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Abstract: Liquid propelled rocket engines (LPRE) are highly non-linear systems that require
complex stability analysis and regulation. Most often, this is performed by linearizing in the
neighborhood of a functioning point which makes it difficult to account for changes of points e.g.
for reusable launchers. In this paper the objective is to propose a non linear control law to regulate
the thrust of the engine, which is represented by the reaction chamber pressure, and the mixture
ratio between the fuel and the oxidizer. This control law must provide stability guarantees for
the system for a variety of functioning points. The new design is based on Contraction theory
and is shown to address both stability and regulation objectives as illustrated with simulation
results.
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1. INTRODUCTION

Reusable launchers are equipped with liquid propelled
rocket engine (LPRE) that are due to function for different
points. These engines are highly non-linear systems. Fixed-
point engines were used for a single functioning point
and the stability analysis was performed on a linearized
domain in the neighborhood of this point while in the
case of a reusable engine, we have to prove stability along
the trajectories between several functioning points. Quite
often stability is derived from the definition of a Lyapunov
function. However, for such systems, the determination of
a suitable Lyapunov function proves to be very complex.
An interesting alternative is the use of contraction theory
which allows, when a regulation control has been designed,
to evaluate the system stability along given trajectories.

Contraction theory has been initially introduced by
Lohmiller and Slotine (1998); Lohmiller (1999). For a
more historical approach of contraction theory and links to
Lyapunov’s theory more material is proposed in Jouffroy
(2005); Forni and Sepulchre (2013). Recent developments
have been suggested in Andrieu and Tarbouriech (2019);
Tsukamoto et al. (2021) to propose a Linear Matrix Inequal-
ity (LMI) formulation of the contraction problem. Various
applications of contraction theory have been considered, e.g.
coupled oscillators in Wang and Slotine (2005), mechanical
systems (Lohmiller and Slotine, 2000; Ijspeert et al., 2013).
These applications already integrate feedback combination
of systems in the equations and properties of the combi-
nation of several systems in contraction theory. Although
rocket engine, as a thermodynamic dissipating system,
can be considered as a feedback combination of several
subsystems, to the best of our knowledge, application of this
theory to the stability of LPRE has never been considered.
The innovation of this paper consists in the new model of

⋆ This work is under common ground by ONERA and CNES

LPRE and the derivation of a regulation control leading
to a contracting behavior and thus providing guarantee on
the stability of the system along specified trajectories.

The article is organized as follows. After describing the
main features of the LPRE in section 2, basis of contraction
theory will be presented in section 3. The design of
the control used in this paper is described in section 4.
Simulated results are presented in section 4.4 to illustrate
the performances of the methodology.

2. PROBLEM STATEMENT

We consider here a simplified LPRE model derived from
the representation depicted in Perez Roca (2020); Pérez-
Roca et al. (2018); Galeotta et al. (2019). This model,
even if simplified, illustrates the interdependencies of such
thermodynamical systems as well as the sensitivity of the
system to initial conditions and bias on the value of the
parameters. The engine is functioning with dihydrogen
as fuel and oxygen as oxidizer. Each tank is connected
to a motopump which converts an input power into an
increase in outlet pressure, enabling the fluid to enter the
combustion chamber. The basic features of the LPRE are
illustrated in figure 1. It can be noticed that the dihydrogen
branch integrates an additional element, the regenerative
circuit that transfers heat from the combustion chamber’s
structure to the incoming fluid. This element is modeled
with a change of temperature in the injection system. To
complete the description of the engine, the dissipating
effects of the lines and the injectors will be introduced in
the state equations of the dynamics. We aim to regulate the
inner pressure of the combustion chamber, using the power
inputs on both motopumps, while keeping the mixture
ratio, i.e. the ratio between oxidizer and fuel mass flows
injected in the chamber, close to a reference value (Pérez-
Roca et al. (2019)). One of the main sources of instability
is the bias on the parameters that build the model, leading
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Fig. 1. Model of the LPRE system used

to an other requirement for a regulation independent of
initial conditions. For example, a dynamical state feedback
regulation proves to be sufficient for regulation, but is
unable to withstand the bias of parameters, leading to
unstable behavior. As the two branches of the LPRE
are almost identical, we focus on the description of the
dihydrogen model. This model will be referred to as the
subsystem H, and results will be extended to the complete
system in section 4.4.

