation for valuations. Since we use the multiplicative notation, we get, e.g.,

t 1 = 1 ∈ k((t Γ ))
. This abuse of notation should not lead to any confusion. Lemma 2.14. Let Γ be a non-trivial regular ordered abelian group (this includes divisible) and k a field of characteristic 0. Then for any field K which is elementarily equivalent to k((t Γ )) in L ring , the following holds in L ring :

k((t Γ )) ≡ K((t R + )).
Proof. By the AKE principle, we may assume that K = k((t Γ )). There is a natural henselian valuation v on k((t Γ ))((t R + )) with value group Γ × R + equipped with the anti-lexicographical order. But then (Γ × R + )/Γ ∼ = R + is divisible and Γ is regular by definition and convex in the regular group Γ × R + so by Fact 2.8 it follows that Γ × R + ≡ Γ. We apply the AKE principle and obtain

k((t Γ )), Γ, k ≡ k((t Γ ))((t R + )), Γ × R + , k
in the language of valued fields L val , so in particular in L ring . □ Lemma 2.15. Let k and k ′ be fields of characteristic 0, and let Γ and Γ ′ be nontrivial regular dense ordered abelian groups.

If k((t Γ )) ≡ k ′ ((t Γ ′ )) in L ring , then (i) Γ ≡ Γ ′ and k ≡ k ′ , or (ii) k ′ ≡ k((t Γ )) and Γ ′ is divisible, or (iii) k ≡ k ′ ((t Γ ′ )) and Γ is divisible.
Proof. We may find, e.g., by the Keisler-Shelah Theorem, a common field extension K of k((t Γ )) and k ′ ((t Γ ′ )) and henselian valuations v and v ′ on K such that

( K, v) ≽ L val k((t Γ )) and ( K, v ′ ) ≽ L val k ′ ((t Γ ′ )). Note that Γ ≡ Γ v and Γ ′ ≡ Γ v ′ ,
analogously for the residue fields involved.

Case 1: Γ and Γ ′ are both non-divisible.

Then O v = O v ′ by Proposition 2.11, so (i) holds.
Case 2: Both Γ and Γ ′ are divisible. In particular, it follows that Γ ≡ Γ ′ . If K is algebraically closed, so are k v and k v ′ , and thus (i) holds. Otherwise, k v and k v ′ are not separably closed, so v and v ′ are comparable by Fact 2.10.

If O v = O v ′ , we are in case (i). If O v ⊊ O v ′ , there is a convex subgroup (0) ⊊ C ⊊ Γ v such that Γ v ′ ∼ = Γ v /C, and we get k ′ ≡ k v ′ ≡ k v ((t C )) ≡ k((t Γ )), so (ii) holds. Similarly, one shows that (iii) holds if O v ⊋ O v ′ .
Case 3: Exactly one of Γ ′ and Γ is divisible. W.l.o.g. we may assume that Γ ′ is divisible and Γ is not. Then K is not algebraically closed, so k ′ ≡ k v ′ is not separably closed (by the AKE principle, as k ′ is of characteristic 0), and thus v and v ′ are comparable by Fact 2.10. As in Case 2, we infer that Γ

v ′ ∼ = Γ v /C for some convex subgroup (0) ⊊ C ⊊ Γ v , as Γ v ∼ = Γ v ′ /C ′ is impossible in this case. So again (ii) holds. □ 2.3. Continuous Logic.
In the following we will very briefly recall some notions from continuous logic but in general the reader shall be referred to [START_REF] Ben Yaacov | Model theory for metric structures[END_REF] which will also be the main source for the rest of this section.

Notation 2.16. A continuous logic language consists of non-logical symbols for predicates, functions and constants where the first two are all equipped with a fixed arity and a modulus of uniform continuity. Technically speaking, the non-logical part of the language also has to contain a positive real number D which denotes an upper bound on the diameter of structures in this language and for each predicate P a closed interval I P where P takes its values. Throughout this text we will always assume D = 1 and I P = [0, 1] for any P .

As logical symbols we have a symbol for the metric d(x, y) treated in a similar way as the equality symbol = in classsical model theory, two quantifiers sup and inf, as well as a set of connective symbols for the continuous functions u :

[0, 1] n → [0, 1].
Note that in general we do not have to allow the whole set of continuous functions u : [0, 1] n → [0, 1] since it will be enough to uniformly approximate formulas. We can even restrict ourselves to using finitely many connectives. See [START_REF] Ben Yaacov | Model theory for metric structures[END_REF]Chapter 6] for a discussion of this topic.

Notation 2.17. Given a continuous logic language L we define an L-prestructure to be a pseudo-metric space (M 0 , d 0 ) of diameter ≤ 1 with interpretations of the functions, predicates and constants from L. Here, each constant shall be interpreted by an element of M 0 . Furthermore, each function symbol f with arity n shall be interpreted by a uniformly continuous map M n 0 → M 0 having the modulus of uniform continuity as specified by f . Finally, each predicate symbol P with arity m shall be interpreted by a uniformly continuous function M m 0 → [0, 1] with modulus of uniform continuity as specified by P . The associated L-structure will then be the completion of the quotient metric space of the prestructure where the interpretations of predicates and functions are in such a way that they extend those on the quotient metric space and are continuous. Hence, those interpretations are uniquely determined.

In the following we will denote by M, N the underlying metric space of Lstructures M, N and often we will even identify M with M (or N with N ), i.e., the structure and its underlying metric space might be used interchangeably.

Remark 2.18. All those notions can be easily generalised to multi-sorted structures and respective languages. Also, in a similar fashion as in the classical context we can inductively define terms, formulas, etc. and many concepts generalise to this setting. Especially, we can note that the continuous setting indeed includes the classical framework using the metric defined by d(x, y) := 0 if x = y and d(x, y) := 1 otherwise and restricting predicate values to the set {0, 1}.

