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Abstract

Personalised federated learning (FL) aims at collaboratively learning a machine
learning model taylored for each client. Albeit promising advances have been made
in this direction, most of existing approaches works do not allow for uncertainty
quantification which is crucial in many applications. In addition, personalisation in
the cross-device setting still involves important issues, especially for new clients or
those having small number of observations. This paper aims at filling these gaps.
To this end, we propose a novel methodology coined FedPop by recasting person-
alised FL into the population modeling paradigm where clients’ models involve
fixed common population parameters and random effects, aiming at explaining data
heterogeneity. To derive convergence guarantees for our scheme, we introduce a
new class of federated stochastic optimisation algorithms which relies on Markov
chain Monte Carlo methods. Compared to existing personalised FL methods, the
proposed methodology has important benefits: it is robust to client drift, practical
for inference on new clients, and above all, enables uncertainty quantification under
mild computational and memory overheads. We provide non-asymptotic conver-
gence guarantees for the proposed algorithms and illustrate their performances on
various personalised federated learning tasks.

1 Introduction

Federated learning (FL) is a recent machine learning paradigm in which distributed clients holding
sensitive data collaborate in solving a learning problem, usually under the coordination of a central
server (Kairouz et al., 2021; Wang et al., 2021). One of the main focus of FL is on so-called cross-
device applications where a large number of personal electronic devices such as mobile phones,
wearable devices or home assistants collect and store data at the edges of a decentralised network
(McMahan et al., 2017).

While standard FL methods (Alistarh et al., 2017; Horváth et al., 2019; Karimireddy et al., 2020; Li
et al., 2020; McMahan et al., 2017) have focused on training a global model that can be applied to
individual agents, the relevance of such inferences has recently been questioned due to statistical
heterogeneity between clients. Indeed, the considered common model may not generalise well on
a client with a local data distribution that differs significantly from the global data distribution,
especially if that client has not participated in the training process. In fact, it might even be better for
such clients to derive a local model from their own data set. To circumvent these issues, a number of
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personalised federated learning approaches have recently been proposed, that use local models to
fit client-specific data distribution while capturing some shared knowledge via a federated scheme
(Tan et al., 2022). Personalisation has previously been approached using multi-task learning (Smith
et al., 2017), meta-learning (Jiang et al., 2019; Khodak et al., 2019), client clustering (Briggs et al.,
2020), data interpolation (Mansour et al., 2020), model interpolation (Hanzely and Richtárik, 2020;
Hanzely et al., 2020) or partially local models (Collins et al., 2021; Singhal et al., 2021). While
these methodologies are promising, they only partially solve the personalisation problem in highly
heterogeneous federated settings and have no means of quantifying uncertainty. In addition, cross-
device FL also faces other important challenges such as (extreme) partial device participation, small
local data sets, limited upload bandwidth and device capabilities (Kairouz et al., 2021). Addressing
these problems for personalised FL requires new paradigms regarding how model knowledge is
shared and personalisation is performed locally.

Proposed Approach. In this paper, we adopt a novel perspective to model the problem of person-
alised FL. This paradigm, called mixed-effects modeling (also known as multi-level or population
approach) is widely used to analyse data that have a clustered or nested structure, as in medical or
biological research where multiple observations per patient are available (Gelman and Hill, 2007;
Lavielle, 2014; Long, 2011). Although the hierarchical structure of FL has already been noted (Grant
et al., 2018; Hong et al., 2022; Plassier et al., 2021), the mixed-effects paradigm has interestingly
never been considered. Leveraging this framework, we develop a new model for personalised FL
called FedPop and propose an efficient computational solution to perform inference under this model.
More precisely, we introduce a novel class of federated stochastic approximation algorithms based
on parallel Markov Chain Monte Carlo (MCMC) methods. In the proposed framework, we also pay
special attention to the cross-device setting by taking into account partial client participation, and
by addressing the communication bottleneck with both multiple local updates and the use of lossy
compression operators.

Benefits. Up to the authors’ knowledge, FedPop is the first personalised FL approach that allows
cheap uncertainty quantification with a theoretically-grounded methodology. The proposed frame-
work also comes with other interesting properties. First, in contrast to most of personalised FL
methods that only consider “fixed-effects” models (Collins et al., 2021; Hanzely et al., 2021; Smith
et al., 2017), FedPop provides credibility information (via credibility regions) and allows more
accurate inference for clients with small and heterogeneous local data via partial pooling (Gelman
and Hill, 2007). In addition, inference for new clients which did not participate in the training phase
can be easily performed by sampling from the prior over the local random effects. Second, contrary to
existing Bayesian FL approaches that aim to provide credibility information by sampling from a target
posterior distribution (El Mekkaoui et al., 2021; Hong et al., 2022; Vono et al., 2022; Yoon et al.,
2018), FedPop allows to perform personalisation and cheaper on-device uncertainty quantification
taking an empirical Bayes prediction approach. Finally, an important benefit of FedPop is its ability
to allow for multiple local updates without suffering from the client-drift phenomenon (Karimireddy
et al., 2020).

Outline and Contributions. Our contributions are fourfold. First, in Section 2, we propose a
novel probabilistic methodology, which we call FedPop, to address personalisation under the cross-
device FL paradigm. To perform efficient inference under this model, we introduce a general class
of stochastic approximation algorithms based on MCMC. Second, we provide in Section 3 non-
asymptotic convergence guarantees for the proposed methodology. Then, we perform in Section 4 a
comparison between the proposed approach and exisiting works. Finally, we illustrate in Section 5
the benefits of our methodology on several federated learning benchmarks involving both synthetic
and real data.

2 Proposed Approach

In this section, we present the statistical estimation problem we are considering and the proposed
methodology called FedPop to address it.

Problem Formulation. We are interested in the cross-device FL setting involving a large number
b ∈ N∗ of clients, potentially unreliable i.e. not necessarily available at each communication round.
These clients are assumed to own sensitive local data sets {Di}i∈[b]. In this framework, we aim to
make both uncertainty quantification and personalised statistical inference by learning a local model
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taylored to each client. To this end, and inspired by the population approach used in the biological
and physical sciences (Lavielle, 2014), we consider mixed-effects modeling for each client leading to
the local marginal likelihood function defined, for any i ∈ [b], by

p(Di | φ, β) =

∫
Rd

p(Di | φ , z(i))p(z(i) | β)dz(i) , (1)

where φ ∈ Φ ⊆ RdΦ stands for a fixed effect and {z(i)}i∈[b] ∈ Z, Z =
∏b
i=1 Rd, represent

random effects aimed at explaining statistical heterogeneity between local data sets {Di}i∈[b].

Figure 1: DAG for FedPop.

The objective of the fixed (i.e. constant across all clients) part
is to capture a common representation (e.g. same features across
different classes of images) while the random part, which is typically
low-dimensional, performs personalisation and is assumed to be
drawn from a population prior whose variance aims at modeling
data heterogeneity.

Figure 1 illustrates this statistical framework, referred to as FedPop,
by showing its directed acyclic graph (DAG) where grey-filled
shapes indicate observed variables, white-filled shapes unknown
variables and squared shapes variables to be estimated.

When the size of the local data set Di is small, this common prior
leverages information from other clients to limit the risk of overfit-
ting and is often called partial pooling in the multi-level statistical
literature (Gelman and Hill, 2007, Section 12). Examples of model architectures involving φ and
{z(i)}i∈[b] include for instance composition-based architectures p(Di | φ, z(i)) = p(Di | hφ ◦ hz(i))
where hφ and hz(i) are two neural networks (Arivazhagan et al., 2019; Collins et al., 2021). For the
sake of generality, we propose to adopt a flexible energy-based prior distribution of the form for each
i ∈ [b],

p(z(i) | β) =
1

Z(β)
exp

{
−E(z(i);β)

}
, where Z(β) =

∫
Rd

exp
{
−E(z(i);β)

}
dz(i) .

Here, Z(β) is a normalising constant and E(·;β) represents an energy function, typically a neural
network, parameterised by a set of parameters β ∈ B ⊆ RdB (LeCun et al., 2006). This framework is
particularly interesting in the cross-device setting where the number of clients b is large as it allows
for efficient enrichment of the model. However, in the case where b is small, the inference of the
parameter β is difficult. In this situation, a more pragmatic solution is to consider a common prior
for the local random effects {z(i)}i∈[b] which is held fixed, i.e. p(z(i) | β) ∝ exp{−E(z(i))} for any
β ∈ B. Finally, for completeness, we allow the use of a prior model p(φ, β) = p(φ)p(β) for the
hyperparameters {φ, β}. Using Bayes’ rule (Robert, 2001) and by denoting D = tbi=1Di the global
data set, the posterior distribution associated with these hyperparameters admits a probability density
function which can be written as

p (φ, β | D) = p(φ)p(β)

b∏
i=1

[∫
Rd

p(Di | φ, z(i))p(z(i) | β)dz(i)

]
.

Set θ = {φ, β} ∈ Θ with Θ = Φ× B. In the sequel, we will be interested in solving the maximum a
posteriori problem given by

θ? ∈ arg max
θ∈Θ

log p(φ, β | D) , (2)

log p(φ, β | D) = log p(φ) + log p(β) +

b∑
i=1

[
log

∫
Rd

p(Di | φ, z(i))p(z(i) | β)dz(i)

]
. (3)

Once we have estimated θ?, using an empirical Bayesian approach, we can perform “for free”
on-device uncertainty quantification for each client i ∈ [b] by sampling from the local posterior
distribution p(z(i) | Di, φ

?, β?), which is typically designed to be low-dimensional.

