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Abstract—The purpose of this paper is to identify the similar-
ities and differences between two image restoration approaches
based on Markov field modeling. The first one is the well-
known Bayesian approach which models the unknowns with
a Markovian prior. In the second approach, as proposed by
Pieczynski and Tebbache [1], the pair unknowns–observations
as a whole is considered Markovian. The two approaches are
compared based on their posterior distribution, synthetic results
and real examples, when applied to the segmentation of degraded
images.

Index Terms—Bayesian Image Restoration, Pairwise Markov
Random Fields, Hidden Markov Random Fields

I. INTRODUCTION

Hidden Markov random fields (HMRF) are a widespread
tool for image segmentation introduced in the 1980’s [2], [3].
This approach models the observation y by a likelihood p(y|z)
where z are the (hidden) labels, and the prior p(z) of the latter
is a Markov random field so as to model spatial interactions
between pixels. HMRF have been successfully applied in many
works [2]–[6].

Besides, Pairwise Markov random fields (PMRF) have been
introduced by Pieczynski and Tebbache in 2000 [1], [7].
The PMRF model considers the Markovianity on the couple
(z,y) instead of the labels z only as in the HMRF model.
Neither y nor z are necessarily Markovian, but z|y and
y|z are Markovian. PMRF models have been introduced to
avoid approximations when estimating the labels from the
observations in textured images.

We and colleagues have often employed the PMRF model
in the past, see e.g. [8]–[10]. However the PMRF model has
been rarely used in the community, contrary to the HMRF
model. Nevertheless, both share strong similarities: this is
quite intriguing and invites comparison of the two models.To
the best of our knowledge, no comparison has been made
in the literature, even in [1]. Therefore, our goal in this
paper is to investigate the links and differences between the
two aforementioned models, so as to identify the limits and
advantages of the models.

The problem is formalized in section II. The two approaches
are mathematically detailed in terms of their posterior distribu-
tion in section III and their results are compared on synthetic
and real images in section IV. A discussion is finally given in
section V.

II. SCOPE OF THE STUDY

We consider the problem of joint deconvolution–
segmentation [4], [11]–[13], in which a blurry observation
y ∈ RS×B with S pixels and B bands has to be segmented
in K classes. Introducing a blur within the segmentation task
allows to consider more general problems.

The goal is to estimate the label image z ∈ KS×B that
gathers the labels of each pixel in the observation, where
K = {1, . . . ,K} denotes the set of classes. The observation y
is modeled as a blurry and noisy observation of an unknown
image x ∈ RS×B :

y = Hx+ e (1)

where H ∈ RS×S and e ∈ RS×B . H is the Toeplitz matrix
of the point spread function (PSF), which introduces the same
spatial blur for each band, without blur between bands. The
PSF is supposed to be known and symmetric, so H is a
known and symmetric matrix. The special case where H is the
identity matrix yields the classical segmentation problem. e is
an additive white Gaussian noise with zero mean and known
variance σ2.

In addition to this, the unknown image x is directly related
to the label image z such that each pixel xs with class zs
equals a signal wk ∈ RB where k = zs:

∀s, xs = wk if and only if zs = k. (2)

The classes are considered to follow a Potts model [14] so
as to favor the grouping of pixels of the same class:

p(z) ∝ exp

β ∑
(s,t)∈C

δ(zs, zt)

 (3)

where β is an hyperparameter, a.k.a. the “granularity” coeffi-
cient and C is the set of neighboring pair of sites in the images
(or set of cliques).

III. DESCRIPTION OF THE TWO APPROACHES

The HMRF approach usually works with the posterior p(z|y)
whereas the PMRF approach describes the joint distribution
p(zs,ys|z−s,y−s) in one site s (the notation −s means the
whole set of sites but s). To compare the two approaches we
choose to write their conditional posteriors p(zs,ys|z−s,y−s).



