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Abstract

A recently proposed tuning method for resistive-inductiR&) shunts is implemented in a com-
mercial finite element (FE) code (ANSYP A main result of the paper is therefore the consistent
formulation of the tuning method in terms of variables dilgavailable as solutions in any com-
mercial FE code: The two natural frequencies associatddskibrt- and open-circuit (SC and OC)
electrodes and a modal charge obtained as the electrica&@ion force. An alternative method is
based on quasi-static solutions with SC and OC electrodavenient for both numerical analysis
and experiments. The proposed shunt tuning method is saiitabimplementation in any com-
mercial FE software supporting electromechanical anslgad ANSYS has been used to assess
its accuracy for a piezoelectric smart plate benchmarklprmobThe method is finally extended to
multiple piezoceramic patches, placed symmetrically endfnucture and shunted to a single RL
network, whereby more vibration modes can be effectiveiyraled for the specific plate problem.

1 Introduction

Piezoelectric transducers attached locally to a host tstreieenable dissipation of converted
mechanical energy into heat by a supplemental resonant.skhunlatter is often designed as a
series or parallel connection of a resistangednd an inductancd), whereby the effect on the
host structure from the electromechanical transduceespands to an inerter-based absorber
[1]. The RL-shunt circuit was first suggested and experimentally destnated by Forward [2].
Actual calibration procedures were subsequently derivetifor the series |3] and since for the
parallel shunt circuit[4]. Both calibration methods arsé&@on a single mode representation of
the vibrating host structure and are governed by the resdreajuency of a targeted vibration
form and the capacitive properties of the piezoelectricddacer(s).

Recently, the modal coupling introduced by the presence safpplemental absorber on the
structure has been represented_in [5] via the dynamic cteaistacs of the other non-resonant
modes around the targeted resonant frequency. It demtatstitae ability of two consistent
correction terms to accurately account for both the fleiibénd inertia effects from residual
modes and to adjust the absorber tuning to retain a desitgudtaau in the frequency response
curves. The initial analysis for mechanical tuned mass- iapder-based absorbers [5] has
recently been extended RL-shunted piezoelectric transducers [1].

The performance of a piezoelectric transducer is inherdimtited by its capacitive property,
which is inversely proportional to the stiffness of an ealent mechanical absorber. A key fac-
tor in the electromechanical absorber tuning has therdfeea the accurate representation and
maximization of the effective (or generalized) electrotreucal coupling coefficient (EMCC).
The latter represents the apparent electromechanical ttalnstiffness ratio and thus the re-
lation between the inherent capacitance, electromecalarocipling and structural resonance.
In [6], a piezoelectric shunt tuning procedure has beerveéron the basis of the effective
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EMCC, demonstrating its direct equivalence to a modal EMG vesidual corrections from
non-resonant modes. The effective EMCC is therefore a kegnpeter for electromechanical
structures; it is commonly defined by the relative differebetween (the square of) the asso-
ciated short circuit (SC) and open circuit (OC) frequendi#sConsequently, it is a measure
for the level of attainable damping and has therefore beewolbjective for the design and opti-
mization of piezoelectric transducer systenis [8]. It isqiole to increase the effective EMCC -
and thereby the attainable damping - by the application @gative capacitance in the electric
shunt circuit[[9]. Unfortunately, this increases the regdishunt inductance, which is usually so
large that it must already be realized by active electronimscomponents. Thus, the absorber
realization is often limited by the magnitude of the shurdtuctance instead of the inherent
transducer capacitance. However, it has recently beenmignated that even large inductances
can be obtained by simply winding a copper wire around a ntagoere [10], which substan-
tially improves the feasibility of genuine passive shuit][ The present work concerns pure
passive vibration control, in which case the attainablegiamis governed by the magnitude of
the transducer capacitance with the magnitude of the EMC&liasiting factor in the design
of the transducer and the corresponding shunt tuning puveed

In the present work, a recently proposed shunt tuning methasked on the effective EMCC,
is implemented in the commercial finite element (FE) code X8S[12]. Correction terms,
that represent the interaction with non-resonant modes;@rsistently derived from the natu-
ral frequencies obtained by the three eigenvalue problasaceated with piezoelectric SC and
OC electrodes and a pure inductive shunt. However, as deémtets in [13], the solution for
the pure inductive shunt is only needed when the effectiveCENE almost vanishing because
of a very indirect location of the transducer(s). Therefamanost practical problems, the tun-
ing formulae only rely on the two natural frequencies froma 8C and OC limits and a modal
charge that appears as a supplemental reaction force aiesbeiith SC electrodes. This tun-
ing procedure is simply and very directly implemented in enowercial FE code. The present
tuning method is implemented in ANSYSwhich supports three-dimensional (3D) coupled
analysis of electromechanical structures, previously dse the assessment of both 2D and
3D evaluations of the effective EMCCs [14]. Furthermoreuk 3D analysis of a CD-ROM
drive base with shunted piezoelectric patches has prdyitveen analyzed in ANSYS[15],
while the possibility of exporting system matrices and vexsthas been further utilized in [16]
to determine optimal shunt calibration andlinl[17] for oimpatch positioning by optimization
functions written in Matlab. Presently, the implementatod the new shunt calibration method
in ANSYS® is used to perform full 3D analysis of a benchmark problenceoming a simply
supported plate presented in [6] with a single pair of pieramic patches and subsequently
with multiple pairs placed symmetrically with respect te tiargeted vibration forms. The aim
of the paper is to introduce an adapted calibration pro@ethat is suitable for use and im-
plementation in commercial FE software and consistentipriporates the effective EMCC to
accurately represent the effects from non-resonant modefiexible structure.

2 Finite element formulation

This section is devoted to the notations and general steictucommercial codes with elec-
tromechanical packages, such as the ANS8B FE model, and is presented to clarify and
support the theory behind the proposed shunt calibratioogalure inl[6] based on a consistent
use of the effective EMCC.
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2.1 Constitutive equations

The constitutive relations for piezoelectric materials g written in four different forms,
depending on the choice of independent variables. The nooasthonly implemented form in
commercial software, such as ANSY,$s the so-called-form,

{T} = [C7{S} - [e{E} €y
{D} = [J{S}+[{E} @)

where superscriptdenotes the transpose operation. For a full 3D representdhie six engi-
neering stresses i{iI'} and three electric displacements{iP} are expressed in terms of the
energy conjugated strains {15’} and electric fields i{ £’} through the SC elastic stiffness ma-
trix [C'¥], piezoelectric (stress) coupling coefficients majspand dielectric blocked constants
matrix [¢°]. Details about the coupled constitutive relations in Effs(2) can be found iri [14].

2.2 Eigenvalue equations

In the following, mechanically unloaded harmonic vibrasaare considered by implying gen-
eral harmonic solutions of the forn ..} = {...}e™*, wherew is the representative angular
frequency when represents time. Thus, the variational formulation for toenbined elec-
tromechanical structure can be written as

/Q (GSYHTHO — w? /Q (Gul plulde — /Q (GEV{D}dO — / S6qdl,  (3)

Tq

where the) indicates the variational function. In EQJ (3)denotes the material mass density,
the electric potential; the corresponding surface charge densitthe material volume anfl,
the area of the electrode where the chargeapplied or measured.