However, some concepts as definability (of sets) might not generalize completely intuitively at first glance. Again, for a full treatment we refer to [START_REF] Ben Yaacov | Model theory for metric structures[END_REF]Chapter 9]. Definition 2.19 ( [6, 9.1 and 9.16]). Given a continuous logic L-structure M, a subset A ⊆ M and a uniformly continuous function P : M n → [0, 1] we say that P is definable in M over A if there is a sequence (ϕ n (x)) n∈N of L(A)-formulas such that the interpretations ϕ M n (x) converge to P (x) uniformly on M n . In this case we call P a definable predicate (over A).

A closed set D ⊆ M n is a definable set in M over A if the distance (predicate) dist(x, D) is definable in M over A.
Next, we will focus on the ultraproduct construction in the continuous logic setting, namely metric ultraproducts. Metric ultraproducts have been studied and proved useful in several applications outside of model theory as well, for example in the context of Banach spaces [START_REF] Dacunha-Castelle | Application des ultraproduits à l'étude des espaces et des algèbres de Banach[END_REF] or in metric geometry in the build-up to a proof of Gromov's famous theorem on groups of polynomial growth [START_REF] Van Den Dries | Gromov's theorem on groups of polynomial growth and elementary logic[END_REF]. We will give a short introduction to ultraproducts in continuous logic stating some definitions and results from [START_REF] Ben Yaacov | Model theory for metric structures[END_REF]Chapter 5]. Later we will deal with metric ultraproducts and classical logic ultraproducts at the same time. Thus, we will distinguish between them and label them either by me or by cl. Notation 2.20. Let D be an ultrafilter on the set I, X a topological space and let (x i ) i∈I be a sequence in X. Recall that x is called an ultralimit of (x i ) i∈I with respect to D, denoted by lim i→D

x i = x, if for every neighbourhood U of x the set {i ∈ I | x i ∈ U} is in D.
Fact 2.21 ( [6, Lemma 5.1]). A topological space X is compact Hausdorff if and only if for every D an ultralimit as above exists and is unique. Given a continuous function f : X → X ′ between topological spaces X and X ′ we have that

lim i→D x i = x implies lim i→D f (x i ) = f (x).
Definition 2.22. Let D be an ultrafilter on I and (M i , d i ) i∈I a family of metric spaces, all with diameter ≤ 1. Then there is pseudo-metric on the cartesian product i∈I M i defined by d(x, y) = lim i→D d i (x i , y i ), where x = (x i ) i∈I and y = (y i ) i∈I . This naturally induces a metric on the quotient space i∈I Mi / ∼ D where x ∼ D y if and only if d(x, y) = 0. This space denoted by me D M i is called the D-ultraproduct of (M i , d i ) i∈I and the corresponding equivalence classes are denoted by ((

x i ) i∈I ) D for (x i ) i∈I ∈ i∈I M i .
Fact 2.23 ( [6, Proposition 5.3]). A metric ultraproduct of uniformly bounded complete metric spaces (as above) is always complete. Now, bearing in mind that in a continuous logic structure we have functions, predicates and constants given as uniformly continuous functions, for a family (M i ) i∈I of metric structures in a given language we can define me D M i , the Dultraproduct of (M i ) i∈I , as a structure over the same language with the underlying space given by the metric space ultraproduct of the underlying metric spaces of the M i and with functions, predicates and constants formed in the following manner:

Let ((M i , d i ) i∈I ) and ((M

′ i , d ′ i ) i∈I
) be families of metric spaces of diameter ≤ 1 and (for a fixed n ≥ 1)

f i : M n i → M ′
i uniformly continuous functions for each i ∈ I such that all have the same modulus of uniform continuity. Then we can define a function f D :

me D M n i → me D M ′ i
that is still uniformly continuous with the same modulus of uniform continuity via:

f D ((x 1 i ) i∈I ) D , . . . , ((x n i ) i∈I ) D = ((f i (x 1 i , . . . , x n i )) i∈I ) D .
(Note that we use here that the D-ultrapower of the real interval [0, 1] can be identified with [0, 1] itself.) We also use that the underlying metric space of me D M i is complete by Fact 2.23.

In the special case that M i = M for all i, we write (M) me D for me D M i , and we call it the D-ultrapower of M.

By induction on the complexity of formulas we obtain the following equivalent of Loś's Theorem in the metric setting. Moreover, the diagonal embedding ∆ : M → (M) me D is elementary. There is also a clean connection between ultraproducts of structures of a given class and the axiomatisability of that class. In addition we state the extension of the Keisler-Shelah Theorem to continuous logic which we will use later.

Fact 2.25 ( [6, Proposition 5.14]). Suppose that C is a class of metric structures for some fixed language. Then C is axiomatisable if and only if C is closed under isomorphisms, ultraproducts and ultraroots. (Here, if N is an ultrapower of some L-structure M, then we call M an ultraroot of N .) Fact 2.26 ( [6, Theorem 5.7]). If M and N are metric structures and M ≡ N , then there exists an ultrafilter D such that (M) me D is isomorphic to (N ) me D . 2.4. Metric valued fields. In the following we will recall the basic notions from [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF] which will allow us to consider certain valued fields as continuous logic structures. Precisely, we will restrict ourselves to metric valued fields. All results and notions in this chapter can be attributed to [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF].

Notation 2.27. A pre-metric valued field is a valued field where the value group is a subgroup of the mutliplicative group of the positive real numbers. Let K be such a field carrying a valuation | • | : K → R ≥0 then this naturally induces a metric on K by d(x, y) := |x -y|. We will sometimes also write a pre-metric valued field as K = (K, Γ, k) together with an ordered group embedding α : Γ → (R + , •).

A metric valued field is a complete pre-metric valued field.

The problem we face if we want to consider a metric valued field as a continuous logic structure is that it is in general unbounded. Moreover, the straight-forward approach of working in a multi-sorted language containing sorts for closed balls of increasing radii does not work as well (see [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF]Proposition 1.2]). We will now briefly present Ben Yaacov's idea to overcome this problem which is to work in the projective line over a metric valued field instead of working in the field itself. To recover the addition and multiplication from the field one uses a purely relational language with predicates for homogeneous polynomials. For the details of this approach and its necessity we refer to [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF].

