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ABSTRACT

We consider the problem of slate recommendation, where the recom-
mender system presents a user with a collection or slate composed
of K recommended items at once. If the user finds the recommended
items appealing then the user may click and the recommender sys-
tem receives some feedback. Two pieces of information are available
to the recommender system: was the slate clicked? (the reward), and
if the slate was clicked, which item was clicked? (rank). In this paper,
we formulate several Bayesian models that incorporate the reward
signal (Reward model), the rank signal (Rank model), or both (Full
model), for non-personalized slate recommendation. In our experi-
ments, we analyze performance gains of the Full model and show
that it achieves significantly lower error as the number of products
in the catalog grows or as the slate size increases.

CCS CONCEPTS

« Information systems — Recommender systems; - Comput-
ing methodologies — Maximum a posteriori modeling.
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1 INTRODUCTION

Slate recommendation, also referred to as banner recommendation,
is the task of recommending a collection of K items at once to
the user. This problem arises in many real-world applications like
search and online advertising. The logs of the recommender system
can be used to refine future recommendations by the use of two
distinct signals. First, the reward signal that identifies slates that
the user interacts with. For example, if we recommend to a user a
slate of two items: phone and couscous, and the user interacts with
that recommendation, then the slate receives a reward of 1 (and
perhaps the user finds the slate appealing as a whole). Second, the
rank signal that describes which item was interacted with within
the slate. For example, if we recommend to a user a phone and
couscous, and the user clicks on the couscous, then the rank is 2
(the user interacted with the 2nd item, and perhaps prefers it to
the first). The rank signal is an item-level information that gives an
individual ranking characterizing the score of a click on an item in
the slate. Non-personalized slate recommendation algorithm can
either use the reward signal (the number of clicks & non-clicks on
the slate), the rank signal (number of clicks on each item in a slate),
or both to decide which slate to display to the users.

The following is an introductory example for this setting. We
consider a catalog containing 3 items: phone, couscous, and beer.
Ignoring order, there are 3 possible slates with size 2 that we can
recommend: [phone, couscous), [phone, beer] or [phone, couscous).
Using historical data summarizing the interactions with these three
slates, we consider how to determine the best slate to display to the
user. An example of historical data is given in Table 1, where we
show each of the 3 slates 700 times. Here, slate [ couscous, beer] is the
best one. The most direct evidence for this is that it has the lowest
number of non-clicks (626) and hence the highest click through
rate (1 — % ~ 0.11). There is also indirect evidence using click
rank that couscous is preferred to phone (29 clicks vs. 10), beer is
preferred to phone (47 clicks vs. 9), and couscous is preferred to
beer (46 clicks vs. 28). In aggregate, this ranking information also
suggests that [couscous, beer] is the best slate - this suggestion is
conditional upon a modeling assumption that there are not virtuous
or counterproductive combinations of items in slates - which we
will make rigorous shortly.
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Slate non-clicks clickson1 clicks on 2
phone, couscous 661 10 29
phone, beer 644 9 47
couscous, beer 626 46 28

Table 1: Example of slate recommendation historical data.

Bandit algorithms are actively being developed for online slate
recommendation. In general, bandit algorithms are provably op-
timal and have strong theoretical guaranties. In the multi-armed
bandits setting [11, 15, 16], algorithms rely on the reward signal only.
It has been shown that their performance deteriorates in online
slate recommendation as the number of possible slates is combina-
torially large [7, 14]. In combinatorial bandits/semi-bandits settings,
some studies assume access to the reward signal as a function, with
certain properties 1. of the unknown items ranking [3, 4, 7], and
others assume direct access to items ranking [9, 10, 12, 18].

In offline settings, numerous reward modeling approaches have
been proposed in the context of slate recommendation. In [17],
off-policy evaluation and optimization procedures were developed
which allow evaluation of new slate recommendation policies, as
well finding the one that achieves maximal reward. In that study,
reward signal is assumed to be additive w.r.t unknown items ranking.
In [8], authors assume access to items ranking, and use them to train
conditional variational autoencoders that models items distribution
and enables slates generation for recommendation.

