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Abstract

A recently proposed tuning method for resistive-inductive(RL) shunts is implemented in a com-
mercial finite element (FE) code (ANSYS®). A main result of the paper is therefore the consistent
formulation of the tuning method in terms of variables directly available as solutions in any com-
mercial FE code: The two natural frequencies associated with short- and open-circuit (SC and OC)
electrodes and a modal charge obtained as the electrical SC reaction force. An alternative method is
based on quasi-static solutions with SC and OC electrodes, convenient for both numerical analysis
and experiments. The proposed shunt tuning method is suitable for implementation in any com-
mercial FE software supporting electromechanical analysis and ANSYS® has been used to assess
its accuracy for a piezoelectric smart plate benchmark problem. The method is finally extended to
multiple piezoceramic patches, placed symmetrically on the structure and shunted to a single RL
network, whereby more vibration modes can be effectively controlled for the specific plate problem.

1 Introduction

Piezoelectric transducers attached locally to a host structure enable dissipation of converted
mechanical energy into heat by a supplemental resonant shunt. The latter is often designed as a
series or parallel connection of a resistance (R) and an inductance (L), whereby the effect on the
host structure from the electromechanical transducer corresponds to an inerter-based absorber
[1]. TheRL-shunt circuit was first suggested and experimentally demonstrated by Forward [2].
Actual calibration procedures were subsequently derived first for the series [3] and since for the
parallel shunt circuit [4]. Both calibration methods are based on a single mode representation of
the vibrating host structure and are governed by the resonant frequency of a targeted vibration
form and the capacitive properties of the piezoelectric transducer(s).
Recently, the modal coupling introduced by the presence of asupplemental absorber on the
structure has been represented in [5] via the dynamic characteristics of the other non-resonant
modes around the targeted resonant frequency. It demonstrated the ability of two consistent
correction terms to accurately account for both the flexibility and inertia effects from residual
modes and to adjust the absorber tuning to retain a desired flat plateau in the frequency response
curves. The initial analysis for mechanical tuned mass- andinerter-based absorbers [5] has
recently been extended toRL-shunted piezoelectric transducers [1].
The performance of a piezoelectric transducer is inherently limited by its capacitive property,
which is inversely proportional to the stiffness of an equivalent mechanical absorber. A key fac-
tor in the electromechanical absorber tuning has thereforebeen the accurate representation and
maximization of the effective (or generalized) electromechanical coupling coefficient (EMCC).
The latter represents the apparent electromechanical to modal stiffness ratio and thus the re-
lation between the inherent capacitance, electromechanical coupling and structural resonance.
In [6], a piezoelectric shunt tuning procedure has been derived on the basis of the effective
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EMCC, demonstrating its direct equivalence to a modal EMCC with residual corrections from
non-resonant modes. The effective EMCC is therefore a key parameter for electromechanical
structures; it is commonly defined by the relative difference between (the square of) the asso-
ciated short circuit (SC) and open circuit (OC) frequencies[7]. Consequently, it is a measure
for the level of attainable damping and has therefore been the objective for the design and opti-
mization of piezoelectric transducer systems [8]. It is possible to increase the effective EMCC -
and thereby the attainable damping - by the application of a negative capacitance in the electric
shunt circuit [9]. Unfortunately, this increases the required shunt inductance, which is usually so
large that it must already be realized by active electronic shunt components. Thus, the absorber
realization is often limited by the magnitude of the shunt inductance instead of the inherent
transducer capacitance. However, it has recently been demonstrated that even large inductances
can be obtained by simply winding a copper wire around a magnetic core [10], which substan-
tially improves the feasibility of genuine passive shunts [11]. The present work concerns pure
passive vibration control, in which case the attainable damping is governed by the magnitude of
the transducer capacitance with the magnitude of the EMCC asa limiting factor in the design
of the transducer and the corresponding shunt tuning procedure.
In the present work, a recently proposed shunt tuning method, based on the effective EMCC,
is implemented in the commercial finite element (FE) code ANSYS® [12]. Correction terms,
that represent the interaction with non-resonant modes, are consistently derived from the natu-
ral frequencies obtained by the three eigenvalue problems associated with piezoelectric SC and
OC electrodes and a pure inductive shunt. However, as demonstrated in [13], the solution for
the pure inductive shunt is only needed when the effective EMCC is almost vanishing because
of a very indirect location of the transducer(s). Therefore, in most practical problems, the tun-
ing formulae only rely on the two natural frequencies from the SC and OC limits and a modal
charge that appears as a supplemental reaction force associated with SC electrodes. This tun-
ing procedure is simply and very directly implemented in a commercial FE code. The present
tuning method is implemented in ANSYS®, which supports three-dimensional (3D) coupled
analysis of electromechanical structures, previously used for the assessment of both 2D and
3D evaluations of the effective EMCCs [14]. Furthermore, a full 3D analysis of a CD-ROM
drive base with shunted piezoelectric patches has previously been analyzed in ANSYS® [15],
while the possibility of exporting system matrices and vectors has been further utilized in [16]
to determine optimal shunt calibration and in [17] for optimal patch positioning by optimization
functions written in Matlab. Presently, the implementation of the new shunt calibration method
in ANSYS® is used to perform full 3D analysis of a benchmark problem concerning a simply
supported plate presented in [6] with a single pair of piezoceramic patches and subsequently
with multiple pairs placed symmetrically with respect to the targeted vibration forms. The aim
of the paper is to introduce an adapted calibration procedure that is suitable for use and im-
plementation in commercial FE software and consistently incorporates the effective EMCC to
accurately represent the effects from non-resonant modes in a flexible structure.

2 Finite element formulation

This section is devoted to the notations and general structure of commercial codes with elec-
tromechanical packages, such as the ANSYS® 3D FE model, and is presented to clarify and
support the theory behind the proposed shunt calibration procedure in [6] based on a consistent
use of the effective EMCC.
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2.1 Constitutive equations

The constitutive relations for piezoelectric materials can be written in four different forms,
depending on the choice of independent variables. The most commonly implemented form in
commercial software, such as ANSYS®, is the so-callede-form,

{T} = [CE ]{S} − [e]{E} (1)

{D} = [e]t{S}+ [ǫS ]{E} (2)

where superscriptt denotes the transpose operation. For a full 3D representation, the six engi-
neering stresses in{T} and three electric displacements in{D} are expressed in terms of the
energy conjugated strains in{S} and electric fields in{E} through the SC elastic stiffness ma-
trix [CE ], piezoelectric (stress) coupling coefficients matrix[e] and dielectric blocked constants
matrix [ǫS]. Details about the coupled constitutive relations in Eqs. (1)-(2) can be found in [14].

2.2 Eigenvalue equations

In the following, mechanically unloaded harmonic vibrations are considered by implying gen-
eral harmonic solutions of the form{. . . } = {. . . }eiωt, whereω is the representative angular
frequency whent represents time. Thus, the variational formulation for thecombined elec-
tromechanical structure can be written as

∫

Ω

{δS}t{T}dΩ− ω2

∫

Ω

{δu}tρ{u}dΩ−

∫

Ω

{δE}t{D}dΩ =

∫

Γq

δφqdΓq (3)

where theδ indicates the variational function. In Eq. (3),ρ denotes the material mass density,φ
the electric potential,q the corresponding surface charge density,Ω the material volume andΓq

the area of the electrode where the chargeq is applied or measured.
Upon substitution of the constitutive relations in Eqs. (1)-(2) into the variational equation (3),
the stresses{T} and electric displacements{D} no longer appear explicitly in the variational
equation (3). In the coupled FE formulation, the 3D displacements in the vector{u} are then ap-
proximated by their nodal displacements in{U} via appropriate shape functions, while a similar
interpolation is used to represent the electric potentialφ by the corresponding nodal values in
{ϕ}. The corresponding mechanical strains in{S} and electric fields in{E} are then obtained
by consistent differentiation of the shape functions associated with{U} and{ϕ}, respectively.
In the discrete representation by the nodal degrees of freedom (dofs), the variational equation
(3) contains two coupled equations with system matrices obtained by performing the volume
integration overΩ on the left hand side of Eq. (3) and the integral across the electrode area
Γq on the right hand side. Hereby, the discrete vibrational problem can be represented by this
coupled set of equations