Algorithm. To solve the optimisation problem (2), we can either use an alternating maximisation
algorithm or perform global maximisation over Θ. Since the former approach requires more upload
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bandwidth, in this work we consider the second alternative which is more suitable for FL. The gradient
of the objective function (3) being intractable, we propose to resort to the stochastic approximation
framework (Robbins and Monro, 1951) which iteratively defines (φk, βk)k∈N, starting from any
(φ0, β0) ∈ Θ, via the recursions for any k ∈ N,

βk+1 = ΠB

(
βk + η

(1)
k+1

[
∇β log p(β) +

b∑
i=1

g(i)
k (φk, βk)

])
,

φk+1 = ΠΦ

(
φk + η

(2)
k+1

[
∇φ log p(φ) +

b∑
i=1

h(i)
k (φk, βk)

])
,

where ΠC denotes the projection onto C ∈ {Φ,B}, (η
(1)
k , η

(2)
k )k∈N∗ are sequences of step-sizes, and

{g(i)
k : i ∈ [b] , k ∈ N∗} and {h(i)

k : i ∈ [b] , k ∈ N∗} are estimators of the intractable gradients
(φ, β) 7→ ∇β log p(Di | φ, β) and (φ, β) 7→ ∇φ log p(Di | φ, β) at (φk, βk), where p(Di | φ, β) is
defined in (1) for any i ∈ [b].

The choices of the estimators {g(i)
k : i ∈ [b] , k ∈ N∗} and {h(i)

k : i ∈ [b] , k ∈ N∗} are motivated
by the Fisher identity. More precisely, under mild regularity assumptions, and using the Lebesgue
dominated convergence theorem, we have for any, (φ, β) ∈ Θ, i ∈ [b]

∇β log p(Di | φ, β) =

∫
Rd

[
∇β log p(Di, z

(i) | φ, β)
]
p(z(i) | Di, φ, β)dz(i) ,

∇φ log p(Di | φ, β) =

∫
Rd

[
∇φ log p(Di, z

(i) | φ, β)
]
p(z(i) | Di, φ, β)dz(i) ,

which suggests to consider

g(i)
k (φ, β) =

1

M

M∑
m=1

∇β log p(Z
(i,m)
k | β) , (4)

h(i)
k (φ, β) =

1

M

M∑
m=1

∇φ log p(Di | Z(i,m)
k , φ) , (5)

where M ∈ N∗ and Z(i,1:M)
k = (Z

(i,m)
k )m∈[M ] are approximate samples from p(z(i) | Di, φ, β).

More precisely, we consider a family {Q(i)
γ,θ : γ ∈ (0, γ̄], θ ∈ Θ} where for any step-size γ, Q(i)

γ,θ

is a Markov kernel which targets a close approximation of p(z(i) | Di, θ) with θ = {φ, β}. As an
example, we can use overdamped Langevin dynamics (Roberts and Tweedie, 1996; Welling and Teh,
2011) to generate these samples. In this case, Q(i)

γ,θ is associated with a Gaussian probability density

function q(i)
γ,θ(z

(i), ·) with mean z(i) − γ∇z log p(z(i) | Di, θ) and variance 2γId. Note that the
number of Monte Carlo draws per iteration k is considered constant here but we can easily generalise
our scheme to the non-constant setting. In addition, our scheme can also be generalised by taking
into account stochastic gradient estimators of (4) and (5). For the sake of simplicity, we present our
approach with standard gradients.

In this framework, we present the main steps of the corresponding stochastic approximation algorithm,
called FedSOUK, in Algorithm 1. Since we consider the cross-device federated setting, note that only
a random subset Ak+1 of active (i.e. available) clients communicates with the central server at each
iteration k ∈ N. In addition, due to limited upload bandwidth, the potentially high-dimensional
gradient estimator (5) is compressed locally via an unbiased stochastic compression operator Ck+1

before being sent to the central server (Alistarh et al., 2017; Philippenko and Dieuleveut, 2020).
Finally, depending on local memory constraints, we allow for a possible warm-start strategy across
communication rounds to improve the convergence properties of the proposed algorithm.

3 Theoretical Guarantees

In this section, we present non-asymptotic convergence guarantees for Algorithm 1 when the family
of Markov kernels {Q(i)

γ,θ : γ ∈ (0, γ̄], θ ∈ Θ, i ∈ [b]} is associated to unadjusted, i.e. without
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Algorithm 1 FL via Stochastic Optimisation using Unadjusted Kernel (FedSOUK)

Input: nb. outer iterations K, nb. local iterations M , Markov kernels {Q(i)
γ,θ}γ,θ,i, step-sizes

{η(1)
k , η

(2)
k }k∈[K],i∈[b] and initial points Z(0)

0 ∈ Rd, β0 ∈ B and φ0 ∈ Φ.
for k = 0 to K − 1 do

for i ∈ Ak+1 // On active clients Ak+1 do
// Warm-start of the SA scheme if possible
if k ≥ 1 then

Set Z(i,0)
k = Z

(i,M)
k−1 .

end if
// Computation of key quantities using MCMC
for m = 0 to M − 1 do

Draw Z
(i,m+1)
k ∼ Q(i)

γ,θk

(
Z

(i,m)
k , ·

)
.

// For Langevin dynamics
// Draw ξ

(i,m+1)
k ∼ N(0d, Id).

// Set Z
(i,m+1)
k = Z

(i,m)
k + γ∇z log p(Z

(i,m)
k | Di, φk, βk) +

√
2γξ

(i,m+1)
k .

end for
// Communication with the server
Set I(i)

k = 1
M

∑M
m=1∇β log p

(
Z

(i,m)
k | βk

)
.

Set J (i)
k = 1

M

∑M
m=1∇φ log p

(
Di | Z(i,m)

k , φk

)
.

Send I(i)
k and Ck+1

(
J

(i)
k

)
to the central server.

end for
Set βk+1 = ΠB

(
βk + η

(1)
k+1

[
∇β log p(βk) + b

|Ak+1|
∑
i∈Ak+1

I
(i)
k

])
.

Set φk+1 = ΠΦ

(
φk + η

(2)
k+1

[
∇φ log p(φk) + b

|Ak+1|
∑
i∈Ak+1

Ck+1

(
J

(i)
k

)])
.

Send {βk+1, φk+1} to clients belonging to Ak+1.
end for
Output: {φK , βK} and samples {Z(1:b,m)

K−1 }Mm=1.

Metropolis acceptance step, overdamped Langevin dynamics (Dalalyan, 2017; Durmus and Moulines,
2017). The bounds we derive allow to showcase explicitly the impact of FL constraints, namely
partial participation and compression. Results for general unadjusted Markov kernels are postponed
to the supplement.

To show our theoretical results and resort to standard assumptions made in the stochastic approxima-
tion literature, we consider a minimisation problem and rewrite the opposite of the objective function
(3) for any θ ∈ Θ as

f(θ) = b−1
b∑
i=1

fi(θ) , where fi (θ) = − log p(φ)− log p (β)− b log p (Di | φ, β) . (6)

Non-Asymptotic Convergence Bounds. For the sake of better readability, we only detail in the
main paper assumptions regarding the objective function, compression operators and the partial
participation scenario. Technical assumptions related to the Markov kernels {Q(i)

γ,θ} are postponed to

the supplement. In spirit, we require, for any i ∈ [b], θ ∈ Θ and γ, that Q(i)
γ,θ satisfies some ergodic

condition and can provide samples sufficiently close to the local posterior distribution p(z(i) | Di, θ).
For the sake of simplicity, we also assume that for any k ∈ N∗, η(1)

k = η
(2)
k = ηk, see Algorithm 1.

We make the following assumptions on Θ and the family of functions {fi : i ∈ [b]}.
H1. Θ is convex, closed subset of RdΘ and Θ ⊂ B(0, RΘ) for RΘ > 0.

H2. For any i ∈ [b], the following conditions hold.

(i) The function fi defined in (S1) is convex.
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(ii) There exist an open set U ∈ RdΘ and Lf > 0 such that Θ ⊂ U, fi ∈ C1(U,R) and for any
θ1, θ2 ∈ Θ,

‖∇fi(θ2)−∇fi(θ1)‖ ≤ Lf ‖θ2 − θ1‖ .

The assumption below requires compression operators {Ck}k∈N∗ to be unbiased and to have a
bounded variance. Such an assumption is for instance verified by stochastic quantisation operators,
see Alistarh et al. (2017).

H3. The compression operators {Ck}k∈N∗ are independent and satisfy the following conditions.

(i) For any k ∈ N∗, v ∈ Rd, E[Ck(v)] = v.
(ii) There exists ω ≥ 1, such that for any k ∈ N∗, v ∈ Rd, E[‖Ck(v)− v‖2] ≤ ω ‖v‖2.

We finally assume that each client has probability p ∈ (0, 1] to be active at each communication
round. We would like to point out that this partial participation assumption can be associated to a
specific compression operator satisfying H3.

H4. For any k ∈ N∗, Ak = {i ∈ [b] : Bi,k = 1} where for any i ∈ [b], {Bi,k : k ∈ N∗} is a family
of i.i.d. Bernouilli random variables with success probability p ∈ (0, 1].

Under these assumptions, the next result establishes that (θ̄k)k∈N defined by θ̄k =∑k
j=1 ηjθj/(

∑k
j=1 ηj) converges towards an element of arg minΘ f .

