
HAL Id: hal-03959643
https://hal.science/hal-03959643v1

Preprint submitted on 27 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Rank and Reward: A Scalable Model for
Slate Recommendation

Imad Aouali, Achraf Ait Sidi Hammou, Sergey Ivanov, Otmane Sakhi, David
Rohde, Flavian Vasile

To cite this version:
Imad Aouali, Achraf Ait Sidi Hammou, Sergey Ivanov, Otmane Sakhi, David Rohde, et al.. Proba-
bilistic Rank and Reward: A Scalable Model for Slate Recommendation. 2023. �hal-03959643�

https://hal.science/hal-03959643v1
https://hal.archives-ouvertes.fr

Probabilistic Rank and Reward: A Scalable Model for Slate
Recommendation

Imad Aouali ∗† i.aouali@criteo.com

Achraf Ait Sidi Hammou ∗‡ aitsidihammou.achraf@gmail.com

Sergey Ivanov ‡ s.ivanov@criteo.com

Otmane Sakhi † o.sakhi@criteo.com

David Rohde ‡ d.rohde@criteo.com

Flavian Vasile ‡ f.vasile@criteo.com

Abstract

We introduce Probabilistic Rank and Reward (PRR), a scalable probabilistic model for
personalized slate recommendation. Our approach allows state-of-the-art estimation of the
user interests in the ubiquitous scenario where the user interacts with at most one item
from a slate of K items. We show that the probability of a slate being successful can be
learned efficiently by combining the reward, whether the user successfully interacted with the
slate, and the rank, the item that was selected within the slate. PRR outperforms competing
approaches that use one signal or the other and is far more scalable to large action spaces.
Moreover, PRR allows fast delivery of recommendations powered by maximum inner product
search (MIPS), making it suitable in low latency domains such as computational advertising.

1 INTRODUCTION

Recommender systems (advertising, search, music streaming, news, etc.) are becoming ubiquitous in society
helping users navigate enormous catalogs of items to identify items relevant to their interests. In practice,
recommender systems must optimize the content of an entire section of the user homepage which is viewed
as a slate of K items (Swaminathan et al., 2017). The slate often takes the form of a menu and the user
can choose to interact with at most one of its items (Chen et al., 2019; Aouali et al., 2021). A slate of
recommendations is considered successful if the user interacted with one of its items.

In practice, the number of items P may be in the millions making the space of slates huge. This combi-
natorial nature of the space of slates makes learning very challenging. As an example, the performance of
counterfactual estimators (Bottou et al., 2013; Swaminathan & Joachims, 2015), which are often based on
inverse propensity scoring (IPS) (Horvitz & Thompson, 1952), deteriorates severely when the number of
items is high as they can suffer extreme bias and variance. In particular, the bias issue is related to the fact
that the logging policies often have deficient support (Sachdeva et al., 2020).

Another important challenge is the fast delivery of recommendations. A decision rule is an implementable
mapping from what is known about the user to a slate of recommendations. Given a dx-dimensional con-
text vector x ∈ X ⊆ Rdx that includes the user interests, the decision rule often boils down to solving
argmaxs∈SL(x, s). Here S is the space of possible slates, and L(x, s) is a score (or probability) associ-
ated with the slate s given the context x. Unfortunately, this decision rule is not implementable since
∗Equal contribution.
†Criteo AI Lab & ENSAE CREST.
‡Criteo AI Lab

1

ar
X

iv
:2

20
8.

06
26

3v
2

 [
cs

.I
R

]
 2

4
N

ov
 2

02
2

argmaxs∈SL(x, s) is intractable for large catalogs of items. Therefore, different proxy decision rules are used
in practice, and they often aim at moving the search space from the combinatorially large set of slates S to
a subset of the catalog of items {1, . . . , P}. This is achieved by first associating a score for items instead of
slates and then recommending the slate composed of the top-K items with the highest scores. This leads
to a O(P) delivery time due to finding the top-K items. Unfortunately, this is not suitable for low-latency
recommender systems with large catalogs. A common solution to improve this is the two-stage recommen-
dation scheme. Here we first generate a small subset of potential item candidates Psub ⊂ {1, . . . , P}, and
then select the top-K items in Psub, which leads to a O(|Psub|) delivery time.

The two-stage recommendation has three shortcomings. First, the scoring model, which selects the highest
scoring items from Psub, does not directly optimize the reward for the whole slate, and rather optimizes a
proxy offline metric for each item individually. This induces numerous biases related to the layout of the
slate such as position biases where users tend to interact more often with specific positions (Yue et al., 2010).
Second, the candidate generation and the scoring models are not necessarily trained jointly, which may lead
to having candidates in Psub that are not the highest scoring items. Third, the scoring model relies on small
subsets of candidates, instead of optimizing for the whole catalog. Thus the reward signal might be much
stronger since it is restricted to a small set of items, which may induce high bias.

Another practical approach to avoid the candidate generation step relies on approximate maximum inner
product search (MIPS). MIPS algorithms are capable of quickly sorting P items in roughly O(logP) as long
as the scores of items a ∈ {1, . . . , P} have the form u>βa. Here u ∈ Rd is a d-dimensional user embedding
and βa ∈ Rd is the d-dimensional embedding of item a. This allows fast delivery of recommendation in
roughly O(logP) instead of O(P) without any additional candidate generation step.

