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Abstract. A discrete version of the nonlinear collision-induced breakage equa-

tion is studied. Existence of solutions is investigated for a broad class of un-

bounded collision kernels and daughter distribution functions, the collision ker-

nel ai,j satisfiying ai,j ≤ Aij for some A > 0. More precisely, it is proved that,

given suitable conditions, there exists at least one mass-conserving solution for

all times. A result on the uniqueness of solutions is also demonstrated under

reasonably general conditions. Furthermore, the propagation of moments, dif-

ferentiability, and the continuous dependence of solutions are established, along

with some invariance properties and the large-time behaviour of solutions.
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1. Introduction

Breakage, also known as fragmentation, is a basic process that describes the dissociation
of particles that may occur in a variety of scientific and technical fields, including chemical
process engineering, astrophysics, atmospheric science, and cellular biology. Depending on
the particle breakage behaviour, the breakage process may be categorised into two kinds:
The first is the linear breakage which can happen spontaneously or as a result of external
forces, and the second is the collision-induced nonlinear breakage which takes place when
two particles collide. One of the most effective approaches to characterising the kinetics
of such phenomena is with the help of a rate equation which captures the evolution of the
distribution of interacting clusters with respect to their sizes (or masses). In this article,
we are interested in studying a mathematical model that governs the collision-induced
breakage, which is often exploited to depict the raindrop breakup, cloud formation, and
planet formation, see, for instance, [17, 19, 20]. The model under consideration here is
known as the collision-induced breakage equation or sometimes also referred to as the
nonlinear fragmentation equation. It is a nonlinear nonlocal equation featuring quadratic
nonlinearities and it describes the time evolution of the mass (or size) distribution function
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of particles undergoing collision-induced fragmentation. In the so-called continuous case,
the size (or mass) of each particle is denoted by a positive real number, whereas in the
discrete case, the ratio of the mass of the basic building block (monomer) to the mass of
a typical cluster is a positive integer and the size of a cluster is a finite multiple of the
monomer’s mass, i.e., a positive integer.

In contrast to the linear (or spontaneous) fragmentation equation which has received
a lot of attention since the pioneering works of Filippov [8], Kapur [11], McGrady & Ziff
[18, 22], see [2, 5] and the references therein for a more detailed account, the nonlinear
fragmentation equation has not been thoroughly investigated until recently. When the
mass variable ranges in the set of positive real numbers, some particular cases are studied
in the physical literature. In [6], Cheng & Redner study the asymptotic behaviour of a
class of models in which a two-particle collision causes both particles to split into two equal
halves. Three cases are considered: both particles split, only the largest particle splits,
or only the smallest particle splits. They also show that some models can be mapped
to the linear fragmentation equation after a change of time scale. This transformation
is thoroughly used in [7] to analyze the nonlinear fragmentation equation with product
collision kernels and to discuss the existence and non-existence of solutions, along with
the formation of singularities in finite time. Further insight in the dynamics of the models
considered in [6] is provided by Krapivsky & Ben-Naim in [15], while the dynamics of the
nonlinear fragmentation equation with product and sum collision kernels is investigated by
Kostoglou & Karabelas [13], combining analytical solutions and asymptotic expansions,
see also [14].

From a mathematical viewpoint, several existence results are available for the contin-
uous collision-induced fragmentation equation when coupled to coagulation, the coagula-
tion being usually assumed to be the dominant mechanism [3, 4, 9]. In the absence of
coagulation, the existence, non-existence, and uniqueness of mass-conserving solutions to
the continuous collision-induced fragmentation equation are investigated in [10] when the
collision kernel is of the form a(x, y) = xαyβ + xβyα, (α, β) ∈ R

2. It is shown there that
the well-posedness strongly depends on the value of α+β and that a finite time singularity
may take place, as already observed in [7] for product collision kernels (corresponding to
α = β).

When the size variable ranges in the set of positive integers, the coagulation equation
with collisional breakage is explored in Laurençot & Wrzosek [16], where the existence,
uniqueness, mass conservation, and large time behavior of weak solutions are studied un-
der reasonable restrictions on the collision kernel and the daughter distribution function.
The purpose of this work is to go beyond the analysis performed in [16] when coagulation
is turned off and relax the growth conditions on the collision kernel and the daughter dis-
tribution function. More precisely, denoting by wi(t), i ∈ N, the number of clusters made
of i monomers (i-particles) per unit volume at time t ≥ 0, the discrete collision-induced
fragmentation equation reads

dwi

dt
=
1

2

∞
∑

j=i+1

j−1
∑

k=1

Bi
j−k,kaj−k,kwj−kwk −

∞
∑

j=1

ai,jwiwj, i ∈ N, (1.1)

wi(0) = win
i , i ∈ N, (1.2)
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where N stands for the set of positive integers. Here ai,j denotes the rate of collisions of
i-clusters with j-clusters and satisfies

ai,j = aj,i ≥ 0, (i, j) ∈ N
2, (1.3)

while {Bs
i,j, s = 1, 2, ..., i + j − 1} is the distribution function of the resulting fragments

and satisfies

Bs
i,j = Bs

j,i ≥ 0 and

i+j−1
∑

s=1

sBs
i,j = i+ j, (i, j) ∈ N

2. (1.4)

