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ABSTRACT

Software Defined Networks have opened the door to statistical and AI-based techniques
to improve efficiency of networking. Especially to ensure a certain Quality of Service
(QoS) for specific applications by routing packets with awareness on content nature
(VoIP, video, files, etc.) and its needs (latency, bandwidth, etc.) to use efficiently
resources of a network.
Monitoring and predicting various Key Performance Indicators (KPIs) at any level may
handle such problems while preserving network bandwidth.
The question addressed in this work is the design of efficient, low-cost adaptive algo-
rithms for KPI estimation, monitoring and prediction. We focus on end-to-end latency
prediction, for which we illustrate our approaches and results on data obtained from a
public generator provided after the recent international challenge on GNN [12].
In this paper, we improve our previously proposed low-cost estimators [6] by adding
the adaptive dimension, and show that the performances are minimally modified while
gaining the ability to track varying networks.

Keywords KPI Prediction · Machine Learning · Adaptivity · General Regression ·
SDN · Networking

1 Introduction

Routing while ensuring quality of service (QoS) remains a significant challenge in all networks. Whatever
the resources, their use must be optimized to satisfy both throughput and QoS to users. This is true for
static wide area networks, but even more so for mobile networks with dynamic topology.

The emergence of software-defined networks (SDNs) [11, 1] has enabled data to be shared more ef-
ficiently across communication layers. Services can provide network requirements to routers; routers
acquire data about network performance and allocate resources to meet those requirements as best as pos-
sible. However, acquiring overall network performance can result in high network bandwidth consump-
tion for signaling, degrading the available resources, and is particularly limiting for resource-constrained
networks such as mobile networks (MANETs).

We consider a network for which we wish to reduce signaling and perform intelligent routing. In order to
limit the amount of signaling, the first axis is to estimate some key performance indicators (KPIs) from
other KPIs. A second axis would be to perform this prediction locally, at the node level, rather than a
global estimation in the network. Finally, if predictions are to be performed locally, the complexity of
the algorithms will need to be low while preserving good prediction quality. The last point is to be able
to detect and track changes in the state of the network, which implies that the predictors will have to use
only a small number of the previous states of the network and be able to readapt continuously.

∗Note: Paper accepted at the 5th International Conference on Machine Learning for Networking (MLN’2022)
and will be published as a post-proceedings in Springer’s LNCS.



The question addressed in this work is the design of efficient, low-cost adaptive algorithms for KPI
estimation, monitoring and prediction. In the present paper, we improve our previously proposed low-
cost estimators [6] by adding the adaptive dimension and show that the performances are minimally
modified while gaining the ability to track varying networks. We focus on end-to-end latency prediction,
for which we illustrate our approaches and results on data we generated using a public generator made
available after the recent international challenge [12]. The best performances of the state-of-the-art are
obtained with Graph Neural Networks (GNNs) [10, 3, 12]. Although this is a global method while we
favor local and adaptive methods, we used these performances as a benchmark.

We present related works in section 2. Then we present in section 3 our main results from [6]. Instead
of using high performances global and high-costs methods based on Graph Neural Networks (GNNs)
[10, 3, 12], we proposed to use standard machine learning regression methods. We showed that a careful
feature engineering and feature selection (based on queue theory and the approach in [2]), as well as
the use of a single feature with curve-fitting methods, allows to obtain near state-of-the-art performances
with both a very low number of parameters, significantly lower learning and inference times compared to
GNNs, and the with the ability to operate at the link level instead of a whole-graph level. In section 4,
we show how these block algorithms can be transformed into versions implementable in an iterative way
(i.e. by taking into account the data one by one as they become available), with the originality of using a
regularization term. Then, time dependent estimations, or the addition of forgetting factor will give them
an adaptive character. In section 5 we describe the validation dataset we built from a public generator and
then the results of our experimentation. Finally, we conclude, discuss the overall results and draw some
perspectives.

2 Related work

[4] present an heuristic and an Mixed Integer Programming approach to optimize Service Functions Chain
provisioning when using Network Functions Virtualization for a service provider. Their approach relies
on minimizing a trade-off between the expected latency and infrastructures resources.

Such optimization routing flow in SDN may need additional information to be exchanged between the
nodes of a network. This results in an increase of the volume of signalization, by performing some
measurements such as in [7]. This is not a consequent problem in unconstrained networks, i.e. static
wired networks with near-infinite bandwidth but may decrease performance of wireless network with
poor capacity. An interesting solution to save bandwidth would be to predict some of the KPIs from other
KPIs and data exchanged globally between nodes.