An example of the output of PRR is shown in Fig. 1. In this situation, we imagine that a user is interested
in technology. We show three candidate slates of size 2. In the left panel, the slate consists of two good
recommendations: phone and microphone. The model predictions (0.91, 0.06, 0.03) are the probabilities for
no click, click on phone and click on microphone, respectively. Clearly, the probability of a click on slate
phone, microphone is higher than the other slates, and is equal to 0.09. For comparison, the panel in the
middle contains a good recommendation with the phone in the prime first position but the shoe in the second
position, which is a poor match with the user interest in technology. As a consequence, the probabilities
become (0.94, 0.04, 0.01) for no click, click on phone and click on shoe. Finally, in the right panel, we show
two poor recommendations of shoe and pillow resulting in the highest no-click probability 0.97.

Figure 1: Example of 3 slates of size 2 on a technology website. From left to right are good, mixed and bad
recommendations. R̄, r1, r2 denote the actual probabilities of no-click, click on the first item and click on the second
item, respectively.

Here the goal is to establish the level of association of each item (in this case phone, microphone, shoe and
pillow) with a particular user interest (in this case technology). At first glance, analyzing logs of successful
and unsuccessful recommendations is the best possible way to learn this association. However, in practice,
there are numerous factors that influence the probability of a click other than the quality of recommendations.
In this example, the non-click probability of the good recommendations (phone, microphone) is 0.91 (click
probability of 0.09), while the non-click probability of the bad recommendations (shoe, pillow) is 0.97 (click
probability of 0.03). The change in the click probability from good to bad recommendations is relatively
modest at only 0.06. Thus the model must capture additional factors that influence clicks other than the
quality of recommendations.

2

To account for this, PRR incorporates a real-world observation: the most informative features to predict suc-
cessful interactions are engagement features. Such features summarize how likely the user is to interact with
the slate independently of the quality of its recommendations. This includes for example the slate size and
the level of user activity and engagement. While these features are strong predictors of interactions, they do
not provide any information about which items are responsible for the interactions. In contrast, the recom-
mendation features, which include the user interests and the items shown in the slate, provide a relatively
modest signal for predicting interactions. However, they are very important for the recommendation task.
Based on these observations, PRR uses the engagement features to accurately learn the parameters associated
with the useful recommendation features. It may be useful to draw an analogy. Optical astronomers who
take images of far-away galaxies need to develop a sophisticated understanding of many local phenomena:
the atmosphere, the ambient light, the milky way, etc. The understanding of all these large effects allows
them to construct precise images of extremely faint objects. Similarly, PRR is able to build a model of a
weak recommendation signal by carefully capturing the other factors that often have high contributions to
predicting the reward.

PRR also incorporates the information that different positions in the slate may have different properties.
Some positions may boost a recommendation by making it more visible, and other positions may lessen the
impact of the recommendation. To see this, consider the example in Fig. 1, the probability of clicking on
shoes increased by 0.01 when placed in the prime first position (slate in the middle) compared to placing it
in the second position (slate in the right panel).

To summarize, our paper makes the following contributions. 1) We formalize the following ubiq-
uitous slate recommendation setting. The user is shown a slate composed of K items and they can choose
to interact with at most one of the items in the slate. After that, the information received consists of two
signals: did the user interact with one of the items? and if an item was interacted with, which item was it?
We refer to these two types of signals as reward and rank, respectively. 2) We propose a likelihood-based
probabilistic model (PRR) that combines both signals to learn efficiently. This is important as both, the
reward and the rank, shall contain useful information about the user interests, and discarding one of them
may lead to inferior performance. 3) PRR distinguishes between slate-level and item-level features which
contribute to an interaction with the slate and one of its items, respectively. PRR also incorporates the fact
that interactions can be predicted by engagement features that neither represent the user interests nor the
recommended items. Including such features help learn the recommendation signal more accurately. 4) The
delivery of recommendations in PRR is reduced to solving a MIPS for K items from a catalog of size P .
While this constrains the parametric form of PRR, it makes it applicable to massive scale tasks with very
low latency requirements such as computational advertising. 5) We show empirically that PRR outperforms
commonly used baselines and that it is more scalable to large catalogs.

When compared to prior works, PRR enjoys the advantages of both worlds, reward and ranking based ap-
proaches. Reward based approaches (Dudík et al., 2012; Bottou et al., 2013) focus exclusively on the reward
signal. This has a very profound advantage since what is optimized offline is aligned with the reward ob-
served in A/B tests. However, the rank signal is ignored, and this loss of information makes learning difficult,
especially for large catalogs and slates. On the other hand, learning in ranking approaches (Covington et al.,
2016) is driven by heuristics focused on proxy information retrieval (IR) scores for individual items. This
often leads to a striking gap between offline evaluation and A/B test results (see e.g., Section 5.1 in (Garcin
et al., 2014)). PRR is similar to bandit approaches as it directly optimizes the reward as measured by A/B
tests. It is also similar to ranking approaches as it makes use of the rank signal. However, PRR optimizes
the reward for the whole slates instead of single items and incorporates other factors that may influence the
reward independently of the quality of recommendations.

The remainder of this paper is organized as follows. In Section 2, we describe the setting for slate recom-
mendation and our proposed algorithm. In Section 3, we review related work to the slate recommendation
problem. In Section 4, we describe popular baselines and present our qualitative and quantitative results.
In Section 5, we make concluding remarks and outline potential directions for future works.

3

2 PROPOSED ALGORITHM

2.1 Setting

For any positive integer P , we define [P] = {1, 2, . . . , P}. Vectors and matrices are denoted by bold letters.
The i-th coordinate of a vector x is xi; unless the vector is already indexed such as xj , in which case we
write xj,i. Let A ∈ RP×d be a P × d matrix, the d-dimensional vector corresponding to the i-th row of A
is denoted by Ai ∈ Rd for any i ∈ [P]. Items are referenced by integers so that [P] denotes the catalog
of P items. We define a slate of size K, s = (s1, . . . , sK), as a K-permutation of [P], which is an ordered
collection of K items from [P]. The space of all slates of size K is denoted by S.