The second identity in (1.4) guarantees that mass is conserved during each collisional
breakage event. The first term in (1.1) takes into account collisions in which a j-mer
and a k-mer collide and form i-mers at a rate determined by the breakup kernel Bi

j,k,
whereas the second term accounts for the depletion of i-mers due to collisions with other
clusters in the system, which occur at a rate determined by the collision kernel ai,j. It is
worth pointing out here that the assumption (1.4) allows the collision of a i-cluster and a
j-cluster to produce a i+ j − 1-cluster and a 1-cluster, so that there might be outcoming
particles with a larger size than both incoming particles. In other words, mass transfer
between the colliding particles may occur and the mean size of the system of particles
does not necessarily decrease during the time evolution. This phenomenon is prevented
when one considers the discrete counterpart of the model studied in [6, 7] which reads

dwi

dt
=

∞
∑

j=i+1

∞
∑

k=1

aj,kbi,j;kwjwk −

∞
∑

j=1

ai,jwiwj, i ∈ N, (1.5)

wi(0) = win
i , i ∈ N, (1.6)

where {bi,j;k, 1 ≤ i ≤ j−1} denotes the distribution function of the fragments of a j-cluster
after a collision with a k-cluster, and satisfies the conservation of matter

j−1
∑

i=1

ibi,j;k = j, j ≥ 2, k ≥ 1. (1.7)

The rate equation (1.5) is actually a particular case of (1.1), as easily seen when putting

Bs
i,j = 1[s,+∞)(i)bs,i;j + 1[s,+∞)(j)bs,j;i (1.8)

for i, j ≥ 1 and s ∈ {1, 2, · · · , i+ j − 1}, where 1[s,+∞) denotes the characteristic function
of the interval [s,+∞). As each cluster splits into smaller pieces after collision it is ex-
pected that, in the long time, only 1-clusters remain.

In this article, we look for the existence of solutions to (1.5)–(1.6) for the class of
collision kernels having quadratic growth, i.e.

ai,j ≤ A1ij for some A1 > 0 and i, j ≥ 1. (1.9)

In addition to (1.7), we assume that there are non-negative constants β0 and β1 such
that

bs,i;j ≤ β0 + β1bs,j;i, 1 ≤ s ≤ i− 1, j ≥ i. (1.10)
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Remark 1.1. It is worth to mention at this point that (1.10) includes the class of bounded
daughter distribution functions such as

bi,j;k =
2

j
, j ≥ 2, k ≥ 1,

as well as unbounded daughter distribution functions, e.g.,

bi,j;k = jδi,1, j ≥ 2, k ≥ 1.

Note that the latter is excluded from the analysis performed in [16], where the daughter
distribution function is assumed to be bounded (i.e., satisfies (1.10) with β1 = 0).

We expect the density
∑∞

i=1 iwi to be conserved because particles are neither gener-
ated nor destroyed in the interactions represented by (1.5)–(1.6). This is mathematically
equivalent to

∞
∑

i=1

iwi(t) =

∞
∑

i=1

iwin
i . (1.11)

In other words, the density of the solution w remains constant over time.
The paper is organized as follows: The next section is devoted to a precise statement

of our results, including definitions, the existence of solutions to (1.5)–(1.6), and the mass
conservation property of solutions. In Section 3, propagation of moments, uniqueness, and
continuous dependence of solutions on initial data are explored, whereas, in Section 5,
some invariance properties of solutions are shown. Finally, in Section 6, the large-time
behaviour of solutions is discussed.

2. Existence

2.1. Main results. For γ0 ≥ 0, let Yγ0 be the Banach space defined by

Yγ0 =
{

y = (yi)i∈N : yi ∈ R,

∞
∑

i=1

iγ0 |yi| < ∞
}

with the norm

‖y‖γ0 =

∞
∑

i=1

iγ0 |yi|, y ∈ Yγ0.

We will use the positive cone Y +
γ0

of Yγ0 , that is,

Y +
γ0

= {y ∈ Yγ0 : yi ≥ 0 for each i ≥ 1}.

It is worth noting that the norm ‖w‖0 of a particular cluster distribution w represents
the total number of clusters present in the system, and the norm ‖w‖1 estimates the
overall density or mass of the cluster distribution w.

Let us now define what we mean by a solution to (1.5)–(1.6).

Definition 2.1. Let T ∈ (0,+∞] and win = (win
i )i≥1 ∈ Y +

1 be a sequence of non-negative
real numbers. A solution w = (wi)i≥1 to (1.5)–(1.6) on [0, T ) is a sequence of non-negative
continuous functions satisfying for each i ≥ 1 and t ∈ (0, T )

(1) wi ∈ C([0, T )),
∑∞

j=1 ai,jwj ∈ L1(0, t),
∑∞

j=i+1

∑∞
k=1 bi,j;kaj,kwjwk ∈ L1(0, t),
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(2) and there holds

wi(t) = win
i +

∫ t

0

(

∞
∑

j=i+1

∞
∑

k=1

bi,j;kaj,kwj(τ)wk(τ)−

∞
∑

j=1

ai,jwi(τ)wj(τ)
)

dτ. (2.1)

Our existence result then reads as follows.