In production, and perhaps surprisingly, practical algorithms
often ignore the reward signal and rely on ranking items to learn
user preferences. An example of such models is a simple extension
of the Pop model in [6], where the agent recommends a slate com-
posed of the top K most popular items. Other examples of relevant
work include [1, 5, 13]. In our experience, the reward signal is often
ignored in recommender systems since it is difficult to integrate
it into the target cost function which is based on ranking items
correctly. Another reason can be organisational - different teams in
the company might focus either on the reward or on items ranking.
Such separation is typical in online advertising - bidding team typi-
cally focuses on reward prediction, whereas recommendation team
is only interested in ranking candidates correctly.

In this paper, we formulate three intuitive Bayesian models that
use either the reward signal (Reward model), the rank signal (Rank
model), or both (Full model). These algorithms learn from offline
historical data similar to the example presented in Table 1, and
allow consistent estimation of the underlying reward model. We
demonstrate empirically that the Full model outperforms the other
two approaches highlighting the benefits of combining both, the
reward and rank signals.

2 BAYESIAN FORMULATION OF FULL, REWARD
& RANK MODELS

2.1 Setting

We consider non-personalized slate recommendation. Interaction
between items in a slate is ignored, meaning that the best slate is

!Multiple assumptions are made on the link function between the slate reward and
items ranking. For instance, slate reward is often to be additive w.r.t items ranking
[3, 4]. Other studies made weaker assumptions, such as the slate reward being a
non-decreasing function w.r.t items ranking (e.g. [7]).

the one composed of the overall best K items. In addition, the order
of items in a slate doesn’t matter, meaning that recommending
[item1, item2] is the same as recommending [item2, item1]. The
statistics of slate interaction with users is summarized in the follow-
ing K + 1 variables, the number of non-clicks on the slate nc, and
the number of clicks on each item of the recommended slate of size
K, which we denote ¢; for i € [K]. Other useful variables, which
can be derived from the ones defined previously, are the number
of clicks on the recommended slate ¢ = };¢ (x| ¢i, and the number
of impressions I = ¢ + nc. Table 3 in Appendix A summarizes the
remaining variables as well as the ones we have already mentioned.

2.2 Bayesian Formulation & Learning

2.2.1 Formulation. We present three intuitive and simple Bayesian
approaches that allow consistent estimation of the underlying re-
ward model in non-personalized slate recommendation. We chose
the Bayesian framework because it is highly flexible, since it al-
lows us to incorporate prior information. In addition, it is suited
to many MCMC sampling methods that allow consistent estima-
tion of the posterior distribution of the parameters. We start by
introducing two important parameters ¢ and 6. ¢ is a real-valued
random variable that quantifies the overall magnitude of a non-
click on the slates (i.e. magnitude of the reward signal). A large
value of ¢ means that users tend to not click on slates very often.
0 = [61,...,0n], with N as the catalog size is a random vector
where each coordinate 0; represents the score of a click on item i
in the catalog independently of the slate in which it appears.

The Full model makes use of both reward and rank signals. In
this model, we put Gamma priors over the magnitude of a non-
click on the slates ¢ and the scores of a click on each item in the
catalog 6. Conditioned on ¢, 0, the recommended slate a, and the
number of impressions I, we model the number of non-clicks nc
and the number of clicks on each item ¢;, i € [K] using a multino-
mial distribution with K + 2 parameters I, g, p1, . . ., px expressed
as follows:

ne,ci, ... cg |l ¢, 0,a ~ Multinomial (I, g, p1, - . ., PK) »

with g (probability of a non-click on the slate a) and p;,i € [K]
(probability of a click on the i-th item of the slate a) are obtained
by normalizing the scores ¢ and 0 across slate a.