In [8, 9], authors proposed a MANETs application of SDN in the domain of tactical networks. They
proposed a multi-level SDN controllers architecture to build both secure and resilient networking. While
orchestrating communication efficiently under military constraints such as: high-level of dynamism, fre-
quent network failures, resources-limited devices. The proposed architecture is a trade-off between tra-
ditional centralized architecture of SDN and a decentralized architecture to meet dynamic in-network
constraints.

[5] proposed a Quality of Experience (QoE) management strategy in a SDN to optimize the loading time
of all the tile of a mapping application. They have shown the impact of several KPIs on their application
using a Generalized Linear Model (GLM). This mechanism make the application aware of the current
network state.

[10] used GNNs for predicting KPIs such as latency, error-rate and jitter. They relied on the Routenet
architecture of Figure 1. The idea is to model the problem as a bipartite hypergraph mapping flows to
links as depicted on Figure 2. Aggregating messages in such graph may result in predicting KPIs of the
network in input. The model needs to know the routing scheme, traffic and links properties. Their result
is very promising and has been the subject of two ITU Challenge in 2020 and 2021 [3, 12]. These ITU
challenges have very good results since the top-3 teams are around 2% error in delay prediction in the
sense of Mean-Absolute Percentage Error (MAPE).

In [2], very promising results were obtained with a a near 1% GNN model error (in the sense of MAPE)
on the test set. The model mix analytical M/M/1/K queueing theory used to create extra-features to
feed GNN model. In order to satisfy the constraint of scalability proposed by the challenge, the first part
of model operates at the link level.

Figure 1: Routenet Architecture [10]
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Figure 2: Routenet [10] paths-links hypergraph transformation applied on a simple topology graph
carrying 3 flows.

(a) Black circles represents communication node, double headed arrows between them denotes available symmetric
communications links and dotted arrows shows flows path. (b) Circle (resp. dotted) represents links (resp. flows)
entities defined in the first graph (Lij is the symmetric link between node i and node j.). Unidirectional arrows

encode the relation "<flow> is carried by <link>".

3 Simple machine-learning approaches for latency prediction

Our first problem is to define an estimator ŷ of the occupancy y as a function of the different available
“features” of the system, with a joint objective of low complexity and performance. To do so, we will
look for an approximation function fθ(u) that allows to estimate y from the features u and parameters θ.

ŷ = fθ(u) (1)

Here u and θ are vectors that collect the different features or parameters. Once an estimate of occupancy
is obtained, it is possible to get the latency prediction d̂n for a specific link n by the simple relation

d̂n = ŷn
E(|Pn|)
cn

(2)

where E [|Pn|] is the observed average packet size on link n and cn the capacity of this link.

For analytical simplicity, the parameters θ will be sought by minimizing the minimum mean square error

E
[
(y − ŷ)2

]
= E

[
(y − fθ(u))2

]
, (3)

although the performances are also often evaluated in the MAPE sense

L (ŷ, y) = 100%

N

N∑
n=1

∣∣∣∣ ŷn − ynyn

∣∣∣∣ (4)

which is preferred to Mean Squared Error (MSE) because of its scale-invariant property.

We will focus here on two very simple models, although other machine learning models have also been
considered in [6]. Indeed, these two models lend themselves very easily to an adaptive formulation. In
this section, we will first describe these two approaches and their performances, before giving the general
adaptive formulation, which we will particularize in both cases.

3.1 Feature Engineering and Linear Regression

Based on the assumption that the system may be approximated by a model whose essential features come
from M/M/1/K and M/G/1/K queue theory, we took essential parameters characterizing queueing
systems, such as: ρ, ρe, π0, πK , etc. and built further features by applying interactions and various
non-linearities (powers, log, exponential, square root). Then, we selected features in this set by a forward
step-wise selection method; i.e. by adding in turn each feature to potential models and keeping the feature
with best performance. Finally, we selected the model with best MAPE error. For a linear regression
model, this led us to select and keep a set of 4 simple features, which interestingly enough, have simple
interpretations: 