([

KE
U KE

Uϕ

(KE
Uϕ)

t −KǫS

ϕ

]

− ω2

[

M 0
0 0

]){

U
ϕ

}

=

{

0
−Qϕ

}

(4)

where[KE
U ], [K

E
Uϕ] and[KǫS

ϕ ] contain the stiffness components associated with the mechanical
displacements, electromechanical coupling and electric potentials, whileM contains the phys-
ical mass associated with the vibrational inertia of the host structure and piezoelectric patches.
Finally, the vector{Qϕ} contains the applied electric charges from, for example, anexternal
power source or a supplemental shunt.
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When modelling a piezoelectric patch in an FE code, some dofsconstitute the patch elec-
trode, while other dofs describe the pure electromechanical material. A continuous electrode
distributed on the patch is represented by a scalar electricpotential via an equipotential condi-
tion, which in the present case is introduced for thin piezoceramic patches with two in-plane
electrodes. In the case of a single patch or a single system ofconnected patches, only a single
electric potential dof remains unconstrained once a non-wired (interface) electrode is grounded.
Appendix A presents the extension to several independent pairs of symmetrically placed piezo-
ceramic patches. When introducing the equipotential condition, the discrete vibrational problem
(Eq. (4)) can be decomposed into











KE
U K̄E

Uϕ KE
UV

(K̄E
Uϕ)

t −K̄ǫS

ϕ −KǫS

ϕV

(KE
UV )

t −(KǫS

ϕV )
t −CǫS

p



− ω2







M 0 0

0 0 0

0 0 0























U

ϕ

V











=











0

0

−Q











(5)

While [K̄E
Uϕ] and[K̄ǫS

ϕ ] contain contributions associated with the electric potential dofs that are
not part of an electrode, the coupling matrix{KE

UV } represents the apparent stiffness associated
with the dofs representing the patch electrode andCǫS

p is the effective capacitance of the single
network of piezoceramic patches. Thus, the electric potential on the ungrounded non-wired
electrode defines the difference in electric potential or voltageV , whileQ is the corresponding
charge. Finally,{KǫS

ϕV } describes the coupling between the non-electroded and the electroded
dofs. The vibrational problem (Eq. (5)) may therefore be written in the collapsed format

([

KE kE
me

(kE
me)

t −C̄ǫS

p

]

− ω2

[

M 0
0 0

]){

U
V

}

=

{

0
−Q

}

(6)

obtained by eliminating{ϕ} from the second set of equations in Eq. (5). Hereby, the resulting
system matrices and resulting modified capacitance follow as

[KE ] = [KE
U ] + [K̄E

Uϕ][K̄
ǫS

ϕ ]−1[K̄E
Uϕ]

t , C̄ǫS

p = CǫS

p − {KǫS

ϕV }
t[K̄ǫS

ϕ ]−1{KǫS

ϕV } (7)

while the coupling between the mechanical and electric domains is computed as

{kE
me} = {KE

UV } − [K̄E
Uϕ][K̄

ǫS

ϕ ]−1{KǫS

ϕV } (8)

It is found that the compact form of the equations of motion inEq. (6) is equivalent to the system
previously derived in [6] with a slightly different notation for the electromechanical coupling.

3 Electromechanical coupling coefficients

The vibrational problem (Eq. (6)) constitutes the governing equation used in the subsequent
analysis and derivations, in which the mechanical and electric stiffnesses are governed by the
stiffness matrix[KE ] and the resulting capacitance in Eq. (7), while the couplingbetween
the system of mechanical equations and the single electric equation is governed by the elec-
tromechanical coupling vector{kE

me} in Eq. (8). For a specific vibration mode of the structure,
the magnitude of the electromechanical coupling is conveniently represented by the effective
EMCC, basically describing the modal ratio between electrical and mechanical stiffnesses. In
this section, the effective EMCC and its quasi-static approximation are derived and then subse-
quently used to calibrate resonant RL shunt circuits for optimal piezoelectric vibration damping.
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3.1 Effective EMCC

The effective EMCC may be defined as the rate of converted energy by the piezoelectric material
and therefore described by the difference between the modalstrain energies associated with SC
and OC patch electrodes. The modal strain energies are proportional to the eigenvalues from
the SC and OC eigenvalue problems [14], obtained from Eq. (6)with V = 0 andQ = 0,
respectively. For vanishing voltage, the SC eigenvalue problem can be directly written as

(

[KE ]− ω2
j [M ]

)

{U}j = {0} (9)

for a particular vibration modej with circular frequencyωj. In the SC limit, the bottom equation
in Eq. (6) provides the (sensed) modal charge

Qj = −{kE
me}

t{U}j (10)

as a reaction force securingV = 0. This modal charge is easily extracted from a FE solution and
therefore conveniently used to determine the effective EMCC. The SC eigenvalue problem Eq.
(9) conveniently constitutes the foundation of a dynamic analysis, with the mode shape vectors
{U}j normalized to unit modal mass,

{U}tj [M ]{U}j = 1 , {U}tj [K
E ]{U}j = ω2

j (11)

whileω2
j then determines the corresponding modal stiffness.

The opposite OC eigenvalue problem follows from Eq. (6) for vanishing charge (Q = 0), con-
veniently formulated as

(

[KE ] +
1

C̄ǫS
p

{kE
me}{k

E
me}

t − ω̂2
j [M ]

)

{Û}j = {0} (12)

to secure a non-vanishing determinant of the resulting massmatrix. In the corresponding stiff-
ness matrix, the SC contribution[KE ] is then increased by the quadratic projection of the
coupling vector{kE

me} on the modified capacitancēCǫS

p such that the OC circular frequency

ω̂j ≥ ωj. In the following the(̂ )-symbol denotes solutions for the OC configuration.
The calibration procedure is derived for a specific target modej = r with circular SC and OC
frequenciesωr and ω̂r, respectively. The effective EMCC for this mode is referredto asκ2

e,
representing the ability to convert between mechanical andelectrical energy and therefore the
damping attainable by the supplemental shunt. The effective EMCC is presently defined by the
relative difference between the SC and OC circular frequencies squared,

κ2
e =

ω̂2
r − ω2

r

ω2
r

(13)

Pre-multiplying Eq. (9) with{Û}tr and oppositely Eq. (12) with{U}tr, the terms involving[KE]
may be eliminated so that the effective EMCC for the target moder can be expressed as

κ2
e =

{U}tr{k
E
me}{k

E
me}

t{Û}r

ω2
rC̄

ǫS
p {U}tr[M ]{Û}r

(14)

A simpler expression is obtained by assuming{Û}r ≃ {U}r, which is commonly used in the
literature [9]. Thus, the effective EMCC can be estimated as

κ2
0 =

Q2
r

ω2
r C̄

ǫS
p

(15)

whereby evaluation of the OC eigenvalue problem in Eq. (12) can be avoided.
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3.2 Quasi-static EMCC

The approximation in Eq. (15) of the effective EMCC in Eq. (13) has in [6] been demonstrated
to be rather imprecise for flexible host structures. However, a more accurate approximation
can quite simply be obtained by considering two static problems associated with SC and OC
patch electrodes, obtained from Eq. (6) when[M ] = [0] and a mechanical load{f} is applied.
As for the approximative solution in Eq. (15), this quasi-static approach avoids solving the
OC eigenvalue problem in Eq. (12). When applying any external load to the electromechanical
structure with SC patch electrodes the quasi-static solution to the measured charge is found as

Qs = −{kE
me}

t[KE ]−1{f} (16)

with subscripts referring to a sufficiently static limit where the inertia can be neglected. As
the same external load{f} is applied to the structure with OC electrodes, the deflection is
slightly altered due to the electromechanical stiffening.This gives the following solution for the
difference in electric potential between the patch electrodes for the quasi-static behaviour,