Notation 2.28. Given a (pre-)metric valued field K, the projective line KP 1 is the quotient K 2 \{0} /K × . For any class we can find a representative (x, y) with |x| ∨ |y| = 1 and thus the elements of KP 1 can be written as the classes [x : y] where |x| ∨ |y| = 1. Note that this is of course not a unique representation since we can always multiply (both x and y) with elements of {z ∈ K | |z| = 1}. In order to simplify computations we will often even assume that our representatives are of the form [x : 1] or [1 : y]. In general, elements of KP 1 shall be denoted by bold letters. Furthermore we fix to write a = [a

• : a * ]. Definition 2.29. Let X = (X 1 , . . . , X n ), X * = (X * 1 , . . . , X * n ) and define Z h [ X] ⊆ Z[ X, X * ]
to be the ring of polynomials which are homogeneous in each pair (X i , X * i ) separately, i.e., polynomials P ( X, X * ) such that for every 1 ≤ i ≤ n there exists r i ∈ N such that for every monomial P S ( X, X * ) of P ( X, X * ) one has deg Xi P S ( X, X * )+ deg X * i P S ( X, X * ) = r i . The homogenisation P h ( X, X * ) ∈ Z h [ X] of a polynomial P ( X) ∈ Z[ X] is then given by P h ( X, X * ) := P ( X/ X * )P * ( X * ) where P * ( X * ) = ( X * ) deg X P and deg X P = (deg X1 P, . . . , deg Xn P ). Definition 2.30 (See [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF]Definition 1.4]). The language L P shall consist of predicates ∥P n (x)∥ for every polynomial P n ( X) ∈ Z[ X]. The arity of ∥P n (x)∥ is n where P n ( X) ∈ Z[X 1 , . . . , X n ]. For any ∥P n (x)∥ the modulus of uniform continuitiy shall be given by the identity. Additionally L P shall contain a constant symbol ∞. 

= ∥a -b∥ = |a • b * -a * b • |.
We will write ∥x * ∥ for the formula d(x, ∞) and ∥P * (x)∥ for Π∥x * i ∥ deg X i P . Note that KP 1 is an L P -structure if and only if K is a metric valued field. Fact 2.32. There is an L P -theory M V F (an explicit set of axioms is given in [5, Definition 1.6]) such that a given L P -structure is a model of M V F if and only if it is (canonically) isomorphic to KP 1 for some metric valued field K.

Moreover, extensions of models of MVF naturally correspond to embeddings of metric valued fields.

Proof. This is proved in [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF]Theorem 1.8]. The moreover part is not explicitly stated in [5, Theorem 1.8], but it easily follows from the proof given there. □ Definition 2.33. The L P -theory of projective lines over metric valued fields of equicharacteristic 0 shall be denoted by M V F 0,0 . Moreover, the theory M V F d 0,0 shall consist of M V F 0,0 together with axioms stating that the value group is dense.

Remark 2.34. The above is indeed axiomatizable in the continuous context by axioms expressing that |p| = 1 for all prime numbers p ∈ N and inf x ∥x∥ -q = 0 for all q ∈ Q ∩ [0, 1].

Ultraproducts and Residue Shift

Now we will turn to metric ultraproducts of models of M V F d 0,0 . The aim is to understand them by the relation to the classical logic ultraproducts of their underlying metric valued fields. The difference between both ultraproducts originates firstly from the fact that in the metric ultraproduct two sequences that are almost everywhere different can still give rise to the same element if the distances converge to zero. Secondly the value group in the metric formalism is bounded in its size, since it stays embedded in (R + , •). Thus, given a sequence x := (x i ) i∈I with |x i | < 1 D-almost everywhere but lim i→D |x i | = 1, the element x will give rise to a new element in the residue field of the metric ultraproduct, whereas it does not in the classical setting. This phenomenon possibly changes the elementary theory of the residue field in the metric ultraproduct. But still this change will turn out to be relatively tame and will be controlled by what we will call the residue shift. Notation 3.1. Throughout the rest of this chapter let I denote some index set and D an ultrafilter on I and x := (x i ) i∈I , y := (y i ) i∈I . For the moment we do not impose any further conditions on the ultrafilter D. However the only case of interest will be that of a countably incomplete (i.e., not closed under countable intersections) ultrafilter as justified by Lemma 3.7. We further fix a family K i of metric valued fields with valuations v i , value groups Γ i ⊆ (R + , •) and residue fields k i . Moreover we denote the embedding Γ i → (R + , •) by α i . Definition 3.2. The metric ultraproduct K me is the underlying metric valued field of the structure ( i∈I K i P 1 ) me D which is the metric ultraproduct of the structures (K i P 1 ) i∈I . We denote its residue field by k me and its value group by Γ me ⊆ (R + , •) and the valuation either by v me or simply by | • |.

To relate K me to its classical logic counterpart we have to fix some notations in the classical setting.

Definition 3.3. Let Γ = ( i∈I Γ i ) cl
D be the classical logic D-ultraproduct taken in the language of ordered groups. In a canonical way, Γ is an ordered subgroup of the classical logic ultrapower

(R + ) cl D of the ordered group R + , with R + ≤ (R + ) cl D diagonally embedded. Let R +
inf be the subgroup of infinitesimals, i.e., the largest convex subgroup ∆ of (R + )

cl D such that ∆ ∩ R + = {1}. Let R +
f in be the the subgroup of finite elements, which is given by the convex hull of

R + in (R + ) cl D . Set Γ inf := Γ ∩ R + inf and Γ f in := Γ ∩ R + f in . Note that Γ inf ≤ Γ f in are convex subgroups of Γ.
Definition 3.4. Let K i be the classical logic L val -structure with the underlying field K i and K := ( i∈I K i ) cl D the classical logic ultraproduct whose underlying field is then given by K := ( i∈I K i ) cl D with valuation v and value group Γ := ( i∈I Γ i ) cl D and residue field k := ( i∈I k i ) cl D . Let Γ inf , Γ f in be defined as above. Moreover, let v : K → Γ /Γ f in be the coarsening of v and K the corresponding residue field with induced valuation v f in : K → Γ f in . Now let vfin : K → Γ f in /Γ inf be the coarsening of v f in and v inf : k → Γ inf the induced valuation on the residue field of vfin . Additionally we set Γ := Γ f in /Γ inf . Lemma 3.5. There is a naturally induced embedding ᾱ : Γ → (R + , •, 1, <), i.e., we can assume Γ ⊆ R + .

