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Simple Summary: Using a collection of publicly available drug screening resources, we identified
different partners of genes associated with either sensitivity or resistance to 90 anti-cancer therapies.
When subsequently applying these signatures to multiple datasets, we found that these predictive
models could predict a large range of drug responses in patient samples. In particular, we discovered
a new gene signature to identify breast cancer tumors that are likely to respond to cisplatin in
the absence of BRCA1 mutations. This work constitutes an important advance to accelerate the
application of platinum-based therapies in patient groups that are not routinely treated with these
drugs. In the future, this approach may help to guide the choice of drugs based on the molecular
profile of the tumors.

Abstract: The development of therapies that target specific disease subtypes has dramatically im-
proved outcomes for patients with breast cancer. However, survival gains have not been uniform
across patients, even within a given molecular subtype. Large collections of publicly available drug
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screening data matched with transcriptomic measurements have facilitated the development of
computational models that predict response to therapy. Here, we generated a series of predictive
gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-
approved drugs or compounds in early development. To achieve this, we used a cell line-based
drug screen with matched transcriptomic data to derive in silico models that we validated in large
independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust
computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of
PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely
to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for
platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our
study foreshadows an effective delivery approach for precision medicine.

Keywords: breast cancer; pharmacogenomics; predictive modeling; drug sensitivity; precision
medicine; cisplatin

1. Introduction

Breast cancer is a heterogeneous disease with several clinical and molecular subtypes,
defined by distinct immunohistochemical, histopathological, and molecular classifica-
tions [1–4]. Measurement of gene expression has long been recognized as a reliable and
robust way to assess molecular phenotypes in cancer [2]. Patterns of gene expression (or
gene expression signatures) have shown a strong association with clinically meaningful
outcomes, such as metastasis and overall survival. Specifically, the classification of molec-
ular subtypes in breast cancer (luminal A/B, triple-negative breast cancer or TNBC, and
HER2 amplified breast cancer) based on gene and protein expression has provided a level
of refinement in patient stratification and therapeutic decision making. These subtypes
have been shown to differ in incidence [5], survival [6,7], and response to therapy [3,8] and
they are used to stratify patients for treatment [8,9]. Indeed, patients with luminal A/B or
HER2 amplified breast cancer are likely to benefit from endocrine therapy or HER2 targeted
therapies, respectively, while TNBC patients are commonly treated with chemotherapy
and radiotherapy [10]. However, breast cancer patients within a given subtype often show
non-uniform clinical outcomes [11,12], highlighting a need to predict drug sensitivity based
on the characteristics of individual tumors.

The identification of clinically relevant driver mutations such as BRCA1, BRCA2, PIK3CA,
PTEN, and AKT1, can also be used in the clinic to guide therapeutic decisions [13,14]. For
instance, tumors with BRCA-1 mutations are known to be more responsive to PARP in-
hibitors or platinum-based therapy compared to others [10,15]. However, the number
of actionable mutations identified to date remains limited, and their identification is in-
sufficient to accurately predict drug efficacy at the individual level. In this context, the
analysis of transcriptomic [16], epigenetic [16,17], proteomic [18], and metabolomic [19]
datasets is likely to provide complementary information in the ongoing refinement of
precision oncology.

Different computational approaches have been used on data sets from cancer cohorts
to predict drug response in a variety of cancer types [20–22], and gene expression data is
considered to provide the most useful molecular insight for predicting therapy response
in breast cancer [20,23,24]. Gene expression signatures associated with drug efficacy are
typically derived from differential expression analysis between drug-sensitive and resistant
cell lines [25–27]. A comparative analysis of methods for predicting drug response also
found that simple, correlation-based methods were surprisingly effective, with performance
similar to that of more complicated, data-intensive methods [24].

In this study, we used gene expression data from the RNA sequencing of breast cancer
cell lines in combination with associated drug response profiles to generate a resampling-
and correlation-based computational pipeline to derive gene expression signatures asso-
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ciated with drug efficacy. We then used singscore [28], a single-sample scoring method
we developed previously, to generate a drug efficacy score for each cancer cell line using
drug-specific gene expression signatures. These scores were then used to build prediction
models for 90 drugs and assess their performance by computational validation across
several independent datasets. Finally, we validated our predictions using PDX models,
focusing on our cisplatin signature, enabling us to identify tumors that are responding to
cisplatin despite the absence of a BRCA-1 mutation.

2. Materials and Methods
2.1. Datasets

All data are listed in Table 1. Pharmacogenomic resources from the Gray lab [20]
include transcriptomic data for a large number of breast cancer cell lines with matched
drug response data across multiple replicates, and thus, these data were used to fit predicted
efficacy signatures for the 90 drugs available. The resulting drug efficacy signatures and
prediction models were tested on independent data.