π0 = 1−ρ
1−ρK+1

L = ρ+ π0
∑
k kρ

k

ρe =
λe

λ ρ = λe

µ

Se =
∑
k kρ

k
e

(5)

where L is the expected number of packets in the queue according to M/M/1/K, π0 the probability
that the queue is empty according to M/M/1/K theory, ρe the effective queue utilization, and Se the
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unnormalized expected value of the effective number of packet in the queue buffer. These features can
be thought as a kind of data preprocessing, before applying ML algorithms, and this turns out to be a key
to achieving good performances. The 4 previous features have been used as input for several machine
learning models like Multi-Layer Perceptron model (MLP), Linear Regression, SVM, Random Forest,
Gradient Boosting Regression Tree. We only describe here the case of linear regression, since it is a
method for which an adaptive version is readily obtained. In this case, model (1) is simply

ŷ = θ0 + θ1π0 + θ2L+ θ3ρe + θ4Se = θTu (6)

with θT = [θ0, . . . θ4] and uT = [1, π0, L, ρe, Se]. For the linear regression model in ((6), it is well
known that the regularized minimum mean squared error

J(θ) = E
[
(y − θTu)2

]
+ α||θ||2 (7)

is obtained for
θ : (Ruu + α1)θ = Ryu (8)

where we denoted {
Ruu = E

[
uuT

]
, the correlation matrix of u

Ryu = E [yu] , the correlation vector of y and u

and 1 the identity matrix, α the regularization parameter.

As far as performance is concerned with this approach, it was evaluated using static data from the GNN
ITU Challenge 2021 [12]. Compared to the state-of-the-art, our linear regression with carefully selected
features shows a very slight performance degradation: 1.74% in MAPE while the best state-of-the-art
method is at 1.27%. One strong advantage is in term of training and inference time. It has a training
time of less than a second when GNN requires more than 8 hours. Moreover, the inference time for the
complete network is also much lower, by a factor of almost 1000 (0.296s vs 214s).

3.2 Curve Regression by Bernstein polynomials

There is a high interdependence of the features we selected in Equation (5), since all these features can be
expressed in term of ρe. Furthermore, it is confirmed by data exploration that ρe is the prominent feature
for occupancy prediction (and in turn latency prediction), as exemplified in Figure 3.

It is then tempting to try to further simplify our features space and estimate the occupancy from a non-
linear transformation of the single feature ρe, as:

ŷ = g(ρe) (9)

where ŷ is the estimate of the occupancy y. The concerns are of course to define simple and efficient
functions g, with a low number of parameters, that can model the kind of growth shown in Figure 3, and
of course to check that the performance remains interesting.

Figure 3: Data of ITU Challenge 2021 [12], ρe vs queue occupancy. Color-scale is an indicator of points
cloud density.

The estimator g is defined as a linear combination of simple functions fn:

ŷ = g(ρe) =
∑
n

θn · fn(ρe) (10)

which is also a linear model in terms of function fn(ρe).
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Several solutions were considered in [6] to define or choose the functions fn. Since we know that the
Bernstein polynomials form a basis in the set of polynomial in the interval [0; 1]; and that the approxima-
tion of any continuous function on [0; 1[ by a Bernstein polynomial converges uniformly, we were led to
these polynomials:

fKn (x) =

(
K

n

)
xn(1− x)K−n (11)

where K is maximum order of polynomials.

As mentioned, (10) can be rewritten as the linear model

ŷ = g(ρe) =
∑
n

θn · fn(ρe) = θTu (12)

with θT = [θ0, . . . , θK ] and uT = [fK0 (ρe), f
K
1 (ρe), . . . , f

K
K (ρe)]. Hence, we have the same form as in

(8) for the solution.

In term of performances, we also obtained a minor degradation in MAPE (1.68%) compared to state-of-
the-art (1.29%), while improving by several orders the wall training and inference times (2min/3.14s vs
8hrs/214s); though a bit less than the simple linear regression.

4 Adaptive versions

We place ourselves in the context where we have regular snapshots of the state of the network, which
allows us to both monitor the quality of predictions, and to track changes in the network. For the n-th
series of measurements, let us denote y(n) the measured latency and u(n) the features. We can also
group several snapshots or several links into a vector of latencies y(n) and matrix U(n). In the following
we will derive equations for this block case, which includes immediately the scalar case.

The minimum mean square error (7) which has the explicit solution (8) can also be solved by a gradient
algorithm as

θk+1 = θk − µ ∇J(θ)|θ=θk
, (13)

= θk − µ ((Ruu + α1)θk −Ryu) . (14)

In (14), we can substitute the true values with estimated ones. In order to introduce adaptivity to context
changes in the network, these estimates will preserve the temporal dimension. We thus use either a sliding
average {

R̂uu(n) =
∑L
l=0 U(n− l)U(n− l)T

R̂yu(n) =
∑L
l=0 U(n− l)y(n− l)

(15)

or an exponential mean{
R̂uu(n) =

∑n
l=0 λ

l−nU(l)U(l)T = λR̂uu(n− 1) +U(n)U(n)T

R̂yu(n) = λR̂yu(n− 1) +U(n)y(n).
(16)

where λ ≤ 1 is the forgetting factor.