We consider the contextual bandit setting where the agent interacts with users as follows. The agent observes
a dx-dimensional context vector x ∈ X ⊆ Rdx . After that, the agent recommends a slate s ∈ S, and then
receives a binary reward R ∈ {0, 1} and a list of K binary ranks [r1, . . . , rK] ∈ {0, 1}K that depend on both
the context x and the slate s. The reward R indicates whether the user interacted with the slate s and for
any ` ∈ [K] the rank r` indicates whether the user interacted with the `-th item in the slate, s`. The user
can interact with at most one item, and thus R =

∑
`∈[K] r`. We let R̄ = 1−R so that R̄+

∑
`∈[K] r` = 1.

We assume that the context x decomposes into two vectors as x = (y, z) where y ∈ Rd′ and z ∈ Rdz . Here
y denotes the engagement features that are useful for predicting if an interaction with a slate will occur,
independently of its items and the user interests. On the other hand, z ∈ Rdz denotes the remaining features
in the context x, which summarize the user interests. The dimension of y is fixed, while those of z and x
are varying as they can contain the list of previously viewed items. Table 1 summarizes our notation. It also
includes new quantities that we use and explain in the sequel.

Notation Definition
x = (y, z) ∈ Rdx context.
y ∈ Rd′ engagement features.
z ∈ Rdz user interestsfeatures.
R ∈ {0, 1} reward indicator.
R̄ ∈ {0, 1} regret indicator.
r` ∈ {0, 1} rank indicator of the item in position ` ∈ [K].
φ ∈ Rd′ bidding parameters.
γ` ∈ R multiplicative position bias in position ` ∈ [K].
α` ∈ R additive position bias in position ` ∈ [K].
gΓ(z) ∈ Rd user embedding.
Ψ ∈ RP×d items embeddings.
θ0 ∈ R score for no-interaction with the slate.
θ` ∈ R score for an interaction with the item in position ` ∈ [K].
s = (s1, ..., sK) slate of K recommendations s` ∈ [P] for any ` ∈ [K].

Table 1: Notation.

2.2 Modeling Rank and Reward

As highlighted previously, our approach accounts for an important observation made by practitioners. It is
often possible to produce a good model for predicting interactions with slates while discarding user interests
and the items recommended to the user. Instead, engagement features such as the slate size, its attrac-
tiveness and the level of user activity can be strong predictors of interactions. While a model using only
these features might have an excellent ability to predict interactions and thus high likelihood, it is useless
for recommendation. This observation is often used to justify abandoning likelihood-based approaches for
recommendation in favor of greedy ranking. Instead, PRR solves this issue by carefully incorporating both the
engagement features y, the user interests features z and the whole slate s to predict interactions accurately.

4

Precisely, the PRR model has the following form

R̄, r1, . . . , rK |x, s ∼ cat
(
θ0

Z
,
θ1

Z
, . . . ,

θK
Z

)
, Z =

K∑
k=0

θ`, (1)

where R̄, r1, . . . , rK and x = (y, z) are defined in Section 2.1, cat() is the categorical distribution, θ0 is the
score of no interaction with the slate and θ`, for ` ∈ [K] is the score of interaction with the `-th item in the
slate, s`. We discuss how to derive these scores next.

The engagement features y are used to produce a positive score θ0 which is high if the chance of no interaction
with the slate is high, independently of its items. That is

θ0 = exp(y>φ), (2)

where φ is a vector of learnable parameters of dimension d′ > 0. Similarly, the positive score θ` is associated
with the item in position ` in the slate, s`, and is calculated in a way that captures user interests, position
biases, and interactions that occur by accident. Precisely, given a slate s = (s1, . . . , sK) and user interests
features z, the score θ` has the following form

θ` = exp{gΓ(z)>Ψs`
} exp(γ`) + exp(α`). (3)

Again this formulation is motivated by practitioners experience. The quantity exp(α`) denotes the additive
bias for position ` ∈ [K] in the slate. It is high if there is a high chance of interaction with the `-th item
in the slate irrespective of how appealing it is to the user. This quantity also explains clicks that are not
associated at all with the recommendation (e.g., clicks by accident). For instance, the probability of a click
on slates is always larger than

∑
`∈[K] exp(α`)/Z. The quantity exp(γ`) is the multiplicative bias for position

` ∈ [K]. It is high if a recommendation is boosted by being in position ` ∈ [K]. To see the importance
of biases exp(γ`), consider a slate of size 10 where the first and last items are {phone,..., microphone} and
suppose that the user clicked on phone. Then from a ranking perspective, we would assume that the user
prefers the phone over the microphone. But the user might have clicked on the phone just because it was
placed in the top position. PRR captures this through the multiplicative terms exp(γ`).

The main quantity of interest is the recommendation score gΓ(z)>Ψa for a ∈ [P], which can be understood
as follows. The vector z ∈ Rdz represents the user interests and the parameter vector Ψs`

∈ Rd represents
the embedding of the `-th item in the slate, s`. The vector z is first mapped into a fixed size d-dimensional
embedding space using gΓ(·). The resulting inner product gΓ(z)>Ψs`

produces a positive or negative score
that quantifies how good s` is to the user with interests z. In practice, z can be the sequence of previously
viewed items, in which case gΓ is a sequence model (Hochreiter & Schmidhuber, 1997; Vaswani et al., 2017).