The following table describes the different notations used
in our LPRE model. Note that every variable described for
H can also be used for O. All results are presented with
normalized variables, therefore reduced units.

NOMENCLATURE

Constant terms
ρH Density of the H fluid (kg.m−3)
IH Fluidic Inertia (m−1)
JH Angular Inertia (kg.m2)
k1, k2 Combustion chamber parameters
keq Equivalent resistance coefficient (kg−1.m−1)
PEPH Tank pressure of the H fluid (Pa)
Time varying terms
ṁH Mass flow in the H branch (kg.s−1)
PinH Power input of the motopump H (W )
ωH Rotationnal speed of the H motopump (rad.s−1)
MR Mixture ratio in the combustion chamber (-)
Pc Combustion chamber pressure (Pa)
PiH Injector pressure (Pa)
PspH Motopump output pressure (Pa)

2.1 Equations of the model

The motopump is described by a polynomial relation
between the resisting torque TrH , the rotational speed
and mass flow:

TrH =

∣∣∣∣acHρH ṁ2
H + bcHωHṁH + ccHρHω2

H

∣∣∣∣ . (1)

We can then find a relation for the rotational speed ωH ,
by using the conservation of the kinetic moment:

ω̇H =
1

JH

(
PinH

ωH
− TrH

)
, (2)

with PinH being the input power of the motopump, and
ach, bch, cch being specific coefficients of the motopump. We
introduce following change of variables ΩH = ω2

H , which
transforms (2) into the following:

Ω̇H =
2

JH

(
PinH −

∣∣∣∣acHρH ṁ2
HΩ

1
2

H − bcHΩHṁH

− ccHρHΩ
3
2

H

∣∣∣∣). (3)

The evolution of the reaction chamber pressure can be
approximated by a linear equation as in Perez Roca (2020),
by:

Ṗc = k1(ṁH + ṁO)− k2Pc, (4)

where k1 and k2 are obtained by first order Taylor expansion
of the thermodynamics equation in the neighborhood of
the steady-state nominal value.

The dissipating effects of the lines are modelled using the
equation of conservation of the momentum of the fluid

IHm̈H = PspH − PiH − keqṁ
2
H . (5)

A similar expression can be obtained for the injection
pressure drop by representing the loss as kinjṁ

2
H and

expressing Pc as Pc = PiH − kinjṁ
2
H . The output pressure

of the motopump PspH is expressed as a polynomial
function:

PspH = PepH +
apH
ρH

ṁ2
H + bpHΩHṁH + cpHρHΩH , (6)

where apH , bpH , cpH are specific coefficients of the motop-
ump. We can then use both equation (5) and (6) to obtain
the evolution of the mass flow ṁH :

m̈H =
1

IH

(
PspH − Pc

)
. (7)

From this set of differential equations, the following
state representation of the LPRE is obtained, where X1

corresponds to ΩH , X2 to ṁH , X3 to ΩO, X4 to ṁO and
X5 to Pc, and where uH designates the control input of
the motopump PinH and uO, PinO.

Ẋ1 =
2

JH

(
PinH −

∣∣acH
ρH

X2
2X

1
2
1 + bcHX1X2 + ccHρHX

3
2
1

∣∣)
Ẋ2 =

1

IH

(
PEPH −X5 + (

apH

ρH
− keqH)X2

2 + bpHX
1
2
1 X2

+ cpHρHX1

)
Ẋ3 =

2

JO

(
PinO −

∣∣acO
ρO

X2
4X

1
2
3 + bcOX3X4 + ccOρOX

3
2
3

∣∣)
Ẋ4 =

1

IO

(
PEPO −X5 + (

apO

ρO
− keqO)X2

4 + bpOX
1
2
3 X4

+ cpOρOX3

)
Ẋ5 =k1

(
X2 +X4

)
− k2X5.