Proof. Let α : Γ f in → R + be the standard part map. Then α is a group homomorphism with kernel Γ inf . The induced map ᾱ : Γ → R + is easily seen to preserve <. □ Theorem 3.6. The metric valued field (K me , v me ) is given by ( K, vfin ), in the sense that there is an isomorphism of valued fields f : ( K, vfin ) → (K me , v me ) that moreover induces the identity on ᾱ( Γ).

Proof. We first show that there is a field isomorphism g : K → K me . Given the projection β :

i∈I K i P 1 → K me P 1 we have for z = (z i ) i∈I ∈ i∈I K i P 1 that β(z) = ∞, if lim i→D ∥z * i ∥ = 0. Consequently we obtain a map β : i∈I K i → K me ∪ {∞} with β(x) = ∞ if and only if γ((v i (x i )) i∈I ) > Γ f in
where γ denotes the projection on the equivalence class given by the classical logic ultraproduct. On the other hand consider the sequence

i∈I K i γ -→ K plv --→ K ∪ {∞}
where pl v is the place corresponding to v. It follows from the definitions that pl v •γ and β are homomorphisms on the subring i∈I K i \Z of i∈I K i , where

Z := (pl v •γ) -1 (∞) = β -1 (∞). Moreover we have that pl v •γ(x) = pl v •γ(y) if and only if v(γ(xy -1 )) < 1 in Γ /Γ f in (for γ(x) ∈ O v )
. Now the latter is equivalent to β(x) = β(y) and it follows that K ∼ = K me as fields. It remains to show that vfin and v me define the same valuation on K ∼ = K me . This directly follows from the definitions: Given x ∈ i∈I K i we have

v me (β(x)) = lim i→D |x i | = lim i→D α i (v i (x i )) = α(v f in (pl v •γ(x))) = ᾱ(v f in (pl v •γ(x))).
□ Lemma 3.7. In the above setting, the following holds:

(1) If D is countably complete, then Γ inf is trivial and Γ f in = Γ, and so (K me , Γ me , k me ) = (K, Γ, k), canonically. (2) If D is countably incomplete and the value groups Γ i are dense (and nontrivial) almost everywhere, then {1} ⊊ Γ inf ⊊ Γ f in ⊊ Γ and Γ me = (R + , •).

Proof. We clearly have that Γ inf ⊋ {1} if and only if there is a sequence

(x i ) i∈I for x i ∈ K i such that lim i→D |x i | = 1 but |x i | < 1 almost everywhere.
Let us first prove (2), so we assume that D is countably incomplete and Γ i is dense (and non-trivial) almost everywhere. Then such a sequence exists (see, e.g., [START_REF] Drut | Geometric group theory[END_REF]Lemma 10.59]). Moreover, given any r ∈ R + , as α i (Γ i ) is dense in R + for almost all i, for every n > 0 we find γ n ∈ Γ such that |r -γ n | ≤ 1/n. By ℵ 1saturation of Γ, there is γ ∈ Γ with γ infinitesimally close to r. Then γ ∈ Γ f in and α(γ mod Γ inf ) = r. This shows that Γ me = R + . Saturation also yields Γ f in ⊊ Γ in this case.

To prove (1), we assume that D is countably complete. Then lim i→D |x i | = 1 implies that ∥x i ∥ = 1 almost everywhere (see [START_REF] Drut | Geometric group theory[END_REF]Lemma 10.61]), from which it follows by what we said at the beginning of the proof that Γ inf is trivial. One shows similarly that Γ f in = Γ in this case. The result now follows from Theorem 3.6. □ From now on we assume the ultrafilter D to be countably incomplete if not stated otherwise.

Diagram 3.8. The above proof shows that the metric ultraproduct is given by the bottom line of this commutative diagram where the places are labeled with their corresponding valuations. Moreover it follows from Loś's Theorem and general valuation theory (see, e.g., [START_REF] Engler | Springer Monographs in Mathematics[END_REF]Corollary 4.1.4]) that all valuations occurring in the diagram are henselian.

K k ∪ {∞} k K ∪ {∞} k K k ∪ {∞} v:K→Γ/Γ f in v:K→Γ v inf : k→Γ inf v f in : K→Γ f in vfin : K→Γ f in /Γ inf Remark 3.9.
There is an induced valuation on the residue field of K me , given by v inf : k → Γ inf . We will call it the infinitesimal valuation. Though this valuation exists, it is not captured by the valuation of the metric valued field, in other words, it is not captured by its metric. While this phenomenon leads to a possible change of the elementary theory of the residue field in an ultrapower we can use that the infinitesimal value group has the same elementary theory as the value group of K itself. As this value group is moreover regular it allows us to control the elementary theory of the residue field.

Proposition 3.10. (Residue shift). Let (K i ) i∈I be a family of equicharacteristic 0 metric valued fields, and let D be a countably incomplete ultrafilter on I, such that Γ i ≡ ∆ in the language of ordered groups for almost all i ∈ I and some fixed dense ∆ ⊆ (R + , •). Furthermore, let l ≡ k in L ring . Then K me has value group

Γ me = (R + , •) and residue field k me ≡ l((t ∆ )) in L ring .
Proof. We start by noting that the value group of any metric valued field is regular. Moreover, if it is densely embedded in (R + , •), then it is regular dense. Thus Γ me = (R + , •) by Lemma 3.7(2). As we have seen in Remark 3.9, k me carries an infinitesimal valuation v inf : k me → Γ inf , with residue field k, that is henselian and non-trivial by Lemma 3.7. Moreover, Γ inf ⊆ Γ is a non-trivial convex subgroup and since ∆ ≡ Γ by Loś's Theorem, Γ is regular, so by Proposition 2.8 we get Γ inf ≡ Γ ≡ ∆. Now since v inf is henselian we can apply the classical logic AKEprinciple and obtain that (k me , Γ inf , k) ≡ l((t ∆ )), ∆, l as valued fields and thereby in particular k me ≡ l((t ∆ )) in L ring . □

Main theorem

Definition 4.1. We say that a pair (∆, l) consisting of a field l of characteristic 0 and a regular dense (non-trivial) ordered abelian group ∆ is a generating pair if either (i) ∆ is not divisible or (ii) ∆ is divisible and l ̸ ≡ l ′ ((t ∆ ′ )) in L ring for any such pairs (∆ ′ , l ′ ) with ∆ ′ non-divisible or with ∆ ′ divisible and l ′ ̸ ≡ l.