A. HMRF Approach

The likelihood results from the model of an additive white
Gaussian noise:

p(y|z) = 1

(2πσ2)(SB)/2
exp

(
−‖y −Hx‖2F

2σ2

)
, (4)

where xs = wk if and only if zs = k, and ‖ · ‖F denotes the
Frobenius norm.
Then, the joint distribution is:

p(z,y) ∝ exp

−‖y −Hx‖2F
2σ2

+ β
∑

(s,t)∈C

δ(zs, zt)

 . (5)

To get the conditional posterior of (zs,ys), Eq. (5) has to be
written by distinguishing the terms with zs or ys from the
others (which will be denoted “ct”). So,

‖y −Hx‖2F = ‖ys − (Hx)s‖2 +
∑
i6=s

‖yi − (Hx)i‖2 (6)

where ‖ · ‖ denotes the Euclidean norm. Note that the vectors
are row vectors since they correspond to a site in the images.
For example, (Hx)i is the ith row of matrix Hx. Because of
the PSF H , the term in the sum in Eq. (6) may depend of zs
(through x). For all i 6= s, this terms expands as:

‖yi − (Hx)i‖2 = ‖yi‖2 − 2yi(Hx)Ti + ‖(Hx)i‖2 (7)

where:

‖yi‖2 = ct

yi(Hx)Ti =
∑
b

yib(Hx)ib =
∑
b

yibHisxsb + ct

‖(Hx)i‖2 =
∑
b

((Hx)ib)
2 =

∑
b

(∑
n

Hinxnb

)2
=
∑
b

(
Hisxsb +

∑
n 6=s

Hinxnb

)2
=
∑
b

(
(Hisxsb)

2 + 2Hisxsb
∑
n 6=s

Hinxnb

)
+ ct

So, Eq. (7) yields:

‖yi − (Hx)i‖2 =
∑
b

(
− 2yibHisxsb (8)

+ (Hisxsb)
2 + 2Hisxsb

∑
n 6=s

Hinxnb

)
+ ct.

In addition, the prior on z is defined in Eq. (3), and:∑
(s,t)∈C

δ(zs, zt) =
∑
t∈Ns

δ(zs, zt) + ct (9)

where Ns is the neighborhood of s, to be defined by the user.
Putting Eqs. (6), (8) and (9) in Eq. (5), one can show that the

conditional posterior of the HMRF approach is the product of
two Gaussians and a Potts distribution:

p(zs,ys|z−s,y−s) ∝ exp

(
− 1

2σ2
‖ys − (Hx)s‖2

)
(10)

× exp

(
− 1

2ρs
‖xs −ms‖2

)
exp

(
β
∑
t∈Ns

δ(zs, zt)

)

where ms ∈ RS×B and ρs ∈ R such that

ms =
1∑

i 6=sH
2
is

∑
i6=s

yiHis −
∑
n 6=s

HisHinxn

 ,

ρs =
σ2∑

i 6=sH
2
is

.

B. PMRF Approach

With the PRMF approach, the pair (z,y) is assumed
Markovian with respect to a given neighborhood [1]. The
assumption of white noise implies that the variables in y are
independent given z, so the joint distribution in a site s can
be written:

p(zs,ys|z−s,y−s) = p(ys|zs, z−s,y−s)p(zs|z−s,y−s)
= p(ys|zs, z−s)p(zs|z−s,y−s) (11)

Assuming a white Gaussian noise,

p(ys|zs, z−s) ∝ exp

(
− 1

2σ2
‖ys − (Hx)s‖2

)
. (12)

We assume, furthermore, that zs and z−s are independent
given y−s, and that z is Markovian. So, the second term of (11)
is written as:

p(zs|z−s,y−s) = p(zs|zNs
). (13)

Following the Potts model (3), we obtain that

p(zs|zNs) ∝ exp

(
β
∑
t∈Ns

δ(zs, zt)

)
(14)

Using Eqs. (12) and (14) in (11), we have:

p(zs,ys|z−s,y−s) ∝ exp

(
− 1

2σ2
‖ys − (Hx)s‖2

)
(15)

× exp

(
β
∑
t∈Ns

δ(zs, zt)

)
Note that there are two neighborhood systems embedding the
Markovianity of the pair (z,y): in the first term, the considered
neighborhood covers the whole lattice, while in the second
it covers the closest neighbors of s, denoted Ns. This choice
ensures that the comparison between PMRF and HMRF does
not depend on a particular neighboring system.