The Reward model ignores items ranking (number of clicks on
each item in the slates), and only uses the reward signal (i.e. number
of clicks on the slates). First, Gamma priors are put over ¢ and 6.
Conditioned on relevant random variables, we model the number
of non-clicks on the slate nc and the number of clicks on the slate c
by a multinomial distribution with parameters I, g, p:

ne, c|I, §, 6, a, ~ Multinomial (I, g, p) ,

with g (probability of a non-click the slate a) and p (probability of
a click on the the slate a) are obtained by normalizing scores ¢ and
0 across slate a.

The Rank model takes into account items ranking only (the num-
ber of clicks on each item in the slates). First, Gamma prior is put
over the scores 0. Conditioned on the number of clicks on the slate
I, and other relevant random variables, we model the number of
clicks on each item in the slate ¢; by a multinomial distribution
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Figure 1: Figures (a, b ,c): L; error (Eq. 1) for varying slate size, catalog size, and number of times each slate appears in the data.
In each experiment, we run the models 50 times and average the results. Shaded areas represent uncertainty. Figure (d): Violin

plot of L; errors distribution. Here, we generate samples 6; from the posterior and calculate the L; distance (Eq. 1) between

vectors pg and p; for all samples 0;. This results in a set of L; errors that we visualize using the violin plot.

with K + 1 parameters I, p1, . . ., px:

1, ..., cxl|le, 0, a ~ Multinomial (I, ps, ..., px),

with p;, i € [K] is the probability of a click on the i-th item in slate
a, and is obtained by carefully normalizing scores 6 across slate a.

We emphasize that three methods allow consistent estimation
of parameter 8, and both the Full and Reward models also allow
consistent estimation of parameter ¢. In addition, note that the
Rank and Full models are equivalent when ¢ = 0. Meaning that if
the magnitude of the reward signal is always 0 (the slate is always
clicked), then adding the reward signal to items ranking does not
provide any additional information. On the other hand, if ¢ — oo,
then the reward signal becomes dominant, and items rankings
would be irrelevant without it. In practice, ¢ is reasonably high, but
not to the point that items ranking becomes irrelevant.

Table 2 shows these three models for slates with size 2. Here, we
present how to derive parameters of the multinomial distribution
for the Full model in that case. Conditioned on I, ¢, 6, a1, az, with
a = |ay, az] as the recommended slate of size 2, variables nc, c1, c2
are modeled by Multinomial (I, g, p1, p2) , with ¢ = ¢/(¢p+604, +64,)
is the probability of a non-click on the recommended slate a, p; =
0a, /(¢ + 04, + 04,) is the probability of a click on the first item
ar and py = 04,/(¢ + 04, + 04,) as the probability of a click on
the second item ay. One can follow the same reasoning to derive
the probabilities of the Multinomial distributions for the other two
models in Table 2, or for an arbitrary slate size.

Model Description
e ey )
Full ne,c,c2|1, ¢, 6, a1, az M(I, F90u, 700, 700, +0a; " F700, 102y
- [ Oa; +0a, )
Reward ne,cl|l, @, 0, a1, a2 M(I, 570 ¥0m, $00,70sy

Rank

0, 0,
e1alle, 0, a1,a2 ~ M (e g g )

0ay+0ay’ 0, +0a,

Table 2: Models formulation for slates with size 2.

2.2.2 Learning. We assume access to historical data O of the form
[slate a, non-clicks on g, clicks on aj, ..., clicks on ax] (e.g.
Table 1). Our representation of data D changes depending on the
model we are using. The Full model takes data in its raw form. The
Reward model transforms it into [slate a, non-clicks on g, clicks
on a; +-- -+ clicks on ag] to take into account the reward signal

only. In the Rank model, data is represented as follows [slate g,
clicks on ay, ..., clicks on ak ], taking into account items ranking
only. Parameters ¢ and 0 are inferred via Maximum A Posteriori
- MAP. For instance, with data 9, MAP estimators of § and ¢ are
obtained by maximising the posterior p(0, |D). Note that, in the
case of Rank model, we only estimate 6 since ¢ is ignored in that
model. MAP was used to estimate parameters in all experiments,
except violin plots where we used MCMC methods in Stan [2] to
generate a set of samples 6; from the posterior.