Upon substitution of the constitutive relations in Eq$-(@) into the variational equationl(3),
the stresse$T'} and electric displacemen{} no longer appear explicitly in the variational
equation((B). In the coupled FE formulation, the 3D dispfaests in the vectofu } are then ap-
proximated by their nodal displacementd i} via appropriate shape functions, while a similar
interpolation is used to represent the electric potentiay the corresponding nodal values in
{¢}. The corresponding mechanical straing i} and electric fields i{ £} are then obtained
by consistent differentiation of the shape functions aiséed with{U } and{¢}, respectively.
In the discrete representation by the nodal degrees ofdraddofs), the variational equation
() contains two coupled equations with system matriceainbtl by performing the volume
integration over) on the left hand side of Eq.](3) and the integral across thetrelde area
I', on the right hand side. Hereby, the discrete vibrationablerm can be represented by this
coupled set of equations

({(féjfi)t Sl [V D) @

where[K[], [K{7,] and[K. ;S] contain the stiffness components associated with the mezia
displacements, electromechanical coupling and electriiergials, while)M contains the phys-
ical mass associated with the vibrational inertia of the Bosicture and piezoelectric patches.
Finally, the vecto{Q,} contains the applied electric charges from, for examplexaarnal
power source or a supplemental shunt.
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When modelling a piezoelectric patch in an FE code, some dofstitute the patch elec-

trode, while other dofs describe the pure electromechbmegerial. A continuous electrode

distributed on the patch is represented by a scalar elguitential via an equipotential condi-

tion, which in the present case is introduced for thin piezamic patches with two in-plane

electrodes. In the case of a single patch or a single systeonoiected patches, only a single
electric potential dof remains unconstrained once a nardiinterface) electrode is grounded.
Appendix A presents the extension to several independénst@iessymmetrically placed piezo-

ceramic patches. When introducing the equipotential cangithe discrete vibrational problem

(Eq. (4)) can be decomposed into

Kg [_(5 ng M 0 0 U 0

- Ve

(KE,) —Kj; —K;ZV —Ww¥0 0 0 oS ={0 (5)
(Kfy) —(Kgy) —Cy 0 0 0 v —Q

While [K7,] and[K<’] contain contributions associated with the electric po#tibfs that are

not part of an electrode, the coupling matfik 5,  } represents the apparent stiffness associated
with the dofs representing the patch electrode @psdis the effective capacitance of the single
network of piezoceramic patches. Thus, the electric p@teah the ungrounded non-wired
electrode defines the difference in electric potential drage 1, while () is the corresponding
charge. Finally,{K;i,} describes the coupling between the non-electroded andd¢btazied
dofs. The vibrational problem (Ed.](5)) may therefore betemi in the collapsed format

(o S - [ DT -{2) @

obtained by eliminatind ¢} from the second set of equations in Ed. (5). Hereby, the tiagul
system matrices and resulting modified capacitance follow a

[KP) = [KE + [RENESRE) Gy =0y —{Kg MK H{EG, (7)
while the coupling between the mechanical and electric dlosria computed as
{kine} = {Kv} = [KEIRS T HE Gy (8)

Itis found that the compact form of the equations of motioRdn (6) is equivalent to the system
previously derived in[6] with a slightly different notatidor the electromechanical coupling.

3 Electromechanical coupling coefficients

The vibrational problem (EqLI6)) constitutes the govegnaguation used in the subsequent
analysis and derivations, in which the mechanical and rtestiffnesses are governed by the
stiffness matrix[K*] and the resulting capacitance in Egl (7), while the coupbegveen
the system of mechanical equations and the single ele@tiat®n is governed by the elec-
tromechanical coupling vectdkZ_} in Eq. (8). For a specific vibration mode of the structure,
the magnitude of the electromechanical coupling is corargty represented by the effective
EMCC, basically describing the modal ratio between eleatrand mechanical stiffnesses. In
this section, the effective EMCC and its quasi-static apjpnation are derived and then subse-
quently used to calibrate resonant RL shunt circuits fomogitpiezoelectric vibration damping.

4
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3.1 Effective EMCC

The effective EMCC may be defined as the rate of convertedjgmsrthe piezoelectric material
and therefore described by the difference between the nstrdéh energies associated with SC
and OC patch electrodes. The modal strain energies are i to the eigenvalues from
the SC and OC eigenvalue problers![14], obtained from Bqw{@) V = 0 and@Q = 0,
respectively. For vanishing voltage, the SC eigenvalublpro can be directly written as

([K"] = wj[M]) {U}; = {0} 9)
for a particular vibration modgwith circular frequency;. In the SC limit, the bottom equation
in Eq. (8) provides the (sensed) modal charge

Qj = —{kn}{U}; (10)
as a reaction force securifg= 0. This modal charge is easily extracted from a FE solution and
therefore conveniently used to determine the effective EMThe SC eigenvalue problem Eq.
(@) conveniently constitutes the foundation of a dynamalysis, with the mode shape vectors
{U}; normalized to unit modal mass,

{UKIMIUY; =1, {UKKHUY, = wj (11)

while wj. then determines the corresponding modal stiffness.
The opposite OC eigenvalue problem follows from Edj. (6) famighing charge( = 0), con-
veniently formulated as

1 ) .
(I£5) + kB HREY = &3MI){0), = {0} (12)
p
to secure a non-vanishing determinant of the resulting mmgsx. In the corresponding stiff-
ness matrix, the SC contributidi ©] is then increased by the quadratic projection of the

coupling vector{kZ_} on the modified capacitanc(é;s such that the OC circular frequency

~

w; > wj. In the following the( )-symbol denotes solutions for the OC configuration.

The calibration procedure is derived for a specific targeti@jo= r with circular SC and OC
frequenciesv, andw,, respectively. The effective EMCC for this mode is refertedhs <2,
representing the ability to convert between mechanicaled@ctrical energy and therefore the
damping attainable by the supplemental shunt. The efle@MCC is presently defined by the
relative difference between the SC and OC circular freqesrequared,
2 a)rz - W?

K (13)

w?
Pre-multiplying Eq.[(D) with{ {7} and oppositely Eq[{12) withU}%, the terms involving K ]
may be eliminated so that the effective EMCC for the targedienocan be expressed as
t{1.E E \tfT,
I{2 — {U}C{fme}{k’me} {AU}T (14)
wCF{U N IMKU Y,

A simpler expression is obtained by assumiitg}, ~ {U},, which is commonly used in the
literature [9]. Thus, the effective EMCC can be estimated as

2

liQ o Qr
0™  9/S
wiCs

whereby evaluation of the OC eigenvalue problem in Eg. (42)ke avoided.

(15)

5
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3.2 Quas-static EMCC

The approximation in EqL(15) of the effective EMCC in Hg.)Xbas in [6] been demonstrated
to be rather imprecise for flexible host structures. Howesemore accurate approximation
can quite simply be obtained by considering two static poid associated with SC and OC
patch electrodes, obtained from Hg. (6) wh&fi = [0] and a mechanical loaff} is applied.