Let us also remark that since pairwise Markov fields are a
general class of models, specific assumptions have been made
to tailor it to the considered problem. Hence, it should be noted
that Eq. (15) describes a particular PMRF model.
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Fig. 1. Graphical representation of the statistical dependencies embedded
by the two models, conditioned on a site s (colored). No link between two
variables means that they are independent given the variables in the s site.
For clarity, only one dimension of the lattice is depicted. The neighborhood
considered for the Markov process contains only the two immediate neighbors,
while the PSF covers 5 sites.

C. Comparison of the two models

The posterior distributions in a site for the two approaches are
given in Eqs. (10) and (15). Identifying the three exponential
terms in (10) as proportional to three densities f , g and h let
us rewrite (10) as

p(zs,ys|z−s,y−s)
∝ f(ys,zs, z−s)g(y−s, zs, z−s)h(zs, z−s) (16)

and (15) as

p(zs,ys|z−s,y−s) ∝ f(ys, zs, z−s)h(zs, z−s). (17)

Then, the only difference between the two models lies in
the density g, which adds, with respect to Eq. (15), a novel
dependency between y−s and z. The graphical representations
of the dependencies, conditioned on a site s, are given in
Figure 1.

Noteworthy, in the PMRF approach, the relation between
two variables from z and y depends on the conditioning site.
Indeed, let s and t be two sites in the image: if we condition
by the s site, the dependency between zs and yt is embedded
in the g function, whereas if t is the conditioning site, the
dependency is contained in the f function.

Let us also remark that the dependency embedded in the g
density is also related to the assumption, for PMRF, that z−s
and zs are independent given y−s.

Finally, we can see that if the blur is missing, i.e. H is
the identity matrix, then (yi − (Hx)i)

2
= (yi − xi)

2 so the
corresponding term in (7) does not depend on s. In this case
g ∝ 1 and the two approaches are equivalent.

IV. NUMERICAL RESULTS

The theoretical difference between the two approaches
highlighted in the previous section is hard to interpret in
practice. So we present in this section a numerical comparison
of the two methods for the retrieval of noisy, blurred images.
Using the posterior distributions (10) and (15), the segmentation
is obtained by estimating the Maximum A Posteriori (MAP) [3]:

ẑMAP = arg max
z∈KS

p(z|y). (18)

(a) z (b) Hx (c) y (d) ẑHMRF (e) ẑPMRF

Fig. 2. Example of synthetic image with its MAP estimation using the HMRF
model and the PMRF model. The parameters are: σ = 0.2, σPSF = 5 and
r = 1 (cf. dotted line in Fig. 3).

The MAP is estimated by using a Gibbs sampler (50 iterations)
with a simulated annealing, and obtained in a supervised
fashion: the model parameters are assumed to be known.

We first consider the estimation of z from synthetic images
y with S = 100× 100 pixels, for a segmentation in 3 classes
using B = 3 colors1. The Potts parameter β, wich is not
involved in the differences between the two approaches, is
fixed to β = 0.6 in all experiments.

We consider a Gaussian PSF blur, with its standard deviation
σPSF. Since most of its energy is contained in its center, it is
usual to truncate the PSF to its central values. We represent this
truncation as a ratio r between the truncation radius and σPSF,
such that r = 0.5 means that 48.5% of the PSF energy is kept,
and r = 3 means 99.9% of the PSF energy is kept. Summing
up, the parameters considered in the numerical comparison are
σ, σPSF, and r, and we evaluate error rate between the ground
truth z and its MAP estimates ẑHMRF and ẑPMRF.