Theorem 1. Assume A1-H4 along with A8 detailed in the supplement and let for any k ∈ [K],
ηk ∈ (0, 1/Lf ]. Then, for any K ∈ N∗, we have

E
[
f(θ̄k)− f(θ?)

]
≤ E

[∑K
k=1 ηk{f(θk)− f(θ?)}∑K

k=1 ηk

]
≤ A(γ) +

EK∑K
k=1 ηk

,

where EK depends linearly on (ω/p)
∑K
k=1 η

2
k; and A(γ) = Cγα with α > 0 and C is independent

of ω, p and (ηk). Closed-form formulas for these constants are provided in the supplement.

An interesting feature of Algorithm 1 is that convergence towards a minimum of f is possible and
the impact of partial participation and compression vanishes when limk→∞ ηk = 0. More precisely,
lim supk→∞EK/(

∑K
k=1 ηk) = 0 and limγ→0+ A(γ) = 0 which shows that we can tend towards a

minimum of f with arbitrary precision ε > 0 by setting the step-size γ to a small enough value.

4 Related Works

As pointed out in Section 1, many different approaches have been proposed to address personalisation
and uncertainty quantification under the federated learning paradigm. This section reviews the main
related existing lines of research and shows that the proposed methodology provides many benefits;
see Table 1. Interestingly, we also show that FedPop encompasses some of the existing FL models.

Bayesian FL. One of our main motivations is the possibility to perform grounded uncertainty
quantification in FL by resorting to the Bayesian paradigm. In the recent years, many works have
suggested to adapt serial workhorses stochastic simulation approaches such as MCMC or variational
inference to the FL setting (Bui et al., 2018; Chen and Chao, 2020; Corinzia et al., 2019; Deng et al.,
2021a; El Mekkaoui et al., 2021; Liu and Simeone, 2021a,b; Plassier et al., 2021; Vono et al., 2022).
Although some of these approaches address important FL challenges such as the communication
bottleneck, partial participation or limited computational device resources, they are not suitable for
uncertainty quantification in the cross-device FL scenario. Indeed, all these approaches assume
that the posterior distribution targeted by each client is parametrised by a single potentially high-
dimensional parameter of size dΦ + d, see (1). This prevents a sufficient number of samples from
being stored locally to perform uncertainty quantification and Bayesian model averaging, especially
when the model is a large neural network. In contrast, our approach decouples this unique high-
dimensional parameter into a fixed part φ and a low-dimensional random part z(i), significantly
reducing the memory footprint of local sample storage.

Personalised FL. Beside uncertainty quantification, we also aim at providing each client with a
dedicated personalised model. Among the numerous existing personalised FL approaches, those

6



Table 1: Overview of the main existing personalised FL (top rows) and Bayesian FL (bottom
rows) approaches related to the proposed framework. Column “PP” refers to partial participation,
“perso.” to personalised approaches, “bounds” to available convergence guarantees, “UQ” to available
uncertainty quantification, “com.” to the scheme (multiple local steps and/or compression) used to
address the communication bottleneck and “memory” to the client memory footprint where M stands
for the number of samples.

METHOD PP PERSO. BOUNDS UQ COM. MEMORY FedPop INSTANCE

Per-FedAvg X X X 7 LOCAL STEPS d+ dΦ 7
pFedMe 7 X X 7 LOCAL STEPS d+ dΦ 7
FedRep X X X 7 LOCAL STEPS d+ dΦ X
DITTO X X X 7 LOCAL STEPS d+ dΦ 7
LG-FedAvg X X X 7 LOCAL STEPS d+ dΦ 7

QLSD X 7 X X COMPRESSION M(d+ dΦ) 7
FSGLD 7 7 X X LOCAL STEPS M(d+ dΦ) 7
FedBe X 7 7 X LOCAL STEPS M(d+ dΦ) 7
DG-LMC 7 7 X X LOCAL STEPS M(d+ dΦ) X

FedPop X X X X BOTH Md+ dΦ –

related to FedPop can be broadly classified into two groups: meta-learning and partially local
methods. Meta-learning based FL methods aim at training a global model conducive to fast training
of personalised models. Such a goal can be achieved, for example, by local fine-tuning (Fallah et al.,
2020), regularisation of local models towards their average (Hanzely and Richtárik, 2020; Hanzely
et al., 2021) – or the opposite (Li et al., 2021), and model interpolation (Liang et al., 2019). On the
other hand, FL methods based on partial decoupling take an approach similar to ours by splitting the
initial model into a backbone component and a local one aimed at personalisation (Arivazhagan et al.,
2019; Collins et al., 2021; Pillutla et al., 2022). This partial decoupling could also enhance privacy as
discussed in Singhal et al. (2021). The main difference with FedPop is that such approaches based
on empirical risk minimisation cannot provide credibility information.

FedPop: A Compromise between Standard and Personalised FL. Interestingly, we show here
that the FedPop framework allows existing FL approaches to be retrieved in certain regimes. To this
end, we assume that the prior p(z(i) | β) is Gaussian with mean µ and covariance matrix σ2Id so
that β = {µ, σ}. If σ → 0+, then this Gaussian prior tends towards the Dirac distribution centered
at µ and the local likelihood becomes p(Di | φ, µ), which corresponds to the local objective of
standard FL approaches such as FedAvg (McMahan et al., 2017). On the other hand, when σ →∞,
no common information β is used to locally regress z(i) and we end up with the FedRep algorithm
(Collins et al., 2021). This shows that FedPop stands for a subtle compromise between standard
and personalised FL which should benefit clients with small data sets by pooling information via a
common prior. Finally, in the extreme scenario where φ is the null vector, our approach amounts to
the Bayesian FL approach DG-LMC proposed in Plassier et al. (2021).

5 Numerical Experiments

In this section, we illustrate the benefits of our methodology on several FL benchmarks associated to
both synthetic and real data. Since existing Bayesian FL approaches are not suited for personalisation
(see Table 1), we only compare the performances of Algorithm 1 with personalised FL methods. In
all our experiments, we use overdamped Langevin dynamics to sample locally and call this specific
instance of Algorithm 1, FedSOUL. In addition, we set p(z(i) | β) = N(µ, σ2Id) with β = {µ, σ}
for simplicity. To be comparable with existing personalised FL approaches that only consider
periodic communication via multiple local steps, we do not resort to the proposed compression
mechanism although the latter could be of interest for real-world applications. Additional details
about experimental design are provided in the supplement.

Synthetic Data. We start by showcasing the benefits of FedSOUL for clients having small and highly
heterogeneous data sets as pointed out in Section 1 and Section 2. To this end, we consider a similar
experimental setting as in Collins et al. (2021) where synthetic observations {y(i)

j }j∈[Ni] ∈ Di are
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Figure 2: Small data sets - synthetic data.
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Figure 3: (right) CIFAR-10 with S = 5 and (left) CIFAR-100 with S = 20. The x-axis refers to the
percentage of clients having Ni ∈ {5, 10} images.

generated via the following procedure: x(i)
j ∼ N(0k, Ik) and y(i)

j ∼ N(z
(i)
trueφ

>
truex

(i)
j , 0.1). The

ground-truth parameters z(i)
true ∈ Rd and φtrue ∈ Rk×d have been randomly generated beforehand

with (d, k) = (2, 20). Compared to Collins et al. (2021), we use heterogeneous data partitions across
clients so that 90% of the b = 100 clients have small data sets of size 5 and the remaining 10%
have data sets of size 10. We compare our results with FedRep (Collins et al., 2021) and FedAvg
(McMahan et al., 2017) since they stand for two limiting instances of the proposed methodology,
see Section 4 and Gelman and Hill (2007, Section 12). Figure 2 compares the different approaches
by computing the principle angle distance* (respectively the `2 norm) between φtrue (respectively
z

(i)
true) and its estimated value; the lesser the better. In contrast to its main competitors and based

on both metrics, FedSOUL provides an impressive improvement. This illustrates the benefits of the
introduction of a common prior p(z(i) | β) which allows to prevent from overfitting on clients with
small data sets while performing personalisation. Additional results with other choices for (b, d, k)
and data partitioning strategies are available in the supplement.

Real Data. We consider now real image data sets, namely CIFAR-10 and CIFAR-100 (Krizhevsky,
2009). For our likelihood model defined by p(Di | φ, z(i)), we use 5-layer convolutional neural
networks and perform personalisation for the last layer. We set b = 100 for convenience and control
data heterogeneity by assigning to each client Ni images belonging to only S different classes.

Small data sets. Under this setting, we first consider (10%, 50%, 90%) of clients having small
data sets of size either Ni = 5 or Ni = 10; while remaining clients have larger data sets of size
Ni = 25. We compare our approach with FedRep since it stands for the state-of-the-art personalised
FL approach. The algorithms are trained fulfilling the same computational budget. Figure 3 shows
the average accuracy across clients for the two approaches on both CIFAR-10 and CIFAR-100. We
can see that FedSOUL is consistently better than FedRep over different configurations.

*defined in (Collins et al., 2021, Definition 1)
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Figure 4: (right) Calibration on CIFAR-10 for a specific client and (left) OOD analysis with MNIST
training & FashionMNIST inference – one curve corresponds to one client.