2.3 Learning

PRR has multiple parameters φ,Γ,Ψ, γ`, and α` for ` ∈ [K], which are learned using the maximum likelihood
principle. Precisely, we assume access to logged data Dn of the form

Dn = {xi, si, R̄i, ri,1, . . . , ri,K ; i ∈ [n]} ,

such that xi = (yi, zi) for any i ∈ [n]. Let Zi = exp(y>i φ) +
∑
`∈[K] exp{gΓ(zi)>Ψsi,`

} exp(γ`) + exp(α`) be
the normalizing constant for the i-th data-point in Dn, then log-likelihood reads

L(Dn;φ,Γ,Ψ,γ,α) =
∑
i∈[n]

logP (R̄i, ri,1, . . . , ri,K | xi, si,φ,Γ,Ψ,γ,α) , (4)

=
∑
i∈[n]

(
y>i φ

)
I{R̄i=1} +

(
log
(
exp{gΓ(zi)>Ψsi,`

} exp(γ`) + exp(α`)
))

I{ri,`=1} − log(Zi) .

Finally, we maximize the log-likelihood to estimate the parameters as

φ̂n, Γ̂n, Ψ̂n, γ̂n, α̂n = argmaxφ,Γ,Ψ,γ,αL(Dn;φ,Γ,Ψ,γ,α) .

In the sequel, with slight abuse of notation, we refer to the learned parameters φ̂n, Γ̂n, Ψ̂n, γ̂n, α̂n by
φ,Γ,Ψ,γ,α for ease of exposition.

5

2.4 Decision Making

Given Eqs. (2) and (3), we know that the probability of an interaction with the slate is

P (R = 1 | x, s) = 1− P (R̄ = 1 | x, s) = 1− θ0

Z
= 1− θ0

θ0 +
∑
`∈[K] θ`

. (5)

The decision rule follows as

argmaxs∈SP (R = 1 | x, s) = argmins∈S
θ0

θ0 +
∑
`∈[K] θ`

,

(i)= argmaxs∈S
∑
`∈[K]

θ` ,

= argmaxs∈S
∑
`∈[K]

exp{gΓ(z)>Ψs`
} exp(γ`) + exp(α`)

(ii)= argmaxs∈S
∑
`∈[K]

exp{gΓ(z)>Ψs`
} exp(γ`) , (6)

where (i) and (ii) follow from the fact that both θ0 and exp(α`) are additive and do not depend on s. Our
goal is to reduce decision-making to a MIPS task. Thus the parametric form u>β must be satisfied, which
means that the sum

∑
`∈[K], the exponential in exp{gΓ(z)>Ψs`

} and the term exp(γ`) in Eq. (6) need to be
removed. This is achieved by first performing a MIPS as

s′1, . . . , s
′
K = argsort(gΓ(z)>Ψ)1:K . (7)

We then sort the position biases as

i1, . . . , iK = argsort(γ) . (8)

Finally, the recommended slate s = (s1, s2, . . . , sK) is obtained by rearranging the items s′1, . . . , s′K as

s1, s2, . . . , sK = s′i1 , s
′
i2 , . . . , s

′
iK . (9)

In other terms, we select the Top-K items with the highest recommendation scores gΓ(z)>Ψa for a ∈ [P]. We
then place the highest scoring item into the best position, that is the position ` ∈ [K] with the largest value
of exp(γ`). Then the second-highest scoring item is placed into the second-best position, and so on. The
procedure in Eqs. (7) to (9) is equivalent to the decision rule in Eq. (6). It is also computationally efficient
as Eq. (7) can be performed roughly in O(logP) thanks to fast approximate MIPS algorithms (Abbasifard
et al., 2014; Ding et al., 2019), while Eq. (6) requires roughly O(PK). The time complexity is also improved
compared to ranking approaches by O(P/ logP). This makes PRR scalable to huge catalogs.

Note that φ,α are nuisance parameters as they are not needed for decision making; only the recommenda-
tion scores gΓ(z)>Ψa and the multiplicative position biases exp(γ`) are used in the procedure in Eqs. (7)
to (9). While not used in decision-making, learning these parameters is necessary to accurately predict the
recommendation scores. Also, including them in the model provides room for interpretability in some cases.

To summarize, PRR has the following properties. 1) It models the joint distribution of the reward and ranks
(R̄, r1, . . . , rK) in the simple formulation given in Eq. (1). 2) It makes use of engagement features y in order
to help learn the recommendation signal more accurately. 3) Its recommendation scores have a parametric
form that is suitable for MIPS, which allows fast delivery of recommendations in O(logP).

3 RELATED WORK

Reward optimizing recommendation aims at directly optimizing the reward using logged data. The earliest
work (Dudík et al., 2012) used inverse propensity scoring (IPS) (Horvitz & Thompson, 1952) to estimate

6

the reward for recommendation tasks with small action spaces. Unfortunately, IPS can suffer high bias and
variance in realistic settings. This is mainly driven by two practical factors; the action space is combina-
torially large and the logging policies primarily exploit certain recommendations with minimal exploration
making their support deficient (Sachdeva et al., 2020).

The high variance of IPS is acknowledged and several fixes have been proposed. This includes clipping
and self-normalizing importance weights (Gilotte et al., 2018). Unfortunately, in practice, altering the IPS
estimator in these ways has the impact of avoiding recommendations about which little is known. This
causes the learned policy to be close to the logging policy. Another solution is doubly robust (DR) (Dudík
et al., 2014) which uses a reward model as control variate for IPS to reduce the variance. DR relies on a
reward model and PRR can be integrated into it.