Theorem 2.1. Assume that the collision kernel (ai,j)(i,j∈N2) satisfies (1.3) and (1.9) and
that the distribution function satisfies (1.7) and (1.10). Let win ∈ Y +

1 . Then, there is at
least one solution w to (1.5)–(1.6) on [0,+∞) satisfying

‖w(t)‖1 = ‖win‖1, (2.2)

and for any r ≥ 1 and t > 0,

∞
∑

i=r

iwi(t) ≤
∞
∑

i=r

iwin
i . (2.3)

As already mentioned, the class of collision kernels and daughter distribution functions
included in Theorem 2.1 is broader than that considered in [16]. More precisely, in [16],
the collision kernel is restricted to subquadratic growth while the daughter distribution
function is bounded.

We first introduce some notation. We denote by G1 the set of non-negative and convex
functions G ∈ C1([0,+∞)) ∩ W 2,∞

loc (0,+∞) such that G(0) = 0, G′(0) ≥ 0 and G′ is
a concave function. We next denote by G1,∞ the set of functions G ∈ G1 satisfying, in
addition,

lim
ζ→+∞

G′(ζ) = lim
ζ→+∞

G(ζ)

ζ
= +∞. (2.4)

Remark 2.1. It is clear that ζ 7→ ζp belongs to G1 if p ∈ [1, 2] and to G1,∞ if p ∈ (1, 2].

2.2. Approximating systems. As in previous works on similar equations, see [1] for
instance, the existence of solutions to (1.5)–(1.6) follows by taking a limit of solutions
to finite-dimensional systems of ordinary differential equations obtained by truncation
of these equations. More precisely, given l ≥ 3, we consider the following system of l
ordinary differential equations

dwl
i

dt
=

l−1
∑

j=i+1

l−j
∑

k=1

bi,j;kaj,kw
l
jw

l
k −

l−i
∑

j=1

ai,jw
l
iw

l
j, (2.5)

wl
i(0) = win

i (2.6)

for i ∈ {1, 2, · · · , l}, where the right hand side of (2.5) is zero when i = l.
Proceeding as in [1, Lemmas 2.1 and 2.2], we obtain the following result.

Lemma 2.1. For l ≥ 3, the system (2.5)–(2.6) has a unique solution

wl = (wl
i)1≤i≤l ∈ C1([0,+∞);Rl)
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with wl
i(t) ≥ 0 for 1 ≤ i ≤ l and t ≥ 0. Furthermore there holds

l
∑

i=1

iwl
i(t) =

l
∑

i=1

iwin
i , t ∈ [0,+∞), (2.7)

and if (µi) ∈ R
l,

d

dt

l
∑

i=1

µiw
l
i =

l−1
∑

k=1

l−k
∑

j=1

(

k−1
∑

i=1

µibi,k;j − µk

)

aj,kw
l
jw

l
k. (2.8)

We are now in a position to state and prove the main result of this section.

Proposition 2.1. Consider G ∈ G1, then for each l ≥ 3 and t ≥ 0, there holds

l
∑

i=1

G(i)wl
i(t) ≤

l
∑

i=1

G(i)win
i , (2.9)

0 ≤

∫ t

0

l
∑

j=1

l−j
∑

k=1

j−1
∑

i=1

(G(j)

j
−

G(i)

i

)

ibi,j;kaj,kw
l
jw

l
kds ≤

l
∑

i=1

G(i)win
i , (2.10)

and, for 1 ≤ r ≤ l,

l
∑

i=r

iwl
i(t) ≤

l
∑

i=r

iwin
i . (2.11)

Proof. For l ≥ 3 and t ≥ 0 we put

M l
G(t) =

l
∑

i=1

G(i)wl
i(t).

It follows from (1.7) and (2.8) that

d

dt
M l

G(t) =
l−1
∑

j=1

l−j
∑

k=1

(

k−1
∑

i=1

G(i)bi,j;k −G(j)
)

aj,kw
l
jw

l
k

=
l−1
∑

j=1

l−j
∑

k=1

k−1
∑

i=1

(

G(i)− i
G(j)

j

)

bi,j;kaj,kw
l
jw

l
k,

= −

l−1
∑

j=1

l−j
∑

k=1

j−1
∑

i=1

(G(j)

j
−

G(i)

i

)

ibi,j;kaj,kwjwk. (2.12)

Now, since G(0) = 0 and G is a convex function, the function ζ 7→ G(ζ)
ζ

is a non-

decreasing function and the term on the right-hand side of (2.12) is non-negative. There-
fore

d

dt
M l

G(t) ≤ 0,
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which yields (2.9). We next integrate (2.12) over (0, t) and use the non-negativity of G
and wl to obtain (2.10).