Full data sets. In addition to show that the proposed approach achieves state-of-the-art performances
on small data sets (which is common in the cross-device scenario), we now illustrate that FedSOUL
is also competitive on larger data sets. To this end, we use all training images in CIFAR-10 and
CIFAR-100 image data sets and consider the same data partitioning as in Collins et al. (2021). More
precisely, in this case the number of observations and the number of classes per client are uniformly
shared over the clients. Table 2 shows our results in comparison with state-of-the-art personalised
FL approaches. We can see that that our model outperforms other methods on both CIFAR-10
and CIFAR-100 by a large margin. Additional results with other personalised FL algorithms are
postponed to the supplement.

Uncertainty Quantification on Real Data. As highlighted in Table 1, one advantage of the pro-
posed approach compared to existing personalised FL methods is the ability to perform uncertainty
quantification by sampling locally from the posterior p(z(i) | Di, φK , βK), see Algorithm 1. We
illustrate this feature by computing on CIFAR-10 calibration curves and scores (e.g. expected cal-
ibration error aka ECE) on a specific client; and by performing an out-of-distribution analysis on
MNIST/FashionMNIST data sets. Figure 4 shows that the proposed approach provides relevant
uncertainty diagnosis. Additional results on uncertainty quantification can be found in the supplement.

6 Conclusion

In this paper, we proposed a general Bayesian methodology based on a natural mixed-effects modeling
approach to model personalisation in federated learning. Our FL method is the first that allows for
both personalisation and cheap uncertainty quantification for (cross-device) federated learning. By
introducing a common prior on the local parameters, we tackle the local overfitting problem in the
scenario where clients have highly heterogeneous and small data sets. In addition, we have shown
that the proposed approach has favorable convergence properties. Some limitations of FedPop pave
the way for more advanced personalised FL approaches. As an example, our model does not allow
for training heterogeneous architectures across clients because of the introduced common prior, and
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Table 2: Real data - Full data sets. Accuracy (in %) on test samples. FedAvg and SCAFFOLD are not
personalised FL approaches but stand for well-known FL benchmarks.

CIFAR-10 CIFAR-100

(# clients b, # classes per client S) (100, 2) (100, 5) (100, 5) (100, 20)

Local learning only 89.79 70.68 75.29 41.29

FedAvg (McMahan et al., 2017) 42.65 51.78 23.94 31.97
SCAFFOLD (Karimireddy et al., 2020) 37.72 47.33 20.32 22.52

LG-FedAvg (Liang et al., 2019) 84.14 63.02 72.44 38.76
Per-FedAvg (Fallah et al., 2020) 82.27 67.20 72.05 52.49
L2GD (Hanzely and Richtárik, 2020) 81.04 59.98 72.13 42.84
APFL (Deng et al., 2021b) 83.77 72.29 78.20 55.44
DITTO (Li et al., 2021) 85.39 70.34 78.91 56.34
FedRep (Collins et al., 2021) 87.70 75.68 79.15 56.10

FedSOUL (this paper) 91.12 79.48 79.56 59.73

only satisfy first-order privacy guarantees. Regarding the latter, further works include for instance
deriving differentially private versions of our framework.

Acknowledgments and Disclosure of Funding

The authors acknowledge support from the Lagrange Mathematics and Computing Research Center.

References
Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-

efficient SGD via gradient quantization and encoding. Advances in Neural Information Processing
Systems, 2017.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
ated Learning with Personalization Layers. arXiv preprint arXiv:1912.00818, 2019.

Yves F. Atchadé, Gersende Fort, and Eric Moulines. On perturbed proximal gradient algorithms.
Journal of Machine Learning Research, 18(10):1–33, 2017.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. In 2020 International Joint Conference on
Neural Networks (IJCNN), pages 1–9. IEEE, 2020.

Thang D. Bui, Cuong V. Nguyen, Siddharth Swaroop, and Richard E. Turner. Partitioned Variational
Inference: A unified framework encompassing federated and continual learning. arXiv preprint
arXiv:1811.11206, 2018.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to federated
learning. arXiv preprint arXiv:2009.01974, 2020.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting Shared Represen-
tations for Personalized Federated Learning. In International Conference on Machine Learning,
pages 2089–2099, 2021.

Luca Corinzia, Ami Beuret, and Joachim M. Buhmann. Variational Federated Multi-Task Learning.
arXiv preprint arXiv:1906.06268, 2019.

Arnak S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society, Series B, 79(3):651–676, 2017.

10



Valentin De Bortoli, Alain Durmus, Marcelo Pereyra, and Ana F. Vidal. Efficient stochastic optimi-
sation by unadjusted Langevin Monte Carlo: Application to maximum marginal likelihood and
empirical Bayesian estimation. Statistics and Computing, 31(3), 2021.

Wei Deng, Yi-An Ma, Zhao Song, Qian Zhang, and Guang Lin. On Convergence of Federated
Averaging Langevin Dynamics. arXiv preprint arXiv:2112.05120, 2021a.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive Personalized Federated
Learning, 2021b.

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin
algorithm. The Annals of Applied Probability, 27(3):1551–1587, 06 2017. doi: 10.1214/16-
AAP1238.

Khaoula El Mekkaoui, Diego Mesquita, Paul Blomstedt, and Samuel Kaski. Distributed stochastic
gradient MCMC for federated learning. In Conference on Uncertainty in Artificial Intelligence,
2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized Federated Learning with
Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. In Advances in Neural
Information Processing Systems, 2020.

Andrew Gelman and Jennifer Hill. Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press, New York, 2007.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting Gradient-
Based Meta-Learning as Hierarchical Bayes. In International Conference on Learning Representa-
tions, 2018.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and optimal
algorithms for personalized federated learning. arXiv preprint arXiv:2010.02372, 2020.

Filip Hanzely, Boxin Zhao, and Mladen Kolar. Personalized federated learning: A unified framework
and universal optimization techniques. arXiv: 2102.09743, February 2021.

Joey Hong, Branislav Kveton, Manzil Zaheer, and Mohammad Ghavamzadeh. Hierarchical Bayesian
Bandits. In Proceedings of the 25th International Conference on Artificial Intelligence and
Statistics, 2022.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic Distributed Learning with Gradient Quantization and Variance Reduction . arXiv
preprint arXiv:1904.05115, 2019.
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SUPPLEMENTARY MATERIAL

Notations and conventions. For the sake of simplicity, with little abuse, we shall use the same
notations for a probability distribution and its associated probability density function. For n ≥ 1, we
refer to the set of integers between 1 and n with the notation [n]. The d-multidimensional Gaussian
probability distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d is denoted by N(µ,Σ).
Equations of the form (1) (resp. (S1)) refer to equations in the main paper (resp. in the supplement).

Denote by B(Rd) the Borel σ-field of Rd, and for f : Rd → R measurable, ‖f‖∞ = supx∈Rd |f(x)|.
For µ a probability measure on (Rd,B(Rd)) and f a µ-integrable function, denote by µ(f) the
integral of f w.r.t. µ. For f : Rd → R measurable, the V -norm of f is given by ‖f‖V =
supx∈Rd |f(x)|/V (x). Let ξ be a finite signed measure on (Rd,B(Rd)). The V -total variation
distance of ξ is defined as

‖ξ‖V = sup‖f‖V ≤1

∣∣∫
Rd f(x)dξ(x)

∣∣ .
If V = 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV. Let U be an open set of Rd. We
denote by Ck(U,Rp) the set of Rp-valued k-differentiable functions, respectively the set of compactly
supported Rp-valued and k-differentiable functions. Let f : U→ R, we denote by∇f , the gradient
of f if it exists. f is said to me m-convex with m ≥ 0 if for all x, y ∈ Rd and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− mt(1− t) ‖x− y‖2 /2 .

For any a ∈ Rd and R > 0, denote B(a,R) the open ball centered at a with radius R. Let (X,X )
and (Y,Y) be two measurable spaces. A Markov kernel P is a mapping K : X× Y → [0, 1] such
that for any x ∈ X, P(x, ·) is a probability measure and for any A ∈ Y , P(·,A) is measurable.
For any probability measure µ on (X,X ) and measurable function f : Y → R+ we denote µP =∫
X

P(x, ·)dµ(x) and Pf =
∫
Y
f(y)P(·,dy). In what follows the Dirac mass at x ∈ Rd by δx.
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S1 Theoretical analysis of FedSOUK

This section aims at recasting the proposed methodology into a stochastic approximation framework
and at stating the main assumptions required to show our theoretical results regarding FedSOUK,
which uses a general unadjusted Markov kernel. Then, we will use these general results to show
non-asymptotic convergence guarantees for FedSOUL, which considers an unadjusted Markov kernel
associated to overdamped Langevin dynamics.

S1.1 Preliminaries

We first show that FedSOUK (see Algorithm 1 in the main paper) can be cast into a general stochastic
approximation (SA) framework which corresponds to a federated variant of the stochastic optimization
via unadjusted kernel (SOUK) approach proposed in De Bortoli et al. (2021). Then, the convergence
guarantees for FedSOUK will follow by generalizing the proof techniques used to analyze SOUK.