Definition 4.2. Given a generating pair (∆, l) we define the class C(∆, l) to consist of all metric valued fields K = (K, Γ K , k K ) with dense value group that belong to one of the following cases:

• Unshifted: Γ K ≡ ∆ and k K ≡ l.

• Shifted:

Γ K ≡ R + and k K ≡ l((t ∆ )) where k K ̸ ≡ l if ∆ ≡ R + .
Remark 4.3. We have C(∆, l) = C(∆ ′ , l ′ ) if and only if ∆ ≡ ∆ ′ and l ≡ l ′ for any generating pairs (∆, l) and (∆ ′ , l ′ ).

We now state our main theorem which is a metric version of the Ax-Kochen-Ershov Theorem (later called metric AKE ) as by Remark 4.3 elementary equivalence of two metric valued fields is reduced to elementary equivalence of residue field and value group defining the respective classes. Theorem 4.4 (Theorem A). Let K, F be metric valued fields of equicharacteristic 0 with dense value groups. Then the following holds:

(1) K belongs to a uniquely (up to elementary equivalence) determined class C(∆, l) of the above form. (2) KP 1 and F P 1 are elementarily equivalent if and only if they are in the same class C(∆, l) for some generating pair (∆, l).

Examples 4.5. We will now give several examples of classes C(∆, l) to shed some light on when shifted structures as in Definition 4.2 occur. If ∆ is non-divisible (and, e.g., l is algebraically closed) then the class C(∆, l) consists of unshifted and shifted structures, by the residue shift.

If ∆ is divisible, two different cases can occur. Either C(∆, l) only contains unshifted structures, or it contains both unshifted and shifted ones. The former holds precisely when (∆, l) is a generating pair such that l ≡ l((t R + )). We will call those classes fixed-point classes. Many classes that naturally arise (e.g. all classes with residue field a local field of characteristic 0) are indeed fixed-point classes. But not all classes C(∆, l) with ∆ divisible are fixed-point classes.

• Some fixed-point classes. For the following fields l of characteristic 0, (R + , l) is a generating pair such that C(R + , l) is a fixed-point class:

(1) l = C. The corresponding class is that of all algebraically closed metric non-trivially valued fields of equicharacteristic 0. (2) l = R. The corresponding class is that of all real closed metric nontrivially valued fields, with convex valuation ring. (3) l a finite extension of Q p for some prime p. The corresponding class is that of all p-adically closed metric valued fields, which are elementarily equivalent to l in L ring and such that the metric valuation is non-trivial and a proper coarsening of the p-adic valuation.

(4) l = k((t)), where k is an arbitrary field of characteristic 0. Letting ϕ(x) be an L ring -formula such that ϕ(l) = k[[t]], the corresponding class is that of all metric valued fields, which are elementarily equivalent to l in L ring and such that the metric valuation is non-trivial and a proper coarsening of the valuation defined by ϕ(x). The axiomatizability and completeness of the classes in 1. and 2. follow from Theorem A, but they were already obtained in [START_REF] Yaacov | Model theoretic properties of metric valued fields[END_REF], where the corresponding theories are further investigated. In 4., in order to show that (R + , k((t))) is a generating pair, one may argue as in Case 3 in the proof of Lemma 2.15. We leave the details to the reader.

• Some non-fixed-point classes. For the following fields l of characteristic 0, (R + , l) is a generating pair such that C(R + , l) is not a fixed-point class:

(1) l non-large (e.g., l any number field). Indeed, then l ̸ ≡ l((t R + )), as l((t R + )) is large and being large is first-order axiomatizable in L ring . 1 (We refer to [START_REF] Pop | Little survey on large fields-old & new[END_REF] for results on large fields.) (2) l PAC and non-algebraically closed (e.g., l any pseudofinite field).

Then l is large, but l ̸ ≡ l((t R + )). Indeed, it follows from [14, Theorem 10.14] that l((t R + )) is not PAC, which yields the result since being PAC is first-order axiomatizable in L ring .

Remarkably the statement of the main theorem reduces now to elementary equivalence of metric valued fields seen as classical logic structures in L ring .

Corollary 4.6 (Theorem B). Let K, F be metric valued fields of equicharacteristic 0 with dense value groups. Then KP 1 ≡ F P 1 if and only if K ≡ F in L ring .

Proof. We have to show that K and F are elementarily equivalent in L ring if and only if they are in the same class C(∆, l). If K, F are in the same C(∆, l), then this is a direct consequence of Lemma 2.14, taking into account the definition of C(∆, l). For the other direction let K ≡ F in L ring and the metric value groups on K and F shall be denoted by Γ K and Γ F , the residue fields by k K and k F . As K and F are metric valued fields it follows that the following holds in L ring :

k K ((t Γ K )) ≡ K ≡ F ≡ k F ((t Γ F )).
Now, we can invoke Lemma 2.15 and directly conclude that K and F are in the same class C(∆, l). □

As we have already mentioned, the discrete case is considerably easier. Given a metric valued field K, let us define the discreteness gap dg K of K to be dg K := sup x∈K, |x|<1 |x|. Then K is trivially valued if and only if dg K = 0, K is discretely valued if and only if 0 < dg K < 1, and K is non-trivially valued with dense value group if and only if dg K = 1. Proposition 4.7. Let K, F be metric valued fields of equicharacteristic 0 with discrete valuation. Then KP 1 ≡ F P 1 if and only if dg K = dg F and k K ≡ k F . 1 Let us sketch an elementary proof of the fact that Q ̸ ≡ Q((t R + )). One may prove by elementary arguments that there are no a, b ∈ Q\{0} such that 1+a 3 = b 3 . On the other hand, the polynomial P (X) := X 3 -(1 + t 1/2 ) has a solution in Q((t R + )), by Hensel's Lemma.