Finally, for 1 ≤ r ≤ l, we take µi = i1[r,+∞) in (2.8) and find

d

dt

l
∑

i=r

iwl
i(t) =

l−1
∑

j=r

l−j
∑

k=1

(

j−1
∑

i=r

ibi,j;k − j
)

aj,kw
l
jw

l
k

Using the condition (1.7), we immediately conclude that,

d

dt

l
∑

i=r

iwl
i ≤ 0.

Then, we have
l

∑

i=r

iwl
i(t) ≤

l
∑

i=r

iwin
i ≤

∞
∑

i=r

iwin
i ≤

∞
∑

i=1

iwin
i = ‖win‖1, (2.13)

and the proof is completed. �

Next, we recall the following result from [16, Lemma 3.4].

Lemma 2.2. Let T ∈ (0,+∞) and i ≥ 1. There exists a constant Πi(T ) depending only
on A, ‖win‖Y1

, i and T such that for each l ≥ i,
∫ T

0

∣

∣

∣

dwl
i

dt

∣

∣

∣
dτ ≤ Πi(T ). (2.14)

2.3. Existence of a solution. We are now in a position to prove Theorem 2.1. For that
purpose we first recall a refined version of the de la Vallée-Poussin theorem for integrable
functions [2, Theorem 7.1.6].

Theorem 2.2. Let (Σ,A, ν) be a measured space and consider a function w ∈ L1(Σ,A, ν).
Then there exists a function G ∈ G1,∞ such that

G(|w|) ∈ L1(Σ,A, ν).

Proof of Theorem 2.1. By (2.7) and (2.14), the sequence (wl
i)l≥i is bounded in L∞(0, T )∩

W 1,1(0, T ) for each i ≥ 1 and T ∈ (0,+∞). We then infer from the Helly theorem [12,
pp. 372–374] that there exist a subsequence of (wl)l≥3, still denoted by (wl)l≥3, and a
sequence w = (wi)i≥1 such that

lim
l→∞

wl
i(t) = wi(t) (2.15)

for each i ≥ 1 and t ≥ 0. Clearly, wi(t) ≥ 0 for i ≥ 1 and t ≥ 0 and it follows from (2.15)
that, for each q ∈ N and t ≥ 0,

lim
l→∞

q
∑

i=1

iwl
i(t) =

q
∑

i=1

iwi(t).

In particular, by (2.7), for any q ∈ N and t ≥ 0,
q

∑

i=1

iwi(t) ≤ ‖win‖1.
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By letting q → ∞, we obtain

∞
∑

i=1

iwi(t) = ‖w(t)‖1 ≤ ‖win‖1, t ≥ 0. (2.16)

We next apply Theorem 2.2, with Σ = N and A = 2N, the set of all subsets of N.
Defining the measure ν by

ν(J) =
∑

i∈J

win
i , J ⊂ N,

the condition win ∈ Y +
1 ensures that ζ 7→ ζ belongs to L1(Σ,A, ν). By Theorem 2.2 there

is thus a function G0 ∈ G1,∞ such that ζ 7→ G0(ζ) belongs to L1(Σ,A, ν); that is,

G0 =

∞
∑

i=1

G0(i)w
in
i < ∞. (2.17)

Furthermore, as G0 ∈ G1,∞, we infer from (2.17) and Proposition 2.1 that, for each
t ≥ 0 and l ≥ 3, there holds

l
∑

i=1

G0(i)w
l
i(t) ≤ G0, (2.18)

0 ≤

∫ t

0

l
∑

j=1

l−j
∑

k=1

j−1
∑

i=1

(G1(j)−G1(i))ibi,j;kaj,kw
l
jw

l
kds ≤ G0, (2.19)

where

G1(ζ) =
G0(ζ)

ζ
for ζ ≥ 0.

A consequence of (2.19) and the monotonicity properties of G1 is that, for i ≥ 1, t ≥ 0
and l ≥ i+ 1

0 ≤

∫ t

0

l
∑

j=i+1

l−j
∑

k=1

(G1(j)−G1(i))ibi,j;kaj,kw
l
jw

l
kds ≤ G0.

Hence
∫ t

0

l
∑

j=i+1

l−j
∑

k=1

(G1(j)−G1(i))bi,j;kaj,kw
l
jw

l
kds ≤

G0

i
≤ G0. (2.20)

Consider now t ∈ (0,+∞) and m ≥ 2. By (2.18), (2.19), (2.20), and the monotonicity
of G1, we have for, l ≥ m+ 1.

m
∑

i=1

G0(i)w
l
i(t) ≤ G0,



9

0 ≤

∫ t

0

m
∑

j=1

m−j
∑

k=1

j−1
∑

i=1

(G1(j)−G1(i))ibi,j;kaj,kw
l
jw

l
kds ≤ G0,

0 ≤

∫ t

0

m
∑

j=i+1

m−j
∑

k=1

(G1(j)−G1(i))bi,j;kaj,kw
l
jw

l
kds ≤ G0.