Recall that θ = (φ, β) ∈ Θ corresponds to the parameter we are seeking to optimize where
Θ = Φ× B ⊂ RdΘ . Define f : Θ→ R of the form

f(θ) = b−1
b∑
i=1

fi(θ) , (S1)

where for any i ∈ [b] and θ ∈ Θ,

fi (θ) = − log p(θ)− b log p (Di | φ, β) , (S2)

where p(θ) = p(φ, β) = p(φ)p(β) and for any i ∈ [b], p(Di | φ, β) is defined in (1). Then, under
these notations, (2) can be written as

θ? = arg min
θ∈Θ

f(θ) . (S3)

In addition, based on (4) and (5), the gradient of fi defined in (S2) admits the form for i ∈ [b],

∇fi :

{
RdΦ+dB → RdΘ

θ 7→
∫
Rd H

(i)
θ

(
z(i)
)
π

(i)
θ

(
dz(i)

)
,

(S4)

where, for any i ∈ [b] and θ ∈ Θ, π(i)
θ : z(i) 7→ p(z(i) | Di, θ) and for any θ ∈ Θ, H(i)

θ : z(i) 7→
−∇θ log p(θ)− b∇θ log p(Di, z

(i) | θ).

S1.2 Main Assumptions

We make the following assumption on Θ and the family of functions {fi : i ∈ [b]}.
A1. Θ is a convex, closed subset of RdΘ and Θ ⊂ B(0, RΘ) for RΘ > 0.
A2. For any i ∈ [b], the following conditions hold.

(i) The function fi defined in (S1) is convex.
(ii) There exist an open set U ∈ RdΘ and Lf > 0 such that Θ ⊂ U, fi ∈ C1(U,R) and for any
θ1, θ2 ∈ Θ,

‖∇fi(θ2)−∇fi(θ1)‖ ≤ Lf ‖θ2 − θ1‖ .
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Note that A2-(ii) implies that the objective function f defined in (S1) is gradient-Lipschitz with
Lipschitz constant Lf .

We now consider assumptions on the family of compression and partial participation operators
{Ci,Si}i∈[b].

A3. There exists a probability measure ν1 on a measurable space (X1,X1) and a family of measurable
functions {Ci : RdΦ × X1 → RdΦ}i∈[b] such that the following conditions hold.

(i) For any v ∈ RdΦ and any i ∈ [b],
∫
X1

Ci(v, x(1)) ν1(dx(1)) = v.
(ii) There exist {ωi ∈ R+}i∈[b], such that for any v ∈ RdΦ and any i ∈ [b],∫

X1

∥∥∥Ci(v, x(1))− v
∥∥∥2

ν1(dx(1)) ≤ ωi ‖v‖2 .

In addition, recall that we consider the partial device participation context where at each communica-
tion round k ≥ 1, each client has a probability pi ∈ (0, 1] of participating, independently from other
clients.
A4. For any i ∈ [b], the unbiased partial participation operator Si : RdΘ × X2 → RdΘ is defined,
for any θ ∈ RdΘ and x(2) = {x(2)

i }i∈[b] ∈ X2 with X2 = [0, 1]b by

Si(θ, x
(2)) = 1{x(2)

i ≤ pi}θ/pi ,
where pi ∈ (0, 1].

Note that the assumption A4 is equivalent to H4 in the main paper.

Let V : Rd → [1,∞) a measurable function. We consider the following assumption on the family
{(H(i)

θ , π
(i)
θ ) : θ ∈ Θ, i ∈ [b]}.

A5. For any i ∈ [b], the following conditions hold.

(i) For any θ ∈ Θ, π(i)
θ (‖H(i)

θ ‖) <∞ and (θ, z(i)) 7→ H
(i)
θ (z(i)) is measurable.

(ii) There exists LH ≥ 0 such that for any z ∈ Rd and θ1, θ2 ∈ Θ,∥∥∥H(i)
θ2

(z)−H(i)
θ1

(z)
∥∥∥ ≤ LH ‖θ2 − θ1‖V 1/2(z) .

S1.3 Stochastic Approximation Framework

Let (X
(i,1)
k )k∈N,i∈[b] a sequence of independent an identically distributed (i.i.d.) random variables

with distribution ν1 independent of the sequence (X
(i,2)
k )k∈N,i∈[b] which is i.i.d. and with uniform dis-

tribution on [0, 1]. We consider a family of unadjusted Markov kernels {Q(i)
γ,θ : γ ∈ (0, γ̄], θ ∈ Θ, i ∈

[b]}. Let (γk)k∈N∗ ∈ (R∗+)N
∗

a sequence of step-sizes which will be used to obtain approximate
samples from π

(i)
θ using Q(i)

γ,θ.

We now recast the proposed approach detailed in Algorithm 1 into a stochastic approximation
framework.

Starting from some initialization (Z
(1,0)
0 , . . . , Z

(b,0)
0 , θ0) ∈ Rbd×Θ, we define on a probability space

(Ω,F ,P), the sequence ((Z
(1,m)
k , . . . , Z

(b,m)
k )m∈[M ], θk)k∈N via the recursion for k ∈ N,

for any i ∈ [b], given Fk−1, (Z
(i,m)
k )m∈{0,...,M} is a Markov chain with Markov kernel Q(i)

γk,θk

with Z(i,0)
k = Z

(i,M)
k−1 , (S5)

θk+1 = ΠΘ

[
θk − ηk+1 �∆θk

(
Z

(1:M)
k+1 , X

(1)
k+1, X

(2)
k+1

)]
,

where � denotes the Hadamard product and for any k ∈ N, Fk = σ(θ0, {{Z(i,m)
l }m∈[M ] : l ∈

{0, . . . , k} , i ∈ [b]}) and F−1 = σ(θ0, {Z(i,0)
0 : i ∈ [b]}). In addition, for any k ∈ N, ηk+1 =
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(η
(1)
k+1, η

(2)
k+1)>, Z(1:M)

k+1 = ([Z
(1,1:M)
k+1 ]>, . . . , [Z

(b,1:M)
k ]>)> and for any θ ∈ Θ, z(1:M) ∈ RMd,

x(1) ∈ X1, x(2) ∈ X2 ,

∆θ

(
z(1:M), x(1), x(2)

)
=

(
∆φ

(
z(1:M), x(1), x(2)

)
∆β

(
z(1:M), x(2)

) )
,

=

∑b
i=1 Si

[
Ci
(

∆
(i)
φ (z(i,1:M)), x(i,1)

)
, x(i,2)

]
∑b
i=1 Si

[
∆

(i)
β (z(i,1:M)), x(i,2)

]  , (S6)

where {∆(i)
β ,∆

(i)
φ }i∈[b] defined by

∆
(i)
β (z(i,1:M)) = − 1

M

M∑
m=1

{
(1/b)∇βp(β) +∇β log p(z(i,m) | β)

}
∆

(i)
φ (z(i,1:M)) = − 1

M

M∑
m=1

{
(1/b)∇φp(φ) +∇φ log p(Di | z(i,m), φ)

}
.

S1.4 Main Result

In order to show non-asymptotic convergence guarantees for FedSOUK detailed in Algorithm 1, we
need additional assumptions ensuring some stability of the sequence (Z

(i,m)
k : m ∈ {0, . . . ,M}, i ∈

[b])k∈N. These conditions are stated hereafter.
A6. For any i ∈ [b], the following conditions hold.

(i) There exists A1 ≥ 1 such that for any p, k ∈ N and m ∈ {0, . . . ,M},

E
[
[Q

(i)
γk,θk

]pV (Z
(i,m)
k ) | Z(i,0)

0

]
≤ A1V (Z

(i,0)
0 ) , E

[
V (Z

(i,0)
0 )

]
<∞ ,

where (Z
(i,m)
k : m ∈ {0, . . . ,M}, i ∈ [b])k∈N is defined in (S5).

(ii) There exists A2, A3 ≥ 1, ρ ∈ [0, 1) such that for any γ ∈ (0, γ̄], θ ∈ Θ, z ∈ Rd and k ∈ N,
Q

(i)
γ,θ admits π(i)

γ,θ as stationary distribution and∥∥∥δz[Q(i)
γ,θ]

k − π(i)
γ,θ

∥∥∥
V
≤ A2ρ

kγV (z)

π
(i)
γ,θ(V ) ≤ A3 .

(iii) There exists Ψ : R∗+ → R+ such that for any γ ∈ (0, γ̄] and θ ∈ Θ,∥∥∥π(i)
γ,θ − π

(i)
θ

∥∥∥
V 1/2

≤ Ψ(γ) .

A7. There exists a measurable function V : Rd → [1,∞), Γ1 : (R∗+)2 → R+ and Γ2 : (R∗+)2 → R+

such that for any γ1, γ2 ∈ (0, γ̄] with γ2 < γ1, θ1, θ2 ∈ Θ, z ∈ Rd, a ∈ [1/4, 1/2], we have for any
i ∈ [b], ∥∥∥δzQ(i)

γ2,θ2
− δzQ

(i)
γ1,θ1

∥∥∥
V a
≤ [Γ1(γ1, γ2) + Γ2(γ1, γ2) ‖θ2 − θ1‖]V 2a(z) .

We are now ready to show our main result. To ease the presentation, assume for any k ∈ N that
η

(1)
k+1 = η

(2)
k+1 = ηk+1 and, for any i ∈ [b], γ

(i)
k+1 = γk+1.

