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Abstract
Sports video analysis is a widespread research topic. Its applications are very diverse, like events detection
during a match, video summary, or fine-grained movement analysis of athletes. As part of the MediaEval
2022 benchmarking initiative, this task aims at detecting and classifying subtle movements from sport
videos. We focus on recordings of table tennis matches. Conducted since 2019, this task provides a
classification challenge from untrimmed videos recorded under natural conditions with known temporal
boundaries for each stroke. Since 2021, the task also provides a stroke detection challenge from un-
annotated, untrimmed videos. This year, the training, validation, and test sets are enhanced to ensure
that all strokes are represented in each dataset. The dataset is now similar to the one used in [1, 2]. This
research is intended to build tools for coaches and athletes who want to further evaluate their sport
performances.

1. Introduction

Action detection and classification is one of the main challenges in computer vision [3]. Through-
out the last few years, datasets focusing on action classification have grown tremendously,
along with their complexity [2]. There has been a significant number of studies devoted to the
analysis of sports gestures using motion-capture systems. Nonetheless, sensors and markers
attached to the body have the inherent tendency to interfere with the natural behaviour of the
athletes. Therefore, this concern motivates the development of non-invasive methods using
video recording from a camera.

The sports video classification project was initiated by the Sports Faculty of the University
of Bordeaux (STAPS), the computer science laboratory LaBRI, and the MIA laboratory of the
University of La Rochelle 1. This project intends to develop artificial intelligence and multimedia
indexing methods for table tennis stroke recognition. The ultimate goal is to evaluate the
performance of individual athletes, especially students, and thereby develop optimal training
strategies. For this purpose, we have recorded a video corpus TTStroke-21 with volunteer
athletes.
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Datasets like UCF-101 [4], HMDB [5, 6], AVA [7] and Kinetics [8, 9, 10] are used in the
action recognition field, with an increasing number of video samples and number of classes
covered over the years. There are very few datasets available that have a focus on fine-grained
classifications in sports, such as FineGym [11] and TTStroke21 [12].

To address the increasing complexity of datasets, some classification methods exploit temporal
information as much as possible. For example, [13] learns spatio-temporal dependencies from
videos using only RGB data. Alternatively, some methods integrate other modalities extracted
from videos, e.g., optical flow [14, 15, 16]. Moreover, in the TTStroke-21 dataset, stroke
classification is challenging, because movements between two strokes share strong visual
similarities.

The following sections present the Sport task and its substasks for this year, along with
the dataset and the specific terms of use when downloading the dataset. Complementary
information on the task may be found on the dedicated page from the MediaEval website2.

2. Task description

The Sport task is based on the TTStroke-21 database [17, 12]. This database is a corpus of table
tennis recordings with players performing in natural conditions. The dataset delivered through
this task focuses on videos acquired with GoPro cameras at a recording speed of 120 frames
per second and annotated by professional players. This task offers researchers an opportunity
to solve a fine-grained classification problem with videos and annotations of high quality in
the sports domain. Compared to the Sport task from MediaEval 2021’s edition [18], the dataset
has been enriched and the data organization and distribution differ. The task has two subtasks:
stroke classification from trimmed videos and stroke detection from untrimmed videos. Each
subtask has its own dataset.

Researchers can participate in one or both subtasks and submit up to five runs for each
subtask. The participants must fill in the provided XML files dedicated to the test set of the
subtask for each run. The content of the XML file varies according to the subtask. The runs
have to be submitted in an archive (zip file), with each run in a different directory for each
subtask. Participants should also submit a working notes paper, which describes their method
and indicates if any external data, such as other datasets or pre-trained networks, was used
to compute their runs. The use of pre-trained models on the Sport task dataset TTStroke-21
of the previous years is however forbidden. The task is considered fully automatic: once the
videos are provided to the system, results should be produced without any human intervention.
Participants are encouraged to release their code publicly with their submission. This year,
similarly to the 2021 edition, a baseline for both subtasks is shared publicly3 [19].

2.1. Subtask 1 - Stroke Classification

For this subtask, the participants are required to classify a set of trimmed videos containing
only one table tennis stroke, or possibly no stroke at all. There are 20 possible stroke classes
and an additional non-stroke class. For this purpose, two annotated sets are provided: a training
and a validation set with respectively 807 and 230 trimmed videos. A non-annotated test set
comprising 118 trimmed videos has to be classified. The trimmed videos in the different sets
may have been retrieved from the same untrimmed videos but at different moments in time
without overlapping.

2https://multimediaeval.github.io/editions/2022/tasks/sportsvideo/
3https://github.com/ccp-eva/SportTaskME22
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Specifically, the participants are invited to fill an XML file and replace the default label
“Unknown” with the stroke class assigned by the participants’ method. All submissions will be
evaluated in terms of global accuracy for ranking, and detailed with per-class accuracy.