Due to (2.15) we may pass to the limit as l → ∞ in the above estimates and conclude
that they both hold true with wl

i replaced by wi. We next let m → ∞ and obtain
∞
∑

i=1

G0(i)wi(t) ≤ G0, (2.21)

0 ≤

∫ t

0

∞
∑

j=1

∞
∑

k=1

j−1
∑

i=1

(G1(j)−G1(i))ibi,j;kaj,kwjwkds ≤ G0, (2.22)

0 ≤

∫ t

0

∞
∑

j=i+1

∞
∑

k=1

(G1(j)−G1(i))bi,j;kaj,kwjwkds ≤ G0. (2.23)

Since G0 ∈ G1,∞, it readily follows from (2.15), (2.18) and (2.21) that

lim
l→∞

‖wl(t)− w(t)‖1 = 0. (2.24)

In particular, for t ≥ 0

‖w(t)‖Y1
= lim

l→∞
‖wl(t)‖1 = lim

l→∞
‖wl

i(0)‖1 = ‖win‖1,

so that w satisfies (2.2). We then argue exactly in the same way as in the proof of [16,
Theorem 3.1] to show that, for i ≥ 1,

lim
l→∞

∫ t

0

∣

∣

∣

l−i
∑

j=1

ai,jw
l
iw

l
j −

∞
∑

j=1

ai,jwiwj

∣

∣

∣
dτ = 0. (2.25)

We next turn to the convergence of the first term on the right hand side of (2.5) and
fix i ≥ 1. For m ≥ i+ 1 and 2m < l,

∣

∣

∣

∣

∣

l
∑

j=i+1

l−j
∑

k=1

bi,j;kaj,kw
l
jw

l
k−

∞
∑

j=i+1

∞
∑

k=1

bi,j;kaj,kwjwk

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

m
∑

j=i+1

m
∑

k=1

aj,kbi,j;k
(

wl
jw

l
k − wjwk

)

∣

∣

∣

∣

∣

+
l

∑

j=m+1

l−j
∑

k=1

bi,j;kaj,kw
l
jw

l
k +

m
∑

j=i+1

l−j
∑

k=m+1

bi,j;kaj,kw
l
jw

l
k

+
m
∑

j=i+1

∞
∑

k=m+1

bi,j;kaj,kwjwk +
∞
∑

j=m+1

∞
∑

k=1

bi,j;kaj,kwjwk. (2.26)
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On the one hand, it follows from (1.9), (2.7), (2.15), and (2.16) and the Lebesgue
dominated convergence theorem that

lim
l→∞

∫ t

0

∣

∣

∣

m
∑

j=i+1

m
∑

k=1

bi,j;kaj,k
(

wl
jw

l
k − wjwk

)

∣

∣

∣
dτ = 0. (2.27)

On the other hand we infer from (2.20) and the monotonicity of G1 that

∫ t

0

l
∑

j=m+1

l−j
∑

k=1

bi,j;kaj,kw
l
jw

l
kdτ =

∫ t

0

l−1
∑

j=m+1

l−j
∑

k=1

[G1(j)−G1(i)]

[G1(j)−G1(i)]
bi,j;kaj,kw

l
jw

l
kdτ

≤
1

[G1(m+ 1)−G1(i)]

∫ T

0

l−1
∑

j=i+1

l−j
∑

k=1

[G1(j)−G1(i)]bi,j;kaj,kw
l
jw

l
kdτ,

≤
G0

[G1(m+ 1)−G1(i)]
. (2.28)

Similarly, using the monotonicity of G1 and (2.23) gives

∫ t

0

l
∑

j=m+1

l−j
∑

k=1

bi,j;kaj,kw
l
jw

l
kdτ ≤

G0

[G1(m+ 1)−G1(i)]
. (2.29)

Using (1.9) and (1.10), we can estimate

∫ t

0

m
∑

j=i+1

l−j
∑

k=m+1

bi,j;kaj,kw
l
jw

l
kdτ ≤ β0

∫ t

0

m
∑

j=i+1

l−j
∑

k=m+1

aj,kw
l
jw

l
kdτ

+ β1

∫ T

0

m
∑

j=i+1

l−j
∑

k=1

bi,k;jaj,kw
l
jw

l
kdτ

≤ A1β0

∫ t

0

m
∑

j=i+1

l−j
∑

k=m+1

jkwl
jw

l
kdτ

+ β1

∫ T

0

m
∑

k=i+1

l−k
∑

j=m+1

bi,j;kaj,kw
l
jw

l
kdτ

≤ β0A1

∫ t

0

m
∑

j=i+1

l−j
∑

k=m+1

jk

G0(k)
G0(k)w

l
jw

l
kdτ

+ β1

∫ t

0

l−i−1
∑

j=m+1

min{m,l−j}
∑

k=i+1

bi,j;kaj,kw
l
jw

l
kdτ.