Table 1. Training and test datasets used to derive and test the drug efficacy signatures TN: triple-
negative; AUC: area under the dose-response curve; RCB: residual cancer burden; PDTX-PDTC:
patient-derived tumor xenografts and PDTX-derived tumor cells; NTR: Normalized tumor response.
Note that NSamples represents the total number of cell lines/tissue samples in each study, however,
not all of these were used for drug screening and some cell lines did not have both RNA-seq and
drug data.

Data Set NSamples
Type

of Sample NDrugs RNASeq Microarray Response
Metrics Use Ref

Gray 84 Cell line 90 Yes Yes AUC Train [20]
CCLE 60 Cell line 24 Yes Yes AUC Test [4]

GDSC1000 50 Cell line 251 No Yes AUC Test [29]
CTRPv2 40 Cell line 545 From CCLE No AUC Test [30]

gCSI 30 Cell line 16 Yes No AUC Test [31,32]
FIMM 21 Cell line 52 From CCLE No AUC [33]

Caldas 20 PDTX-PDTC 104 No Yes AUC Test [34]

TCGA 1102 Patient - Yes Yes - Test GSE62944 [35]
GSE100925 50 Patient - Yes - - Test GSE100925
GSE103668
(cisplatin) 21 TN Clinical trial 1 No Yes Miller-Payne

and RCB Test [36]

ONJCRI-PDX 4 PDX 1 Yes No NTR Test In-house

Jonkers-PDX 3 PDX 1 Yes No
Proportion of

remissions
and resistance

Test [37]

Cell line pharmacogenomic data were downloaded as PharmacoSets (PSets) through
the PharmacoGx R/Bioconductor package (v1.6.1), including: CCLE [4], Cancer Therapy
Response Portal (CTRPv2) [30], Genomics of Drug Sensitivity in Cancer (GDSC1000) [29],
Genentech Cell Line Screening Initiative (gCSI) [31,32], and Institute for Molecular Medicine
Finland (FIMM) [33] data. The GRAY PSet (containing the Gray pharmacogenomic data)
was received from the Haibe-Kains’ group in September 2017 and modified (see below).
Finally, patient-derived tumor xenografts along with PDTX-derived tumor cells (PDTX-
PDTC) from Bruna et al. [34] and different patient cohorts were also examined (Table 1).

Using data from the PharmacoGX package, we used metrics based on the area above
the dose-response curve (activity area; “recomputed AUC” within PSets, and refer to this
as AUC in this paper) rather than IC50 values because activity area (or AUC) captures both
the efficacy and potency of a drug and further, it is comparable across different cell lines
treated by the same drugs and same drug concentrations [38].



Cancers 2022, 14, 2404 4 of 18

2.2. Deriving Drug Efficacy Signatures

The GRAY PSet was received from the Haibe-Kains’ group (developers of the Pharma-
coGX package). We re-analyzed the FASTQ files from the Gray lab using the R/Bioconductor
packages Rsubread and human genome hg19. Read counts were calculated using feature-
Count, and the edgeR package [39,40] was used to filter genes (retained genes with a
count-per million (CPM) > 2 in at least 10% of cell lines) and calculate log(RPKM) values.
For samples with technical replicates, their median log(RPKM) values were calculated
and used. These data, as well as the previous microarray data from the Gray lab [9], were
appended to the GRAY PSet.

The log(RPKM) RNA-seq data and “recomputed AUC” drug sensitivity values for
all 90 drugs [20] were used in the following analysis. To obtain a drug efficacy signature
for each drug, a resampling procedure was used whereby 80% of cell lines were randomly
selected (1000 times) and the Spearman’s correlation was calculated between the gene
transcript abundance and the drug response metric. Genes found in the top or bottom
3% of correlations across more than 90% of re-sampling runs (i.e., 900 out of 1000) were
selected for each drug efficacy signature and are listed in Table S1.

2.3. Scoring Samples Using the Singscore and Stingscore Methods

For both training and testing purposes, the singscore (v1.16.0) R/Bioconductor pack-
age [28,41,42] was used to score samples using the derived drug efficacy signatures. Genes
in drug signatures with positive correlation coefficients were used as the up-regulated
gene set, while those with negative correlation coefficients were considered as the down-
regulated gene set. Scores obtained from singscore using drug efficacy signatures are called
“drug efficacy signature scores” and were used as input to develop prediction models (see
next section). PDX samples used for validation purposes were scored using the stingscore
methods that use stably expressed genes as anchors to compute scores. The top five stably
expressed genes identified in [42] were used to compute drug response scores given a drug
response gene expression signature. Scores using stably expressed genes worked better
when comparing scores computed across independent datasets [42].

2.4. Training Prediction Models

We used five methods to build prediction models with the training data: linear regres-
sion, quadratic regression, and three SVM-based models. SVM is a popular supervised
method that can be used for classification or regression depending on whether the output is
a categorical or continuous variable [43]. In this study, we used linear, polynomial, and ra-
dial kernel SVM, in addition to linear and quadratic regression, to examine the performance
of a range of linear and non-linear methods in predicting drug response based on the gene
expression signatures we derived. First, we converted the gene expression data for each
cell line into a score that captured the concordance of the gene expression profile with our
drug response expression signature. We used these scores as input features to the various
learning methods (SVM and regression) and used the drug response measurement, as
captured by the area under the dose-response curve, as the prediction target. We predicted
continuous outcomes (in this case, drug response) in the test data sets.