Theorem S2. Assume A1, A2, A3, A4, A5, A6 and A7 and let for any k ∈ [K], ηk ∈ (0, 1/Lf ].
In addition, for any θ ∈ Θ, z ∈ Rd and i ∈ [b], assume that ‖H(i)

θ (z)‖ ≤ V 1/4(z). Then, for any
K ∈ N∗, we have

E

[∑K
k=1 ηk{f(θk)− f(θ?)}∑K

k=1 ηk

]
≤ EK∑K

k=1 ηk
,

where, for any K ∈ N∗,

EK = 2R2
Θ + 2A1 sup

i∈[b],m∈[M ]

{
E
[
V 1/2(Z

(i,m)
0 )

]} K∑
k=1

η2
k

(
8bL2

fR
2
Θ +

b∑
i=1

(ωi + 1 + pi)

pi

)
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+ b sup
i∈[b],m∈[M ]

{
C

(i,m)
3

}[ K∑
k=1

|ηk − ηk−1|γ−1
k−1 +

K∑
k=1

η2
kγ
−1
k−1 + ηK/γK − η1/γ1

]

+ b.A1Cc,2 sup
i∈[b],m∈[M ]

{
E
[
V (Z

(i,m)
0 )

]} K∑
k=1

ηkγ
−1
k

[
γ−1
k {Λ1(γk−1, γk) + Λ2(γk−1, γk)ηk}+ ηk

]
+ b

K∑
k=1

ηkΨ(γk−1) ,

with {C(i,m)
3 }i∈[b],m∈[M ] defined in Lemma S5 and Cc,2 defined in Lemma S6.

Proof. The proof follows by using the fact that (S23) is a (Fk−1)k∈N∗ -martingale increment and by
combining Lemma S1-S7.

S1.5 Supporting Lemmata

For convenience, we define the following quantities that will naturally appear in our derivations. For
any k ∈ N∗, let

εk = ∆θk−1

(
Z

(1:M)
k , X

(1)
k , X

(2)
k

)
−∇f(θk−1) , (S7)

where ∆θ is defined in (S6).

The following lemma first provides a non-asymptotic upper bound on
∑K
k=1 ηk{f(θk) − f(θ?)}

involving key quantities to control such as the Monte Carlo approximation error term (S7).
Lemma S1. Assume A1 and A2, and let for any k ∈ [K], ηk ∈ (0, 1/Lf ]. Then, for any K ∈ N∗,
we have
K∑
k=1

ηk{f(θk)− f(θ?)} ≤ 2R2
Θ +

K∑
k=1

η2
k ‖εk‖

2 −
K∑
k=1

ηk 〈ΠΘ (θk−1 − ηk∇f(θk−1))− θ?, εk〉 ,

where {εk}Kk=1 is defined in (S7).

Proof. Let k ∈ N. Since Θ is closed and convex by A1, the indicator function ιΘ, defined for any
u ∈ RdΦ+dB by ιΘ(u) = 0 if u ∈ Θ and ιΘ(u) =∞ otherwise, is lower semi-continuous and convex.
Therefore by Atchadé et al. (2017, Lemma 7) we have

ιB(βk+1)− ιB(β?) ≤ −
1

ηk+1

〈
βk+1 − β?, βk+1 − βk + ηk+1∆βk

(
Z

(1:M)
k+1 , X

(2)
k+1

)〉
, (S8)

ιΦ(φk+1)− ιΦ(φ?) ≤ −
1

ηk+1

〈
φk+1 − φ?, φk+1 − φk + ηk+1∆φk

(
Z

(1:M)
k+1 , X

(1)
k+1, X

(2)
k+1

)〉
,

(S9)

where θ? = (φ?, β?) is defined in (S3). In addition by A2-(ii), we have for any i ∈ [b],

fi(θk+1)− fi(θk) ≤ 〈∇fi(θk), θk+1 − θk〉+
Lf
2
‖θk+1 − θk‖2 . (S10)

Using (S10) and the fact that for any k ∈ N, ηk+1 ≤ 1/Lf , we have

f(θk+1)− f(θk) ≤ 〈∇βf(θk), βk+1 − βk〉+
Lf
2
‖βk+1 − βk‖2

+ 〈∇φf(θk), φk+1 − φk〉+
Lf
2
‖φk+1 − φk‖2

≤ 〈∇βf(θk), βk+1 − βk〉+
1

2ηk+1
‖βk+1 − βk‖2

+ 〈∇φf(θk), φk+1 − φk〉+
1

2ηk+1
‖φk+1 − φk‖2 . (S11)
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Finally, A2-(i) implies for any i ∈ [b],
fi(θk)− fi(θ?) ≤ −〈∇fi(θk), θ? − θk〉 . (S12)

For any i ∈ [b], let Fi = fi + ιΘ and let F = (1/b)
∑b
i=1 Fi. Using this notation and combining

(S8), (S9), (S11) and (S12), we have
F (θk+1)− F (θ?)

= f(θk+1)− f(θk) + f(θk)− f(θ?) + ιΦ(φk+1)− ιΦ(φ?) + ιB(βk+1)− ιB(β?)

≤−
〈
βk+1 − β?,∆βk

(
Z

(i,1:M)
k+1 , X

(2)
k+1

)
−∇βf(θk)

〉
− 〈βk+1 − β?, βk+1 − βk〉

−
〈
φk+1 − φ?,∆φk

(
Z

(1:M)
k+1 , X

(1)
k+1, X

(2)
k+1

)
−∇φf(θk)

〉
− 〈φk+1 − φ?, φk+1 − φk〉

+
1

2ηk+1
‖βk+1 − βk‖2 +

1

2ηk+1
‖φk+1 − φk‖2

=−
〈
θk+1 − θ?,∆θk

(
Z

(1:M)
k+1 , X

(1)
k+1, X

(2)
k+1

)
−∇f(θk)

〉
+

1

2ηk+1

[
‖φk − φ?‖2 − ‖φk+1 − φ?‖2

]
+

1

2ηk+1

[
‖βk − β?‖2 − ‖βk+1 − β?‖2

]
. (S13)

From (S13), it follows for any K ∈ N∗ that
K∑
k=1

ηk{F (θk)− F (θ?)}

≤ −
K∑
k=1

ηk

〈
θk − θ?,∆θk−1

(
Z

(1:M)
k , X

(1)
k , X

(2)
k

)
−∇f(θk−1)

〉
+

1

2
‖φ0 − φ?‖2 −

1

2
‖φK − φ?‖2 +

1

2
‖β0 − β?‖2 −

1

2
‖βK − β?‖2

≤ −
K∑
k=1

ηk

〈
θk − θ?,∆θk−1

(
Z

(1:M)
k , X

(1)
k , X

(2)
k

)
−∇f(θk−1)

〉
+

1

2
‖θ0 − θ?‖2

= −
K∑
k=1

ηk

〈
θk −ΠΘ (θk−1 − ηk∇f(θk−1)) ,∆θk−1

(
Z

(1:M)
k , X

(1)
k , X

(2)
k

)
−∇f(θk−1)

〉
−

K∑
k=1

ηk

〈
ΠΘ (θk−1 − ηk∇f(θk−1))− θ?,∆θk−1

(
Z

(1:M)
k , X

(1)
k , X

(2)
k

)
−∇f(θk−1)

〉
+

1

2
‖θ0 − θ?‖2

≤
K∑
k=1

η2
k

∥∥∥∆θk−1

(
Z

(1:M)
k , X

(1)
k , X

(2)
k

)
−∇f(θk−1)

∥∥∥2

+
1

2
‖θ0 − θ?‖2

−
K∑
k=1

ηk

〈
ΠΘ (θk−1 − ηk∇f(θk−1))− θ?,∆θk−1

(
Z

(1:M)
k , X

(1)
k , X

(2)
k

)
−∇f(θk−1)

〉
,

where we used Atchadé et al. (2017, Lemma 7) and the Cauchy-Schwarz inequality in the last
inequality. The proof is concluded using f ≤ F , f(θ?) = F (θ?) since θ? ∈ Θ, and by noting that
under A1 we have ‖θ0 − θ?‖ ≤ 2RΘ.

Lemma S1 involves two key quantities to upper bound namely ‖εk‖ and
〈ΠΘ (θk−1 − ηk∇f(θk−1))− θ?, εk〉 for any k ∈ N∗. Our next lemmata aim at controlling
the expectations of these two terms. In particular, Lemma S2 and Lemma S3 show that the impacts
of Monte Carlo approximation, partial participation and compression can be decoupled.

To this end, define for any k ∈ N∗ and i ∈ [b]

ε
(i)
β,k =

1

M

M∑
m=1

H
(i)
βk−1

(
Z

(i,m)
k

)
−∇βfi(θk−1) ,
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ε
(i)
φ,k =

1

M

M∑
m=1

H
(i)
φk−1

(
Z

(i,m)
k

)
−∇φfi(θk−1) ,

ε
(i)
θ,k =

[
ε

(i)
β,k, ε

(i)
φ,k

]
, (S14)

where, for any k ∈ N∗ and i ∈ [b], H(i)
θk−1

(Z
(i,m)
k ) = [H

(i)
φk−1

(Z
(i,m)
k ), H

(i)
βk−1

(Z
(i,m))
k ] is defined in

(S4).

Lemma S2 shows that ‖εk‖ can be upper bounded by a quantity involving the norm of {H(i)
θ }i∈[b].

Lemma S2. Assume A1, A2, A3 and A4. Then, for any k ∈ N∗, we have

E
[
‖εk‖2

]
≤ 1

M

b∑
i=1

(ωi + 1 + pi)

pi

{
M∑
m=1

E
[∥∥∥H(i)

θk−1
(Z

(i,m)
k )

∥∥∥2
]}

+ 8bL2
fR

2
Θ ,

where {εk}Kk=1 is defined in (S7).