As for the approximative solution in Ed._(15), this quasit&t approach avoids solving the
OC eigenvalue problem in Eq._(12). When applying any exidoaal to the electromechanical
structure with SC patch electrodes the quasi-static solut the measured charge is found as

Qs = —{kh K"} (16)

with subscripts referring to a sufficiently static limit where the inertianche neglected. As
the same external loaflf} is applied to the structure with OC electrodes, the deflaciso
slightly altered due to the electromechanical stiffenifigs gives the following solution for the
difference in electric potential between the patch eleldsdfor the quasi-static behaviour,

AU e
SRR CAITC AV

(17)

Note that the inverse of the SC stiffness matrix is obtaingdigtly by the Sherman-Morrison
relation [18]. Both the quasi-static solution to the meaducharge?, and the difference in
electric potential/; are easily accessible reaction and response outputs inectyoenechan-
ical FE analysis, from which the quasi-static capacitarici® piezoceramic patches can be
evaluated as 0
s ~eS _

CS = _Vs = CYp + {kﬁe}t[KE] 1{k7Er‘Le} (18)
This quasi-static capacitance, is more precise than the modified capacitarj_};é since it
includes the (static) interaction with the specific hosictiure by the last term in Ed. (IL8). This
further implies an improved approximation of the effects#CC (<2 ~ «?2) by an expression

similar to Eq. [(Ib)
o QF

P Caw?

Where(j;s has been replaced loy,. The use of the quasi-static EMCC in EQQ.](19) might be a
suitable alternative in both practical applications angez¥ments when the SC and OC natural
frequencies are almost indistinguishable. Furthermanelarge and complex FE models this
method may require less computational effort than solviregdynamic eigenvalue problems.

K (29)

4 Modal reduced equations

A reduced order model for the vibrating structure is effedii introduced by a modal repre-
sentation in terms of the most energetic vibration formhis section, the representative modal
equations are derived in order to obtain an accurate shaimgumethod that is suitable for
implementation in a commercial FE-software. The strudtpaat of Eq. [6) is effectively de-
scribed by the mode shapé&'}; from the SC limit, collected as columns in the modal matrix
[U]. Hereby, the structural respon§€} in Eq. (6) can be represented as

{U} = [UKv} (20)

6
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where the vectofv} contains the modal coordinates. When substituting [EQ. i(20)Eq. (6)
and then pre-multiplying the structural equation with tlieration form{U}% of the resonant
modej = r, the coupled set of modal equations can be written as

(w?—wQ)vr = Q,V (21)
CV—Q = —{Q}{v} (22)

where the vectofQ}' = (Q1, Q- ...) contains the modal sensed charggsdefined in Eq.
(@0). Thus, the right hand side of EQ. [22) contains contidoufrom both the resonant mode
through the modal charg@, as well as residual contributions from the non-resonantesod
due to the non-vanishin@; for j # r. The residual terms;j(# r) are now represented by two
supplemental terms that are proportional to the electfazaing VV and describe corrections to
the system impedances. Thus, the right hand side of Ely. §28)aroximated as

{QY{v} = Qv + (C; - ij; )V (23)

whereC’ and L/ are artificial capacitance and inductance, respectivaking into account
the influence from the non-resonant structural mogeg (r). The two correction terms can
be calculated explicitly and elegantly based on the systetrices [5]. However, next, the
correction terms are instead calibrated by solving thrgereialue problems associated with
SC and OC patch electrodes and a pure inductive shunt wittpamally tuned inductance
from the preferred calibration formulae without residualda corrections. Elimination @, v,
between Eqs[(21)-(23) gives the governing equation

)(wf — W)+ QV = Q(w? — w?) (24)

(¢ +cr-

271
w2L!

where the relation between char@eand voltage” depends on the particular shunt impedance.

4.1 SC and OC dlectrodes

The SC condition corresponds o = 0, in which case the non-trivial solution to EQ. {24) is
readily obtained as = w,., exactly recovering the solution to the SC eigenvalue @nolh Eqg.
(9). The corresponding OC condition follows wh@n= 0 and the associated circular frequency
@, may be obtained numerically from Ef.{12) or experimentajlyneasurements. The relative
difference between the SC and OC frequencies defines thetief&MCC by the relation in
Eq. (13). Thus, substituting the OC frequency= w, into Eq. [24) and then imposing = 0,
the former becomes

. 1 2 A2 2 _
[(OT (j)gL;,) (wr wr) + Qr V =0 (25)
after introducing
C,=C + ! (26)

as a modal capacitance, modified by the quasi-static caretrmC’. introduced in Eq.[(23).
Solving for non-trival solutions with” = 0, the problem in Eq.L(25) constitutes a quadratic
equation inw?. The effective EMCCk? can thereby be obtained from the solution to this
guadraric equation, see details in Appendix B, as

~N2 2 4 22/\/
ngwr Qwr :/@24—%(1—0—/’62—)\;/‘12)(\/1_’_ (/{r) r _1) (27)

(1+K2— /\;/iZ)2

7
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in which the inertia correction from the residual modes gesented by

, 1
Ar = oI (28)
while the flexibility correction inC,. is contained in a modified EMCC (see Eqs.](15) andl (26))
Q;
K2 = Cru? (29)

It follows from Eq. [27) that for vanishing inertia corremti from the residual modes/( = 0),

the modified EMCC is:? = 2. And if furthermore the flexibility correction is ignored{ =

0), the modal capacitancg. = C*;S and the EMCG:? = «Z from Eq. [15).

An improved estimate is achieved for finiké < 1, whereby a Taylor expansion of first order

can be applied on the square root in EqJ (27). This gives
2 2 1+ ’f% N Q?«

K= = K =
e r 2\ 2 2
14+ k2 —-XNkK2 CLw?

(30)

where the latter equality defines an actual modal capa@tahnoof the piezoelectric patches
around the targeted resonarjce r,

N K2
et 1+/@%> (31)
It is found that for vanishing\ the inertia reduced capacitanCe recovers the actual capaci-

tance(', associated with?.

It follows from Eq. [30) that the effective EMCC is the ratietitveen the apparent electrical

absorber stiffnes9?/C', and the modal stiffness?. The expression in E4.(B0) can furthermore
be used to determine the artificial inductard¢eas

1 KJQ Q2
. 1——7“) r 32
e~ () 52)

using Eqgs.[(28) and(B1). By elimination &f, using Egs.[(32)[(26) and (29), the governing
modal equatiori(24) can be expressed as

2 2 2 2 2

(G- (1-5)](1-5) +e v = Ze(1-2) @
containing both the effective EMCE and the modified EMCG?2.
As mentioned above, a simplified representation can beradatddy assuming that, — oo,
whereby the last (inertia) correction term in Eg.1(23) vheis leaving only the former flex-
ibility term proportional toC”. For this approximation, it follows directly from Ed._(2M)at
k? = k2, obtained directly from Eq[{13). The validity and accuradyx? = x? is verified
by the numerical results obtained in Sectidon 7 and the tufungulae presented in Sectibh 5
which are therefore expressed directly in terms:hf However, for a non-negligible residual
mode inertance, represented by, a supplemental condition is then needed to separate the
individual correction effects frond”, and L. This separation is conveniently achieved by in-
troducing a pure inductive (L) shunt that creates a supphtaheesonance. For completeness,
this improvedL-shunt calibration is now summarized, although its infleeisdimited for most

flexible structures, as illustrated in [6].