To select model parameters, three-fold cross-validation was performed 20 times for
each parameter set. Briefly, data (cell lines) were partitioned into three subsets of similar
size, with two used to develop the models while the third was retained for testing. This
was repeated three times such that each subset was used once as the test set. This three-fold
cross-validation was then repeated 20 times for each drug and each prediction model. To
quantify model fit, the RMSE (root mean squared error), MAE (mean absolute error), and R2

(R-squared) were calculated for all five methods. Model training and cross-validation were
performed using R packages caret and e1071. For each of the five model types, parameters
for the final models were selected as those with the best fit in cross-validation across the
entire training set.
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Next, we compared the performance of all five methods by calculating the concordance
index (CI) and RMSE. The CI quantifies concordance between two ranked vectors (here,
predicted and actual drug response) by comparing all pairwise ranks between them [24].
We further calculated the BIC (Bayesian information criterion) to compare regression-based
methods (Figure S3).

2.5. Test Prediction Models

Prediction models trained on the Gray data were tested against breast cancer data from
the CCLE, GDSC1000, CTRPv2, gCSI, and FIMM panels, as well as the Caldas PDXT-PDTC
data [34] (Table 1). Comparisons were performed for all drugs common to the training
(Gray data) and test data (CCLE: 11 drugs; CTRPv2: 28; GDSC1000: 29, gCSI: 11; FIMM: 18,
and; Caldas: 20 drugs). We tested all models once on the full cell line data, and once after
removing the overlapping cell lines between the training and test sets (to examine potential
over-fitting). Drug efficacy signatures were also used to score patient data, including
samples from TCGA and PDXs (see below) (see Tables 1 and 2).

Drugs were classified into high, medium, and low confidence based on the predictive
power of their models across multiple independent datasets. As noted above, Spearman’s
correlation (ρ) and CI were used to examine the strength of association between predicted
sensitivity (equivalent to signature scores from linear regression models) and observed
drug efficacy. Dependent upon the number of independent data sets available for each
drug, we classified: (1) high confidence drugs with ρ ≥ 0.4 or CI ≥ 0.65 in at least one
test set, (2) low confidence drugs with ρ < 0.3 or CI < 0.6 in all available test sets, and
(3) medium confidence drugs including those that do not meet above criteria (i.e., those
with 0.3 < ρ < 0.4 or 0.6 < CI < 0.65).

2.6. Gene-Set Enrichment Analysis

We performed gene-set enrichment analysis using the over-representation analysis
implemented in the clusterProfiler R package [44]. Gene-sets from the KEGG and the GO
biological processes sub-collections of the molecular signatures database (MSigDB v7.2)
were used [45,46].

2.7. In Vivo Experiment

PDX-1432C (established from a drug naïve TNBC non-BRCA-1 mutated tumor) [47],
PDX-0066 (established from a malignant pleural effusion from a patient with BRCA-1
mutated breast cancer) [48], PDX-226 (established from a drug-naïve HER-2 amplified
breast cancer tumor) [49], and PDX-434 (established from a drug naïve TNBC BRCA-1
wild type tumor) were generated by the injection of 100,000 cancer cells into the right
mammary fat pad of NSG mice, 4–6 mice per group. Control mice were treated with saline,
i.p., and the treatment group was treated with 6 mg/kg of cisplatin, i.p., twice with 21 days
between the two doses. Mannitol (50 mg/mL) was injected i.p. into each mouse prior
to cisplatin chemotherapy to minimize the risk of renal toxicity. The treatment started
when the tumors reached 200 mm3; tumor growth was monitored with calipers twice per
week. All procedures in animals were conducted in accordance with the National Health
and Medical Research Council guidelines under the approval of the Austin Animal Ethics
Committee. The use of patient samples was approved by Austin Health Human Research
Ethics Committee.

Normalized tumor response (NTR) was calculated as the ratio of the tumor volume at
the time of the first injection to the smallest tumor volume after the injection (at any time
during the experiment), for each mouse.

In vivo sensitivity of PDXs T250 (BRCA-1 mutated), T127, and T162 (both BRCA-1
methylated) was described in Brugge et al. [37]. Tumor response was assessed based on the
proportion of PDXs that resisted the treatment, as determined in [37].
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Table 2. Spearman’s correlation coefficients (ρ) between drug efficacy signature scores and observed
drug response. The Gray data were used to generate drug efficacy signature scores. Drugs with
ρ ≥ 0.4 in at least one test set (high-confidence) and drugs with 0.4 > ρ ≥ 0.3 (medium confidence)
are shown. Table S2 shows this information for all the 90 drugs.