Hence, by (2.18) and (2.20),

∫ t

0

m
∑

j=i+1

l−j
∑

k=m+1

bi,j;kaj,kw
l
jw

l
kds ≤ A1β0t‖w

in‖1
G0

G1(m+ 1)
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+ β1

∫ t

0

l−1
∑

j=m+1

l−j
∑

k=i+1

[G1(j)−G1(i)]

[G1(j)−G1(i)]
bi,j;kaj,kw

l
jw

l
kds

≤
β0A1t‖w

in‖1G0

G1(m+ 1)
+

β1G0

[G1(m+ 1)−G1(i)]
. (2.30)

Similarly,
∫ T

0

m
∑

j=i+1

∞
∑

k=m+1

bi,j;kaj,kwjwkds ≤
β0A1t‖w

in‖1G0

G1(m+ 1)
+

β1G0

[G1(m+ 1)−G1(i)]
. (2.31)

Consequently, using (2.27), (2.28), (2.29), (2.30) and (2.31) in (2.26), we obtain

lim sup
l→∞

∣

∣

∣

∣

∣

l
∑

j=i+1

l−j
∑

k=1

bi,j;kaj,kw
l
jw

l
k −

∞
∑

j=i+1

∞
∑

k=1

bi,j;kaj,kwjwk

∣

∣

∣

∣

∣

≤
2β0A1t‖w

in‖1G0

G1(m+ 1)

+
2β1G0

[G1(m+ 1)−G1(i)]
.

Since G0 ∈ G1,∞, we may let m → ∞ to conclude that

lim
l→∞

∣

∣

∣

∣

∣

l
∑

j=i+1

l−j
∑

k=1

bi,j;kaj,kw
l
jw

l
k −

∞
∑

j=i+1

∞
∑

k=1

bi,j;kaj,kwjwk

∣

∣

∣

∣

∣

= 0. (2.32)

Owing to (2.15), (2.25) and (2.32) we may pass to the limit as l → ∞ in the integral
formulation of the equation satisfied by wl

i and deduce that wi satisfies (2.1). Observe
that, since the right hand side of (2.1) belongs to L1

loc([0,+∞)), wi ∈ C([0,+∞)). �

In the next section, the issue we consider is that whether, given win ∈ Y +
1 such that

win ∈ Yα for some α > 1, the solution w to (1.5)–(1.6) constructed in Theorem 2.1 enjoys
the same properties throughout time evolution; that is, w(t) ∈ Yα for t ∈ (0,+∞).

3. Propagation of moments, Uniqueness and Continuous Dependence on

Initial Data

Proposition 3.1. Assume that the assumptions (1.3),(1.7), (1.9) and (1.10) are fullfilled.
If win ∈ Y +

α for some α > 1, then the solution w to (1.5)–(1.6) on [0,+∞) constructed in
Theorem 2.1 satisfies

∞
∑

i=1

iαwi(t) ≤
∞
∑

i=1

iαwin
i , t ≥ 0. (3.1)

Proof. We know from (2.15) that

lim
l→∞

wl
i(t) = wi(t) (3.2)

for each t ∈ [0,+∞) and i ≥ 1, where wl denotes the solution to (2.5)–(2.6) given by
Lemma 2.1 (this convergence actually only holds for a subsequence but it is irrelevant for
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the forthcoming proof). On taking µi = iα and m = 1 in (2.8), we get

d

dt

l
∑

i=1

iαwl
i =

l−1
∑

k=1

l−k
∑

j=1

(

k−1
∑

s=1

sαbs,k;j − kα
)

aj,kw
l
jw

l
k.

Since α > 1, the function s 7→ sα−1 is increasing. Hence using (1.7), we have

k−1
∑

s=1

sαbs,k;j ≤ kα−1

k−1
∑

s=1

sbs,k;j = kα, k ≥ 2, j ≥ 1.

Therefore

d

dt

l
∑

i=1

iαwl
i ≤ 0,

which implies

l
∑

i=1

iαwl
i(t) ≤

l
∑

i=1

iαwin
i ≤

∞
∑

i=1

iαwin
i t ≥ 0.

With the help of (3.2), we may pass to the limit as l → ∞ in the above inequality and
obtain

∞
∑

i=1

iαwi(t) ≤
∞
∑

i=1

iαwin
i .

This concludes the proof of Proposition 3.1. �

Next, we put the following stronger assumption on the collision kernel

ai,j ≤ Aγ(ij)
γ, γ ∈ [0, 1], (3.3)

and establish a uniqueness result for (1.5)–(1.6). This will be accomplished as in the usual
coagulation-fragmentation equations with the help of Gronwall’s inequality. The proof
involves slightly more restricted constraints on the collision kernel and initial condition
than those used in the existence result. We begin with a preliminary result concerning
continuous dependence for a suitable class of solutions.