(8)

The scenario addressed is the regulation of PCC along a
transition between two functioning points, while insuring
stability along the trajectory. Additionally, we aim to
maintain the mixture ratio MR to the normal value. The
main source of instability of an LPRE system comes from
the bias on parameters, due to residual species in the
combustion chamber or variation of internal parameters.
The stability analysis around functioning points can leave
uncertain zones. To cover these uncertain zones this paper
proposes an approach that guarantees stability around a
trajectory. Use of contraction theory will be made to cover
the stability requirements.
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3. CONTRACTION THEORY

Contraction theory is a recent tool for analyzing the
stability of nonlinear systems. The analysis is performed
using the convergence of the different trajectories of a
system, i.e. the time evolution of the states given the
dynamics and initial conditions. Contracting behavior is
illustrated by the ability of a system to forget initial
conditions and perturbations. Consider systems of the form:

ẋ = f(x, t), (9)

where f is a n × 1 non-linear vector function and x is a
n×1 state vector. Additionally, let the virtual displacement
between the different points of the flow of trajectories be
defined by:

δẋ =
∂f

∂x
(x, t)δx, (10)

Definition 1. (Lohmiller and Slotine (1998)). Given the sys-
tem equations ẋ = f(x, t), a region of the state space is

called a contraction region if the Jacobian ∂f
∂x is uniformly

negative definite in that region.

Similarly, a region of the state space is called a semi-
contraction region if the Jacobian is uniformly negative
semi-definite, and finally a region is called indifferent if
the Jacobian is skew-symmetric. This definition leads to
the first result in contraction analysis, which is a sufficient
exponential convergence result.

Theorem 2. (Lohmiller and Slotine (1998)). Given the sys-
tem equations ẋ = f(x, t), any trajectory, which starts in a
ball of constant radius centered around a given trajectory
and contained at all times in a contraction region, remains
in that ball and converges exponentially to this trajectory.
Furthermore, global exponential convergence to the given
trajectory is guaranteed if the whole state space is a
contraction region.

If the LPRE system verifies theorem 2, then exponential
convergence of any couple of trajectories and therefore
stability are proven. This constitutes an incremental form
of stability (Jouffroy and Slotine (2004)), which is stronger
than simple exponential stability with respect to the
origin. However, as will be shown below such a system
is not initially contracting, so we will use another result
from Andrieu and Tarbouriech (2019), which enables us
to compute an input that makes the considered system
contracting. In order to use these results, it is necessary to
formulate the system differently. A new representation of a
system is used from now on, where we separate the linear
and non-linear components of the function f in (11), as:

ẋ = Ax+Mϕ(y, t), y = Lx, (11)

where A is a square n× n matrix, that is built using the
linear terms in f(x, t), and ϕ(y, t) contains the terms to
add to Ax to reconstruct the equation of ẋ. Both matrices
M,L are defined in order to respect the dimensions of the
other elements. With this new formulation of the system,
conditions are presented for which we can find LMIs that
characterize contracting behavior.

Assumption 3. (Andrieu and Tarbouriech (2019)) (Mono-
tonic nonlinearities) The mapping ϕ : Rm × R → Rm is
such that:

0 ≤ ∂ϕ

∂y
(y, t) +

∂ϕ

∂y
(y, t)⊤ ≤ Γ,∀(y, t) ∈ Rm × R, (12)

where Γ ∈ Rm×m is a symmetric positive definite matrix.