Vs =
{kE

me}
t[KE ]−1/C̄ǫS

p

1 + {kE
me}

t[KE ]−1{kE
me}/C̄

ǫS
p

{f} (17)

Note that the inverse of the SC stiffness matrix is obtained explicitly by the Sherman-Morrison
relation [18]. Both the quasi-static solution to the measured chargeQs and the difference in
electric potentialVs are easily accessible reaction and response outputs in any electromechan-
ical FE analysis, from which the quasi-static capacitance of the piezoceramic patches can be
evaluated as

Cs = −
Qs

Vs

= C̄ǫS

p + {kE
me}

t[KE ]−1{kE
me} (18)

This quasi-static capacitanceCs is more precise than the modified capacitanceC̄ǫS

p since it
includes the (static) interaction with the specific host structure by the last term in Eq. (18). This
further implies an improved approximation of the effectiveEMCC (κ2

e ≃ κ2
s) by an expression

similar to Eq. (15)

κ2
s =

Q2
r

Csω2
r

(19)

whereC̄ǫS

p has been replaced byCs. The use of the quasi-static EMCC in Eq. (19) might be a
suitable alternative in both practical applications and experiments when the SC and OC natural
frequencies are almost indistinguishable. Furthermore, for large and complex FE models this
method may require less computational effort than solving the dynamic eigenvalue problems.

4 Modal reduced equations

A reduced order model for the vibrating structure is effectively introduced by a modal repre-
sentation in terms of the most energetic vibration form. In this section, the representative modal
equations are derived in order to obtain an accurate shunt tuning method that is suitable for
implementation in a commercial FE-software. The structural part of Eq. (6) is effectively de-
scribed by the mode shapes{U}j from the SC limit, collected as columns in the modal matrix
[U ]. Hereby, the structural response{U} in Eq. (6) can be represented as

{U} = [U ]{v} (20)

6
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where the vector{v} contains the modal coordinates. When substituting Eq. (20)into Eq. (6)
and then pre-multiplying the structural equation with the vibration form{U}tr of the resonant
modej = r, the coupled set of modal equations can be written as

(

ω2
r − ω2

)

vr = QrV (21)

C̄ǫS

p V −Q = −{Q}t{v} (22)

where the vector{Q}t = 〈Q1, Q2 . . . 〉 contains the modal sensed chargesQj defined in Eq.
(10). Thus, the right hand side of Eq. (22) contains contribution from both the resonant mode
through the modal chargeQr as well as residual contributions from the non-resonant modes
due to the non-vanishingQj for j 6= r. The residual terms (j 6= r) are now represented by two
supplemental terms that are proportional to the electricalforcingV and describe corrections to
the system impedances. Thus, the right hand side of Eq. (22) is approximated as

{Q}t{v} = Qrvr +
(

C ′

r −
1

ω2L′

r

)

V (23)

whereC ′

r andL′

r are artificial capacitance and inductance, respectively, taking into account
the influence from the non-resonant structural modes (j 6= r). The two correction terms can
be calculated explicitly and elegantly based on the system matrices [5]. However, next, the
correction terms are instead calibrated by solving three eigenvalue problems associated with
SC and OC patch electrodes and a pure inductive shunt with an optimally tuned inductance
from the preferred calibration formulae without residual mode corrections. Elimination ofQrvr
between Eqs. (21)-(23) gives the governing equation

[(

C̄ǫS

p + C ′

r −
1

ω2L′

r

)

(ω2
r − ω2) +Q2

r

]

V = Q(ω2
r − ω2) (24)

where the relation between chargeQ and voltageV depends on the particular shunt impedance.

4.1 SC and OC electrodes

The SC condition corresponds toV = 0, in which case the non-trivial solution to Eq. (24) is
readily obtained asω = ωr, exactly recovering the solution to the SC eigenvalue problem in Eq.
(9). The corresponding OC condition follows whenQ = 0 and the associated circular frequency
ω̂r may be obtained numerically from Eq. (12) or experimentallyby measurements. The relative
difference between the SC and OC frequencies defines the effective EMCC by the relation in
Eq. (13). Thus, substituting the OC frequencyω = ω̂r into Eq. (24) and then imposingQ = 0,
the former becomes

[(

Cr −
1

ω̂2
rL

′

r

)

(ω2
r − ω̂2

r) +Q2
r

]

V = 0 (25)

after introducing
Cr = C̄ǫS

p + C ′

r (26)

as a modal capacitance, modified by the quasi-static correction termC ′

r introduced in Eq. (23).
Solving for non-trival solutions withV 6= 0, the problem in Eq. (25) constitutes a quadratic
equation inω̂2

r . The effective EMCCκ2
e can thereby be obtained from the solution to this

quadraric equation, see details in Appendix B, as

κ2
e =

ω̂2
r − ω2

r

ω2
r

= κ2
r +

1

2

(

1 + κ2
r − λ′

rκ
2
r

)

(

√

1 +
4(κ2

r)
2λ′

r
(

1 + κ2
r − λ′

rκ
2
r

)2
− 1

)

(27)
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in which the inertia correction from the residual modes is represented by

λ′

r =
1

Q2
rL

′

r

(28)

while the flexibility correction inCr is contained in a modified EMCC (see Eqs. (15) and (26))

κ2
r =

Q2
r

Crω2
r

(29)

It follows from Eq. (27) that for vanishing inertia correction from the residual modes (λ′

r = 0),
the modified EMCC isκ2

r = κ2
e. And if furthermore the flexibility correction is ignored (C ′

r =

0), the modal capacitanceCr = C̄ǫS

p and the EMCCκ2
e = κ2

0 from Eq. (15).
An improved estimate is achieved for finiteλ′

r ≪ 1, whereby a Taylor expansion of first order
can be applied on the square root in Eq. (27). This gives

κ2
e = κ2

r

1 + κ2
r

1 + κ2
r − λ′

rκ
2
r

=
Q2

r

CLω2
r

(30)

where the latter equality defines an actual modal capacitance CL of the piezoelectric patches
around the targeted resonancej = r,

CL = Cr

(

1−
λ′

rκ
2
r

1 + κ2
r

)

(31)

It is found that for vanishingλ′

r the inertia reduced capacitanceCr recovers the actual capaci-
tanceCL associated withκ2

e.
It follows from Eq. (30) that the effective EMCC is the ratio between the apparent electrical
absorber stiffnessQ2

r/CL and the modal stiffnessω2
r . The expression in Eq. (30) can furthermore

be used to determine the artificial inductanceL′

r as

1

(1 + κ2
r)ω

2
rL

′

r

=
(

1−
κ2
r

κ2
e

) Q2
r

κ2
rω

2
r

(32)

using Eqs. (28) and (31). By elimination ofL′

r, using Eqs. (32), (26) and (29), the governing
modal equation (24) can be expressed as

{

[ω2

ω2
r

− (1 + κ2
r)
(

1−
κ2
r

κ2
e

)](

1−
ω2

ω2
r

)

+ κ2
r

ω2

ω2
r

}

V =
Q

Q2
r

κ2
rω

2

(

1−
ω2

ω2
r

)

(33)

containing both the effective EMCCκ2
e and the modified EMCCκ2

r.
As mentioned above, a simplified representation can be obtained by assuming thatL′

r → ∞,
whereby the last (inertia) correction term in Eq. (23) vanishes, leaving only the former flex-
ibility term proportional toC ′

r. For this approximation, it follows directly from Eq. (27) that
κ2
r = κ2

e, obtained directly from Eq. (13). The validity and accuracyof κ2
r = κ2

e is verified
by the numerical results obtained in Section 7 and the tuningformulae presented in Section 5
which are therefore expressed directly in terms ofκ2

e. However, for a non-negligible residual
mode inertance, represented byL′

r, a supplemental condition is then needed to separate the
individual correction effects fromC ′

r andL′

r. This separation is conveniently achieved by in-
troducing a pure inductive (L) shunt that creates a supplemental resonance. For completeness,
this improvedL-shunt calibration is now summarized, although its influence is limited for most
flexible structures, as illustrated in [6].
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4.2 Pure L-shunt