Proposition 3.2. Assume that the assumptions (1.3), (1.7), (1.10) and (3.3) are fulfilled
and let w and ŵ be solutions of (1.5)–(1.6) with initial conditions w(0) = win ∈ Y +

1+γ and

ŵ(0) = ŵin ∈ Y +
1+γ such that

w ∈ L∞((0, T ), Y +
1+γ) and ŵ ∈ L∞((0, T ), Y +

1+γ) (3.4)

for each T > 0. Then, for each T ≥ 0, there is a positive κ(T, ‖win‖1+γ, ‖ŵ
in‖1+γ) such

that

sup
t∈[0,T ]

‖w(t)− ŵ(t)‖1 ≤ κ(T, ‖win‖1+γ , ‖ŵ
in‖1+γ)‖w

in − ŵin‖1. (3.5)
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Proof. For i ≥ 1 and t ≥ 0, we put

ηi(t) = wi(t)− ŵi(t) and θi(t) = sgn(ηi(t)),

where sgn(h) = h/|h| if h ∈ R \ {0} and sgn(0) = 0. Now, for l ≥ 3, we infer from (2.1)
that

l
∑

i=1

i|ηi(t)| =

∫ t

0

3
∑

m=1

∆l
m(s)ds, (3.6)

where

∆l
1 =

l
∑

j=1

l
∑

k=1

(

j−1
∑

i=1

iθibi,j;k − jθj

)

aj,k(wjwk − ŵjŵk), (3.7)

∆l
2 =

l
∑

j=1

∞
∑

k=l+1

(

j−1
∑

i=1

iθibi,j;k − jθj

)

aj,k(wjwk − ŵjŵk), (3.8)

∆l
3 =

∞
∑

j=l+1

∞
∑

k=1

l
∑

i=1

iθibi,j;kaj,k(wjwk − ŵjŵk), (3.9)

The first term ∆l
1 can be estimated as follows

∆l
1 =

l
∑

j=1

l
∑

k=1

(

j−1
∑

i=1

iθibi,j;k − jθj

)

ai,j(ηjwk + ŵjηk)

≤

l
∑

j=1

l
∑

k=1

(

j−1
∑

i=1

ibi,j;k − j
)

ai,j|ηj |wk

+

l
∑

j=1

l
∑

k=1

(

j−1
∑

i=1

ibi,j;k + j
)

ai,jŵj|ηk|.

Using (1.7) and (3.3), we obtain

∆l
1 ≤ 2Aγ

(

l
∑

k=1

k|ηk|
)(

l
∑

j=1

j1+γŵj

)

≤ 2Aγ

(

∞
∑

k=1

k|ηk|
)(

∞
∑

j=1

j1+γŵj

)

. (3.10)

Next, we deduce from (3.3) that
∫ t

0

∣

∣

∣

∣

∣

l
∑

j=1

∞
∑

k=l+1

(

j−1
∑

i=1

ibi,j;k − j
)

aj,kwjwk

∣

∣

∣

∣

∣

ds ≤ 2Aγ

∫ t

0

(

l
∑

j=1

j1+γwj

)(

∞
∑

k=l+1

kγwk

)

ds

≤ 2Aγ

∫ t

0

(

l
∑

j=1

j1+γwj

)(

∞
∑

k=l+1

kwk

)

ds.
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Using (2.3) and (3.4), we obtain

lim
l→+∞

∫ t

0

∣

∣

∣

∣

∣

l
∑

j=1

∞
∑

k=l+1

(

j−1
∑

i=1

ibi,j;k − j
)

aj,kwjwk

∣

∣

∣

∣

∣

ds = 0,

from which we conclude that

lim
l→∞

∆l
2 = 0. (3.11)

In a similar vein, we can show that

lim
l→∞

∆l
3 = 0. (3.12)

On substituting (3.10), (3.11) and (3.12) into (3.6), and after passing to the limit as
l → ∞, we arrive at

∞
∑

i=1

i|ηi(t)| ≤2Aγ

∫ t

0

(

∞
∑

i=1

i|ηi(s)|
)(

∞
∑

j=1

j1+γwj(s)
)

ds.

Finally, we use Gronwall’s lemma to complete the proof of Proposition 3.2.
�

Corollary 3.1. Assume that the assumptions (1.3), (1.7), (1.10) and (3.3) are fulfilled.
Given win ∈ Y +

1+γ, there is a unique solution w to (1.5)–(1.6) on [0,+∞) satisfying

sup
t∈[0,T ]

∞
∑

i=1

i1+γwi(t) < ∞ (3.13)

for each T ∈ (0,+∞).

Proof. As γ ∈ [0, 1] it follows from (3.3) that ai,j satisfy (1.9) and the existence of a solu-
tion to (1.5)–(1.6) on [0,+∞) with the properties stated in Corollary 3.1 is a consequence
of Theorem 2.1 and Proposition 3.1. That it is unique is guaranteed by Proposition 3.2.

�

In the following section, we will demonstrate that when (1.10) holds with β1 = 0,
that is, the daughter distribution function is bounded, then solutions to (1.5)–(1.6) are
first-order differentiable.

4. Differentiability of the solutions

We first establish the following preparatory result, providing additional continuity prop-
erties of the solution to (1.5)–(1.6) constructed in Theorem 2.1.

Lemma 4.1. Let win ∈ Y +
1 and w be a solution to (1.5)–(1.6) on [0, T ) in the sense of

Definition 2.1 satisfying additionally
∞
∑

i=r

iwi(t) ≤

∞
∑

i=r

iwin
i , r ∈ N, t ∈ [0, T ). (4.1)
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Then w ∈ C([0, T ), Y1).
Assume further that ai,j satisfies (1.9). Then for i ≥ 1,

∞
∑

j=1

ai,jwj ∈ C([0, T )).