3 EXPERIMENTS
3.1 Experimental Setup

We use synthetic data to compare our three methods. We generate
n samples of user interactions with each slate, using a multinomial
distribution with known parameters ¢ = 100 and 6 containing
values evenly spaced from 1 to 6. This generative process leads to
a dataset similar to the one presented in Table 1 and Section 2.2.2.
We then fit our models to this data, and evaluate the ability of each
model to estimate the true parameters of the generative process.
Since all of our models estimate the parameter 6, we use this pa-
rameter to evaluate the performance of all models. More precisely,
we compute the L; distance between p; (the vector of estimated
probabilities of a click on item 1 in each recommended slate a)
and pg (the vector of true probabilities of a click on item 1 in each
recommended slate a).

b0 Oa
Zje[K]éaj 2je[k] Ya;

Li(pgppo) = ), (1)

all slates a

For experiments with varying slate and catalog sizes, the number
of samples per slate n is fixed and set to 1000 (i.e. each slate appears
1000 times in the data). We set the slate size to 2 for experiments
with varying number of samples and varying catalog sizes. Catalog
size is set to 50 for experiments with varying slate size. In Figures
la, 1b, 1c, we run all models 50 times, and report the empirical
mean and standard deviation of L; errors over these 50 runs. In
violin plots 1d and 2 in Appendix C, we use Stan to generate a set
of samples 6; from the posterior distribution. Eq. 1 is then used to
calculate Ly distance between pg and g, for all generated samples

6;. This process leads to a set of Ly errors that we visualize with
violin plots. Table 4 in Appendix B summarizes the parameters of



BCIRWIS °21 at KDD ’21, August 14th-15th, 2021, Singapore

all these experiments. As an additional experiment, we compare
Full and Reward models ability to estimate the probability of a
non-click on the slates. Precisely, we compare Full and Reward
models using the L; distance between § (the vector of estimated
probabilities of a non-click for all recommended slates a) and ¢
(the vector of true probabilities of a non-click for all recommended
slates a).

L@Gg= ),

all slates a

¢ _ ¢
P+ 2 je[k] ba; ¢+ Xjelk] Oa;

@

Clearly, Rank model isn’t involved in this comparison as it doesn’t
estimate the magnitude of a non-click ¢. Table 7 in Appendix D
shows the results for this experiment.

3.2 Results

Figure 1 shows the results for our three models, with varying catalog
sizes, slate sizes, and number of samples. In particular, the Full
model achieves better L; error when the catalog size increases
(Figure 1a). For instance, with 80 items in the catalog, the Reward
and Rank models have 54% and 36% higher relative L; error than the
Full model. In real-world settings, with partners having millions
of items in their catalogs, the gap between the Full model and the
two other models can become significant. Results for a catalog of
size 50 and different slate sizes are shown in Figure 1b. The gap in
performance between the Full and Rank models does not change
when slate size increases, while the L; error for the Reward model
grows at a much higher rate when the slate size increases. Recall
that we have n samples per slate in our data. Since the Reward
model only exploits the reward signal, it only uses n samples to
estimate items scores, independently of the slate size. In contrast,
the other two models use individual ranking. Therefore, the number
of samples used to estimate items scores increases as the slate size
increases. For instance, a single item would appear in many slates,
meaning that samples from all of these slates will be used to estimate
that item’s score. Figure 1c shows that the Full model outperforms
the other two models for any number of samples. Additionally,
we see that the gap in performance between models in Figure 1c
seems to be constant. Figure 1d shows a violin plot of the L; errors
obtained by sampling from the posterior for a catalog with 20 items.
From Figure 1d we see that the L; error is more concentrated on the
mean in the Full model compared to the Rank and Reward models.
We invite the reader to see Tables 5, 6 in Appendix C for additional
numerical results from our experiments.