An example of synthetic image, together with its segmenta-
tions, is depicted in Fig. 2, and the complete results are given in
Fig. 3. Several comments can be made regarding these results:
• The two models behave as expected: when the image is

harder to process (higher σ or σPSF) the results worsen
and are more scattered, while accounting for more PSF
coefficient yields better results.

• In average the HMRF model yields better results than
the PMRF model. Hence, the additional term g in Eq. 16
does play an efficient part in the segmentation.

• Unexpectedly, the main differences between the models
are driven by changes in σ, as seen in Fig. 3. On the
contrary, for a given σ, varying σPSF or r does not change
the performance gap between the methods, as depicted in
Figs. 3b and 3c. In consequence, the additional term is
weakly influenced by the PSF parameters.

• When either σ or σPSF are low, the two models tend to
provide similar results. This was theoretically expected
for σPSF but it is also the case for σ.

To sum up, the difference between the two approaches is visible
at low signal-to-noise ratio: clearly, the HMRF model yields
better results than the PMRF model at high noise level.

We also tested the two models on real images extracted from
the McGill calibrated colour image database [15] (http://tabby.
vision.mcgill.ca/) in the “flower” category. That these 100×100-
pixel images are blurred with a Gaussian PSF (σPSF = 5),

1Note that an extension to B > 3 colors could be considered to handle
multi- and hyper-spectral images, together with cross-band noise correlations.

http://tabby.vision.mcgill.ca/
http://tabby.vision.mcgill.ca/
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(c) Error rate for a varying r with σ = 0.1 and σPSF = 5 pixels.

Fig. 3. Numerical comparison of the two models studied in this paper. The
dots represent the average error rates over 30 trials, and the shaded contours
depict the 1st and 9th deciles of the results. For each studied parameter, the
two others are fixed, so that the dashed vertical line is common between all
graphs.

add Gaussian white noise (σ = 0.05), and consider r = 1 and
β = 0.6. The means in {w1,w2,w3} defined in Eq. (2) were
obtained by using the Kmeans algorithm [16] on Hx. The
results on five real images are depicted in Fig. 4:

• On the most homogeneous images (#1 and #2), there is no
major differences between the two models. Hence, most
of the classification is carried out in the f and h densities
common to the two models.

• Clear differences appear on images #3, #4, and #5: the
HMRF model follows more closely the observed y than
the PMRF model, and the latter tolerates gaps from y
that enforces spatial regularity.

• The parameter set is the same for the two methods, but may
not be optimal, as we do not know the “true” parameters of
the images. In addition, the optimal parameters may differ
between the PMRF and HMRF models. Unsupervised
parameter estimation should handle this point, but is
beyond the scope of this paper.

#1

Original Blurred y x̂HMRF x̂PMRF

#2
#3

#4
#5

Fig. 4. Example of real image with the 3-class MAP estimations using the
HMRF model and the PMRF models. The results are depicted for x in order
to indicate the mean color vectors used for each class. The parameters are
β = 0.6, σ = 0.1, σPSF = 5 and r = 1.

V. DISCUSSION

In the context of image segmentation, we have compared
the Markovian approach commonly used in the Bayesian
framework with an instance of pairwise Markov field proposed
by Pieczynski and Tebbache [1].

We highlighted that these approaches differ by a single
term in their site-wise posterior distribution. This term is
written as a Gaussian on xs, whose mean and variance depend
through the PSF on the observations and classes in sites other
than s. While it is difficult to grasp the theoretical impact
of this term, numerical simulations show that it does affect
the results, in favor of the HMRF model. Surprisingly, this
clear difference is driven by the noise level instead of the PSF,
although the main difference between the two models is a term
modeling the spatial dependence through the PSF. The next
step of this research will be dedicated to the interpretation and
understanding of this observation.

Further works on this topic may compare further these
models in the context of unsupervised parameter estimation,
with non-stationary processes, or in the image restoration
problem for instance.
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