Drugs GRAY CCLE CTRPv2 FIMM gCSI GDSC1000 Caldas Confidence

AZD6244 0.72 0.42 0.42 0.28 - - - High

Bortezomib 0.68 - 0.29 0.43 0.4 0.41 0.5 High

Docetaxel 0.76 - 0.8 - 0.48 0.43 0.43 High

Doxorubicin 0.78 - - 0.28 0.6 −0.05 - High

Erlotinib 0.76 0.41 0.31 −0.09 0.57 0.3 −0.13 High

Gefitinib 0.74 - 0.37 0.22 - 0.33 0.47 High

Gemcitabine 0.75 - 0.35 - 0.48 0.19 0.3 High

GSK1059615 0.73 - 0.49 - - - - High

GSK1120212 0.78 - 0.54 - - - 0.19 High

GSK461364 0.78 - 0.72 - - - - High

Irinotecan 0.8 0.13 - −0.13 0.57 - - High

Lapatinib 0.77 0.68 0.54 0.5 0.34 0.26 0.9 High

MG-132 0.76 - 0.47 - - 0.31 - High

Nutlin-3 0.74 0.22 0.42 - - - - High

Paclitaxel 0.77 0.36 0.61 0.37 0.42 0.12 −0.1 High

Panobinostat 0.78 0.76 0.6 0.72 - - - High

Rapamycin 0.7 - 0.44 - −0.17 −0.05 - High

Topotecan 0.76 0.6 0.36 0.15 - - - High

VX-680 0.69 - 0.52 - - 0.21 - High

ZM-447439 0.7 - - - - 0.28 0.46 High

5-FU 0.77 - 0.31 - - - - Medium

BIBW2992 0.79 - 0.4 0.39 - - 0.37 Medium

Cisplatin 0.79 - - - - 0.37 0.29 Medium

Crizotinib 0.75 0.21 0.36 −0.04 0.39 0.03 - Medium

Etoposide 0.75 - 0.38 - - 0.21 - Medium

GSK2126458 0.73 - - - - 0.33 - Medium

Methotrexate 0.74 - 0.18 0.09 - 0.39 - Medium

Temsirolimus 0.72 - - 0.4 - 0.1 - Medium

2.8. Single-Cell Suspension Preparation

The PDX tumors were manually chopped into small pieces (about 1 mm by 1 mm) and
resuspended in 10 mL of digestion medium: collagenase IA (300 U/mL) (#C9891, Sigma-
Aldrich, St. Louis, MO, USA), hyaluronidase (100 U/mL) (#H3506, Sigma-Aldrich, St. Louis,
MO, USA), and deoxyribonuclease I (DNase I) (100 U/mL) (#LS002139, Worthington) in
DMEM F12 (#10565018, Thermo Fisher Scientific, Waltham, MA, USA). Samples were
incubated for 45 min at 37 ◦C with agitation and then filtered through a 70 µm cell strainer
and spun down for 5 min at 500 g.

2.9. mRNA Extraction and Bulk RNA-Seq

For the transcriptomic analysis of PDX tumors, cancer cells were enriched using
the Miltenyi mouse cell depletion kit (#130-104-694, Miltenyi Biotec, Bergisch Gladbach,
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Germany) according to the manufacturer’s recommendations. The mRNA was extracted
from the cancer cells using the miRNEasy kit (#217084, Qiagen, Hilden, Germany). Briefly,
the mRNA isolation is based on a guanidinium thiocyanate-phenol-chloroform extraction
approach. The mRNA is isolated by binding to an exchange column and the genomic DNA
is digested on a column by the RNase-Free DNase (#79254, Qiagen, Hilden, Germany).
The RNA was finally washed and eluted in water. Quality controls were performed
using TapeStation (4200 TapeStation System, Agilent Technologies, Santa Clara, CA, USA),
and 100 ng of mRNA was used as input for the library preparation using the TruSeq
RNA Library Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
recommendations. The sequencing was performed on a NextSeq 500 instrument using the
v2 150 cycle high output kit (Illumina, San Diego, CA, USA). The base calling and quality
scoring were determined using Real-Time Analysis on board software v2.4.6 (Illumina,
San Diego, CA, USA), while the FASTQ file generation and demultiplexing used bcl2fastq
conversion software v2.15.0.4 (Illumina, San Diego, CA, USA).

For the analysis, the RSubread (v2.10.0) and edgeR (v3.38.0) R/Bioconductor pack-
ages [39,40] were used to align reads (against human genome hg19), calculate gene counts
(using featureCounts), and perform quality control (e.g., using MDS and PCA plots). Tech-
nical replicates were assessed and merged for each sample using the sumTechRep function
in the edgeR package. Counts were transformed into logRPKM values prior to scoring
using singscore [41,42]. Processed RNAseq data for patient samples and matched PDXs was
provided by the Jonkers laboratory in the form of count matrices that were then normalized
for library size and gene-length biases, and log-transformed to produce logRPKM values.