Johan Toftekeer, Ayech Benjeddou and Jan Hagsberg

4.2 Pure L-shunt

In the OC limit, the effective EMCG:? in Eq. (27) or Eq.[(30) depends on both the flexibility
correcting capacitandg€’ in 2 and the inertia correcting inductantgin X’. In order to distin-
guish these two non-resonant modal corrections, a suppkatr@ndition must be introduced.
By introducing a pure inductive (L) shunt, an expressionspran be determined by solving
the corresponding quadratic characteristic equationetasldd subsequently.

For a pureL-shunt, the impedance relation between charge and voltagbewritten as

V =w?LQ (34)

Hereby, the charg® can be eliminated, after using EQ.(34), in Eqg.l(33), whertbieycharac-
teristic equation associated with= 0 can be written as

2

Wyt 2 2y(1_Fr 2 (W)? N 2 _
( ) [1+/@T+(1+nr)<1 /{2)+AT“T}(w> +(1+r5)(1 p + \kZ =0 (35)

wT e T
representing the shunt inductancén normalized form as
1
Qi

similar to Eqg. [(28) for the correction inductanteg. It is noted that the form ok, in Eq. (36) is
due to the present normalization of the SC mode shapes tonaaial masses in Eq._(111).
Because of the inclusion of the inductaricethe quadratic characteristic equatibnl(35) governs
two rootsw? andw?, with the corresponding circular frequencies andw, being smaller and
larger than the SC circular frequengy, respectively. The two circular frequencies associated
with the L-shunt can be found experimentally or numerically by sajuime eigenvalue problem
Eq. (6) withQ eliminated by Eq.[(34),

Ar

(36)

K¥ EE, 9 M 0 vl _ |0
(R o R e D 78 B )
The product of the two roots must be equal to the constant irerfag. (35), which gives the
condition , ,
w_—i- w_— — )\ * 2
( Wy ) ( Wy ) Artir (38)
where . ) )
L T
V= (1 ,{g> A, (39)

represents the? factored out constant term in the characteristic equaB8h (t may be noted,
considering the first relation of Eq.(30), thgt= ). + )\, represents the combined inductance
from shunt, Eq.[(36) and residual modes Eq] (28).

The sum of roots must further equal the coefficient to thedlinerm in Eq.[(3b) with opposite
sign, which results in

Wy 2 w-\?2 _ 2 *
(w—r) + (—) — 14 21+ ) (40)
Subtracting Eq[(38) from Ed._(40) gives the modified EMCC as
w% w2
¢ (-5 “

9
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(@) (b)
fa, 2 =p &1 o ar

L

il

Figure 1: (a) Parallel and (b) series shunted piezoceramic pat¢himfiterent capacitancgy .

Oncex? is determined, the modal capacitar@eis obtained from Eq[{29), whereby the quasi-
static correction capacitancé subsequently follows from Ed._(26) after using Eq.(15), as

Q2

2,2
Krw?

= -0 = ( —’;—;)

(42)

The corresponding inductive correction tefrhis determined by the previously derived expres-
sion in Eq.[(3D).

The introduction of the puré-shunt enables the individual determination of the twoettion
terms in Eq.[(2B) with the artificial modal capacitar€eand inductancd.,.. However, in the
following, the modified EMCG:? is replaced by the effective EMC&Z, which is readily avail-
able from an FE analysis when using the definition in Edl (A4)demonstrated in the present
section, this estimate af is valid for vanishing\’..

5 Resonant shunt tuning

The resonant shunt circuit consists of an inductah@nd a resistanc& connected either in
parallel or in series, as shown(in Figufe 1. For both circaitrections, the charg@ on the
right hand side of Eq[(33) can be eliminated by the gene@3hm’s law

V= —iwZ,(w)Q (43)

whereZ, (w) is the impedance of the supplemental shunt.
Upon elimination, by Eql(43), af in Eq. (33), the corresponding characteristic equation can
be written as

2 2 2 2
w 9 K , 1 9 w W
[w_,? —(1+ /{T)<1 - /i_§> - ZwiZsh(w)Q%ﬁr} (1 - W_3> + /irw—g =0 (44)
Next, the calibration principle for the parallel and seri&s resonant shunt circuits are consid-
ered, in which the tuning expressions are subsequentlyligigddy assuming:? ~ x2.

5.1 Paralle shunt circuit

The schematics of a parallel shunted piezoceramic patt¢toisrsin[Figure ]L(a). Because of its
inductive property it operates as a vibration absorber erhtist structure and details about its
equivalent mechanical properties are provided in [1]. ThpadanceZ,, (w) is for the parallel

shunt circuit given as

1 1 1
= — 4+ — 45
Zo(@) R il (45)
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and, by substituting the latter into EQ. {44), the charastierequation can be written as
w\4 2 « 2\ (W2 w2 YW 2 AN
(5)' = (1ot apd) () oot ()t (2)] <0 oo
where the electric damping parameter (superseripfers toparallel)
1
- RQ?

is inversely proportional to the shunt resistaitd~urthermore, the shunt inductantes con-
tained in\* as defined in EqL(39), with the normalized shunt inductandatroduced in Eq.

(38).

When introducing the estimaté ~ x?, the characteristic equation Ef.146) reduces to

<i>4_ <1+/€§—|—)\mz> <i>2+>\m§+i<i>p§3m§wr[1— <%>2} _o0 g

Wy Wy Wy .

Py (47)

where), then directly replaces; from Eqg. [39). In the following EqL(48) constitutes the Isasi
of the shunt tuning.

Initially, the tuning of the inductance in A\, must secure that the electric shunt reacts properly
in resonance with the targeted mogle- r. For this, the principle of equal modal damping is
applied; initially, the latter was introduced for the megital tuned mass damper in [19] and
subsequently proposed for pole placement calibration efsamant serie& L shunt [1]. The
principle states that the two complex roots must meet atuadation point, whereby they have
equal damping up to the point of bifurcation because thesrfmdtow semi-circular trajectories
for increasingo?. It, furthermore, implies that equal damping can be sectoed pureL-shunt

in the limit p2 — 0, at which the real-valued roats. andw.; must be inverse points with respect
to the circular frequency, in the opposite (SC) limip? — oo. For p? — 0, the characteristic
equation[(4b) recovers Ed. (35) for the pureshunt. The inverse point condition can therefore
be directly represented by the relatione? = 1, see Eq.[(48). Hereby, the inductance calibration
follows readily from Eq.[(36) as

H?