4 CONCLUSION

In this paper we have formulated and compared Bayesian models
for non-personalized slate recommendation. We have confirmed
that the Full model, which utilizes both types of signals, reward
and rank, is more favorable than any of the models that are based
only on one type of signal. As such, we verified that as the catalog
or slate size grows, the performance gains provided by the Full
model increase as well.

The impact of the reward signal on the ranking quality demon-
strated in this paper is of interest for industrial recommender sys-
tems. Although all three models provide an estimate of items scores,
the difference between models in practice can be significant since

the catalog for applications such as online advertising can contain
hundreds of millions of items, and the error grows with the catalog
size. A typical industrial personalized recommendation system is
based on collaborative filtering and does not have room for includ-
ing both types of signals considered in this paper. It usually favors
the ranking signal over the reward one and is optimized for ranking
items correctly on the training dataset. The Full model has the
benefit of combining both signals and is optimized for predicting
the actual outcome of the user interaction with the slate.

For future work, we plan to extend this framework to the per-
sonalized slate recommendation scenario, where the results of rec-
ommendations depend on user features. We also plan to test our
framework on real-world slate recommendation datasets.
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A SUMMARY OF NOTATIONS & DEFINITIONS

Following table summarizes definitions and notations of quantities
used in the paper.

Notation Definition

N Catalog size.

I Total number of impressions.

I Total number of clicks.

K Slate size.

a=lay,..., ag] Recommended slate.

nc Number of non-clicks on a recommended slate a.
c Number of clicks on a recommended slate a.

¢ Score of a non-click.

0;,i € [N] Scores of a click on item i.

¢i,i € [K] Number of clicks on the i-th item in the recommended slate a.

Table 3: Notations and Definitions

B EXPERIMENTAL SETTING DETAILS.

Following table provides details about all parameters used in our
experiments.

Figure slate size catalog size N°samples

la 2 varying 1000
1b varying 50 1000
1c 2 80 varying
1d 2 20 1000
2 2 80 1000

Table 4: Parameters values for different experiments.

C EXPERIMENTAL RESULTS.

Figure 2 is a violin plot for a catalog with 80 items.

50

40

I

Full-80 Rank-80
model-catalog size

L1 error

Reward-80

Figure 2: Catalog with 80 items.

Figure 3: Violin plot of L; errors distributions for a catalog
with 80 items. In this plot, we generate samples 6; from the
posterior and calculate the L; distance (Eq. 1) between vec-
tors pg and P4, for all samples 6;. This process results in a
set of L; errors that we visualize using the violin plot.

Tables 5 and 6 show the results used in Figures 1b, 1a, 1c.
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D ADDITIONAL EXPERIMENT

Table 7 shows the results for the additional experiment.

catalog size
Model 5 10 20 30 40 50 60 70 80
Full 0.03 0.09 0.25 048 0.77 1.08 142 178 2.14
Reward 0.05 0.14 039 067 107 152 199 255 3.05

Table 7: L; errors (Eq. 2) for varying catalog size.
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catalog size slate size
Model 5 10 20 30 40 50 60 70 80 Model 2 3 4
Full 023 0.69 2.02 391 6.15 8.71 1136 1434 17.44 Full 8.48 19.88 42.93
Rank 0.28 094 270 531 837 11.60 1529 1931 23.83 Rank 11.73  22.61 45.88
Reward 0.59 1.70 3.77 6.28 9.72 13.64 17.62 22.64 26.97 Reward 13.21 42.07 134.97

Table 5: L; errors for varying catalog size and slate size.

number of samples

Model 5 10 50 100 200 300 400 500 600 700 800 900 1000 5000 10000
Full 250.69 171.30 77.67 54.77 39.15 32.11 27.48 24.20 2287 20.90 1998 18.32 17.59 7.85 5.50
Rank 360.00 241.73 107.76 75.80 5342 44.08 36.72 3332 3132 28.72 27.14 2496 2427 10.65 7.45
Reward 419.56 287.23 124.00 90.08 65.22 52.00 4549 3883 3520 31.89 30.54 2840 2690 12.18 8.49

Table 6: L; errors for varying number of samples.
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