In slate recommendation, recent works made simplifying structural assumptions to reduce the variance. For
instance, Li et al. (2018) restricted the search space by assuming that items contribute to the reward indi-
vidually. Similarly, Swaminathan et al. (2017) assumed that slate-level reward is additive w.r.t. unobserved
and independent ranks. The independence assumption is restrictive and can be violated in many production
settings. Also, the learned policy might recommend slates with repeated items, which is illegal. A relaxed
assumption was proposed in (McInerney et al., 2020) where the interaction between the user and the `-th
item in the slate, s`, depends only on s`, s`−1 and its rank r`−1. This sequential dependence scheme is not
sufficient to encode the ubiquitous setting where the user views the whole slate at once and interacts with
at most one of its items.

Another popular family of methods is click models (Chuklin et al., 2015). The simplest is click-through-rate
models which defines a single parameter for the probability that an item is clicked, possibly depending on
its position or the user (Joachims et al., 2017; Craswell et al., 2008). Another type is called cascade models
(Dupret & Piwowarski, 2008; Guo et al., 2009; Chapelle & Zhang, 2009), which is suitable when items are
presented in sequential order. Later, these models were extended to accommodate multiple user sessions
(Chuklin et al., 2013; Zhang et al., 2011), granularity levels (Hu et al., 2011; Ashkan & Clarke, 2012), and
additional user signals (Huang et al., 2012; Liu et al., 2014). Click models are often represented as graphical
models and as such define dependencies manually and are not always scalable to large action spaces. Also,
they were primarily designed for search engine retrieval and often do not incorporate extra features that are
available in recommendation tasks.

Some works on slate recommendation focused on the idea that there are interactions between items within
the slates making certain combinations of recommended items virtuous (or not) (Ie et al., 2019; Jiang et al.,
2019; Wilhelm et al., 2018; Zhao et al., 2018). While it is possible to incorporate such interactions in our
model formulation, it is unclear if it will be possible to reduce decision-making to a MIPS task.

4 EXPERIMENTS

We opt for simulation to evaluate PRR as it mimics the actual sequential interaction between users and
recommender systems. The other alternatives consist in either using offline proxy information-retrieval
metrics or using off-policy evaluation through IPS. Unfortunately, the former is often not aligned with online
A/B test results, while the latter can suffer high bias and variance in large-scale settings (Aouali et al., 2022).

4.1 Experimental Design

We design a simulated A/B test protocol that takes different recommender systems as input and outputs
their respective reward. We first define the problem instance consisting of the true parameters (oracle)
and the logging policy as {φ,γ,α, gΓ(·),Ψ, Py(·), Pz(·), PK(·)} and π0. Here Py(·), Pz(·), and PK(·) are the
distributions of the engagement features, the user interests features and the slate size, respectively. Given
the oracle, we produce offline training logs and propensity scores {D,P} by running the logging policy π0
as described in Algorithm 1. These logs are then used to train PRR and competing baselines. After training,
the simulated A/B test in Algorithm 2 is used for testing.

7

We consider two non-personalized logging policies. (a) uniform: this policy samples uniformly without
replacement K items from the catalog [P]. That is π0(s | z) = 1

P (P−1)...(P−K+1) for any slate s ∈ S and any
user interests z. (b) top-K pop: this policy samples without replacement K items where the probability
of an item a is proportional to the L2 norm of its embedding, ‖Ψa‖. This is based on the intuition that a
large value of ‖Ψa‖ means that item a is recommended more often and thus it is more popular. We stress
that this logging policy has access to the true embeddings Ψ of the simulated environment (Algorithm 1).
Now we present the baselines to which we compare PRR.

Algorithm 1: Simulated Training Logs
Input: oracle parameters {φ, γ, α, gΓ(·),Ψ, Py(·), Pz(·), PK(·)}, logging policy π0(s | x), marginal

logging policies π0(s1|x), . . . , π0(sK |x), ntrain.
Output: logs D, propensity scores P.
D ← {} , P ← {}
for i = 1, . . . , ntrain do

yi ∼ Py(·) , zi ∼ Pz(·) , Ki ∼ PK(·) , xi = [yi, zi] , si = [si,1, . . . , si,Ki
] ∼ π0(·|xi)

θ0 ← exp(y>i φ)
for k = 1, . . . ,K do

θk ← exp(gΓ(zi)>Ψak
) exp(γk) + exp(αk)

end
R̄i, ri,1, . . . , ri,K ∼ cat

(
θ0
Z ,

θ1
Z , . . . ,

θK

Z

)
, Z =

∑Ki

`=0 θ`
D ← D ∪ {xi, si, R̄i, ri,1, . . . , ri,K}
P ← P ∪ {π0(si|xi), π0(si,1|xi), . . . , π0(si,K |xi)}

end

Algorithm 2: Simulated A/B Test
Input: oracle parameters {φ, γ, α, gΓ(·),Ψ, Py(·), Pz(·), PK(·)}, decision rule da, decision rule db, ntest.
Output: lists of rewards Ra and Rb.
Ra ← { } , Rb ← { }
for i = 1, . . . , ntest do

for m ∈ {a,b} do
yi ∼ Py(·) , zi ∼ Pz(·) , Ki ∼ PK(·)
si = [si,1, . . . , si,Ki

]← dm(yi, zi)
θ0 ← exp(y>i φ)
for k = 1, . . . ,Ki do

θk ← exp(gΓ(zi)>Ψsi,k
) exp(γk) + exp(αk)

end
Ra ← Ra ∪ {1− θ0

Z } , Z =
∑Ki

`=1 θ`
end

end

Variants of PRR: we consider three variants of PRR. First, PRR-reward uses only the reward and ignores the
rank signal. PRR-reward is trained on both, successful and unsuccessful slates. Second, PRR-rank discards
the reward and is consequently trained on successful slates only. Finally, PRR-bias ignores the engagement
features y, in which case θ0 = φ where φ is a scalar parameters (φ replaces exp(y>φ) in PRR). The goal
of comparing PRR to PRR-reward and PRR-rank is to showcase the benefit of combining both signals, while

8

comparing it to PRR-bias is to highlight the effect and importance of the engagement features.