Q7
It is important to observe that the optimal inductance iggiby the effective EMCG? relative
to the square of the modal char@e in Eqg. (10), obtained directly from an FE analysis as a
reaction force associated with the SC eigenvalue problem.
In[Figure 2(a), the blue trajectories represent the path@tomplex roots in the first quadrant,
obtained by solving the characteristic equation Eql (4&hwespect tg? as gain. For infinite
resistancef? — 0), the roots recover_ andw, below and above,.. When increasing? (or
decreasing the resistance), the two roots move into the lexpfane along semi-circular paths
until they meet at the bifurcation point, whereafter onet foecomes heavily damped when
approaching the imaginary axis along a quarter circle,avié other root becomes undamped
when terminating at the SC solution for p2 — oo. Thus, the reference frequency for the
parallel RL shunt is associated with the SC configuration.
The shunt resistance is now tuned to secure a reasonablyatieap in the frequency response
curve. Several expressions have been proposed for thizai#din [3,4/ 8] and in the present

L (49)
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Figure 2: Root-Locus diagram for (a) parallel EQ.{46) and (b) seEigs(52) shunt circuits.

Table 1: Tuning procedure based on the effective EMCC for parafiel geries shunt circuits witk? ~ x2.
Parallel Series

- fe 7 o e [ 1 Lo e , R = fiewr 2
Q7 Q7 '\ 2r2 Qr(1+ K2)? QF \ (1+k2)°

case the resistance tuning in [1,) 13| 19, 20]. By comparieggéneric equation (33) in [20]
with the characteristic equation (48), this gives the optimresistance tuning as

Kiw, [ 1
R="5 \/ 52 (50)

when the approximatior? ~ x? has been introduced. The tuning in Eg.](50) provides a rea-
sonable compromise between large modal damping and eBeesponse mitigation, and fur-
thermore it gives a flat plateau in the amplitude curve forghent loadingl”. The complex
roots obtained by Eq.(50) are indicated by the red crossEgyure 2(a).

As demonstrated in [13], it is numerically advantageous &mdmost actual problems, suffi-
ciently accurate to base the tuning of the resistance orffibetige EMCC, whereby:? ~ x? is
used in the calibration formulae for bothand R. Thus, the subsequent implementation of the
shunt tuning method only involves the use of modal pararseterQ, andx? for the SC and
OC configurations, while avoiding the pufeshunt and its supplemental eigenvalue problem
in Eq. (37). The tuning formulae for the parallel shunt anmmarized i Tablell.

5.2 Seriesshunt circuit

The series shunted piezoceramic patch is shoyn in Figude Bis configuration implies that
the residual mode corrections and shunt components areldibiva, whereby optimal calibra-
tion is associated with an iterative procedure, unless $saraptions? ~ x? is conveniently
introduced, as demonstrated subsequently.

The series shunt impedance is introduced as

Zsh(w) = R+ iwL (51)

whereby substitution into Egl_(#4) gives this characteristjuation (see Appendix C for its
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derivation)
W\ 4 1+k2  Nk2 w\2 N2
() (L ) (2
Wy 1+ K2 1+/12 Wy (1+ Kr2)?
+(w> A [ 1+ K2 (w>2+1+ﬁ%(1 li%)[(w,«>2 1] 0
i — (= — )V () - —
Wy p,” 1+ K2 Wy 1+ K2 K2 w

conveniently given in terms of the OC frequengy and introduction of an electric damping
parameter (superscriptrefers to series)

(52)

= RQ; (53)

that becomes proportional to the shunt resistaice

In Eq. (52), the characteristic equation is actually qaindiue to the presence of the frequency
ratio w?/w? in the final term. However, by applying the estimate~ «? the last term inside
the latter curled brackets vanishes and Eg|. (52) redudes,&2q. [39), to

(wi)4 - (1 1Af,§g)(@%>2+ % i (w)pA [1- (%)Q] =0 (54)

For this reduced equation, the desired inverse point oglasi secured by, x> = (1 + x2)?,
corresponding to the roots_ andw, for vanishingp; being inverse points with respect to the
OC natural frequency,. The optimal inductance is then determined from Eql (36) as

/12

ERCECETL 9
For the inductance tuning in Eq.(55), the complex rootsiakbthby solving Eq.(52) are plotted
in [Figure 2(b) for increasing;. The root locus diagram verifies that andw, are in fact
inverse points on the real axis with respectitQ whereby the OC natural frequency is the
apparent reference frequency for the seftdsshunt, as also observed by [11].
It can be seen froth Figure 2(b) that the roots to Eql (52) apprately follow a semi-circle
in the complex plane up to a bifurcation point. However, duthe approximations associated
with the inverse point relation, the bifurcation point i perfectly met. The optimal resistance
tuning indicated by red crosseq in Figute 2(b) is again fdwnthe balanced calibration devised
in [20] by comparing its generic equation (33) with Elq.1(54}ich results in the resistance
formula

K20, k2w, 2K?2
PV = @\ armap 0)

expressed in terms af ~ 2. Thus, the optimum piezoelectric shunt tuning for both theap

lel and seriesk L shunts are now consistently derived with respect to the SQaheharge)..,
the SC circular frequency, and the effective EMCG? obtained by the classical expression in
Eq. (13). The calibration formulae used in the following rerioal analysis are summarized in
the second column 1 for the series shunt connection.
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ANSYS Mechanical APDL #Initial step: Preferences = Structural, Electrical

Step 1: Preprocessor

Element type - SOLID186, SOLID226, CIRCU9%4

Real Constants = For inductance and resistance values implementation
Material Properties = Define electromechanical material properties
Modelling = Operate = Booleans = Glue patch(es) and host structure
Meshing = Define desired mesh

Loads = Define boundary and EP conditions

Step 2: SC solution Step 3: OC solution

* Ground electrode master nodes * Delete electrode grounding on one

* Analysis type = Modal analysis electrode master nodes

* Solve = SC eigenvalue problem * Analysis type = Modal analysis

» Save resonant frequency w, and modal * Solve = OC eigenvalue problem
charge Q, ‘* Save resonant frequency @,

Step 4: APDL Math
» Effective EMCC by Eq. (13) and optimal inductance and resistance tuning by Table 1.

Step 5: Shunt solution

» Implement inductance and resistance between grounded and ungrounded master nodes
according to the patch(es) connection and polarization direction (see Figure 3 of [6]).

* Run harmonic analysis around target resonant frequency to verify tuning.

Figure 3: Flow chart illustrating ANSY S8 implementation of the proposed optimum shunt tuning praoed

6 Numerical implementation in ANSYS’

The modelling of the electromechanical structure in ANSY&aluations of the SC and OC
eigenvalue problems and implementation of the proposext$hning method are summarized
in the flow-chart shown i Figurg 3, and briefly explaind in thiowing. Initially, 'Strutural’
and 'Electrical’ analyses have to be chosen. The first step tbllows by defining the geom-
etry, material properties, element types and mesh parsitcd the analysed electromechanical
structure. In the present work, SOLID186 and SOLID226 3D @@eelements are used for the
discretization of the host structure and piezoceramidyjasy), respectively. Next, the boundary
conditions and equipotential (EP) conditions for all contius electrodes are imposed to the
discretized model. For each continuous electrode, the BBition is defined in a master node
which is saved for later use. In the second step, zero etquitiential is applied to the master
nodes to obtain SC piezoceramic patch(es). A modal analy$ieen conducted to determine
the targeted SC resonant frequengyand modal chargé),, with the latter being a reaction
force of the modal analysis. The third step deletes the Zewtree potential constraint on one
of the master nodes to obtain OC piezoceramic patch(es). dahamalysis is then conducted
to determine the target OC resonant frequef¢yThe fourth step then determines the effec-
tive EMCC «? using Eq. [(IB), whereby the optimum inductance and resistaalues can be
determined according 1 for either the parallel aeseshunt circuit. The fifth and final
step implements the optimum inductance and resistancesbatthie grounded and ungrounded
master nodes according to the patch(es) connection andzatian directions, see [6]. The
inductance and resistance are implemented using CIRClé®degits with specific key options
and real constants. The shunt tuning can then be validateafigrming a harmonic analysis
around the target resonant frequency.