Proof. We only sketch the argument and leave the details to the reader. The discreteness gap is determined by the theory of a metric valued field. Moreover, in discrete metric valued fields the residue field is interpretable as an L ring -structure. This proves "⇒". For "⇐", note that in the discrete case Theorem 3.6 works similarly (with trivial infinitesimal valuation and exact same value group in the ultraproduct). Then we can conclude for example by applying Lemma 5.1 on some isomorphic ultrapowers. □

Proof of the main theorem

The first goal is to prove a transfer for elementary equivalence of valued fields as classical logic structures to metric valued fields.

Lemma 5.1. Let (K 1 , Γ 1 , k 1 ) and (K 2 , Γ 2 , k 2 ) be complete valued fields, and let α j : Γ j → (R + , •) be embeddings, for j = 1, 2. Let σ : K 1 ∼ = K 2 be an isomorphism of valued fields such that the induced isomorphism σ :

Γ 1 ∼ = Γ 2 satisfies α 2 • σ = α 1 .
Then σ induces an isomorphism σ me : K 1 P 1 ∼ = K 2 P 1 of metric structures, where the metrics are induced by the embeddings α 1 and α 2 .

Proof. Clear. □ Proposition 5.2. If two metric valued fields of equicharacteristic 0 have (full) value group (R + , •) and are elementarily equivalent as classical logic structures in L val , then their projective lines are elementarily equivalent as metric structures.

Proof.

Let K 1 := (K 1 , Γ 1 , k 1 ) with α 1 : Γ 1 ∼ = (R + , •) and K 2 := (K 2 , Γ 2 , k 2 ) with α 2 : Γ 2 ∼ = (R + ,
•) be metric valued fields of equicharacteristic 0 with full value group. Assume that K 1 and K 2 are elementarily equivalent as classical logic structures in L val .

The idea is to use the Keisler-Shelah Theorem to construct an isomorphism between classical logic ultrapowers of K 1 and K 2 that allows us to apply Lemma 5.1.

To do so we will work in the language L c-val and choose constants c j ∈ Γ j for j = 1, 2 such that 0 < α 1 (c 1 ) = α 2 (c 2 ) < 1. As (Γ 1 , •, <, c 1 ) ∼ = (Γ 2 , •, <, c 2 ), in particular we have (Γ 1 , c 1 ) ≡ (Γ 2 , c 2 ). Thus, K 1 ≡ K 2 in L c-val by Theorem 2.5. Now by Keisler-Shelah we find an ultrafilter D on an index set I such that there is an isomorphism σ cl between classical logic ultrapowers in L c-val . Let K me j denote the underlying valued field of the metric ultrapowers ( K j P 1 ) me D for j = 1, 2. We want to show that σ cl induces an L val -isomorphism σ : K me 1 ∼ = K me 2 fulfilling the conditions of Lemma 5.1, thus inducing an isomorphism σ me : K me 1 P 1 ∼ = K me 2 P 1 . Using the relation between the classical and metric ultrapowers established in Proposition 3.6 it suffices that for the isomorphism σ Γ : ∆

1 := ( Γ 1 ) cl D ∼ = ( Γ 2 ) cl D =: ∆ 2 induced by σ cl we have that σ Γ (c 1 ) = c 2 and σ Γ (∆ 1,f in ) = ∆ 2,f in .
The former is clear, since σ cl is an L c-val -isomorphism. The latter follows from the former, as, by definition of the constants c j and of ∆ j,f in , we have that ∆ j,f in is in both cases given as the smallest convex subgroup of ∆ j that contains c j . Consequently we obtain K 1 P 1 ≡ K 2 P 1 as metric structures in L P . □ Corollary 5.3. If two metric valued fields K 1 and K 2 are in the same class of the main theorem, then K 1 P 1 and K 2 P 1 are elementarily equivalent.

Proof. Take a countably incomplete ultrafilter D on an index set I. To finalize the proof of Theorem 4.4 it now only remains to show that the classes are indeed elementary. We will invoke Proposition 2.25, hence it suffices to show that the classes are closed under taking ultraproducts and ultraroots.

Lemma 5.4. The classes defined in the main theorem are closed under taking ultraproducts.

Proof. Let (K i ) i∈I be a family of metric valued fields from the same class C(∆, l) in the main theorem, and let D be an ultrafilter on I. As before we denote the underlying valued field of the metric ultraproduct by (K me , Γ me , k me ), and the classical logic ultraproduct of the family (K i ) i∈I by (K, Γ, k).

If D is countably complete, (K me , Γ me , k me ) = (K, Γ, k) by Lemma 3.7(1), so K me ∈ C(∆, l) by Loś's Theorem. (Note that K me is unshifted if and only if K i is unshifted almost everywhere.)

Assume from now on that D is countably incomplete. Either K i is unshifted for almost all i ∈ I or shifted for almost all i ∈ I. First assume the latter. By the residue shift (Proposition 3.10) we get k me ≡ k((t R + )). Since the K i are almost everywhere shifted, we infer from Loś's Theorem that k ≡ l((t ∆ )) in L ring . Thus k me ≡ l((t ∆ )) in L ring , by Lemma 2.14. Additionally, by Lemma 3.7(2), we get Γ me = (R + , •), so in particular Γ me is divisible, and we conclude that K me is again shifted and in the same class C(∆, l) . Now assume K i to be unshifted almost everywhere. Then using the residue shift we obtain k me ≡ l((t ∆ )) in L ring , and as before we have Γ me = (R + , •), hence K me ∈ C(∆, l) in this case as well. □ Lemma 5.5. The classes defined in the main theorem are closed under taking ultraroots.

Proof. Let K 0 = (K 0 , Γ 0 , k 0 ) be a metric valued field and D an ultrafilter on some set. Let K = (K, Γ, k) = (K 0 ) cl D in L val and let (K me , Γ me , k me ) be the metric valued field such that K me P 1 = (K 0 P 1 ) me D in L P . Assume that K me ∈ C(∆, l) for some generating pair (∆, l). We need to show that K 0 ∈ C(∆, l).