In the OC limit, the effective EMCCκ2
e in Eq. (27) or Eq. (30) depends on both the flexibility

correcting capacitanceC ′

r in κ2
r and the inertia correcting inductanceL′

r in λ′

r. In order to distin-
guish these two non-resonant modal corrections, a supplemental condition must be introduced.
By introducing a pure inductive (L) shunt, an expression forκ2

r can be determined by solving
the corresponding quadratic characteristic equation, as detailed subsequently.
For a pureL-shunt, the impedance relation between charge and voltage can be written as

V = ω2LQ (34)

Hereby, the chargeQ can be eliminated, after using Eq. (34), in Eq. (33), wherebythe charac-
teristic equation associated withV 6= 0 can be written as

( ω

ωr

)4

−

[

1+κ2
r +(1+κ2

r)

(

1−
κ2
r

κ2
e

)

+λrκ
2
r

]

( ω

ωr

)2

+(1+κ2
r)

(

1−
κ2
r

κ2
e

)

+λrκ
2
r = 0 (35)

representing the shunt inductanceL in normalized form as

λr =
1

Q2
rL

(36)

similar to Eq. (28) for the correction inductanceL′

r. It is noted that the form ofλr in Eq. (36) is
due to the present normalization of the SC mode shapes to unitmodal masses in Eq. (11).
Because of the inclusion of the inductanceL, the quadratic characteristic equation (35) governs
two rootsω2

−
andω2

+, with the corresponding circular frequenciesω− andω+ being smaller and
larger than the SC circular frequencyωr, respectively. The two circular frequencies associated
with theL-shunt can be found experimentally or numerically by solving the eigenvalue problem
Eq. (6) withQ eliminated by Eq. (34),

([

KE kE
me

0 1

]

− ω2

[

M 0

−(kE
me)

tL C̄ǫS

p L

]){

U
V/L

}

=

{

0
0

}

(37)

The product of the two roots must be equal to the constant termin Eq. (35), which gives the
condition

(ω+

ωr

)2(ω−

ωr

)2

= λ∗

rκ
2
r (38)

where

λ∗

r =
1 + κ2

r

κ2
r

(

1−
κ2
r

κ2
e

)

+ λr (39)

represents theκ2
r factored out constant term in the characteristic equation (35). It may be noted,

considering the first relation of Eq. (30), thatλ∗

r = λ′

r + λr represents the combined inductance
from shunt, Eq. (36) and residual modes Eq. (28).
The sum of roots must further equal the coefficient to the linear term in Eq. (35) with opposite
sign, which results in

(ω+

ωr

)2

+
(ω−

ωr

)2

= 1 + κ2
r(1 + λ∗

r) (40)

Subtracting Eq. (38) from Eq. (40) gives the modified EMCC as

κ2
r =

(

1−
ω2
−

ω2
r

)(ω2
+

ω2
r

− 1
)

(41)
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C ipC ip

(a) (b)

fdfd fdfdCσ
p Cσ

pL
L

R

R

Figure 1: (a) Parallel and (b) series shunted piezoceramic patch with inherent capacitanceCσ
p .

Onceκ2
r is determined, the modal capacitanceCr is obtained from Eq. (29), whereby the quasi-

static correction capacitanceC ′

r subsequently follows from Eq. (26) after using Eq. (15), as

C ′

r = Cr − C̄ǫS

p =
(

1−
κ2
r

κ2
0

) Q2
r

κ2
rω

2
r

(42)

The corresponding inductive correction termL′

r is determined by the previously derived expres-
sion in Eq. (32).
The introduction of the pureL-shunt enables the individual determination of the two correction
terms in Eq. (23) with the artificial modal capacitanceC ′

r and inductanceL′

r. However, in the
following, the modified EMCCκ2

r is replaced by the effective EMCCκ2
e, which is readily avail-

able from an FE analysis when using the definition in Eq. (14).As demonstrated in the present
section, this estimate ofκ2

e is valid for vanishingλ′

r.

5 Resonant shunt tuning

The resonant shunt circuit consists of an inductanceL and a resistanceR connected either in
parallel or in series, as shown in Figure 1. For both circuit connections, the chargeQ on the
right hand side of Eq. (33) can be eliminated by the generalised Ohm’s law

V = −iωZsh(ω)Q (43)

whereZsh(ω) is the impedance of the supplemental shunt.
Upon elimination, by Eq. (43), ofQ in Eq. (33), the corresponding characteristic equation can
be written as

[

ω2

ω2
r

− (1 + κ2
r)
(

1−
κ2
r

κ2
e

)

− iω
1

Zsh(ω)Q2
r

κ2
r

]

(

1−
ω2

ω2
r

)

+ κ2
r

ω2

ω2
r

= 0 (44)

Next, the calibration principle for the parallel and seriesRL resonant shunt circuits are consid-
ered, in which the tuning expressions are subsequently simplified by assumingκ2

r ≃ κ2
e.

5.1 Parallel shunt circuit

The schematics of a parallel shunted piezoceramic patch is shown in Figure 1(a). Because of its
inductive property it operates as a vibration absorber on the host structure and details about its
equivalent mechanical properties are provided in [1]. The impedanceZsh(ω) is for the parallel
shunt circuit given as

1

Zsh(ω)
=

1

R
+

1

iωL
(45)
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and, by substituting the latter into Eq. (44), the characteristic equation can be written as

( ω

ωr

)4

−
(

1 + κ2
r + λ∗

rκ
2
r

)( ω

ωr

)2

+ λ∗

rκ
2
r + i

( ω

ωr

)

ρprκ
2
rωr

[

1−
( ω

ωr

)2]

= 0 (46)

where the electric damping parameter (superscriptp refers toparallel)

ρpr =
1

RQ2
r

(47)

is inversely proportional to the shunt resistanceR. Furthermore, the shunt inductanceL is con-
tained inλ∗

r as defined in Eq. (39), with the normalized shunt inductanceλr introduced in Eq.
(36).
When introducing the estimateκ2

r ≃ κ2
e, the characteristic equation Eq. (46) reduces to

( ω

ωr

)4

−
(

1 + κ2
e + λrκ

2
r

)( ω

ωr

)2

+ λrκ
2
e + i

( ω

ωr

)

ρprκ
2
eωr

[

1−
( ω

ωr

)2]

= 0 (48)

whereλr then directly replacesλ∗

r from Eq. (39). In the following Eq. (48) constitutes the basis
of the shunt tuning.
Initially, the tuning of the inductanceL in λr must secure that the electric shunt reacts properly
in resonance with the targeted modej = r. For this, the principle of equal modal damping is
applied; initially, the latter was introduced for the mechanical tuned mass damper in [19] and
subsequently proposed for pole placement calibration of a resonant seriesRL shunt [1]. The
principle states that the two complex roots must meet at a bifurcation point, whereby they have
equal damping up to the point of bifurcation because the roots follow semi-circular trajectories
for increasingρpr. It, furthermore, implies that equal damping can be securedfor a pureL-shunt
in the limitρpr → 0, at which the real-valued rootsω− andω+ must be inverse points with respect
to the circular frequencyωr in the opposite (SC) limitρpr → ∞. Forρpr → 0, the characteristic
equation (46) recovers Eq. (35) for the pureL-shunt. The inverse point condition can therefore
be directly represented by the relationλrκ

2
e = 1, see Eq. (48). Hereby, the inductance calibration

follows readily from Eq. (36) as

L =
κ2
e

Q2
r

(49)

It is important to observe that the optimal inductance is given by the effective EMCCκ2
e relative

to the square of the modal chargeQr in Eq. (10), obtained directly from an FE analysis as a
reaction force associated with the SC eigenvalue problem.
In Figure 2(a), the blue trajectories represent the path of the complex roots in the first quadrant,
obtained by solving the characteristic equation Eq. (46) with respect toρpr as gain. For infinite
resistance (ρpr → 0), the roots recoverω− andω+ below and aboveωr. When increasingρpr (or
decreasing the resistance), the two roots move into the complex plane along semi-circular paths
until they meet at the bifurcation point, whereafter one root becomes heavily damped when
approaching the imaginary axis along a quarter circle, while the other root becomes undamped
when terminating at the SC solutionωr for ρpr → ∞. Thus, the reference frequency for the
parallelRL shunt is associated with the SC configuration.
The shunt resistance is now tuned to secure a reasonably flat plateau in the frequency response
curve. Several expressions have been proposed for this calibration [3, 4, 8] and in the present
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Figure 2: Root-Locus diagram for (a) parallel Eq. (46) and (b) seriesEq. (52) shunt circuits.