3. Results
3.1. Generation of Drug Efficacy Signatures with Training Data Sets

In order to derive new signatures of drug efficacy based on transcriptomic information,
we exploited extensive collections of molecular profiling and drug response data generated
in cell line screens (i.e., training data [20], see Table 1 for details). Specific gene expression
signatures were identified for 90 drugs using RNA sequencing and matching drug response
to identify genes whose expression is correlated with sensitivity (as illustrated in Figure S1
for cisplatin). This enabled us to associate each drug with its own transcriptional response
signature as shown in Table S1, with the number of genes in these signatures varying
between 23 and 253.

Next, we used singscore [28] to convert gene expression data into signature scores that
capture the concordance between the expression profile of an individual sample and the
signature associated with a given molecular phenotype (in this case, drug sensitivity). In
general, the drug efficacy signature scores correlated highly with those in the training data
(ρ = 0.7 to ρ = 0.86, Figure S2), indicating that the signature score generated by singscore
preserved the associations observed between the expression of individual genes and drug
response of the corresponding cell line.

We then used drug efficacy signature scores as features to build a series of predic-
tion models based on linear and non-linear regression (Figure 1a) and support-vector
machines [50] (Methods section Training prediction models). Using a cross-validation strat-
egy in the training data, we generated a range of metrics to evaluate model performance,
including the root mean squared error (RMSE) which quantifies the difference between a
predicted value and the observed value (Figure S3). Based on the cross-validation results,
simple linear regression models performed well for most drugs. Linear regression-based
classifiers for 87 (out of 90) drugs achieved RMSE under 0.1, while gemcitabine, docetaxel,
and paclitaxel showed higher errors across all models (Figure S3).
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Figure 1. Consistent patterns obtained from drug efficacy signatures across training and test sets for 
standard of care. Associations between drug efficacy signature scores and drug response (AUC) for 
four selected drugs in the training data (in (A), Gray data), and test sets (in (B), from left to right: 
CCLE for lapatinib, CTRPv2 for docetaxel and paclitaxel, and GDSC1000 for cisplatin). In panel (C), 
TCGA breast cancer samples were scored against these four drug efficacy signatures and stratified 
by subtypes. Dashed lines in (A,B) represent the first and third quartiles while in (C), they separate 
the jittered samples with 10%-tile and 90%-tile drug efficacy signature scores. Note that in each of 
the test sets in B, cell lines are represented with different shapes (triangle and circle) according to 
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Figure 1. Consistent patterns obtained from drug efficacy signatures across training and test sets for
standard of care. Associations between drug efficacy signature scores and drug response (AUC) for
four selected drugs in the training data (in (A), Gray data), and test sets (in (B), from left to right:
CCLE for lapatinib, CTRPv2 for docetaxel and paclitaxel, and GDSC1000 for cisplatin). In panel (C),
TCGA breast cancer samples were scored against these four drug efficacy signatures and stratified by
subtypes. Dashed lines in (A,B) represent the first and third quartiles while in (C), they separate the
jittered samples with 10%-tile and 90%-tile drug efficacy signature scores. Note that in each of the
test sets in B, cell lines are represented with different shapes (triangle and circle) according to their
overlap status with the training set.

3.2. Assessing Drug Similarity Based on Observed Response and Prediction

Drugs with similar targets and mechanisms of action will likely elicit similar cellu-
lar responses across different cell lines. Since similarities in response represent common
molecular mechanisms, these similarities should be captured by response prediction signa-
tures based on molecular measurements. To test this hypothesis, we first computed drug
response similarity across the training dataset [9] by computing the Spearman correlation
coefficient between the drug efficacies (as measured by area under the dose-response curve,
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or AUC, obtained from the PharmacoGX R package (v1.6.1). Similarities between the drug
response signatures derived in this study were computed using the Jaccard Index, which
is often used to measure the degree of set overlap. To better characterize the similarity
between responses to different drugs, we annotated drugs with their targets using data
from Daemen et al. [20]. As expected, drugs with similar molecular targets elicited similar
responses (Figure 2), as demonstrated by the significant similarities within categories such
as histone deacetylase (HDAC) targeting drugs and the epidermal growth factor receptor
(EGFR) targeting drugs. This similarity was also captured in the response signatures that
we developed, thus confirming that our models were retaining molecular information
pertaining to the mechanisms of action of each drug.
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Figure 2. Drug response similarity is retained in drug efficacy signatures. Drug response similarities
in the GRAY dataset measured using the Spearman correlation coefficient are shown on the lower
triangle of the plot with non-significant correlations (p-value > 0.05) crossed out. The upper triangle
of the plot represents signature similarities computed using the Jaccard index. Drug classes are
labeled on the y-axis of the heatmap.

We next examined whether any gene signaling pathways could be identified in these
signatures using GO (Table S3) and KEGG (Table S4) analysis. We saw little enrichment
for signaling pathways or processes in the gene sets that we have derived, indicating that
these gene sets are capturing information orthogonal to standard pathways and processes.
Across all the drug signatures, the most substantial association detected was between
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the Topotecan, Irinotecan, Nutlin-3, and 5-FU signatures and processes associated with
eukaryotic translation, co-translational translocation, and membrane protein localization
(Table S3). We also found an association between processes related to wound healing
and the GSK1120212 and AZD6244 signatures, and a modest association between the
KEGG focal adhesion and small cell lung cancer pathways and our cisplatin signature
(Table S4). Otherwise, no substantial pathway enrichment was observed with our gene
expression signatures.