If D is countably complete, then (K me , Γ me , k me ) = (K, Γ, k) by Lemma 3.7(1). As K 0 ≡ K in L val , it then follows that K 0 ∈ C(∆, l).

From now on D is assumed to be countably incomplete. First assume that ∆ is divisible. Now, K me is either shifted or unshifted. Case 1: K me is unshifted. By the definition of being unshifted and by the residue shift, we have l ≡ k me ≡ k 0 ((t Γ0 )).

On the other hand, by definition of a class with respect to a divisible value group, there is no pair (∆ ′ , l ′ ) with ∆ ′ non-divisible such that l ≡ l ′ ((t ∆ ′ )), and there is no l ′ ̸ ≡ l such that l ′ ((t R + )) ≡ l. It follows that Γ 0 is divisible and l ≡ k 0 , proving that K 0 ∈ C(∆, l) in this case.

Case 2: K me is shifted. By the definition of being shifted and by the residue shift, we have l((t ∆ )) ≡ k me ≡ k 0 ((t Γ0 )).

By Lemma 2.15, either (i) Γ 0 ≡ ∆ and k 0 ≡ l, or (ii) k 0 ≡ l((t ∆ )) and Γ 0 is divisible, or (iii) l ≡ k 0 ((t Γ0 )) and ∆ is divisible. By the definition of being shifted in C(∆, l) in the case when ∆ is divisible, we have k me ̸ ≡ l, and so (iii) is impossible since k me ≡ k 0 ((t Γ0 )) by the residue shift. Thus, (i) or (ii) holds, so Γ 0 and either k 0 ≡ l or k 0 ≡ l((t R + )). In both cases, K 0 ∈ C(Γ, k) follows. Now assume that ∆ is not divisible. Then, by Lemma 3.7(2), K me is necessarily shifted and we obtain again that l((t ∆ )) ≡ k me ≡ k 0 ((t Γ0 )).

As ∆ is not divisible, by Lemma 2.15 either Γ 0 ≡ ∆ and k 0 ≡ l, i.e., K 0 ∈ C(∆, l) unshifted, or Γ 0 is divisible and k 0 ≡ l((t ∆ )), i.e., K 0 ∈ C(∆, l) shifted. □

Metric valued difference fields

In this last section, we will prove Theorem C on the non-existence of a modelcompanion for the theory of metric valued difference fields, thus answering a question of Ben Yaacov negatively.

Before we get to the proof, we will put our work into a larger context, recalling some results on isometric valued difference fields in the classical context, where a model-companion does exist in equicharacteristic 0. 6.1. Isometric valued difference fields in the classical context. An isometric valued difference field is a valued field (K, Γ K , k K ) together with an isomorphism σ that induces the identity on the value group Γ K . We denote the induced L ringautomorphism of k K by σ, and we consider isometric valued difference fields in the language L val,σ given by L val augmented by function symbols for σ and for σ.

Let T iso val be the theory of (henselian) isometric valued difference fields in equicharacteristic 0, considered in the language L val,σ . Fact 6.1 ( [4]). The theory T iso val admits a model-compantion V F A iso , which may be axiomatized as follows: For K = (K, Γ K , k K , σ) |= T iso val , one has K |= V F A iso if and only if the following conditions hold:

(1) K has enough constants, i.e., Γ K = Γ F ix(σ) .

(

) Γ K |= DOAG (3) (k K , σ) |= ACF A (4) K is σ-henselian 2 . 2 
As both DOAG and ACFA are NTP 2 theories, it follows from [9, Theorem 4.6] that any completion of V F A iso is NTP 2 . Moreover, V F A iso is arithmetically meaningful. Indeed, for p a prime number let v p be the p-adic valuation on C p , and let σ p be an isometric lift of the Frobenius automorphism on k Cp = F alg p . Using Hrushovski's deep characterization of the non-standard Frobenius automorphism from [START_REF] Hrushovski | The elementary theory of the Frobenius automorphisms[END_REF], one may infer in an elementary way the following result from Fact 6.1. Fact 6.2. V F A iso = {ϕ L val,σ -sentence | (C p , v p , σ p ) |= ϕ for all p ≫ 0}.

2 See [START_REF] Bélair | Model theory of the Frobenius on the Witt vectors[END_REF] for the definition of σ-henslianity.

6.2. Metric valued difference fields. We now get back to the continuous setting. Again we will work in the projective line rather than in the field itself. We expand the language L P to a language L P,σ that consists of all of L P together with an additional function symbol σ having the identity as modulus of uniform continuity (since σ will be isometric). (2) Any model of M V F σ arises in this way, and the models of M V F σ are precisely the models of M V F endowed with an automorphism.

Proof. 1. is straight forward. To prove 2., it is enough to show that for any model (KP 1 , σ) |= M V F σ , the function σ is an automorphism of the metric structure KP 1 , as it then automatically comes from an isometric automorphism of K, by the moreover part of Fact 2.32.

By (II) and (III), σ is an isometric self-embedding of KP 1 , noting that d(x, y) = ∥P d (x, y)∥, where P d (x, y) = x -y, whereby (II) forces σ to be an isometry. Now, σ(KP 1 ) is dense in KP 1 by (IV ), and it is a complete metric subspace. Hence σ(KP 1 ) = KP 1 , and so σ is surjective. This finishes the proof. □ Definition 6.5. We call a pair (K, σ) as above a metric valued difference field. Further we will reduce to using σ for both the valued field automorphism on K and the respective structure automorphism on KP 1 .

The following lemma is the key ingredient in our proof of the non-existence of a model companion. The metric valuation we obtain on K(X) is the Gauss extension of K. Let F be the completion of (K(X), |•|). Then σ extends to an isometric automorphism of F . Moreover, σ(X)/X = a and |X| = 1, which completes the proof. □ Claim.

(1) The value group Γ K is a dense subgroup of R + .

(2) For any a ∈ KP 1 with ∥a * ∥ = ∥a∥ = 1 one has ϕ M (a) = 0.