Theorem 4. (Andrieu and Tarbouriech (2019)) Assume
that ϕ satisfies the assumption previously mentioned. If
there exist a symmetric positive definite matrix P ∈ Rn×n

and a positive real number v such that:

[
A⊤P + PA+ vIdn L⊤ + PM

L+M⊤P −4Γ−1

]
≤ 0. (13)

The system (11) defines a contraction.

When the system is not contracting, Andrieu and Tar-
bouriech (2019) search for a control u under the form:

ẋ = Ax+Mϕ(y, t) +Bu (14)

u = Kx+Nϕ(Lx, t).

Corollary 5. (Andrieu and Tarbouriech (2019)) Assume
that ϕ satisfies Assumption 3. If there exist a symmetric
positive definite matrix W ∈ Rn×n, two matrices Z ∈
Rq×n,N ∈ Rq×p and a positive real number η such that:

[
(AW +BZ)⊤ + (AW +BZ) WL⊤ + (M +BN) W

LW + (M +BN)⊤ −DΓ−1 0
W 0 −ηIdn

]
≤ 0,

(15)

then the closed-loop system (14) is a contraction with the
control law defined by K = ZW−1 and N .

Remark 6. If one has

0 ≤ ∂ϕ

∂y
(y, t) +

∂ϕ

∂y
(y, t)⊤,∀(y, t) ∈ Rm × R, (16)

and if the following LMI is verified:[
A⊤P + PA+ vIdn L⊤ + PM

L+M⊤P 0

]
≤ 0, (17)

it is shown in Andrieu and Tarbouriech (2019) that the
same result on the contracting behavior of the system than
in theorem 4 applies. This LMI can be rewritten into two
constraints: A⊤P + PA + vIdn < 0, L⊤ = −PM . This
result can also be extended to the corollary 5, with the
matrices previously introduced W,M,N verifying:

(AW +BZ)⊤ + (AW +BZ) ≤ 0,

W > 0,WL⊤ = −(M +BN),
(18)

which are LMI conditions derived from equation (15).

The method presented in Andrieu and Tarbouriech (2019)
is used to find the control inputs to obtain a contracting
system, and will be presented below.

4. DESIGN OF A CONTRACTING CONTROL LAW
FOR THE LPRE

4.1 Preliminaries

A first example of contraction of a system is presented
in this section, using the subsystem H of our LPRE. The
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result will then be applied to the global system of the LPRE.
To create the subsystem H we suppose that a control is
applied to the oxygen mass flow that allows us to consider
MR(t) constant, which leads to the following system:

Ẋ1 =
2

JH

(
uH −

∣∣acH
ρH

X2
2X

1
2
1 + bcHX1X2 + ccHρHX

3
2
1

∣∣)
Ẋ2 =

1

IH

(
PEPH −X5 + (

apH

ρH
− keqH)X2

2 + bpHX
1
2
1 X2

+ cpHρHX1

)
Ẋ5 =k1

(
1 +MRd

)
X2 − k2X5.

(19)

A preliminary analysis of the Jacobian of this system gives:

∂f

∂x
=


∂f1
∂X1

∂f1
∂X2

∂f1
∂X3

∂f2
∂X1

∂f2
∂X2

∂f2
∂X3

∂f3
∂X1

∂f3
∂X2

∂f3
∂X3

 , (20)

where
∂f1
∂X1

= − 2

JH
(acH

X2
2

2X
1
2
1

+ bcHX2 +
3

2
ccHρHX

1
2
1 ),

∂f1
∂X2

= − 2

JH
(2acHX2X

1
2
1 + bcHX1),

∂f1
∂X3

= 0,

∂f2
∂X1

=
1

IH
(bpH

X2

2X
1
2
1

+ cpHρH),

∂f2
∂X2

=
1

IH
(2

apH
ρH

− keqH)X2 + bpHX
1
2
1 ,

∂f2
∂X3

= − 1

IH
,

∂f3
∂X1

= 0,
∂f3
∂X2

= k1(1 +MRd),
∂f3
∂X3

= −k2,

which is not uniformly negative definite, as ∂f2
∂X1

, ∂f2∂X2
and

∂f3
∂X2

, are positive. To answer this application of the method

from Andrieu and Tarbouriech (2019) is made to compute
a new input signal that will make the system contracting.
Reformulation of the system with (14) gives:

ẋ = Ax+Mϕ(y, t), y = Lx, (21)

A =

0 0 0

0 0 − 1

IH
0 k1 −k2

 , y =

(
X1

X2

)
,

M =

(
1 0
0 1
0 0

)
, L =

(
1 0 0
0 1 0

)
,

ϕ(y, t) =

 2

JH

(
−

acH

ρH
X2

2X
1
2
1 − bcHX1X2 − ccHρHX

3
2
1

)
1

IH

(
(
apH

ρH
− keqH)X2

2 + bpHX
1
2
1 X2 + cpHρHX1

) .

(22)

4.2 Design of the control feedback

In this part we use the same model presented in (22).

Analysis of the monotony of the non-linearity as in

assumption 3 shows that δϕ
δy (y, t)+

δϕ
δy

⊤
(y, t) is not Lipschitz,

as it depends on the states X1 and X2. Indeed, by taking
note that:

δϕ

δy
(y, t) =

 ∂f1
∂X1

∂f1
∂X2

∂f2
∂X1

∂f2
∂X2

 , (23)

we can verify that condition (16) has to be used in this
case, as we can not find a suitable Γ mentioned in (12).
However, as this equation presents negative eigenvalues, to
verify condition (16), it is necessary to add a linear term in

the expression of ϕ(x, t), under the form (l1X1 0)
⊤
. The

term l1 is computed from the smallest negative value of
δϕ
δy (y, t) +

δϕ
δy

⊤
(y, t). This term is then substracted from

the matrix A so that we keep the same equation as in (21).
The constraints described in (18) impose some terms for
the matrices we search for. With the expressions of the
known matrices expressed earlier, we have:

WL⊤ = −(M +BN),

W

(
0 1
1 0
0 0

)
= −

(
n1 + 1 n2

0 1
0 0

)
. (24)

This constraint fixes six of the terms in W , which leads
to the constraint (AW +BZ)⊤ + (AW +BZ) ≤ 0 not to
be verified. To address this issue, we chose to change the
matrix M into:

M =

(
1 0
0 −1
0 0

)
. (25)

Note that the appropriate sign changes need to be made in
the ϕ(y, t) function. The new representation of the system
is then the following:

Ẋ =

(
A−

(
l1
0
0

))
X +M

(
ϕ(LX, t) +

(
l1
0

)
LX

)
+Bu.

(26)

With this formalism, we have the preliminaries to solve
the LMI defined in (18). We solve the LMI with the use of
YALMIP (Lofberg, 2004), which gives us the three matrices
that enable us to build the feedback control for our system:
W,N,Z. The control law is then defined by:

u = KX +Nϕ(LX, t),K = ZW−1. (27)

In the sense of (Andrieu and Tarbouriech, 2019), our
system is now contracting. To regulate the system around a
trajectory v(t), we add the tracking term into the equation
(26).

This leads to the final equation being:

Ẋ =

(
A−

(
l1
0
0

))
X +M

(
ϕ(Lx, t)+(

l1
0

)
LX

)
+B

(
K(X − v) +Nϕ

(
L(X − v), t

))
.

(28)
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Fig. 2. Reference tracking

4.3 Contracting behavior of the system

To illustrate the contracting behavior of the system, we will
provide a few examples of reference tracking and rejection
of initial conditions.

Reference tracking On figure 2, we illustrate an example
of reference tracking. The values have been normalized,
and the signal v(t) has been scaled with a gain as well
as the signal Pc obtained with the PI regulation. An
interesting illustration of the contracting behavior is the
gap that appears when the control descends under the
value v(t) = 0.9. Indeed, the system by construction can
diverge under a certain value of the states. The contracting
behavior prevents the system from diverging as mentioned
in theorem 2. To illustrate this, we set up a PI regulation,
that diverges when it reaches this critical value.