Proof. Let k ∈ N∗. Then by using (S6), we have

E
[
‖εk‖2

]
= E

∥∥∥∥∥
b∑
i=1

Si

[
Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
, X

(i,2)
k

]
−∇φf(θk−1)

∥∥∥∥∥
2


+ E

∥∥∥∥∥
b∑
i=1

Si

[
1

M

M∑
m=1

H
(i)
βk−1

(Z
(i,m)
k ), X

(i,2)
k

]
−∇βf(θk−1)

∥∥∥∥∥
2
 . (S15)

Using A3 and A4, it follows that

E

∥∥∥∥∥
b∑
i=1

Si

[
Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
, X

(i,2)
k

]
−∇φf(θk−1)

∥∥∥∥∥
2


= E

[∥∥∥ b∑
i=1

{
Si

[
Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
, X

(i,2)
k

]

− Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)}∥∥∥2
]

+ E

∥∥∥∥∥
b∑
i=1

Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
−∇φf(θk−1)

∥∥∥∥∥
2
 . (S16)

In addition, by A3-(i) and A3-(ii), we obtain

E

[∥∥∥ b∑
i=1

{
Si

[
Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
, X

(i,2)
k

]

− Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)}∥∥∥2
]

=

b∑
i=1

E

[∥∥∥Si

[
Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
, X

(i,2)
k

]

− Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)∥∥∥2
]

≤
b∑
i=1

(
1− pi
pi

)
E

∥∥∥∥∥∥Ci
(

1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)2
∥∥∥∥∥∥
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=

b∑
i=1

(
1− pi
pi

)
E

∥∥∥∥∥Ci
(

1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(1,i)
k

)
− 1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k )

∥∥∥∥∥
2


+

b∑
i=1

(
1− pi
pi

)
E

[∥∥∥∥∥ 1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k )

∥∥∥∥∥
]2

≤
b∑
i=1

[(
1− pi
pi

)
(ωi + 1)

]
E

∥∥∥∥∥ 1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k )

∥∥∥∥∥
2


=
1

M2

b∑
i=1

[(
1− pi
pi

)
(ωi + 1)

]
E

∥∥∥∥∥
M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k )

∥∥∥∥∥
2
 . (S17)

Similarly, by A3-(i) and A3-(ii), we have

E

∥∥∥∥∥
b∑
i=1

Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
−∇φf(θk−1)

∥∥∥∥∥
2


= E

[∥∥∥ b∑
i=1

[
Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
− 1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k )

]

+

b∑
i=1

1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k )−∇φf(θk−1)

∥∥∥2
]

=

b∑
i=1

E

∥∥∥∥∥Ci
(

1

M

M∑
m=1
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∥∥∥∥∥
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∥∥∥∥∥
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M
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∥∥∥∥∥
2
 . (S18)

By plugging (S17) and (S18) into (S16), we finally obtain

E

∥∥∥∥∥
b∑
i=1

Si

[
Ci

(
1

M

M∑
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(Z
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(i,1)
k

)
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(i,2)
k
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−∇φf(θk−1)

∥∥∥∥∥
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≤ 1

M2

b∑
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∥∥∥∥∥
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(i)
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(i,m)
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∥∥∥∥∥
2
+
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E
[∥∥∥ε(i)
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∥∥∥2
]
. (S19)
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Finally, using the same arguments, we have under H4,

E

∥∥∥∥∥
b∑
i=1

Si

[
1

M

M∑
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H
(i)
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k
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∥∥∥∥∥
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∥∥∥∥∥
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∥∥∥∥∥
2


+ E

∥∥∥∥∥
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M

M∑
m=1

H
(i)
βk−1

(Z
(i,m)
k )−∇βf(θk−1)

∥∥∥∥∥
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∥∥∥∥∥
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+
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E
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]
.

Combining (S15) and (S19) and using (S14), lead to

E
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∥∥∥∥∥
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θ∈Θ
‖∇fi(θ)‖2
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+ 2L2
f
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i=1

sup
θ∈Θ

∥∥∥θ − θ?,(i)∥∥∥2

,

where we used A2 for the last inequality and θ?,(i) is a minimizer of fi. The proof is concluded using
for any i ∈ [b] that

∥∥θ − θ?,(i)∥∥ ≤ 2RΘ by A1.

We now control the quantity 〈ΠΘ (θk−1 − ηk∇f(θk−1))− θ?, εk〉 which appears in Lemma S1.
Lemma S3. Assume A1, A3 and A4. Then, for any k ∈ N∗, we have

E [〈ΠΘ (θk−1 − ηk∇f(θk−1))− θ?, εk〉] ≤
b∑
i=1

E
[〈

ΠΘ (θk−1 − ηk∇f(θk−1))− θ?, ε(i)
θ,k

〉]
,

where {εk}Kk=1 is defined in (S7).

Proof. Let ak = ΠΘ (θk−1 − ηk∇f(θk−1)) − θ?, a(φ)
k = ΠΦ (φk−1 − ηk∇φf(θk−1)) − φ? and

a
(β)
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+
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〈
ak, ε

(i)
θ,k

〉
, (S20)

where the last line follows from (S14). Using A3 and H4, we have

E

[〈
a

(φ)
k ,

b∑
i=1

Si

[
Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
, X

(i,2)
k

]
− 1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k )

〉]

= E

[〈
a

(φ)
k ,

b∑
i=1

EFk−1

[
Si

{
Ci

(
1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k ), X

(i,1)
k

)
, X

(i,2)
k

}
− 1

M

M∑
m=1

H
(i)
φk−1

(Z
(i,m)
k )

]〉]
= 0 .

The proof is concluded by taking the expectation in (S20) and using the previous result.

Similar to De Bortoli et al. (2021, Appendix C.3), we now decompose the Monte Carlo error terms
{ε(i)
θ,k}i∈[b],k∈[K] in order to end up with an upper bound on

∑K
k=1 ηk{f(θk)− f(θ?)}/(

∑K
k=1 ηk)

which vanishes when limk→∞ ηk = 0+ and limk→∞ γk = 0+.

For any θ ∈ Θ and γ ∈ (0, γ̄], let for any i ∈ [b], a function Ĥ(i)
γ,θ : Rd → RdΘ defined for any

z ∈ Rd by

Ĥ
(i)
γ,θ(z) =

∑
j∈N

{[
R

(i)
γ,θ

]j
H

(i)
θ (z)− π(i)

γ,θ(H
(i)
θ )

}
,

where R(i)
γ,θ is the Markov kernel associated with the discretized overdamped Langevin dynamics

targetting π(i)
θ , and where π(i)

γ,θ denotes the invariant distribution of R(i)
γ,θ. By A5 and A6-(i)-(ii), for

any θ ∈ Θ, γ ∈ (0, γ̄] and i ∈ [b], Ĥ(i)
γ,θ is solution of the Poisson equation defined by

(Id−R(i)
γ,θ)Ĥ

(i)
γ,θ = Hθ − π(i)

γ,θ(Hθ) . (S21)

In addition, note that using A6-(i) and De Bortoli et al. (2021, Lemma 10), it follows for any θ ∈ Θ,
i ∈ [b] and z ∈ Rd that ∥∥∥Ĥ(i)

γ,θ(z)
∥∥∥ ≤ CĤγ−1V 1/4(z) , (S22)

where CĤ = 8A2 log−1(1/ρ)ρ−γ̄/4.

Using (S21), we can decompose the Monte Carlo error terms, for any i ∈ [b], k ∈ [K] as ε(i)
θ,k =

(1/M)
∑M
m=1{ε

(i,a)
θ,k,m + ε

(i,b)
θ,k,m + ε

(i,c)
θ,k,m + ε

(i,d)
θ,k,m} with, for any m ∈ [M ],

ε
(i,a)
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(Z
(i,m)
k )−R(i)

γk−1,θk−1
Ĥ

(i)
γk−1,θk−1

(Z
(i,m)
k−1 ) (S23)

ε
(i,b)
θ,k,m = R

(i)
γk−1,θk−1
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(Z
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k−1 )−R(i)
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Ĥ
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(Z
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k )
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(Z
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Ĥ

(i)
γk−1,θk−1

(Z
(i,m)
k )

ε
(i,d)
θ,k,m = π

(i)
γk−1,θk−1

(H
(i)
θk−1

)− π(i)
θk−1

(H
(i)
θk−1

) .

The following lemmata aim at upper bounding these four error terms.
Lemma S4. Assume A1, A2, A5 and A6, and for any θ ∈ Θ, z ∈ Rd and i ∈ [b], assume that
‖H(i)

θ (z)‖ ≤ V 1/4(z). Then, for any i ∈ [b], m ∈ [M ], k ∈ N∗, we have

E
[∥∥∥ε(i,a)

θ,k,m

∥∥∥2
]
≤ A1C

2
Ĥ
γ−2
k−1E

[
V 1/2

(
Z

(i,m)
0 )

)]
,

where CĤ is defined in (S22).

Proof. The proof follows from De Bortoli et al. (2021, Lemma 14).
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Lemma S5. Assume A1, A2, A6 and for any θ ∈ Θ, z ∈ Rd and i ∈ [b], assume that ‖H(i)
θ (z)‖ ≤

V 1/4(z). Then, for any i ∈ [b], m ∈ [M ], k ∈ N∗, we have

E

[∥∥∥∥∥
K∑
k=1

ηk〈ΠΘ (θk−1 − ηk∇f(θk−1))− θ?, ε(i,b)
θ,k,m〉

∥∥∥∥∥
]

≤ C(i,m)
3

[
K∑
k=1

|ηk − ηk−1|γ−1
k−1 +

K∑
k=1

η2
kγ
−1
k−1 + ηK/γK − η1/γ1

]
,

where, for any i ∈ [b] and m ∈ [M ],

C
(i,m)
3 = A1CĤ(2RΘ(2 + Lf ) + 1 + η1Lf )E

[
V 1/4(Z

(i,m)
0 )

]
.