In last year edition, the best global accuracy reached 74.2% [20] using SWIN-Transformers,
followed closely by ResNet-50 models (68.8%) beating by a large margin last year baseline
(20.4%) [21]. Methods effectiveness seem to be linked to the model architecture, but also the
taking into account of both stroke class similarity and class imbalance during training. This
year, the task uses the same split of the TTStroke-21 database as in [1, 2] allowing better
comparison with previous works outside the MediaEval benchmark scope.

2.2. Subtask 2 - Stroke Detection

For this subtask, the participants are required to segment a set of untrimmed videos with the
aim to retrieve strokes whatever the stroke class. For this purpose, two annotated sets are
provided: a training set and a validation set, with respectively 16 and 6 untrimmed videos. A
non-annotated test set consisting of 6 untrimmed videos has to be temporally segmented. The
videos are not shared across the training, the validation, and test sets; however, the same player
may appear in the different sets.

Specifically, the participants have to fill the provided test set XML files with the stroke
temporal boundaries (frame index of the videos). All submissions will be evaluated in terms of
mean Average Precision (mAP) and temporal Intersection over Union (IoU). Both are usually
used for image segmentation but are adapted for this task:

• mAP: each stroke represents an object to be detected temporally. Detection is considered
True when the temporal IoU between prediction and ground truth is above an IoU
threshold. 20 thresholds from 0.5 to 0.95 with a step of 0.05 are considered, similarly to
the COCO challenge [22]. This metric will be used for the final ranking of participants.

• IoU: the frame-wise overlap between the ground truth and the predicted strokes across
all the videos.

For last year’s edition, only two participants submitted runs for this difficult subtask [23, 24].
They did not improve the baseline result in terms of mAP but [24] reached an IoU of 0.247
against 0.144 for the baseline, using YOLOv5 model.

3. Dataset description

The dataset was recorded at the Sports Faculty of the University of Bordeaux. It is constituted
of player-centred videos without markers or sensors, recorded in natural conditions using
GoPro cameras (see Figure 1). Professional table tennis teachers designed a dedicated taxonomy
to describe all the possible strokes. The dataset includes 20 table tennis stroke classes: 8
services, 6 offensive strokes, and 6 defensive strokes. The strokes may also be divided in two
super-classes: Forehand and Backhand. The dataset was annotated by professional players
using a crowd-sourced annotation platform. Non-stroke samples are inferred from the stroke
annotations.

In order to be able to share the dataset, we blurred the faces of the players for each original
video frame using OpenCV deep learning face detector, based on the Single Shot Detector (SSD)
framework with a ResNet base network. A tracking method has been implemented to decrease
the false positive rate. The detected faces are blurred, and the video is re-encoded in MPEG-4.

Compared with last year’s edition, the classification dataset is enriched this year with new
and more diverse video samples. The source videos were trimmed, sorted in class folders and



Figure 1: Key frames of a same stroke from TTStroke-21

distributed among train, validation and test sets. A total of 1 155 trimmed videos, representing
more than 210 000 frames, are considered for this subtask. For the detection subtask, 100 minutes
of table tennis games across 28 videos recorded at 120 frames per second and distributed in train,
validation and test sets are considered. It represents more than 718 000 frames. The resolution
of the video for both subtasks is 1920× 1080 representing in total 46.1 GB of disk space. The
validation set is provided for each subtask for better comparison across participants. This set
may be used for training when submitting the test set’s results.

4. Specific terms of use

Although faces are automatically blurred to preserve anonymity, some faces are misdetected,
and thus some players remain identifiable. In order to respect the personal data of the players,
this dataset is subject to a usage agreement, referred to as Special Conditions.

These Special Conditions apply to the use of videos in the scope of the MediaEval workshop
task “Sport Task: Fine Grained Action Detection and Classification of Table Tennis Strokes from
Videos.”. They correspond to the specific usage agreement referred to in the Usage agreement
for the MediaEval 2022 Research Collections, signed between the user and the University of
Delft. The complete acceptance of these Special Conditions is a mandatory prerequisite for
the provision of the videos as part of the MediaEval 2022 evaluation campaign. A complete
reading of these conditions is necessary and requires the user, for example, to obscure the faces
(blurring, black banner) in the video before use in any publication and to destroy the data by
January 30th, 2023.

5. Discussions

As last year, the MediaEval Sport task offers two subtasks: i) Classification and ii) Detection
of strokes. Classification methods performance has increased since the launch of the task. We
hope to have more participation in the detection subtask in order to also improve in the domain
of moment of interest in sports. The participants are encouraged to share their difficulties and
their results even if they seem not sufficiently good. All the investigations, even when not
successful, may inspire future methods.
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