If the alternative tuning method based on the quasi-stEE 2 is preferred, the evaluation
of the OC eigenvalue problem can be omitted, while two sfatiblems associated with SC and
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Table 22 Dimensions of simply supported plate with a single pairiezpceramic patches.

Plate | Center patch Piezoceramic PZT 5H
Dimensions Density Young's Modulus Poisson’s ratio XY Dimensions
le x 1y x t [mm3]  (kg/m?) [GPa] ) [mm] Lpz X lpy X tp[mm?3]
414 x 314 x 1 2700 70 0.33 2Bl 21, | 82.8%x628x%x05

OC patch electrodes must instead be solved. Finally, f@lsimode tuning with the effective
EMCC approximated by the modal EMCE in Eq. (I5), the resulting modified capacitance
is determined by Eq[{7b). In the following the performané¢éhese three tuning methods are
analysed for the smart plate benchmark [6] with either alsipgir or four pairs of piezoceramic
patches.

7 Benchmark examples

In the present section, the smart plate benchmark analys{&] is modelled with 3D FEs
in ANSYS® with the aim of determining the optimum parallel and serieang tuning and
demonstrate the simplicity of the proposed tuning methagkbbaonw,, @, and x2. Details
about the dimensions of the simply supported plate and tiggespair of pieceramic patches as
well as the location of the latter are provided.in Tabile 2nglavith the material properties of
the plate. In the present work, it is chosen to use the pigaode material PZT 5H, for which
the material properties can be accessed through the 'efportd’ [21].

7.1 Simply supported plate with a single pair of patches

The first example concerns optimum shunt tuning to the figittaiibration modes of the simply
supported plate described in [6] with a single pair of piezamic patches. Initially, a short
convergence study is carried out in order to justify the enatiscretization. Itis first of all noted
that increasing the number of elements in thickness doeanly slightly alters the numerical
results. The convergence study is thus carried out for ar@sing number of elements along the
two in-plane axes. The convergence of the squared SC andeQGdincies and effective EMCC
for three of the first eight vibration modes is showi in Figdr@he three modes 1, 4 and 7 are
of particular interest because they possess significacirefeechanical coupling, as indicated
by largex? in the following. The relative errors are obtained by conpgthe approximate
(approx) results to the reference (ref) ones obtained witbrg fine mesh consisting @104
elements and33064 dofs.

It can be seen fromn Figure 4(a) that the squared SC and OCeinetgs converge rapidly and
have relative errors below% (dashed black line) when using a model with approximately
10* dofs. Further, a nearly linear tendency of the convergencie double logarithmic scale
can be observed, indicating quadratic convergence. Frgur&#@(b) it can be seen that the
convergence of the squared effective EMCC is slower tharfondghe SC and OC frequencies.
This is because? is determined as the relative difference betwéérandw?, where the SC
frequency simply converges faster than the OC one. It is fesnthe relative error on the
effective EMCC is around% (dashed black line) when using a model with approximately

10° dofs. This discretezation is therefore used in the pregealysis. The relative error on the
effective EMCC for the remaining five vibration modes mighktlarger since the convergence
rate is proportional to the magnitude «f, as demonstrated in [14].

The first eight vibration modes for the simply supportedehatth a single SC pair of piezo-
ceramic patches are shown[in Figufe 5, with the location efghtch pair indicated by the
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10* 10°

dofs dofs
Figure 4. Convergence of (a) SC and OC frequencies and (b) effect€E for modes 1, 4 and 7, determined
by RelX)[%] = (Xapproz — Xref)/ Xre-

(d)
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Figure 5: Mode shapes of a simply supported plate with a single SChyz.

black rectangle. It can be seen frgm Figure 5(a,d,g) thap#ieof piezoceramic patches is
favourably positioned targeting vibration modes 1, 4 andsrtheir large curvatures over the
patch area give large in-plane patch deformation. For themr@ng five vibration modes, the
pairs are positioned close to nodal points, whereby the Eliton results in cancellation of
the charge across the patch area.

provides the SC and OC frequencies, the effective EMI@2 normalized modal charge
and the optimum parallepf and seriesq) shunt tunings for modes 1 to 8. It can be seen for
the present piezoceramic patch design that damping witlprtegent patch pair location and
dimensions is attainable for modes 1, 4 and 7, denoted infaoldin[Table B. The squared ef-
fective EMCCs are for these three modes ara2ffidyielding a damping ratio of approximately

Crar = %lig ~ 5%, seel[1]. It is seen that the normalized modal cha@pgés seemingly pro-
portional to the level of attainable damping. Finally, inisted i Table 3 that the parallel and
series optimum inductances have the same order of magnitdie much lower resistance
values are required for the series shunt configuration.

The tuning of the electronic components could as well haen l@sed on the quasi-static (Eq.
(@9)) or the modal (Eq[(15)) EMCC, whereby evaluation of @@ eigenvalue is avoided. For
the quasi-static EMCC, the two static Eqs.](16) and (17) nmss¢ad be computed, whereby the

guasi-static capacitance can be determined by[Eg. (1&)elpriesent example, this is found to
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Table 3: SC and OC frequencies, effective EMCC, normalized modatgdand optimun® L-shunt tunings, for
simply supported plate with a pair of same poled and paraileld piezoceramic patches.

Mode (type) fIHZ) fIHZ k2% Q3/w? [1(S5)°] LMl Rkl LJH Rk

rad

1(1,1) 35.89 36.22 1.86 1.013 36.03 42.16 34.73 1523
2(2,1) 8073 80.77 0.10 0.054 7.071 80.96 7.057 0.159
3(1,2) 111.9 1120 0.12 0.066 3.604 5232 3592 0.122
4(3,1) 1547 1565 2.30 1.252 1.943 8.810 1.857 0.392
5(2,2) 1657 1657 0.02 0.008 1.999 1.115 1.998 0.038
6(3,2) 2306 2307 0.04 0.027 0.744 37.31 0744 0.031
7(1,3) 2423 2448 201 1.067 0.814 6.176 0.782 0.241
8(4,1) 2523 2523 0.00 0.000 0976 2417 0.976 0.010

(@) (b)

(d)

|uma3:|/u0
o «©

IN

0.8 0.9 11 1.2 0.8 0.9 11 12 0.8 0.9 11 12 0.8 0.9 11 1.2

1
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1
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1 1
w/wi w/wy

Figure 6: FRP for displacement and voltage around the (a)+(b) firdt (@h+(d) fourth resonant frequency for
parallel shunt tuning based on the effective Eq] (13) (dolig), quasi-static Eq[{19) (dashed line) and modal Eg.
(15) (dashed-dotted line) EMCC in respect to mede

beC, = 554.6nF. The quasi-static EMCE? then follows by multiplying the inverse @f, with
Q?/w? in [Table 3. Using the single mode approximation, the resglthodified capacitance
C“;S can be determined by Eq.](7) by mapping the correspondingesni the system stiffness
matrix in ANSYS’. However, mapping the correct entries in the stiffness imea heavy and
rather complicated task in ANSYSwhich uses three different layers of ordering. Therefitre,
may be advantageous simply to solve the two static problasssiciated to Eqd. (116) and17)
in order to get), andVj, and to determine the quasi-static capacitaficdn the present case,
the resulting modified capacitance is found t(ftgé = 616.2nF, from which the modal EMCC
k2 (Eq. (I5)) follows by multiplication of its inverse witf? /w? in[Table 3.