Indeed, it easy to see that every metric valued difference field extends to an algebraically closed non-trivially valued one, so in particular to one with value group a dense subgroup of R + . Combining Lemma 6.7 with Lemma 6.6(2), we obtain the second assertion, thus proving the claim.

We now consider the partial type over ∅ given by π(x) := {ϕ(x) = 1} ∪ {(1 -∥x∥) ∨ (1 -∥x * ∥) ≤ 1/n : n ∈ N >0 }.

Then π is finitely satisfiable in M by Lemma 6.6(1) and the first part of the claim. Thus, in some elementary extension N of M there exists a |= π. As N |= T , in particular N is existentially closed. But, in N , we have ∥a * ∥ = ∥a∥ = 1 and ϕ(a) = 1, contradicting the second part of the claim. □

Fact 2 .

 2 10 ( [12, Theorem 4.4.2]). Let v, w be henselian valuations with valuation rings O v , O w on a field K, such that not both k v and k w are separably closed. Then O v and O w are comparable, i.e., O v ⊆ O w or O w ⊆ O v holds.

Fact 2 .

 2 24 ( [6, Theorem 5.4 and 5.5]). Let (M i ) i∈I be a family of L-structures, D an ultrafilter on I and let M = me D M i . Then for every L-formula φ(x 1 , . . . , x n ) and elements a k = a k i i∈I D from M, for k = 1, . . . , n, one has φ M (a 1 , . . . , a n ) = lim i→D φ Mi a 1 i , . . . , a n i .

Definition 2 .

 2 31 (See [5, 1.5]). Let KP 1 be the projective line over a (pre-)metric valued field (K, | • |). We define an L P -(pre-)structure on KP 1 by setting ∞ := [1, 0] and ∥P (ā)∥ := |P h ( ā• , ā * )| as well as d(a, b) :

Definition 6 . 3 .( 1 )

 631 The theory of M V F σ (metric valued fields with automorphism) shall consist of the following set of axioms: ∥P (x)∥ = ∥P (σ(x))∥ for any P ( X) ∈ Z[ Any metric valued field K endowed with an isometric automorphism σ gives rise to an L P,σ -structure (KP 1 , σ) which is a model of M V F σ , by setting, for any a = [a • : a * ], σ(a) := [σ(a • ) : σ(a * )].

Lemma 6 . 6 .

 66 Let M = (KP 1 , σ) |= M V F σ and a = [a • : a * ] ∈ KP 1 . Consider the L P,σ -formula ϕ(x) = inf y [∥yx -σ(y)∥ + ((1 -∥y∥) ∨ (1 -∥y * ∥))] .Then the following holds:(1)If ∥a∥ ̸ = 1 or ∥a * ∥ ̸ = 1, then ϕ M (a) = 1. (2) If a corresponds to an element a ∈ K × such that a = σ(b)/b for some b ∈ K × with |b| = 1 (so in particular ∥a∥ = ∥a * ∥ = 1), then ϕ M (a) = 0. Proof. To prove 1. it suffices to show that for every b ∈ KP 1 we have ∥ba -σ(b)∥ = ∥b∥ ∨ ∥b * ∥. Since σ is valuation-preserving, |σ(b) • | = |b • | and |σ(b) * | = |b * | hold, and as by assumption either |a • | < 1 or |a * | < 1 we get, by using the ultra-metric inequality, ∥ba -σ(b)∥ = |b • a • σ(b * ) -σ(b • )b * a * | = |b • | ∨ |b * | = ∥b∥ ∨ ∥b * ∥.The proof of 2. is clear. □The next aim will be to find for every model M |= M V F σ and every a ∈ M such that ∥a∥ = ∥a * ∥ = 1 a model M ⊆ N |= M V F σ such that ϕ(a) = 0 in N . Lemma 6.7. Given a metric valued difference field (K, σ) and a ∈ K with |a| = 1 there exists a metric valued difference field (F, σ) extending (K, σ) and b ∈ F such that |b| = 1 and a = σ(b)/b. Proof. We directly construct (F, σ). Let A = K [X] and set n i=0 cX i = max 0≤i≤n |c i | for any such polynomial. Further let σ ↾ K = σ and σ )a i X i .

Theorem 6 . 8 (

 68 Theorem C). Fix any (a, b) ∈ {(0, 0), (0, p), (p, p) | p prime}. Then the theory M V F (a,b),σ does not have a model-companion. Proof. Assume otherwise and let T denote the theory of the model companion. Since M V F (a,b),σ is an inductive theory, it admits existentially closed models, and the models of T are precisely the existentially closed models of M V F (a,b),σ .Let now M = (KP 1 , σ) be an existentially closed model of M V F σ .

  .

	Definition 2.6. A non-trivial ordered abelian group G is called
	• discrete if it has a minimal positive element, and dense otherwise;
	• regular, if for any non-trivial convex subgroup H ⊆ G the quotient group
	G/H is divisible;
	• regular discrete (resp. regular dense) if it is regular and discrete (resp.
	regular and dense).
	A valuation with regular value group is called a regular valuation.
	Fact 2.7 ( [

  Proposition 2.11. Let v, w be henselian valuations with valuation rings O v , O w on a field K, both with non-divisible regular dense value groups Γ v , Γ w and residue fields k v , k w of characteristic 0. Then O v = O w already holds. Proof. First assume that k v or k w is not separably closed. Then O v and O w are comparable by Fact 2.10, i.e., O v ⊆ O w or O w ⊆ O v . Let us assume w.l.o.g. that O w ⊆ O v . Then by

  + , •) and their residue fields are elementarily equivalent as classical logic structures in L ring . Therefore, by the classical AKE-principle (Theorem 2.5), they are elementarily equivalent as structures in L val and we can apply Corollary 5.2. Now using Loś's Theorem again, we have in L P that K 1 P 1 ≡ K me 1 P 1 ≡ K me 2 P 1 ≡ K 2 P 1 , which completes the proof. □

			Then by Propo-
	sition 3.10 the ultrapowers K me 1	and K me 2	both have (full) value group (R
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