Initial conditions Figure 3 illustrates the behavior of
several trajectories submitted to different initial conditions,
with the same reference u(t). For a contracting behavior
we should observe the flow of the trajectories converging
towards u(t), each one progressively ”forgetting” its initial
state. For this example, we use four different initial states
of Pc: Pc = [1, 0.9, 1.1, 1.2]. We notice that the convergence
behavior is indeed respected, as all trajectories merge into
a single one that follows the reference u(t). This merge of
the trajectories is the single-stream behavior that inspired
the contraction theory.

Additional comments The regulation performances give
satisfying results for perturbations. Simulations invoking
time-delays give satisfying results towards stability. How-
ever the contracting control law implies violent variations
of variables, exceeding most physical systems capacities.
Additional saturations have been used to address this issue.

4.4 Global system

The final aspect of this contraction study, is to be able to
make both sides of the system contracting.

At this stage, we have the first subsystem H, that is
contracting. The second subsystem, composed of two
equations and two states, will be analysed with contraction
theory using the same method, this time we will consider

Fig. 3. Convergence of trajectories with different initial
conditions

that Pc(t) is constant. Using contracting systems properties,
we can conclude that the system presented in (8), with both
controls computed as stated, is also contracting. Indeed, the
contraction of a feedback combination of two contracting
systems is proved in Jouffroy and Slotine (2004). Another
way to visualize this conclusion is to note that the two
subsystems are particular solutions of system’s equation:
in the H subsystem, Ẋ = f(X, t) with X2 = MRdX4 and

in the subsystem OẊ = f(X, t) where X5 = Pc0 with Pc0

the initial value of Pc. Having proved that with our two
inputs, the LPRE system is contracting, we have proven
stability of the system, towards a reference trajectory.

To regulate both the main chamber pressure and the
mixture ratio, two inputs are used. Using the notations
defined in 4, the input for the chamber pressure is vH(t) =
Pcd(t) − Pc(t), and the input for the mixture ratio is
vO(t) = MRd(t)−MR(t).

The system presents a static error during the tracking
process, which can prove to be problematic in the case
of the mixture ratio tracking. However, the addition
of an integrator can be the source of a loss of the
contracting behavior. It thus requires careful tuning. First
it must be noticed that this effect should be increased on
the subsystem O, as a faster integration on the MR(t)
regulation leads to less perturbations, while maintaining a
more efficient combustion. This can be noticed on figure
5, where oscillations appear when the oxidizer mass flow
evolves. This retroacting behavior of the system is the main
source of instability. The integrator gain on the oxidizer
has been selected to be 10 times greater than the one for
subsystem H.

On figure 4, the behavior of the system is illustrated,
following a reference and changing functioning points. On
figure 6, we see the evolution of the mixture ratio for the
same reference. We can observe that the mixture ratio
follows the behavior that we wanted, as it deviates of 10%
from the desired valueMRstat, and converges to its optimal
value.
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Fig. 4. Evolution of the chamber pressure

Fig. 5. Zoom on the evolution of the states

Fig. 6. Evolution of the mixture ratio

5. CONCLUSION AND PERSPECTIVES

In this paper we used a transformation of LPRE dynamics
to determine a feedback control that makes the system
contracting. The solution is obtained via solving LMIs. By
using the properties of contracting behavior, we simplified
the problem of a two-input two-output system into two
separate single-input single-output problems, which allows

us to simplify the LMIs that are being solved. The re-
sults obtained on simulation show promising performances.
However, such regulation relies on the assumption that
all states are measured. In reality, LPRE being complex
thermodynamics systems, only the value of the rotational
speeds of the pumps and the chamber pressure are avail-
able and observers must be designed to reconstruct the
remaining states. Future work implies the determination
of such observers to reconstruct the states to be coupled
with the contracting control law.
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