The performance of the tuning methods based on the effecfiwasi-static and modal EMCC
is now analysed by considering the frequency response BR®) around the first and fourth
resonant frequencies, which are showp in Figurre 6. It carebe Bonj Figure|6 that the tuning
based on the effective EMCC (solid line) gives an optimunpoase around the resonant fre-
guencies with a flat (unit) plateau for the shunt voltage sasp. The latter is observed when
an idealised harmonic modal load is used for producing the FRis modal load is determined
from the mass matrix, the SC mode shape and the modal chafgélas= [M]{U},Q,. The
tuning based on the quasi-static EMCC (dashed lirje in Fi§ure also seen to perform rela-
tively well (with small deviations to the optimum shunt tog). However, the tuning based on
the modal EMCC (dashed-dotted line) is seen to be very pabeigiven example causing large
dynamic amplification around the original SC resonanceue@gy. Hence, an accurate descrip-
tion of the electromechanical structure, accounting fertbn-resonant modes, is apparently of
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Figure 7: Mode shapes of a simply supported plate with four pairs op&tches.

great importance as it furthermore results in a relativethpe tuning procedure.

7.2 Simply supported plate with four pairsof patches

It may be of general interest to place piezoelectric patethegcentralized location on the host
structure, while maintaining the same level of supplemaentadal damping. This can be real-
ized by the application of several interacting piezoelegtatches, which further may have the
potential of increasing the number of vibration modes withinable damping, as investigated
in the following for the simply supported plate. The secordmeple thus concerns the same
simply supported plate but with four pairs of piezocerandtcpes placed symmetrically in the
guarter points of the plate. The pairs are only a quarter efsihe of the former single pair,
whereby the piezoceramic volume is unchanged. The aim gfrésent example is to demon-
strate the performance of the piezoelectric shunt dampimgnvhaving several patches and to
investigate the difference between having an individuétipand a network of wired patches.
As in the first example, the first eight vibration modes arda@tgd and shown if Figureg 7 with
the position of the piezoceramic SC patches indicated bykhek rectangles. It can be seen
from the mode shapes 7, compared to tho$e in Figure® modes 4 and 5 have
interchanged. Also, the piezoceramic patches are in treeptease seen to alter the vibration
modes less compared to the first example, in particular fatesd@ and 8.

The SC and OC frequencies, effective EMCC, squared norathhzodal charge, and parallel
(p) and seriesq) shunt tunings are now determined for the plate with founiiaidially shunted
pairs of patches and provided[in Table 4. As the pairs of gat@re symmetrically (or anti-
symmetrically) positioned with respect to the deformatpattern of the first eight vibration
modes, sep Figure 7, the optimum tuning of each pair of patefiébe identical and deter-
mined according to Appendix A. 4, the provided martadrge and shunt tunings are
thus for a single patch pair. It can be seen ffom Table 4 thapifzg is attainable for the first
seven vibration modes given in bold-face. This is a conaiglerimprovement compared to the
three modes with substantial damping in the first exampleti@€7.1). Vibration mode 8 is
again seen to have vanishing attainable damping since tbbgsalocations if Figurg 7(h) are
at nodal points. The effective EMCC is seen to be lower for esodl, 5 (4 in first example)
and 7 compared to the first example, which is therefore sopfmi these specific modes. Fur-
thermore, it is seen that the magnitude of the optimum elaagtrcomponents are considerably
larger compared to the tuning in the first example. This isnlgadue to the much lower modal

18



Johan Toftekeer, Ayech Benjeddou and Jan Hagsberg

Table 4: SC and OC frequencies, effective EMCC, normalized modatgdand optimun® L-shunt tunings for
each individual shunted pair of piezoceramic patcheshi@stmply supported plate with four pairs of same poled
and parallel wired piezoceramic patches.

Mode (type) fIHz] flHZl s2%] @Q%/w? [n(55)°] LHI Rkl LJH Rke]

rad

1(1,2) 38.58 38.66 041 0.141 123.1 330.8 1221 2.678
2(2,1) 78.24 78.64 1.01 0.348 30.09 104.0 2949 2.073
3(1,2) 109.3 109.8 0.93 0.321 1536 77.36 15.08 1.420
4(2,2) 143.3 1447 1.90 0.648 9.049 4177 8714 1545
5(3,1) 153.0 1535 0.62 0.216 7821 67.28 7.725 0.833
6 (3,2) 219.8 2209 0.98 0.334 3.840 3792 3766 0.731
7(1,3) 236.3 2369 0.52 0.178 3.295 48.06 3.261 0.494
8(4,1) 2546 2546 0.00 0.000 3.253 - 3.253 -

charges caused by the smaller individual patch volumeslesthconversion into electrical en-
ergy. However, this can be changed by connecting the fous p&patches to a single common
shunt. This causes the squared modal charges to increadadigresixteen, while the optimum
tuning values for the electronic components will be a quartéhe values provides 4.
The attainable damping will remain unchanged, since ther®&02C frequencies and thus the
effective EMCC are the same. However, attention has to ke tpahe connection of the four
pairs of patches as the particular configuration dependbeestiape of the vibration mode to
be damped. For example, for the first vibration mode, thefate (top and bottom) electrodes
and the inner electrodes should be connected, respectaredywired in parallel to the shunt
circuit. This is because the in-plane strains of all the lpagchave equal sign. However, this is
not the case for modes 2, 3, 4 and 6, for which the in-planénstteave opposite signs. These
signs, and thereby the wiring of the four pairs of patchen, lwa determined by considering
the signs of the individual modal charges. For instance, aden2, the modal charges of the
two pairs of patches to the left are positive while they amgatige for the pairs to the right, see
[Figure T(b). This implies that the interface electrode$efleft patch pairs should be connected
to the inner electrodes of the corresponding right patchsid vice versa. When the wiring
of the patches is done correctly, it is apparently beneftoi@lonnect the four pairs of patches
in a single network, requiring smaller optimum shunt congas.