3.3. Computational Validation Using Independent Testing Datasets

While cross-validation in the training data is an accepted strategy for computational
validation, we sought to evaluate the performance of our predictors in the context of
independent drug screening data to establish generalizability. Our predictive models were
therefore tested in several independent datasets including the CCLE [4], GDSC1000 [29],
CTRPv2 [30], gCSI [31,32], and FIMM [33] cell line datasets, as well as on the PDTX-PDTC
data (patient-derived tumor xenografts along with PDTX-derived tumor cells) [34] as shown
in Table 1. We evaluated our models across all breast cancer data in these independent
testing datasets by calculating Spearman’s correlation, ρ, the concordance index (CI), RMSE,
and mean adjusted error, all of which measure agreement between predicted and observed
drug responses. Although many drug efficacy signature scores were highly correlated with
drug response in the test datasets, when using the model to predict the area under the
dose-response curve (AUC) as a measure of drug sensitivity, we noted that many of the
intercepts of the prediction lines shifted. This demonstrates that while the scores accurately
order samples from most sensitive to least sensitive, differences in the magnitude of drug
response are evident between datasets. This finding agrees with previous observations
of reproducibility issues between independent drug response datasets [51], likely due to
variations in experimental conditions and sources of cell lines. However, our data confirm
the ability of our signatures to distinguish sensitive from resistant samples. Therefore,
we considered Spearman’s ρ and CI measurements calculated between the predicted and
actual drug response to be more suitable metrics for assessing the relationship between
our predictions and actual drug response (Figure 1b). Consistent with our observations on
the training data (Gray data; Figure S3), a linear regression model performs as well as or
better than the other non-linear models in most cases, so we adopt these models for the
following analysis.

Of the 90 drugs for which we constructed predictive response signatures, 43 were
present in both training and at least one of the testing sets. Across these 43 drugs, our gene
expression-based linear prediction models accurately ordered samples from sensitive to
resistant for 28, as measured by Spearman’s rank correlation. The other 47 drugs in the
training dataset were not present in any of the independent drug screening sets, preventing
us from validating their efficacy. We then grouped the 43 drugs with test data available
into high, medium, and low confidence according to their ρ and CI (Figure S4). Table 2 lists
28 drugs for which we developed models of high and medium confidence, i.e., Spearman’s
correlation coefficients were ρ ≥ 0.4 (high) or between 0.4 and 0.3 (medium) between drug
efficacy signature scores and observed drug response in at least one independent testing
set (see Table S2 for ρ of all drugs). For some drugs such as lapatinib, the efficacy scores
computed on the Caldas PDTX data had a strong correlation of 0.9 with the observed
drug response, highlighting the fact that our signatures were consistent across different
biological models.

Some of the drugs which showed high and medium confidence in our predictive
models are currently used as a standard of care in the clinic (i.e., docetaxel, doxorubicin,
lapatinib, and paclitaxel), and are known to show differences in efficacy across different
molecular subtypes of breast cancer. To investigate whether our signatures can predict
these differences, we studied the associations between drug efficacy signature scores and
drug response in each breast cancer subtype for these four drugs (Figure 1). As expected,
cisplatin, docetaxel, and paclitaxel were predicted to have greater efficacy in triple-negative
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breast cancer (TNBC), and lapatinib in the HER-2 amplified subtype, using cell lines from
the training (Figure 1a) or validation (Figure 1b) datasets. We further showed that these
subtype-dependent patterns were consistent in TCGA data from breast cancer patients,
where samples with the top and bottom 10% of drug efficacy scores showed subtype
specificity in response to cisplatin, docetaxel, lapatinib, and paclitaxel (Figure 1c). Overall,
these results demonstrate that gene expression signatures generated from a limited set of
cell lines were predictive of response in other cell lines for at least half of the drugs that we
examined and that the patterns of drug scores obtained from the drug efficacy signatures
were highly conserved across cell lines and patient data.