Table 1: Tuning procedure based on the effective EMCC for parallel and series shunt circuits withκ2

r ≃ κ2

e.

Parallel Series

L =
κ2
e

Q2
r

, R =
κ2
eωr

Q2
r

√

1

2κ2
e

L =
κ2
e

Q2
r(1 + κ2

e)
2

, R =
κ2
eωr

Q2
r

√

2κ2
e

(1 + κ2
e)

3

case the resistance tuning in [1, 13, 19, 20]. By comparing the generic equation (33) in [20]
with the characteristic equation (48), this gives the optimum resistance tuning as

R =
κ2
eωr

Q2
r

√

1

2κ2
e

(50)

when the approximationκ2
r ≃ κ2

e has been introduced. The tuning in Eq. (50) provides a rea-
sonable compromise between large modal damping and effective response mitigation, and fur-
thermore it gives a flat plateau in the amplitude curve for theshunt loadingV . The complex
roots obtained by Eq. (50) are indicated by the red crosses inFigure 2(a).
As demonstrated in [13], it is numerically advantageous and, for most actual problems, suffi-
ciently accurate to base the tuning of the resistance on the effective EMCC, wherebyκ2

r ≃ κ2
e is

used in the calibration formulae for bothL andR. Thus, the subsequent implementation of the
shunt tuning method only involves the use of modal parametersωr, Qr andκ2

e for the SC and
OC configurations, while avoiding the pureL-shunt and its supplemental eigenvalue problem
in Eq. (37). The tuning formulae for the parallel shunt are summarized in Table 1.

5.2 Series shunt circuit

The series shunted piezoceramic patch is shown in Figure 2(b). This configuration implies that
the residual mode corrections and shunt components are not additive, whereby optimal calibra-
tion is associated with an iterative procedure, unless the assumptionκ2

r ≃ κ2
e is conveniently

introduced, as demonstrated subsequently.
The series shunt impedance is introduced as

Zsh(ω) = R + iωL (51)

whereby substitution into Eq. (44) gives this characteristic equation (see Appendix C for its
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derivation)

( ω

ω̂r

)4

−

(

1 + κ2
r

1 + κ2
e

+
λ∗

rκ
2
r

1 + κ2
e

)

( ω

ω̂r

)2

+
λ∗

rκ
2
r

(1 + κ2
e)

2

+i
( ω

ω̂r

)

ρsr
λr

ω̂r

{

1 + κ2
r

1 + κ2
e

−
( ω

ω̂r

)2

+
1 + κ2

r

1 + κ2
e

(

1−
κ2
r

κ2
e

)[(ωr

ω

)2

− 1
]

}

= 0

(52)

conveniently given in terms of the OC frequencyω̂r and introduction of an electric damping
parameter (superscripts refers to series)

ρsr = RQ2
r (53)

that becomes proportional to the shunt resistanceR.
In Eq. (52), the characteristic equation is actually quintic, due to the presence of the frequency
ratio ω2

r/ω
2 in the final term. However, by applying the estimateκ2

r ≃ κ2
e the last term inside

the latter curled brackets vanishes and Eq. (52) reduces, after Eq. (39), to

( ω

ω̂r

)4

−
(

1 +
λrκ

2
e

1 + κ2
e

)( ω

ω̂r

)2

+
λrκ

2
e

(1 + κ2
e)

2
+ i

( ω

ω̂r

)

ρsr
λr

ω̂r

[

1−
( ω

ω̂r

)2]

= 0 (54)

For this reduced equation, the desired inverse point relation is secured byλrκ
2
e = (1 + κ2

e)
2,

corresponding to the rootsω− andω+ for vanishingρsr being inverse points with respect to the
OC natural frequencŷωr. The optimal inductance is then determined from Eq. (36) as

L =
κ2
e

Q2
r(1 + κ2

e)
2

(55)

For the inductance tuning in Eq. (55), the complex roots obtained by solving Eq. (52) are plotted
in Figure 2(b) for increasingρsr. The root locus diagram verifies thatω− andω+ are in fact
inverse points on the real axis with respect toω̂r, whereby the OC natural frequency is the
apparent reference frequency for the seriesRL shunt, as also observed by [11].
It can be seen from Figure 2(b) that the roots to Eq. (52) approximately follow a semi-circle
in the complex plane up to a bifurcation point. However, due to the approximations associated
with the inverse point relation, the bifurcation point is not perfectly met. The optimal resistance
tuning indicated by red crosses in Figure 2(b) is again foundby the balanced calibration devised
in [20] by comparing its generic equation (33) with Eq. (54),which results in the resistance
formula

R =
κ2
eω̂r

Q2
r(1 + κ2

e)
2

√

2κ2
e =

κ2
eωr

Q2
r

√

2κ2
e

(1 + κ2
e)

3
(56)

expressed in terms ofκ2
r ≃ κ2

e. Thus, the optimum piezoelectric shunt tuning for both the paral-
lel and seriesRL shunts are now consistently derived with respect to the SC modal chargeQr,
the SC circular frequencyωr and the effective EMCCκ2

e obtained by the classical expression in
Eq. (13). The calibration formulae used in the following numerical analysis are summarized in
the second column of Table 1 for the series shunt connection.
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ANSYS Mechanical APDL Initial step: Preferences Structural, Electrical

Step 1: Preprocessor

• Element type SOLID186, SOLID226, CIRCU94

• Real Constants For inductance and resistance values implementation

• Material Properties Define electromechanical material properties

• Modelling Operate Booleans Glue patch(es) and host structure

• Meshing Define desired mesh

• Loads Define boundary and EP conditions

Step 2: SC solution

• Ground electrode master nodes

• Analysis type Modal analysis 

• Solve SC eigenvalue problem

• Save resonant frequency and modal 

charge 

Step 3: OC solution

• Delete electrode grounding on one 

electrode master nodes

• Analysis type Modal analysis 

• Solve OC eigenvalue problem

• Save resonant frequency 

Step 4: APDL Math

• Effective EMCC by Eq. (13) and optimal inductance and resistance tuning by Table 1.

Step 5: Shunt solution

• Implement inductance and resistance between grounded and ungrounded master nodes 

according to the patch(es) connection and polarization direction (see Figure 3 of [6]). 

• Run harmonic analysis around target resonant frequency to verify tuning.

Figure 3: Flow chart illustrating ANSYS® implementation of the proposed optimum shunt tuning procedure.