Proof. The proof follows from De Bortoli et al. (2021, Lemma 15).

Lemma S6. Assume A1, A2, A5, A6 and A7. In addition, for any θ ∈ Θ, z ∈ Rd and i ∈ [b], assume
that ‖H(i)

θ (z)‖ ≤ V 1/4(z). Then, for any i ∈ [b], m ∈ [M ], k ∈ N∗, we have

E
[∥∥∥ε(i,c)

θ,k,m

∥∥∥] ≤ A1E
[
V (Z

(i,m)
0 )

]
Cc,2γ

−1
k

[
γ−1
k {Γ1(γk−1, γk) + Γ2(γk−1, γk)ηk}+ ηk

]
,

where

Cc,2 = 4A2 log−1(1/ρ)ρ−γ̄/2 max{LHCc,1 + 2A2 log−1(1/ρ)ρ−γ̄/2} ,

Cc,1 = 4A1A2 log−1(1/ρ)ρ−γ̄/2E
[
V (Z

(i,m)
0 )

]
.

Proof. The proof follows from De Bortoli et al. (2021, Lemma 16).

Lemma S7. Assume A1, A2, A6 and for any θ ∈ Θ, z ∈ Rd and i ∈ [b], assume that ‖H(i)
θ (z)‖ ≤

V 1/4(z). Then, for any i ∈ [b], m ∈ [M ], k ∈ N∗, we have

E
[∥∥∥ε(i,d)

θ,k,m

∥∥∥] ≤ Ψ(γk−1) .

Proof. The proof follows from De Bortoli et al. (2021, Lemma 17).

S2 Application to FedSOUL

We now apply Theorem S2 to FedSOUL where for any i ∈ [b], γ ∈ (0, γ̄] and θ ∈ Θ, the Markov
kernel Q(i)

γ,θ is associated with a Gaussian probability density function q(i)
γ,θ(z

(i), ·) with mean z(i) −
γ∇z log p(z(i) | Di, θ) and variance 2γId. To this end, we show explicit conditions on the family of
posterior distributions {π(i)

θ }i∈[b] such that A6 and A7 are satisfied.

S2.1 Assumptions

For any i ∈ [b], let U (i)
θ : Rd → R such that for any z(i) ∈ Rd, π(i)

θ (z(i)) ∝ exp{−U (i)
θ (z(i))}. In

our case, this boils down to set U (i)
θ (z(i)) = − log p(z(i) | Di, φ, β) for any z(i) ∈ Rd.

A8. For any i ∈ [b], the following conditions hold.

(i) Assume that (θ, z(i)) 7→ Uθ(z
(i)) is continuous, z(i) 7→ U

(i)
θ (z(i)) is differentiable for any

θ1, θ2 ∈ Θ and there exists L ≥ 0 such that for any z1, z2 ∈ Rd,

sup
θ∈Θ

∥∥∥∇zU (i)
θ (z2)−∇zU (i)

θ (z1)
∥∥∥ ≤ L ‖θ2 − θ1‖ ,

and {∇zU (i)
θ (0) : θ ∈ Θ} is bounded.
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(ii) There exist m1, m2 > 0 and c, R ≥ 0 such that for any θ ∈ Θ and z ∈ Rd,

〈∇zU (i)
θ (z), z〉 ≥ m1 ‖z‖1B(0,R)c(z) + m2

∥∥∥∇zU (i)
θ (z)

∥∥∥2

− c .

(iii) There exists LU ≥ 0 such that z ∈ Rd and θ1, θ2 ∈ Θ,∥∥∥∇zU (i)
θ2

(z)−∇zU (i)
θ1

(z)
∥∥∥ ≤ LU ‖θ2 − θ1‖V (z)1/2 ,

where V : Rd → R is defined under A8-(ii), for any z ∈ Rd, as

V (z) = exp

{
m1

√
1 + ‖z‖2/4

}
. (S24)

S2.2 Verification of A6 and A7

Lemma S8. Assume A8. Then, A6 and A7 are satisfied with V defined in (S24) and

γ̄ < min{1, 2m2} ,
m̃1 = m1/4 ,

b = m̃1(d+ c +
√

2m̃1) exp(m̃2
1{(d+ c + m̃1γ̄ +

√
1 + r2}) ,

λ = exp(−m̃2
1[
√

2− 1]) ,

r = max{1, 2(d+ c)/m1, R} ,
Γ1 : (γ1, γ2) 7→ γ1/γ2 − 1 ,

Γ2 : (γ1, γ2) 7→ γ
1/2
2 ,

Ψ : γ 7→ 2C(1− ξ)−1γ1/2D̃
1/2
1 (1 + γ̄)1/2

{
d+ 2γ̄

(
L2MV + sup

θ∈Θ,i∈[b]

∥∥∥∇zU (i)
θ (0)

∥∥∥2
)
D̃1

}1/2

L ,

D̃1 =

√
2~m1 exp(~m1

√
1 + max{1, R}2)(1 + ~m1 + c + d)

3~m2
1

+ bλ−γ̄ log−1(1/λ) ,

with MV = supz∈Rd{(1 + ‖z‖)2/V (z)}, C ≥ 0, ξ ∈ (0, 1).

Proof. The proof follows from De Bortoli et al. (2021, Theorem 5).
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Figure S1: Small data sets - synthetic data. b = 50 clients.
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Figure S2: Small data sets - synthetic data. b = 200 clients.
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Figure S3: Small data sets - synthetic data. Raw data dimensionality is k = 50.
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Figure S4: Small data sets - synthetic data. Raw data dimensionality is k = 5.

S3 Additional Experiments

In this section, we provide additional experiments. All the experimental details can be found in the
“code” folder in the supplement.

S3.1 Synthetic datasets

In this section, following the experiments from the main paper, we will show additional configurations
of the toy example. We still use the same model (see Section 5 and Collins et al. (2021); Singhal
et al. (2021)), but we choose different values of (d, k, b). First, let us test, how the total number of
clients b impacts the performances of the different approaches. Figure S1 and Figure S2 depict our
results for b ∈ {50, 200}, with the size of minimal dataset being 5 and the share of clients with the
minimal dataset 90%. We can see that in both cases, FedSOUL outperforms its competitors.

Second, we test, how the dimensionality of raw data impacts on the result. Figure S3 and Figure S4
show our results with k ∈ {5, 50}. All others parameters are the same as before.
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Figure S5: Small data sets - synthetic data. Latent space dimensionality is d = 5.

FedRep FedAvg FedSOUL0

2

4

6

8

l2 norm of the estimation error

0 100 200 300 400 500

10−2

10−1

100
Principal Angle Distance

FedRep
FedAvg
FedSOUL

Figure S6: Small data sets - synthetic data. Latent space dimensionality is d = 2.
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Figure S7: Small image datasets. Minimal local dataset size is 2 (top) or 5 (bottom).

One more experiment we conducted is the dependence on latent dimensionality d. We test two
options d = 2 (as in original experiments) and d = 5 in Figure S5 and Figure S6. Again, the more
parameters we have to learn (given the same small data budget), the better Bayesian methods (i.e.
FedSOUL) are better.

S3.2 Image datasets classification

In this section we provide an additional baseline for the experiments with personalization, in case we
have only a few heterogeneous data. Specifically, we consider APFL (Deng et al., 2021b) which is
another personalized federated learning approach. We consider CIFAR-10 dataset with 100 clients.
Among these clients, there are 10, 50 or 90 which have local dataset of either 5 (one setup) or 10
(another setup). Else of size 25.

We see in Figure S7 that FedSOUL typically performs better than FedRep, but on par with APFL. It
is surprizing, that APFL is a very good baseline in these type of problem, which it was not specially
designed for.

S3.3 Image datasets uncertainty quantification

In this section, we provide additional experiments on image uncertainty with CIFAR-10 (in distribu-
tion) and SVHN (out of distribution) datasets. As a measure of uncertainty, we will use predictive
entropy. On Figure S8, we present 4 different models among 100. In the left part of the figure we
see the distribution of entropy, assigned to the in-distribution objects (validational split, but same
domain as training data). In the right part we see the distribution for out-of-distribution (SVHN in
our case). Contraty to MNIST vs Fashion-MNIST example, here it is not that clear that FedSOUL
captures uncertainty well.
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Figure S8: Out-of-distribution detection. CIFAR 10 vs SVHN. 2 classes for model (top) and 5
(bottom).
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Figure S9: Reliability diagram for CIFAR10. 2 classes for model (top) and 5 (bottom).

We also provide additional plots for calibration on CIFAR-10 again for two cases, when each client
had 2 classes to predict or 5.

28


	1 Introduction
	2 Proposed Approach
	3 Theoretical Guarantees
	4 Related Works
	5 Numerical Experiments
	6 Conclusion
	S1 Theoretical analysis of FedSOUK
	S1.1 Preliminaries
	S1.2 Main Assumptions
	S1.3 Stochastic Approximation Framework
	S1.4 Main Result
	S1.5 Supporting Lemmata

	S2 Application to FedSOUL
	S2.1 Assumptions
	S2.2 Verification of ass:markovkernel and ass:markovkernelbis

	S3 Additional Experiments
	S3.1 Synthetic datasets
	S3.2 Image datasets classification
	S3.3 Image datasets uncertainty quantification