PRR-reward: R̄, r1, . . . , rK | x, s ∼ cat
(θ0

Z
,

∑K
`=1 θ`
Z

)
, Z =

K∑
`=0

θ` ,

PRR-rank: r1, . . . , rK | x, s ∼ cat
(θ1

Z
, . . . ,

θK
Z

)
, Z =

K∑
`=1

θ` ,

PRR-bias: R̄, r1, . . . , rK | x, s ∼ cat
(φ
Z
,
θ1

Z
, . . . ,

θK
Z

)
, Z = φ+

K∑
`=1

θ`.

where θ0 and θ` for ` ∈ [K] are defined in Eqs. (2) and (3) while φ ∈ R in PRR-bias is a learnable parameter.

Inverse propensity scoring: here unbiased estimators of the expected reward of policies are designed by
removing the preference bias of the logging policy π0 in data D. This is achieved by re-weighting samples
using the discrepancy between the new policy π and the logging policy π0 such as

V̂ IPS
n (π) = 1

n

n∑
i=1

Ri
π(si|zi)
π0(si|zi)

. (10)

The IPS estimator above is provably unbiased when π and π0 have common support, but can suffer large
variance. It can also be highly unbiased when the common support assumption is violated (Sachdeva et al.,
2020), which is common in practice. One way to mitigate this is to reduce the action space from slates to
items (Li et al., 2018). This is achieved by assuming that the reward R is the sum of rank r1, . . . , rK , and
that the `-th rank, r`, only depends on the item s` and its position `. This allows estimating the expected
reward of policy π as

V̂ IIPS(π) = 1
n

n∑
i=1

K∑
`=1

ri,`
π(si,`, `|zi)
π0(si,`, `|zi)

, (11)

where π(a, `|z) and π0(a, `|z) are the marginal probabilities that the policy π and the logging policy π0 place
the item a in position ` ∈ [K] given user interests z, respectively.

The next step is to optimize the estimator (V̂ IPS
n (π) or V̂ IIPS

n (π)) to find the policy that will be used for
decision-making (Swaminathan & Joachims, 2015). To achieve this, we need to parameterize the learning
policy π. A common solution is to use factorized policies. While convenient, factorization causes the learned
policy to converge to selecting slates with repeated items, which is illegal. Thus we opt for Plackett-Luce
policies which are defined as follows. First, the probability of an item a ∈ [P] is parametrized as

pΞ,β(a|z) = λa∑
a′∈[P] λa′

, λa = exp{fΞ(z)>βa} ∀a ∈ [P] ,

where βa ∈ Rd is the embedding of item a and fΞ maps user interests z ∈ Rdz into a d-dimensional
embedding. Then the learning policy π is parametrized as πΞ,β,K and written as

πΞ,β,K(s|z) = λs1

Z

λs2

Z − λs1

· · · λsK

Z −
∑K−1
j=1 λsj

=
K∏
`=1

λs`

Z −
∑`−1
j=1 λsj

, Z =
∑
a′∈[P]

λa′ . (12)

Sampling from πΞ,β,K(·|z) is equivalent to sampling without replacement K items from [P] where the prob-
ability of item a ∈ [P] is pΞ,β(a|z). Finally, V̂ IIPS

n (π) also requires computing the marginal probabilities
π(a, `|z) and π0(a, `|z), which can be intractable. Here we simply approximate π0(a, `|z) ≈ ‖Ψa‖/

∑
a′ ‖Ψa′‖

for the top-K pop logging policy and π(a, `|z) ≈ pΞ,β(a|z) for the learning policies. Approximation is not
needed for the uniform logging policy as we have that π0(a, `|z) = 1/P .

9

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

lo
gg

in
g:

 u
ni

fo
rm

1k items

0.00
0.02
0.04
0.06
0.08
0.10
0.12 5k items

0.00
0.02
0.04
0.06
0.08
0.10
0.12 10k items

2 4 6 8
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

lo
gg

in
g:

 to
p-

K
po

p

1k items

2 4 6 8
slate size

0.00
0.02
0.04
0.06
0.08
0.10
0.12 5k items

2 4 6 8
0.00
0.02
0.04
0.06
0.08
0.10
0.12 10k items

oracle
PRR

PRR-bias
PRR-rank

PRR-reward
IPS

IIPS
top-K IIPS

top-K pop
uniform

Figure 2: The reward (y-axis) of PRR and baselines in simulated A/B tests with varying slate sizes (x-axis), number
of items (columns) and logging policies (rows). The shaded areas represent uncertainty and they are small since we
run long A/B tests with ntest = 100k.

Top-K heuristic: we also use the top-K heuristic developed in (Chen et al., 2019) which causes the
probability mass in πΞ,β,K(s|z) to be spread out over the top-K high scoring items. The top-K heuristic has
a parameter K∗ that controls the number of items that the policy should spread over. We set it to 3 in our
experiments, which we found to be good for the relatively small slate sizes we were considering.