6 Numerical implementation in ANSYS®

The modelling of the electromechanical structure in ANSYS®, evaluations of the SC and OC
eigenvalue problems and implementation of the proposed shunt tuning method are summarized
in the flow-chart shown in Figure 3, and briefly explaind in thefollowing. Initially, ’Strutural’
and ’Electrical’ analyses have to be chosen. The first step then follows by defining the geom-
etry, material properties, element types and mesh partitions of the analysed electromechanical
structure. In the present work, SOLID186 and SOLID226 3D 20 node elements are used for the
discretization of the host structure and piezoceramic patch(es), respectively. Next, the boundary
conditions and equipotential (EP) conditions for all continuous electrodes are imposed to the
discretized model. For each continuous electrode, the EP condition is defined in a master node
which is saved for later use. In the second step, zero electric potential is applied to the master
nodes to obtain SC piezoceramic patch(es). A modal analysisis then conducted to determine
the targeted SC resonant frequencyωr and modal chargeQr, with the latter being a reaction
force of the modal analysis. The third step deletes the zero electric potential constraint on one
of the master nodes to obtain OC piezoceramic patch(es). A modal analysis is then conducted
to determine the target OC resonant frequencyω̂2

r . The fourth step then determines the effec-
tive EMCCκ2

e using Eq. (13), whereby the optimum inductance and resistance values can be
determined according to Table 1 for either the parallel or series shunt circuit. The fifth and final
step implements the optimum inductance and resistance between the grounded and ungrounded
master nodes according to the patch(es) connection and polarization directions, see [6]. The
inductance and resistance are implemented using CIRCU94 elements with specific key options
and real constants. The shunt tuning can then be validated byperforming a harmonic analysis
around the target resonant frequency.
If the alternative tuning method based on the quasi-static EMCC κ2

s is preferred, the evaluation
of the OC eigenvalue problem can be omitted, while two staticproblems associated with SC and
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Table 2: Dimensions of simply supported plate with a single pair of piezoceramic patches.
Plate Center patch Piezoceramic PZT 5H

Dimensions Density Young’s Modulus Poisson’s ratio x,y Dimensions
lx × ly × t [mm3] (kg/m3) [GPa] (-) [mm] lpx × lpy × tp[mm3]

414× 314× 1 2700 70 0.33 13

28
lx , 15

28
ly 82.8× 62.8× 0.5

OC patch electrodes must instead be solved. Finally, for single mode tuning with the effective
EMCC approximated by the modal EMCCκ2

0 in Eq. (15), the resulting modified capacitance
is determined by Eq. (7b). In the following the performance of these three tuning methods are
analysed for the smart plate benchmark [6] with either a single pair or four pairs of piezoceramic
patches.

7 Benchmark examples

In the present section, the smart plate benchmark analysed in [6] is modelled with 3D FEs
in ANSYS® with the aim of determining the optimum parallel and series shunt tuning and
demonstrate the simplicity of the proposed tuning method based onωr, Qr andκ2

e. Details
about the dimensions of the simply supported plate and the single pair of pieceramic patches as
well as the location of the latter are provided in Table 2, along with the material properties of
the plate. In the present work, it is chosen to use the piezoceramic material PZT 5H, for which
the material properties can be accessed through the ’eFundaportal’ [21].

7.1 Simply supported plate with a single pair of patches

The first example concerns optimum shunt tuning to the first eight vibration modes of the simply
supported plate described in [6] with a single pair of piezoceramic patches. Initially, a short
convergence study is carried out in order to justify the chosen discretization. It is first of all noted
that increasing the number of elements in thickness direction only slightly alters the numerical
results. The convergence study is thus carried out for an increasing number of elements along the
two in-plane axes. The convergence of the squared SC and OC frequencies and effective EMCC
for three of the first eight vibration modes is shown in Figure4. The three modes 1, 4 and 7 are
of particular interest because they possess significant electromechanical coupling, as indicated
by largeκ2

e in the following. The relative errors are obtained by comparing the approximate
(approx) results to the reference (ref) ones obtained with avery fine mesh consisting of23104
elements and633064 dofs.
It can be seen from Figure 4(a) that the squared SC and OC frequencies converge rapidly and
have relative errors below1% (dashed black line) when using a model with approximately
104 dofs. Further, a nearly linear tendency of the convergence on the double logarithmic scale
can be observed, indicating quadratic convergence. From Figure 4(b) it can be seen that the
convergence of the squared effective EMCC is slower than that for the SC and OC frequencies.
This is becauseκ2

e is determined as the relative difference betweenω̂2
r andω2

r , where the SC
frequency simply converges faster than the OC one. It is seenthat the relative error on the
effective EMCC is around1% (dashed black line) when using a model with approximately1.5×
105 dofs. This discretezation is therefore used in the present analysis. The relative error on the
effective EMCC for the remaining five vibration modes might be larger since the convergence
rate is proportional to the magnitude ofκ2

e, as demonstrated in [14].
The first eight vibration modes for the simply supported plate with a single SC pair of piezo-
ceramic patches are shown in Figure 5, with the location of the patch pair indicated by the
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Figure 4: Convergence of (a) SC and OC frequencies and (b) effective EMCC for modes 1, 4 and 7, determined
by Rel(X)[%] = (Xapprox −Xref )/Xref .

Figure 5: Mode shapes of a simply supported plate with a single SC patch pair.

black rectangle. It can be seen from Figure 5(a,d,g) that thepair of piezoceramic patches is
favourably positioned targeting vibration modes 1, 4 and 7,as their large curvatures over the
patch area give large in-plane patch deformation. For the remaining five vibration modes, the
pairs are positioned close to nodal points, whereby the EP condition results in cancellation of
the charge across the patch area.
Table 3 provides the SC and OC frequencies, the effective EMCC, the normalized modal charge
and the optimum parallel (p) and series (s) shunt tunings for modes 1 to 8. It can be seen for
the present piezoceramic patch design that damping with thepresent patch pair location and
dimensions is attainable for modes 1, 4 and 7, denoted in boldface in Table 3. The squared ef-
fective EMCCs are for these three modes around2%, yielding a damping ratio of approximately

ζ1,4,7 =
√

1

8
κ2
e ≈ 5%, see [1]. It is seen that the normalized modal chargeQr is seemingly pro-

portional to the level of attainable damping. Finally, it isnoted in Table 3 that the parallel and
series optimum inductances have the same order of magnitude, while much lower resistance
values are required for the series shunt configuration.
The tuning of the electronic components could as well have been based on the quasi-static (Eq.
(19)) or the modal (Eq. (15)) EMCC, whereby evaluation of theOC eigenvalue is avoided. For
the quasi-static EMCC, the two static Eqs. (16) and (17) mustinstead be computed, whereby the
quasi-static capacitance can be determined by Eq. (18). In the present example, this is found to
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Table 3: SC and OC frequencies, effective EMCC, normalized modal charge and optimumRL-shunt tunings, for
simply supported plate with a pair of same poled and parallelwired piezoceramic patches.

Mode (type) f [Hz] f̂ [Hz] κ2

e[%] Q2

r/ω
2

r

[

µ
(

Cs
rad

)2
]

Lp[H] Rp[kΩ] Ls[H] Rs[kΩ]

1 (1,1) 35.89 36.22 1.86 1.013 36.03 42.16 34.73 1.523
2 (2,1) 80.73 80.77 0.10 0.054 7.071 80.96 7.057 0.159
3 (1,2) 111.9 112.0 0.12 0.066 3.604 52.32 3.592 0.122
4 (3,1) 154.7 156.5 2.30 1.252 1.943 8.810 1.857 0.392
5 (2,2) 165.7 165.7 0.02 0.008 1.999 1.115 1.998 0.038
6 (3,2) 230.6 230.7 0.04 0.027 0.744 37.31 0.744 0.031
7 (1,3) 242.3 244.8 2.01 1.067 0.814 6.176 0.782 0.241
8 (4,1) 252.3 252.3 0.00 0.000 0.976 24.17 0.976 0.010
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Figure 6: FRP for displacement and voltage around the (a)+(b) first and (c)+(d) fourth resonant frequency for
parallel shunt tuning based on the effective Eq. (13) (solidline), quasi-static Eq. (19) (dashed line) and modal Eq.
(15) (dashed-dotted line) EMCC in respect to moder.

beCs = 554.6nF. The quasi-static EMCCκ2
s then follows by multiplying the inverse ofCs with

Q2
r/ω

2
r in Table 3. Using the single mode approximation, the resulting modified capacitance

C̄ǫS

p can be determined by Eq. (7) by mapping the corresponding entries in the system stiffness
matrix in ANSYS®. However, mapping the correct entries in the stiffness matrix is a heavy and
rather complicated task in ANSYS®, which uses three different layers of ordering. Therefore,it
may be advantageous simply to solve the two static problems,associated to Eqs. (16) and (17)
in order to getQs andVs, and to determine the quasi-static capacitanceCs. In the present case,
the resulting modified capacitance is found to beC̄ǫS

p = 616.2nF, from which the modal EMCC
κ2
0 (Eq. (15)) follows by multiplication of its inverse withQ2

r/ω
2
r in Table 3.