Proof. For (t, s) ∈ [0, T )2 and r ≥ 1,

‖w(t)− w(s)‖1 ≤

r
∑

i=1

i
∣

∣wi(t)− wi(s)
∣

∣ +

∞
∑

i=r+1

i(wi(t) + wi(s))

≤

r
∑

i=1

i
∣

∣wi(t)− wi(s)|+ 2

∞
∑

i=r+1

iwin
i .

Since wi is continuous for i ∈ {1, 2, · · · , r}, we deduce from the above inequality that

lim sup
s→t

‖w(t)− w(s)‖1 ≤ 2

∞
∑

i=r+1

iwin
i .

The above upper bound being valid for any r ≥ 1, we take the limit r → ∞ to conclude
that

lim
s→t

‖w(t)− w(s)‖1 = 0.

Next, for 0 ≤ s ≤ t < T and i ≥ 1,
∣

∣

∣

∣

∣

∞
∑

j=1

ai,jwj(t)−

∞
∑

j=1

ai,jwj(t)

∣

∣

∣

∣

∣

≤ A1i‖w(t)− w(s)‖1,

from which the time continuity of
∑∞

j=1 ai,jwj follows. �

Proposition 4.1. Assume that the assumptions (1.3), (1.9) and (1.7) are fulfilled and
suppose that the assumption (1.10) holds true with β1 = 0. Let win ∈ Y +

1 and consider
the solution w = (wi)i≥1 to (1.5)–(1.6) on [0,+∞) given by Theorem 2.1. Then wi is
continuously differentiable on [0,+∞) for each i ∈ N.

Proof. As the time continuity of the second term of (1.5) follows from Lemma 4.1, it is
enough to show the time continuity of the first term to complete the proof. To this end,
we note that, for i ≥ 1, 0 ≤ s ≤ t,

∣

∣

∣

∣

∣

∞
∑

j=i+1

∞
∑

k=1

aj,kbi,j;k
[

wj(t)wk(t)− wj(s)wk(s)
]

∣

∣

∣

∣

∣

≤ A1β0

∞
∑

j=i+1

∞
∑

k=1

jk
(

∣

∣wj(t)− wj(s)
∣

∣wk(s) +
∣

∣wk(s)− wk(t)
∣

∣wj(t)
)

≤ A1β0‖w(t)− w(s)‖1
(

‖w(s)‖1 + ‖w(t)‖1
)

.
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This clearly shows that the right-hand side of (1.5) is continuous in time, implying
the continuity of the derivative of wi. Hence, this guarantees the existence of a classical
solution. �

5. Some Invariance properties of solutions

It is natural to predict that under no mass transfer condition (1.8), if there are no
clusters larger thanm at the beginning of the physical process, then none will be generated
afterwards. This will be established in the next proposition.

Proposition 5.1. Assume that the assumptions (1.3), (1.7), (1.9) and (1.10) are fulfilled

and that there is m ∈ N such that win ∈ Y ♯m
1 , where

Y ♯m
1 := {w ∈ Y +

1 |wi = 0, ∀i > m}.

Then the solution w to (1.5)–(1.6) given by Theorem 2.1 satisfies w(t) ∈ Y ♯m
1 for all t ≥ 0.

Equivalently, for every m ∈ N, the sets Y ♯m
1 are positively invariant for (1.5)–(1.6).

Proof. It follows from (2.3) that, when the system of particles has no cluster of size greater
than m initially, then no cluster of size greater than m appears at any further time, which
proves the stated assertion. �

This invariance condition also appears in linear fragmentation equations: if the initial
cluster distribution contains no cluster of size larger than m, then none can be formed by
fragmentation of the (smaller) ones that are already there.

In the upcoming section, we will discuss the large time behaviour of the solution, and
our result follows the proof of [16, Proposition 4.1], where it has been proved for collision
kernels having linear growth.

6. On the large-time behaviour of solutions

The investigation of the large time behaviour of solutions is studied in this section.
Owing to (1.8), as previously stated, a cluster only forms smaller fragments after colliding.
As a result, we anticipate that only 1-clusters will be left in the long time.

Proposition 6.1. Assume that the assumptions (1.3), (1.7), (1.9) and (1.10) are fulfilled
and consider win ∈ Y +

1 . Let w be the solution to (1.5)–(1.6) given by Theorem 2.1. Then
there is w∞ = (w∞

i )i≥1 ∈ Y +
1 such that

lim
t→∞

‖w(t)− w∞‖1 = 0. (6.1)

Moreover, if i ≥ 2 is such that ai,i 6= 0 we have

w∞
i = 0. (6.2)

Remark 6.1. In particular, if ai,i > 0 for each i ≥ 2, then w∞
i = 0 for every i ≥ 2, and

the mass conservation (2.2) and (6.1) entail that w∞
1 = ‖win‖1.

Proof. The proof follows exactly the same lines as that of [16, Proposition 4.1], see also
[21]. �
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