8 Summary and conclusions

In the present work, a newly proposétl. shunt calibration procedure based on the effec-
tive EMCC is generalized and demonstrated suitable for emgintation in the commercial
ANSYS® FE code. The calibration procedure includes the effectse@hbn-resonant vibration
modes, which are assumed to contribute by flexibility andtiaeffects. These non-resonant
effects can be determined by solving three eigenvalue pnoblassociated with SC and OC
piezoceramic patch electrodes and when a shunt circuitistorgs of an inductance is intro-
duced. However, the latter eigenvalue problem is found ceseary to evaluate in all desired
cases where the effective EMCC, and thereby the attainaiguohg, is significant. An alter-
native method based on a quasi-static EMCC is also propokethwnay be of interest for a
tuning based on experiments and also when computationia amsa limiting factor in the nu-
merical analysis. The optimum tuning formulae for paradlietl series shunt circuits are based
on a balanced calibration principle, where the roots in te mductive limit appear as inverse
points with respect to the SC and OC frequencies, respéctive

In the numerical examples, a smart plate benchmark is aathlgs two patch pairs configura-
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tions, consisting of either a single centralized pair okpadectric patches or four decentralised,
but symmetrically placed, patch pairs. A convergence shadybeen carried out, for the former
configuration, to demonstrate that a precise numerical medaportant in order to accurately
determine the effective EMCC. The first eight vibration modi@ve then been analysed with
both patch designs and the optimum shunt circuit calibnatiwere determined for each individ-
ual mode. For the single patch pair design, non-vanishingpitag was observed for three of the
first eight vibration modes, while this increased to seved@sdor the second design with four
symmetric pairs. It has been demonstrated that the optinlumtguning causes a nearly flat
plateau in the frequency response around the target relsomale, when applying a represen-
tative modal harmonic load. Furthermore, the voltage reseas found to have a completely
flat (unit) plateau as dictated by the principle of equal ni@enping. Finally, it was found
that larger tuning values are required for the plate withr foatch pairs shunted individually.
However, by connecting the four pairs of patches in a singtevark, these tuning values can
be reduced by a factor four since the modal charge incregsa$detor sixteen. It is noted that
close attention has to be given to the particular wiring ef platch pairs electrodes, according
to the signs of the individual modal charges.
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Appendix A: Identical and symmetrically placed pairs of piezoceramic patches

The proposed shunt tuning procedure and its implementatidiNSYS® for a single pair of
patches are here extended to the case of several identtayammetrically placed pairs of
piezoceramic patches, whereby the optimum shunt tunifgeisame for each pair of patches.
The coupling vectof£Z_} in Eq. (8) becomes a coupling matfi¥ ] with columns equal to the
number of individually shunted patch pairs, while the scqlaaantityC*;S becomes a diagonal

matrix C‘;s [I,,] containing the identical capacitive properties. At lakg variables’” and @
become vector§V'} and{Q} with entries equal to the number of shunted patch pairs. The S
eigenvalue problem is the same as for the single piezocenpatch pair (Eq.L(9)), while the
sensor equation is given as

{Qj} =~k {UY (57)
It is seen that the modal charge becomes a vector contaimengdividual modal charges for
each shunted patch pair, which are now collected in the nugabe matrix

[Q = {@1} {Q2} -+ {Qu}] (58)

The modal equations Eq§. (21)-[22) are thenfehunted pairs of patches and the r'th mode,
given as

(Wi =wP)v, = {Q}{V} (59)
CoLHVY—{QY = —[Q{v} (60)

The right hand side of Ed._(60) is approximated simmilarl¥tp (23) as
Qv = 1@ + (0~ 5 IV (61)
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Table 5: Parallel and series shunt tuning for identical and symicedty placed pairs of piezoceramic patches.
Parallel Series

I K2  R= Kewr [ 1 I K2  R- k2w, 252
o WG2 | 202 RO+ R nq2 \| v

whereby the governing equation follows by eliminati{i@, } v, between Eqs[(59) and (61)

(o5 + - )@@ =P+ HR Y[V = {QHw? -« (62)
For identical and symmetrically placed patches, with resfeethe deformation pattern of the
target vibration mode, Ed._(62) represents the number aiftsticcuitsn redundant equations

given as

(G5 +C = )W =) + Q2| V = Q(? - w?) (63)

in which @? is the common squared modal charge, whijleand V' are the common circuit
charges and electric potentials, respectively.
Finally, use of Ohm’s law in EqL(43) gives the charactetistjuation
w? K2 1 w? w?
| 2(1——’“)—'72@——) 22— 64
(- 5) g () i (&4

which is similar to Eq.[{44) but witmQ? instead ofQ?. The effect on the individual shunt
tunings is thus the factor on the modal charg€®?, whereby the optimum shunt tunings are
given as listed if Tablel 5.

Appendix B: Determination of ~? from quadratic equation (25)

Initially Eq. (28) is multiplied with—&? /C,., whereby one obtains the quadratic equation

1 Q?
A2 2 _ a2y a2l
< wTjLCrL;)(w’" ws) wTCr 0 (65)

Division with w? and using Eqs[{28]-(29), E.(65) transform above relaton
- () ] - (3] - () - 5

Now, after using EqL(13), the characteristic equation taioled in terms of the effective EMCC
as

(1 + K2 — /fu,%)\;)nﬁ — K2 (1 + nﬁ) =0 (67)

Which can be written in a quadratic form as

e

(K2)* + <1 — K2 — )xjﬂf)/@ﬁ —Kk2=0 (68)

This is a quadratic equation i} that can be solved in order to find when both correction
terms are included. However, it is of interest to find a soluthat can be truncated faf ~ 0.
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Thus, instead, Eq[(68) is solved with respectte®* = k? — k2 — 0 for X — 0. Using the
former relation, the following holds

e

(k3)? = (A/{Q + /{f)Q = (AR?)? 4+ 252 AK? + (K2)? (69)
Then, elimination of? between Eqs[{68) and (69) gives

(AK2)? + (1 +R2 - A;mz)m? (RN =0 (70)
For A — 0, Eq. [70) reduces to

Ar? = —(1+r2) or Ax*=0 (71)
while the full solution can be found as
1 4(k2)2N
A2:—(1 2y 2) 1 A | 72
& 2 + rfir + (1+ K2 —ANK2)? (72)

whereby the effective EMCE? follows by Eq. (27).

Appendix C: Derivation of characteristic equation (52) for series shunt connection

Initially, the series shunt circuit impedanég, (w) in Eq. (51) is inserted in the characteristic
equation[(44), followed by the elimination of the inductarand resistance through the normal-
ized inductance in Eq_(86) and electric damping parametEgi [53). Thus, the characteristic
equation[(44) can hereby be written as

2

) -aem(-) vyl - ()T (E) =0 09

T

The characteristic equation {73) is now multiplied [y p: )\, — w?)/w? whereby the former,
after using Eq.[(39), can be written as

(- G s Dl (- ()]

Ar 2
+i<i>pi—/ﬁf - /ﬁf(i> =0
wr /" wy Wy

(74)

Finally, the products in EqL(74) are expanded and this dbariatic equation can be written as

4 2
(i) . (1 + R A,’:n,%) (i) + ARk
Wy Wy

(W A 2 w2 2 K7\ (Wi _ (73)
(e em - () *”W“;;)(E‘ )] =0

In order to identify the inverse points relation, it is conient to multiply Eq.[(7b) byt /(1+#2)?
and use the relation/(1 + x?) = (w,/@,)? from Eq. [I3). Hereby, the characteristic equation
(78) can be written as in Eq.(52).
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