3.4. Validation of Response Predictions in Patient-Derived Xenografts

Having validated our computational models on publicly available cell line and PDTX
datasets, we sought to further validate the drugs described in Figure 1 using TNBC patient-
derived xenografts (PDXs). We first assessed the range of responses predicted using
our drug response prediction signatures for cisplatin, docetaxel, lapatinib, and paclitaxel
(Figure 3). Data from TCGA, CCLE, and GSE100925 were used to compute response
prediction scores across breast cancer patients and cell lines. To enable cross-dataset
comparisons, we used the stingscore method to compute drug efficacy scores as the method
was designed to correct for dataset biases using the expression of endogenous “control”
genes [42]. A range of responses was predicted across all three datasets as shown in Figure 3,
with most predicted responses showing a multi-modal distribution that was suggestive
of responsive and resistant populations. We then overlayed scores computed from the
transcriptomic analysis of four TNBC PDX models for each of the four drugs and showed a
similar dynamic range of predicted response values. Surprisingly, despite the recognized
greater efficacy of platinum therapies on BRCA-1 mutated tumors [15], the two PDXs with
the higher prediction scores for cisplatin in this cohort were not BRCA-1 mutated (PDX-434
and PDX-1432C). We then assessed their sensitivity to cisplatin in vivo and confirmed
that PDX-434 and PDX-1432C remained highly responsive (Figure S5). As an indicator of
response, we used a normalized tumor response (NTR) value, calculated as the ratio of the
tumor volume at the time of the first drug injection to the smallest tumor volume measured
after the injection. We confirmed that cisplatin response prediction scores were highly
anti-correlated with NTR values (Figure 4a), suggesting the robust nature of our gene
expression-based drug response prediction models. Furthermore, this result highlighted
that our predictive signature for cisplatin, which is based on transcriptomic profiling rather
than mutational analysis, enabled us to identify rare cases of breast cancer patients who are
likely to respond to cisplatin, despite not being identified as belonging to the ‘BRCA-ness’
subgroup based on routine genomic testing.

To demonstrate whether this signature could predict the sensitivity of BRCA-1 de-
ficient (mutated or hypermethylated) tumors, we used a publicly available dataset from
a collection of BRCA-1 deficient PDXs [37]. Based on the signature validated with our
in-house PDXs (Figure 4a), we then predicted the cisplatin response across the BRCA-1
deficient PDXs (Figure 4b) and found that our predictions correlated with the overall
proportion of resistant tumors when treated with cisplatin in vivo (Figure 4b). Interestingly,
the primary tissues from all three corresponding patients had a slightly higher predicted
sensitivity score compared to their respective PDXs. It would be interesting to deter-
mine whether a particular clonal selection occurred in vivo or whether the influence of
the mouse host tumor microenvironment was responsible for the difference in cisplatin
sensitivity. Furthermore, some variations were observed between mice of the same model
(Figure 4a,b), likely due to inter-tumoral heterogeneity. It would be interesting to score
each tumor independently to determine whether sensitivity to cisplatin can be assessed at
the individual level.
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Figure 4. Cisplatin efficacy scores in pre-clinical models accurately discriminate between responsive and
resistant tumors. (A) Cisplatin efficacy scores for individual mice bearing one of four PDX tumors are
anti-correlated with median estimates of NTR (normalized tumor response), estimated from growth curves
(Figure S5). (B) Cisplatin efficacy scores discriminate between BRCA1-deficient PDX models based on
their likelihood to respond to the drug. Efficacy scores are inversely correlated with the proportion of
resistant tumors (defined in 47) and thus are predictive of resistance in BRCA1-deficient models.



Cancers 2022, 14, 2404 13 of 18

Altogether, these results indicate that gene expression profiling can be used to predict
response to cisplatin, regardless of the BRCA-1 status or deficiency of the tumors. This
highlights the substantial information that can be gained from transcriptomic analysis as a
guide to therapy selection.

4. Discussion

In this study, we developed and validated, in silico, a set of robust computational
models to predict drug responses for 90 compounds. While it has been demonstrated
previously that methods using gene expression correlated with drug response are predictive
of sensitivity and resistance (e.g., [52–54]), we used this approach in conjunction with our
recently developed single-sample scoring methods, singscore and stingscore, to generate
per-sample drug efficacy scores. These methods provide a simple and intuitive way of
converting gene expression profiles into numeric values for classification and have been
used previously in the classification of molecular phenotypes [42,55,56], prediction of
mutation status [57], and prediction of tumor-infiltrating lymphocytes in melanoma and
colorectal cancer [58,59].

While some research groups have attempted to obtain predictive features that are
shared across multiple cancer types by analyzing pan-cancer cohorts [60], cancer-specific
classifiers are more likely to account for tissue-specific features [61]. Here, we applied our
panel of drug efficacy expression signatures across multiple independent breast cancer
cell lines and patient sample datasets. To develop an unbiased approach and predict
efficacy regardless of the molecular subtype, we did not stratify cell lines according to
their molecular subtypes in our training data. Despite this, our drug efficacy signature
scores captured known subtype-specific differences in response for drugs, such as cisplatin,
docetaxel, and paclitaxel, which have been shown to be more effective in TNBC, and
lapatinib which is known to be effective for treating HER2-positive tumors. However,
for most drugs (e.g., panobinostat, vorinostat, and doxorubicin), molecular subtypes do
not explain the observed differences in treatment response. For these drugs, our scoring
approach may provide an avenue to guide the selection of targeted therapeutics, regardless
of their molecular subtype or genomic status.

We noted relatively little overlap between our response signatures and previously
published gene expression signatures associated with prognosis [54,62,63], with the only
notable overlap between our cisplatin response signature and a signature associated with
response to neoadjuvant chemotherapy in breast cancer [54], which shared 6 genes out
of 192.