The performance of the tuning methods based on the effective, quasi-static and modal EMCC
is now analysed by considering the frequency response plot (FRP) around the first and fourth
resonant frequencies, which are shown in Figure 6. It can be seen from Figure 6 that the tuning
based on the effective EMCC (solid line) gives an optimum response around the resonant fre-
quencies with a flat (unit) plateau for the shunt voltage response. The latter is observed when
an idealised harmonic modal load is used for producing the FRP. This modal load is determined
from the mass matrix, the SC mode shape and the modal charge as{F}r = [M ]{U}rQr. The
tuning based on the quasi-static EMCC (dashed line in Figure6) is also seen to perform rela-
tively well (with small deviations to the optimum shunt tuning). However, the tuning based on
the modal EMCC (dashed-dotted line) is seen to be very poor inthe given example causing large
dynamic amplification around the original SC resonance frequency. Hence, an accurate descrip-
tion of the electromechanical structure, accounting for the non-resonant modes, is apparently of
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Figure 7: Mode shapes of a simply supported plate with four pairs of SCpatches.

great importance as it furthermore results in a relatively simple tuning procedure.

7.2 Simply supported plate with four pairs of patches

It may be of general interest to place piezoelectric patchesat decentralized location on the host
structure, while maintaining the same level of supplemental modal damping. This can be real-
ized by the application of several interacting piezoelectric patches, which further may have the
potential of increasing the number of vibration modes with attainable damping, as investigated
in the following for the simply supported plate. The second example thus concerns the same
simply supported plate but with four pairs of piezoceramic patches placed symmetrically in the
quarter points of the plate. The pairs are only a quarter of the size of the former single pair,
whereby the piezoceramic volume is unchanged. The aim of thepresent example is to demon-
strate the performance of the piezoelectric shunt damping when having several patches and to
investigate the difference between having an individual patch and a network of wired patches.
As in the first example, the first eight vibration modes are exploited and shown in Figure 7 with
the position of the piezoceramic SC patches indicated by theblack rectangles. It can be seen
from the mode shapes in Figure 7, compared to those in Figure 5, that modes 4 and 5 have
interchanged. Also, the piezoceramic patches are in the present case seen to alter the vibration
modes less compared to the first example, in particular for modes 7 and 8.
The SC and OC frequencies, effective EMCC, squared normalized modal charge, and parallel
(p) and series (s) shunt tunings are now determined for the plate with four individually shunted
pairs of patches and provided in Table 4. As the pairs of patches are symmetrically (or anti-
symmetrically) positioned with respect to the deformationpattern of the first eight vibration
modes, see Figure 7, the optimum tuning of each pair of patches will be identical and deter-
mined according to Appendix A. In Table 4, the provided modalcharge and shunt tunings are
thus for a single patch pair. It can be seen from Table 4 that damping is attainable for the first
seven vibration modes given in bold-face. This is a considerable improvement compared to the
three modes with substantial damping in the first example (Section 7.1). Vibration mode 8 is
again seen to have vanishing attainable damping since the patches locations in Figure 7(h) are
at nodal points. The effective EMCC is seen to be lower for modes 1, 5 (4 in first example)
and 7 compared to the first example, which is therefore superior for these specific modes. Fur-
thermore, it is seen that the magnitude of the optimum electronic components are considerably
larger compared to the tuning in the first example. This is mainly due to the much lower modal
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Table 4: SC and OC frequencies, effective EMCC, normalized modal charge and optimumRL-shunt tunings for
each individual shunted pair of piezoceramic patches, for the simply supported plate with four pairs of same poled
and parallel wired piezoceramic patches.

Mode (type) f [Hz] f̂ [Hz] κ2
e[%] Q2

r/ω
2
r

[

n
(

Cs
rad

)2
]

Lp[H] Rp[kΩ] Ls[H] Rs[kΩ]

1 (1,1) 38.58 38.66 0.41 0.141 123.1 330.8 122.1 2.678
2 (2,1) 78.24 78.64 1.01 0.348 30.09 104.0 29.49 2.073
3 (1,2) 109.3 109.8 0.93 0.321 15.36 77.36 15.08 1.420
4 (2,2) 143.3 144.7 1.90 0.648 9.049 41.77 8.714 1.545
5 (3,1) 153.0 153.5 0.62 0.216 7.821 67.28 7.725 0.833
6 (3,2) 219.8 220.9 0.98 0.334 3.840 37.92 3.766 0.731
7 (1,3) 236.3 236.9 0.52 0.178 3.295 48.06 3.261 0.494
8 (4,1) 254.6 254.6 0.00 0.000 3.253 - 3.253 -

charges caused by the smaller individual patch volumes withless conversion into electrical en-
ergy. However, this can be changed by connecting the four pairs of patches to a single common
shunt. This causes the squared modal charges to increase by afactor sixteen, while the optimum
tuning values for the electronic components will be a quarter of the values provides in Table 4.
The attainable damping will remain unchanged, since the SC and OC frequencies and thus the
effective EMCC are the same. However, attention has to be paid to the connection of the four
pairs of patches as the particular configuration depends on the shape of the vibration mode to
be damped. For example, for the first vibration mode, the interface (top and bottom) electrodes
and the inner electrodes should be connected, respectively, and wired in parallel to the shunt
circuit. This is because the in-plane strains of all the patches have equal sign. However, this is
not the case for modes 2, 3, 4 and 6, for which the in-plane strains have opposite signs. These
signs, and thereby the wiring of the four pairs of patches, can be determined by considering
the signs of the individual modal charges. For instance, in mode 2, the modal charges of the
two pairs of patches to the left are positive while they are negative for the pairs to the right, see
Figure 7(b). This implies that the interface electrodes of the left patch pairs should be connected
to the inner electrodes of the corresponding right patch pairs and vice versa. When the wiring
of the patches is done correctly, it is apparently beneficialto connect the four pairs of patches
in a single network, requiring smaller optimum shunt components.

8 Summary and conclusions

In the present work, a newly proposedRL shunt calibration procedure based on the effec-
tive EMCC is generalized and demonstrated suitable for implementation in the commercial
ANSYS® FE code. The calibration procedure includes the effects of the non-resonant vibration
modes, which are assumed to contribute by flexibility and inertia effects. These non-resonant
effects can be determined by solving three eigenvalue problems associated with SC and OC
piezoceramic patch electrodes and when a shunt circuit consisting of an inductance is intro-
duced. However, the latter eigenvalue problem is found unnecessary to evaluate in all desired
cases where the effective EMCC, and thereby the attainable damping, is significant. An alter-
native method based on a quasi-static EMCC is also proposed which may be of interest for a
tuning based on experiments and also when computational costs are a limiting factor in the nu-
merical analysis. The optimum tuning formulae for paralleland series shunt circuits are based
on a balanced calibration principle, where the roots in the pure inductive limit appear as inverse
points with respect to the SC and OC frequencies, respectively.
In the numerical examples, a smart plate benchmark is analysed for two patch pairs configura-
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tions, consisting of either a single centralized pair of piezoelectric patches or four decentralised,
but symmetrically placed, patch pairs. A convergence studyhas been carried out, for the former
configuration, to demonstrate that a precise numerical model is important in order to accurately
determine the effective EMCC. The first eight vibration modes have then been analysed with
both patch designs and the optimum shunt circuit calibrations were determined for each individ-
ual mode. For the single patch pair design, non-vanishing damping was observed for three of the
first eight vibration modes, while this increased to seven modes for the second design with four
symmetric pairs. It has been demonstrated that the optimum shunt tuning causes a nearly flat
plateau in the frequency response around the target resonant mode, when applying a represen-
tative modal harmonic load. Furthermore, the voltage response is found to have a completely
flat (unit) plateau as dictated by the principle of equal modal damping. Finally, it was found
that larger tuning values are required for the plate with four patch pairs shunted individually.
However, by connecting the four pairs of patches in a single network, these tuning values can
be reduced by a factor four since the modal charge increases by a factor sixteen. It is noted that
close attention has to be given to the particular wiring of the patch pairs electrodes, according
to the signs of the individual modal charges.
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Appendix A: Identical and symmetrically placed pairs of piezoceramic patches