In the limit case where we take either L = 0 or λ = 0 in the previous formulas, we get the ‘instantaneous
estimates‘ {

R̂uu(n) = U(n)U(n)T

R̂du(n) = U(n)y(n).
(17)

we obtain
θ(n+ 1) = (1− µα)θ(n)− µU(n)

(
U(n)Tθ(n)− y(n)

)
(18)

which reduces to the well known LMS algorithm [14] in the scalar case and no regularization, α = 0.

Alternatively, one can try to solve the normal equation (8), using the time dependent estimates as the
exponential mean (16). The difficulty with the solution

θ̂(n+ 1) =
[
R̂uu(n+ 1) + α1

]−1

R̂yu(n+ 1) (19)

is the inversion, for each n, of the correlation matrix. Let us denote

K(n+ 1) =
[
R̂uu(n+ 1) + α1

]−1

. (20)

Using (16), we have

K(n+ 1)−1 = λR̂uu(n) +U(n+ 1)U(n+ 1)T + α1 (21)

= λ
(
R̂uu(n) + α1

)
+U(n+ 1)U(n+ 1)T + α(1− λ)1 (22)

= λK(n)−1 +U(n+ 1)U(n+ 1)T + α(1− λ)1 (23)
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and
K(n+ 1) =

[(
λK(n)−1 +U(n+ 1)U(n+ 1)T

)
+ α(1− λ)1

]−1
(24)

= [Q(n+ 1) + δ1]
−1 (25)

with
Q(n+ 1) =

(
λK(n)−1 +U(n+ 1)U(n+ 1)T

)
(26)

and δ = α(1− λ) The matrix inversion lemma enables to reduce the inversion of Q(n+ 1) to

Q(n+ 1)−1 =
1

λ
K(n)− 1

λ2
K(n)U(n+ 1)×(

1+
1

λ
U(n+ 1)TK(n)U(n+ 1)

)−1

U(n+ 1)TK(n),

(27)

which simplifies to

Q(n+ 1)−1 =
1

λ
K(n)− 1

λ2
K(n)u(n+ 1)u(n+ 1)TK(n)

1 + 1
λu(k + 1)TK(n)u(k + 1)

, (28)

for scalar observations. Now, we can use the Taylor expansion to get

K(n+ 1) = [Q(n+ 1) + δ1]
−1

= Q(n+ 1)−1 − δQ(n+ 1)−2 + δ2Q(n+ 1)−3 + . . . (29)
This gives us a way to compute recursively the inverse of the regularized estimate of the correlation matrix
by combining (27) and (29) into

K(n+ 1) ≈ Q(n+ 1)−1 − δQ(n+ 1)−2 (30)
which, by (27), does not require the inversion of K(n).

In both cases, we have the updating formula

θ(n+ 1) = θ(n) +K(n+ 1)U(n+ 1)[y(n+ 1)− θ(n)TU(n+ 1)]. (31)

5 Experiments and results

5.1 Dataset

We generate a dataset thanks to a public challenge data generator [12]. This data generator is based on the
well-known OMNET++ discrete event network simulator[13]. The published simulator is available as a
docker image. However, due to the rules of the 2022 edition of the challenge, it is not possible to generate
large topologies, i.e. no more than 10 nodes. Since our models are link-based, the use of small topologies
does not seem to be a problem. The simulator is parameterized by a traffic matrix and a topological graph
that are easy to generate thanks to the provided API.

Our generated dataset, used is this paper, is the result of 11900 simulations of the same topology graph
of 10 nodes and 30 links, subject to 100 different traffic matrices. In order to get complex results of
simulations but at low cost, we made the choice to model a network with small queue buffers (8000 bits)
and possibly subject of high traffic intensities (maximum traffic rate set to 4000 bits/s for each flow). Then
for each traffic matrices, we alter the capacity of the network according to a sigmoid, in order to model
a network subject to jamming, with 2 stationary states. The proposed jamming may cause a decrease
in the capacity of the network links by up to a factor of 5, as depicted on Figure 4a. For simplification
purposes, we have considered that each link of the network has the same capacity. This result in a U-
shaped distribution of our link data samples according to the link capacity as shown in Figure 4b.