Our in silico scoring strategy confirmed differences in sensitivity to the same treatment
in patients sharing the same disease subtype. Thus, our model could be used not only to
explore the biology that underlies the heterogeneous drug responses but also to provide
a useful guide to prioritizing drugs for patients within a given subtype. Importantly, we
found that our prediction signature for cisplatin could predict sensitivity to the drug within
the TNBC subtype, regardless of their BRCA-1 mutation status, and we validated this in
silico observation in PDX models. While other mutations in genes from the DNA repair
pathway could also be predictive of cisplatin response in these models, our results indicate
that transcriptomic data contains valuable information to identify drug responders. This
is of high clinical significance because clinical trials have previously shown that a small
proportion of BRCA-1 wild-type breast cancer patients can benefit from platinum-based
therapies [15]. It would be interesting to determine whether this signature for cisplatin
could be used to predict the sensitivity of testicular gem cell and ovarian cancers, which are
known to be sensitive to this drug [64]. However, the current lack of training and validation
data makes cross-cancer application and testing difficult.

As baseline transcriptional data were used to generate and validate these signatures,
we anticipate that this strategy could be used to predict sensitivity prior to any treatment.
Experiments using time-course analysis would be useful to determine whether some of
these genes are deregulated in response to drug exposure, or if the treatment can select
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the emergence of resistant clones within the initial population. Our predictions are based
on bulk RNA sequencing and, therefore, are likely to be predictive of the responses of
dominant clones present in the biopsied lesions. As a consequence, drugs associated with
positive predictions may have a drastic effect on primary tumor or metastatic burden,
improving the health of the patients. While the optimization of this approach at the single
cell level may enable the prediction of efficacy of both minor and dominant clones, the use
of single-cell sequencing in personalized medicine is still challenging due to the number of
cells and genes per cell that can be analyzed for each patient, as well as the cost associated
with this kind of analysis. Our results indicate that scoring of bulk RNA sequencing
data might be a good indicator of clinical response for the lesions that are biopsied, and
that multiple biopsies may be required to tailor individual patient therapies over time.
Likewise, biopsies from multiple sites will also help to capture heterogeneity and identify
likely variations in drug sensitivity due to clonal differences in metastases. Sampling this
variation, in combination with predictions of drug efficacy, presents an opportunity to
personalize therapy.

While gene expression data can successfully predict drug response for many drugs,
it is likely that for other drugs, the responsiveness will be better explained by specific
mutations, genomic or epigenomic changes, or post-transcriptomic events that regulate
protein function. For example, over 30 years ago, mutations in ESR1 were reported for the
first time to be associated with resistance to hormone therapies in ER-positive cancers [65]
and more recent evidence confirms this observation [66]. Recupero et al. showed that
truncation of HER2 in breast cancer may cause resistance to trastuzumab [67]. Thus,
combining gene expression with other molecular information, such as the mutation of
cancer driver genes or drug resistance genes, may improve the performance of predictions
for some drugs. In the case of cisplatin, BRCA-1 expression levels and methylation of
the BRCA-1 promotor are also important in mediating sensitivity [37,68]. Furthermore, a
recent study identified genomes associated with cisplatin resistance at a clonal level [69].
While the predictive signature we present for cisplatin does not itself contain BRCA-1 or -2,
it would be interesting to extend predictive models to take several -omics analyses into
consideration and evaluate the fitness of resistant clones under treatment pressure [69,70].

Our findings demonstrate that accurate prediction of drug response based on gene
expression features holds great hope for optimizing and personalizing treatment for cancer
patients, and approaches such as the one we have developed here will continue to gain
power as datasets improve.

5. Conclusions

Overall, our study demonstrates that drug prediction based on transcriptomic profiling
can be applied to any sample and contains information that cannot be identified by mutation
status, for instance in the case of cisplatin. Combining this powerful and general approach
with the identification of more sparse, and therefore less frequently detected, actionable
mutations will enable the further personalization of treatments in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14102404/s1. Supplementary Figure S1 Heatmap illustrating z-
transformed (within each gene) expression of the cisplatin signature genes in the training data.
Supplementary Figure S2. Associations between the drug efficacy signature scores and the observed
drug response (area under the dose-response curve). Supplementary Figure S3. Assessment of model
performance. Supplementary Figure S4. Performance of the prediction models (linear regression) in
the test data sets. Supplementary Figure S5. Growth curves of 4 TNBC PDXs treated in vivo with
cisplatin. Supplementary Table S1: Drug efficacy signatures derived in this study. The direction
of each gene determines its correlation with drug efficacy, ‘Up’ represents correlated genes and
‘Down’ represents anti-correlated genes. Supplementary Table S2: Spearman’s correlation coefficients
between drug efficacy signature scores and observed drug response for all drugs. Supplementary
Table S3: List of GO pathways identified for each drug response signature. Supplementary Table S4:
List of the KEGG pathways identified for each drug response signature.
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