4.2 Performance Comparison

We consider a realistic setting with relatively large catalogs and slates. The engagement features y are 5-
dimensional embeddings. The user interests z are 20-dimensional binary vectors that encode the categories
that are appealing to the user. The true parameters of the simulation sessions are randomly sampled from
uniform distributions. In Fig. 2, we report the average A/B test reward of PRR with varying slate sizes,
number of items and logging policies using 100k training samples. An interesting metric to assess the
performance of algorithms is the ratio between their rewards and that of the oracle. We defer the plots of
the relative performance to Fig. 3 in Appendix A. Overall, we observe that PRR outperforms the baselines
across the different settings. Next we summarize the general trends of algorithms.

(a) Varying logging policy: models that use the reward only, IPS and PRR-reward, favor uniform
logging policies while those that use only the rank, IIPS and PRR-rank perform better with the
top-K pop logging policy. PRR-bias discards the slate-level features y and uses a single parameter
φ for all slates. Thus PRR-bias benefits from uniform logging policies as they allow learning φ that
works well across all slates. Indeed, in Fig. 2 the gap between PRR and PRR-bias shrinks for the
uniform logging policy. Finally, the performance of PRR is relatively stable for both logging policies.

(b) Varying slate size: the performance of models that use the reward only, IPS and PRR-reward,
deteriorates when the maximum slate size increases. On the other hand, those that use only the rank,
IIPS and PRR-rank, benefit from larger slates as this leads to displaying more item comparisons.
The addition of the top-K heuristic improves the performance of IIPS in some cases by spreading

10

Method Evaluation Complexity Statistical Efficiency Training Time/Epoch
PRR O(K) High 35
PRR-bias O(K) Medium 33
PRR-rank O(K) Medium 11
PRR-reward O(K) Low 35
IPS O(P) Low 230
IIPS O(P) Medium 230
Top-K IIPS O(P) Medium 230

Table 2: Properties of PRR and the baselines. The last column, Training Time/Epoch, corresponds to the training
time per epoch in seconds for a simulated A/B test with 1M items, ntrain =100k, K = 8 and batch size= 516.

the mass over different items, making it not only focus on retrieving one but several high scoring
items. However, the increase in performance is not always guaranteed which might be due to our
choice of hyperparameters or our approximation of the marginal distributions of policies. Finally,
PRR performs well across all slate sizes as it uses both the reward and rank.

(c) Varying number of items: the models that use the rank benefit from large slates. Here we observe
that the increase in performance is more significant for large catalogs. Also, the gap between the
algorithms and the oracle becomes higher. In particular, models that use only the reward suffer a
significant drop in performance when the number of items increases.

4.3 Speed Comparison

We assess the training speed of the algorithms with respect to the catalog and slate sizes P and K. First,
PRR and its variants compute K + 1 scores θ0, . . . , θK and normalize them using Z =

∑K
`=0 θ`. Therefore,

evaluating PRR and its variants in one data-point costs roughly O(K), where we omit the cost of computing
the scores since it is the same for all algorithms. In contrast, IPS and its variants compute a softmax over
the catalog. This requires computing the normalization constant

∑
a′∈[P] exp{fΞ(z)>βa′} in (12). Thus the

evaluation cost of IPS and its variants is roughly O(P). This is very costly compared to O(K) in realistic
settings where P � K. An additional consideration to compare the training speed of algorithms is whether
they use successful slates only, which significantly reduces the size of training data. Taking this into account,
the fastest of all algorithms is the PRR-rank since its evaluation speed is O(K) and it is trained on successful
slates only. For instance, PRR-rank can be ≈ 20 times faster to train than IPS as we show in Table 2.

5 CONCLUSION

We present PRR, a scalable probabilistic model for personalized slate recommendation. PRR efficiently esti-
mates the probability of a slate being successful by combining the reward and rank signals. It also optimizes
the reward of the whole slate by distinguishing between slate-level and item-level features. Experiments
attest that PRR outperforms competing baselines and it is scalable to large-scale tasks, for both training
and decision-making. The shortcoming of our approach is that PRR is trained to predict the reward of any
slate, while we only recommend the best one. There is a cost for this as PRR might require for example
very high-dimensional embeddings, which can be costly for extremely low latency tasks. A possible path to
improve this is to optimize a policy with small embeddings using the reward estimates of PRR instead of IPS.

11

References
Mohammad Reza Abbasifard, Bijan Ghahremani, and Hassan Naderi. A survey on nearest neighbor search
methods. International Journal of Computer Applications, 95(25), 2014.

Imad Aouali, Sergey Ivanov, Mike Gartrell, David Rohde, Flavian Vasile, Victor Zaytsev, and Diego Legrand.
Combining reward and rank signals for slate recommendation, 2021. URL https://arxiv.org/abs/2107.
12455.

Imad Aouali, Amine Benhalloum, Martin Bompaire, Benjamin Heymann, Olivier Jeunen, David Rohde,
Otmane Sakhi, and Flavian Vasile. Offline evaluation of reward-optimizing recommender systems: The
case of simulation, 2022. URL https://arxiv.org/abs/2209.08642.

Azin Ashkan and Charles LA Clarke. Modeling browsing behavior for click analysis in sponsored search.
In Proceedings of the 21st ACM international conference on Information and knowledge management, pp.
2015–2019, 2012.

Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering, Elon Portugaly,
Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning systems: The
example of computational advertising. Journal of Machine Learning Research, 14(11), 2013.

Olivier Chapelle and Ya Zhang. A dynamic bayesian network click model for web search ranking. In
Proceedings of the 18th international conference on World wide web, pp. 1–10, 2009.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H Chi. Top-k off-
policy correction for a reinforce recommender system. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pp. 456–464, 2019.

Aleksandr Chuklin, Pavel Serdyukov, and Maarten De Rijke. Modeling clicks beyond the first result page.
In Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pp.
1217–1220, 2013.

Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. Click models for web search. Synthesis lectures on
information concepts, retrieval, and services, 7(3):1–115, 2015.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In
Proceedings of the 10th ACM conference on recommender systems, pp. 191–198, 2016.

Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experimental comparison of click position-
bias models. In Proceedings of the 2008 international conference on web search and data mining, pp. 87–94,
2008.

Qin Ding, Hsiang-Fu Yu, and Cho-Jui Hsieh. A fast sampling algorithm for maximum inner product search.
In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 3004–3012. PMLR,
2019.

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. Sample-efficient nonstationary policy eval-
uation for contextual bandits. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, UAI’12, pp. 247–254, Arlington, Virginia, USA, 2012. AUAI Press. ISBN 9780974903989.

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy evaluation and
optimization. Statistical Science, 29(4):485–511, 2014.

Georges E. Dupret and Benjamin Piwowarski. A user browsing model to predict search engine click data
from past observations. SIGIR ’08, 2008.

F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber. Offline and Online Evaluation
of News Recommender Systems at Swissinfo.Ch. In Proc. of the 8th ACM Conference on Recommender
Systems, RecSys ’14, pp. 169–176, 2014.

12

https://arxiv.org/abs/2107.12455
https://arxiv.org/abs/2107.12455
https://arxiv.org/abs/2209.08642

Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and Simon Dollé. Offline
a/b testing for recommender systems. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining, pp. 198–206, 2018.

Fan Guo, Chao Liu, and Yi Min Wang. Efficient multiple-click models in web search. In Proceedings of the
Second ACM International Conference on Web Search and Data Mining, WSDM ’09, 2009.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from a finite
universe. Journal of the American statistical Association, 47(260):663–685, 1952.

Botao Hu, Yuchen Zhang, Weizhu Chen, Gang Wang, and Qiang Yang. Characterizing search intent diversity
into click models. In Proceedings of the 20th international conference on World wide web, pp. 17–26, 2011.

Jeff Huang, Ryen W White, Georg Buscher, and Kuansan Wang. Improving searcher models using mouse
cursor activity. In Proceedings of the 35th international ACM SIGIR conference on Research and devel-
opment in information retrieval, pp. 195–204, 2012.

Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Tushar
Chandra, and Craig Boutilier. Slateq: A tractable decomposition for reinforcement learning with recom-
mendation sets. 2019.

Ray Jiang, Sven Gowal, Timothy A. Mann, and Danilo J. Rezende. Beyond greedy ranking: Slate optimiza-
tion via list-cvae, 2019.

Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. Accurately interpreting
clickthrough data as implicit feedback. In Acm Sigir Forum, volume 51, pp. 4–11. Acm New York, NY,
USA, 2017.

Shuai Li, Yasin Abbasi-Yadkori, Branislav Kveton, S Muthukrishnan, Vishwa Vinay, and Zheng Wen. Offline
evaluation of ranking policies with click models. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1685–1694, 2018.

Yiqun Liu, Chao Wang, Ke Zhou, Jianyun Nie, Min Zhang, and Shaoping Ma. From skimming to reading:
A two-stage examination model for web search. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, pp. 849–858, 2014.

James McInerney, Brian Brost, Praveen Chandar, Rishabh Mehrotra, and Benjamin Carterette. Counterfac-
tual evaluation of slate recommendations with sequential reward interactions. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1779–1788, 2020.

Noveen Sachdeva, Yi Su, and Thorsten Joachims. Off-policy bandits with deficient support. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 965–975,
2020.

Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from logged bandit
feedback. In International Conference on Machine Learning, pp. 814–823. PMLR, 2015.

Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford, Damien Jose,
and Imed Zitouni. Off-policy evaluation for slate recommendation, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H Chi, and Jennifer Gillenwater.
Practical diversified recommendations on youtube with determinantal point processes. In Proceedings
of the 27th ACM International Conference on Information and Knowledge Management, pp. 2165–2173,
2018.

13

Yisong Yue, Rajan Patel, and Hein Roehrig. Beyond position bias: Examining result attractiveness as a
source of presentation bias in clickthrough data. In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pp. 1011–1018, 2010.

Yuchen Zhang, Weizhu Chen, Dong Wang, and Qiang Yang. User-click modeling for understanding and pre-
dicting search-behavior. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1388–1396, 2011.

Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. Deep reinforcement
learning for page-wise recommendations. In Proceedings of the 12th ACM Conference on Recommender
Systems, pp. 95–103, 2018.

14

0.0
0.2
0.4
0.6
0.8
1.0

lo
gg

in
g:

 u
ni

fo
rm

1k items 5k items 10k items

2 4 6 8
0.0
0.2
0.4
0.6
0.8
1.0

lo
gg

in
g:

 to
p-

K
po

p

1k items

2 4 6 8
slate size

5k items

2 4 6 8

10k items

PRR
PRR-bias

PRR-rank
PRR-reward

IPS
IIPS

top-K IIPS
top-K pop

uniform

Figure 3: The ratio between the reward of the baselines and that of the oracle (y-axis) in simulated A/B tests with
varying slate sizes (x-axis), number of items (columns) and logging policies (rows).

A Additional Results

In Fig. 3, we report the ratio between the reward of the algorithms and that of the oracle.

15

	1 INTRODUCTION
	2 PROPOSED ALGORITHM
	2.1 Setting
	2.2 Modeling Rank and Reward
	2.3 Learning
	2.4 Decision Making

	3 RELATED WORK
	4 EXPERIMENTS
	4.1 Experimental Design
	4.2 Performance Comparison
	4.3 Speed Comparison

	5 CONCLUSION
	A Additional Results