5.2 Results

From the generated data, we validate our approach along several axes.

5.2.1 Global performances

First, we establish the benchmark performances based on the global methods presented in the paper [6]
and Sections 3.1 and 3.2.

For the linear regression method described in Section 3.1, we obtain an MSE of 5.86e-4 and a MAPE
of 9.58% for the queue occupancy prediction and an MSE of 1.10e-3 and a MAPE of 10.26%. for the
end-to-end latency prediction.

Concerning the curve regression using Bernstein polynomials (of degree 8) described in in Section 3.2,
we obtain an MSE of 4.52e-4 and a MAPE of 8.72% for the queue occupancy prediction and an MSE of
9.35e-4 and a MAPE of 9.95% for the end-to-end latency prediction.

Note that these benchmark performances are below the performances obtained in [6], but the dataset we
use here is probably more severe since using ground truth value for occupancy results in an MSE 6.03e-4
of a MAPE 9.34% for the flow delay prediction. That is indeed very close of the obtained results.
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Figure 4: Overview of the generated dataset
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5.2.2 Behavior of iterative algorithms

In a second step, we verify that the algorithms presented in section 4 converge and allow us to recover
these performances. With a forgetting factor of 1 (use of all data with the same weight) and a block size
of 10, we observe, for example in Figure 5, that the model coefficients converge towards a stable value,
and that MAPE recovers the value obtained with the global method using all data. The convergence is
obtained in less than 10,000 operations. It is thus possible to replace the global method, which is already
low-cost, with an approach where the calculations are carried out recursively.

5.2.3 Adaptivity

In a third step, we compare the algorithms to the case of network modifications We consider an abrupt
change in the network capacity, which could correspond to a jamming scenario. We then examine how
the two adaptive algorithms presented (linear regression with judiciously chosen features; and Bernstein
polynomial model) can detect and adapt to these modifications. In this context, we examine the role of
the forgetting factor and the regularization parameter. Figure 6 and Figure 7 present the results for the
case of a capacity change. We observe that (i) the square of the residual error, smoothed over 100 points,
is a remarkable indicator of a change in the network; and (ii) that the model coefficients readjust over the
iterations after this change.

5.2.4 Discussion

These experiments show the effectiveness and relevance of our iterative and adaptive versions of end-
to-end latency estimation procedures. The iterative versions have the same performance as their global
counterparts; an even lower cost since they can be implemented iteratively as the data is received or made
available. The convergence time for the model coefficients is a few thousand samples while the global
model used around 350,000 samples for training, while the GNN models require several million samples.
Moreover, we observe that the residual error converges very quickly, in some tens of samples, which
means that although the convergence of the models’ coefficients does not seem to be complete, they are
equivalent from the point of view of performance for occupancy prediction. From an operational point of
view, the model can be refreshed regularly, and the predicted KPIs between these updates can be used for
intelligent routing. As we have observed, residual error monitoring is an excellent indicator of changes
in the network state.

6 Conclusion

In this paper, we considered the problem of designing efficient and low-cost algorithms for KPI predic-
tion that are locally implementable and adaptive to network changes. Based on a previous work, we
have argued and developed adaptive solutions, introducing in addition a regularization term in order to
stabilize the results. We used a public domain simulator to simulate networks and generate relevant data.
The experiments demonstrate the effectiveness and relevance of these algorithms. Thus, we now have
low-complexity models that can be implemented iteratively at the level of local links. We have the possi-
bility to predict the occupancy of the different links, and the end-to-end latencies (the models predict the
occupancy of the queues, then compute analytically the delay for each link and finally aggregate along the
path). Moreover, the adaptability of the solution allows to follow changes in the network state, always at
a minimal cost, by re-adapting from the current solution and new data. The continuation of the work will
focus on the choice criteria of the forgetting factor, on the impact of the regularization factor, in order to
find automatic selection methods. Of course, the approaches considered here will have to be considered
and adapted for other types of KPI, such as error rate or jitter.
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(a) Iterative curve-fitting based on Bernstein polynomials of degree 8.
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Figure 5: Evolution of weights for our iterative methods without forgetting (non-adaptive) while fitting
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of jamming. #39 corresponds to a link capacity of 11 Kbits/s, #10 40 Kbits/s and #1 49 Kbts/s. Figure is
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corresponds to a link capacity of 11 Kbits/s, #10 40 Kbits/s and #1 49 Kbts/s. Figure is smoothed over

100 points.
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