The proposed shunt tuning procedure and its implementationin ANSYS® for a single pair of
patches are here extended to the case of several identical and symmetrically placed pairs of
piezoceramic patches, whereby the optimum shunt tuning is the same for each pair of patches.
The coupling vector{kE

me} in Eq. (6) becomes a coupling matrix[kE
me]with columns equal to the

number of individually shunted patch pairs, while the scalar quantityC̄ǫS

p becomes a diagonal

matrix C̄ǫS

p [In] containing the identical capacitive properties. At last, the variablesV andQ
become vectors{V } and{Q} with entries equal to the number of shunted patch pairs. The SC
eigenvalue problem is the same as for the single piezoceramic patch pair (Eq. (9)), while the
sensor equation is given as

{Qj} = −[kE
me]

t{U}j (57)

It is seen that the modal charge becomes a vector containing the individual modal charges for
each shunted patch pair, which are now collected in the modalcharge matrix

[Q]t =
[

{Q1} {Q2} · · · {Qn}
]

(58)

The modal equations Eqs. (21)-(22) are then, forn shunted pairs of patches and the r’th mode,
given as

(

ω2
r − ω2

)

vr = {Qr}
t{V } (59)

C̄ǫS

p [In]{V } − {Q} = −[Q]t{v} (60)

The right hand side of Eq. (60) is approximated simmilarly toEq. (23) as

[Q]t{v} = {Qr}vr +
(

C ′

r −
1

ω2L′

r

)

[In]{V } (61)
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Table 5: Parallel and series shunt tuning for identical and symmetrically placed pairs of piezoceramic patches.

Parallel Series

L =
κ2
e

nQ2
r

, R =
κ2
eωr

nQ2
r

√

1

2κ2
e

L =
κ2
e

nQ2
r(1 + κ2

e)
2

, R =
κ2
eωr

nQ2
r

√

2κ2
e

(1 + κ2
e)

3

whereby the governing equation follows by eliminating{Qr}vr between Eqs. (59) and (61)

[(

C̄ǫS

p + C ′

r −
1

ω2L′

r

)

(ω2
r − ω2)[In] + {Qr}{Qr}

t
]

{V } = {Q}(ω2
r − ω2) (62)

For identical and symmetrically placed patches, with respect to the deformation pattern of the
target vibration mode, Eq. (62) represents the number of shunt circuitsn redundant equations
given as

[(

C̄ǫS

p + C ′

r −
1

ω2L′

r

)

(ω2
r − ω2) + nQ2

r

]

V = Q(ω2
r − ω2) (63)

in which Q2
r is the common squared modal charge, whileQ andV are the common circuit

charges and electric potentials, respectively.
Finally, use of Ohm’s law in Eq. (43) gives the characteristic equation

[

ω2

ω2
r

− (1 + κ2
r)
(

1−
κ2
r

κ2
e

)

− iω
1

Zsh(ω)nQ2
r

κ2
r

]

(

1−
ω2

ω2
r

)

+ κ2
r

ω2

ω2
r

= 0 (64)

which is similar to Eq. (44) but withnQ2
r instead ofQ2

r. The effect on the individual shunt
tunings is thus the factorn on the modal chargeQ2

r, whereby the optimum shunt tunings are
given as listed in Table 5.

Appendix B: Determination of κ2
e from quadratic equation (25)

Initially Eq. (25) is multiplied with−ω̂2
r/Cr, whereby one obtains the quadratic equation

(

− ω̂2
r +

1

CrL′

r

)

(ω2
r − ω̂2

r)− ω̂2
r

Q2
r

Cr

= 0 (65)

Division with ω4
r and using Eqs. (28)-(29), Eq. (65) transform above relationto

[

−
( ω̂r

ωr

)2

+ κ2
rλ

′

r

][

1−
( ω̂r

ωr

)2]

−
( ω̂r

ωr

)2

κ2
r = 0 (66)

Now, after using Eq. (13), the characteristic equation is obtained in terms of the effective EMCC
as

(

1 + κ2
e − κ2

rλ
′

r

)

κ2
e − κ2

r

(

1 + κ2
e

)

= 0 (67)

Which can be written in a quadratic form as

(κ2
e)

2 +
(

1− κ2
r − λ′

rκ
2
r

)

κ2
e − κ2

r = 0 (68)

This is a quadratic equation inκ2
e that can be solved in order to findκ2

e when both correction
terms are included. However, it is of interest to find a solution that can be truncated forλ′

r ≃ 0.
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Thus, instead, Eq. (68) is solved with respect to∆κ2 = κ2
e − κ2

r → 0 for λ′

r → 0. Using the
former relation, the following holds

(κ2
e)

2 =
(

∆κ2 + κ2
r

)2

= (∆κ2)2 + 2κ2
r∆κ2 + (κ2

r)
2 (69)

Then, elimination ofκ2
e between Eqs. (68) and (69) gives

(∆κ2)2 +
(

1 + κ2
r − λ′

rκ
2
r

)

∆κ2 − (κ2
r)

2λ′

r = 0 (70)

Forλ′

r → 0, Eq. (70) reduces to

∆κ2 = −(1 + κ2
r) or ∆κ2 = 0 (71)

while the full solution can be found as

∆κ2 =
1

2

(

1 + κ2
r − λ′

rκ
2
r

)

[

√

1 +
4(κ2

r)
2λ′

r

(1 + κ2
r − λ′

rκ
2
r)

2
− 1

]

(72)

whereby the effective EMCCκ2
e follows by Eq. (27).

Appendix C: Derivation of characteristic equation (52) for series shunt connection

Initially, the series shunt circuit impedanceZsh(ω) in Eq. (51) is inserted in the characteristic
equation (44), followed by the elimination of the inductance and resistance through the normal-
ized inductance in Eq. (36) and electric damping parameter in Eq. (53). Thus, the characteristic
equation (44) can hereby be written as

[

( ω

ωr

)2

− (1 + κ2
r)
(

1−
κ2
r

κ2
e

)

+ ω2
λrκ

2
r

iωρsrλr − ω2

]

[

1−
( ω

ωr

)2]

+ κ2
r

( ω

ωr

)2

= 0 (73)

The characteristic equation (73) is now multiplied by(iωρsrλr − ω2)/ω2 whereby the former,
after using Eq. (39), can be written as

{

i
( ω

ωr

)

ρsr
λr

ωr

[

1−
(ωr

ω

)2

(1 + κ2
r)
(

1−
κ2
r

κ2
e

)]

+ λ∗

rκ
2
r −

( ω

ωr

)2
}

[

1−
( ω

ωr

)2]

+i
( ω

ωr

)

ρsr
λr

ωr

κ2
r − κ2

r

( ω

ωr

)2

= 0

(74)

Finally, the products in Eq. (74) are expanded and this characteristic equation can be written as

( ω

ωr

)4

−
(

1 + κ2
r + λ∗

rκ
2
r

)( ω

ωr

)2

+ λ∗

rκ
2
r

+i
( ω

ωr

)

ρsr
λr

ωr

[

1 + κ2
r −

( ω

ωr

)2

− (1 + κ2
r)
(

1−
κ2
r

κ2
r

)(ω2
r

ω2
− 1

)]

= 0

(75)

In order to identify the inverse points relation, it is convenient to multiply Eq. (75) by1/(1+κ2
e)

2

and use the relation1/(1 + κ2
e) = (ωr/ω̂r)

2 from Eq. (13). Hereby, the characteristic equation
(75) can be written as in Eq. (52).
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